
Learn Singularly Perturbed Solutions via Homotopy Dynamics

Chuqi Chen 1 Yahong Yang 2 Yang Xiang 1 3 Wenrui Hao 2

Abstract
Solving partial differential equations (PDEs) us-
ing neural networks has become a central focus
in scientific machine learning. Training neural
networks for singularly perturbed problems is par-
ticularly challenging due to certain parameters in
the PDEs that introduce near-singularities in the
loss function. In this study, we overcome this chal-
lenge by introducing a novel method based on ho-
motopy dynamics to effectively manipulate these
parameters. From a theoretical perspective, we
analyze the effects of these parameters on training
difficulty in these singularly perturbed problems
and establish the convergence of the proposed ho-
motopy dynamics method. Experimentally, we
demonstrate that our approach significantly ac-
celerates convergence and improves the accuracy
of these singularly perturbed problems. These
findings present an efficient optimization strategy
leveraging homotopy dynamics, offering a robust
framework to extend the applicability of neural
networks for solving singularly perturbed differ-
ential equations.

1. Introduction
The study of Partial Differential Equations (PDEs) serves
as a cornerstone for numerous scientific and engineering
disciplines. In recent years, leveraging neural network ar-
chitectures to solve PDEs has gained significant attention,
particularly in handling complex domains and incorporating
empirical data. Theoretically, neural networks have the po-
tential to overcome the curse of dimensionality when solving
PDEs (Han et al., 2018; Siegel & Xu, 2020; Lu et al., 2021b;

1Department of Mathematics, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong SAR, China
2Department of Mathematics, The Pennsylvania State University,
PA, USA 3Algorithms of Machine Learning and Autonomous Driv-
ing Research Lab, HKUST Shenzhen-Hong Kong Collaborative
Innovation Research Institute, Futian, Shenzhen, China
. Correspondence to: Yahong Yang <yxy5498@psu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Yang & Xiang, 2022; Hao et al., 2025). However, despite
these advancements, numerically solving such fundamental
physical equations remains a challenging task. Existing
neural network-based PDE solvers can be broadly divided
into two categories. The first is solution approximation,
which focuses on directly approximating PDE solutions us-
ing methods such as PINNs (Raissi et al., 2019; Karniadakis
et al., 2021; Cuomo et al., 2022), the Deep Ritz Method (E
& Yu, 2018), and random feature models (Chen et al., 2022;
Dong & Wang, 2023; Sun et al., 2024; Chen et al., 2024b).
The second category, operator learning, aims to approximate
the input-to-solution mapping, with representative methods
including DeepONet (Lu et al., 2021a) and FNO (Li et al.,
2021), as well as various extensions for broader operator
classes (He et al., 2024; Lan et al., 2023; Li et al., 2023;
Geng et al., 2024).

However, the optimization challenges in solving PDEs sig-
nificantly limit the applicability and development of neu-
ral network-based methods. Studies have shown that the
loss functions for solving PDEs are often difficult to mini-
mize, even in simple scenarios (Krishnapriyan et al., 2021;
Rathore et al., 2024; Xu et al., 2024; Chen et al., 2024b;a).
For example, small diffusion coefficients in the Allen–Cahn
equation (Allen & Cahn, 1975), small viscosity terms in the
Burgers equation (Burgers, 1948), and large wave numbers
in the Helmholtz equation (Hilbert, 1985). In these types of
equations, the parameters significantly influence the solution
behavior. In Allen–Cahn and Burgers equations, decreasing
the parameter sharpens the solution, often resulting in near-
singular structures. In the Helmholtz equation, increasing
the parameter induces high-frequency oscillations. These
effects complicate the loss landscape, making optimization
challenging and often causing slow convergence, inaccurate
solutions, or even divergence.

The root of this challenge lies in the highly complex energy
landscape of the loss function near singularities, which sig-
nificantly exacerbates optimization difficulties (Karniadakis
et al., 2021; Xu et al., 2024). To address these challenges,
two main strategies have been proposed. The first strat-
egy is resampling, which involves introducing additional
collocation points in regions with low regularity to better
capture the solution’s complexity (Wight & Zhao, 2020;
Gao et al., 2024; Zhang et al., 2025). However, resampling-
based methods typically require a large number of sample

1

Homotopy Dynamics

Figure 1. Framework of homotopy dynamics for solving singularly perturbed problems.

points, leading to substantial memory consumption, and the
sampling process becomes increasingly complicated in high-
dimensional settings. The second strategy is the design of
multiscale neural network architectures (Wang, 2020; Liu,
2020; Liu et al., 2024b; Hao et al., 2024; Wang et al., 2021;
Huang et al., 2025). These approaches generally require
certain a priori knowledge of the solution properties, impose
specific constraints on the network design, and are highly
sensitive to the selection of hyperparameters.

In this paper, we introduce a novel approach based on ho-
motopy dynamics to gradually reshape the complex energy
landscape with respect to a specific coefficient. Rather than
directly computing solutions near singularities, we leverage
homotopy dynamics to trace a solution path that approxi-
mates them more effectively. More specifically, we inves-
tigate the training challenges introduced by a parameter ε
in the PDE residual term within the loss functions. As ε
decreases, the problem becomes more significantly difficult
to solve. To understand this effect, we provide a theoretical
analysis of how ε influences the convergence of the training
process. To address this issue, we propose a novel method
called Homotopy Dynamics. The key idea is to first train the
neural network on PDEs with a large ε, where the problem is
easier to learn and training is more efficient. Then, we grad-
ually and adaptively adjust the neural network according to
the evolution of the homotopy dynamics, guiding ε toward
its target value (as illustrated in Figure 1). Although the
homotopy approach has been used to train neural networks
(Chen & Hao, 2019; Yang et al., 2025), this work is the first
to apply homotopy dynamics to sharp interface problems in
PDEs through the parameter ε.

A related idea appears in (Krishnapriyan et al., 2021) as Cur-
riculum PINN Regularization, where PDE parameters are
observed to influence PINN performance, though without

theoretical analysis. In contrast, our work is the first to theo-
retically demonstrate that in singularly perturbed problems,
smaller ε values lead to greater training difficulty (Theorem
1). While both approaches share the curriculum-style moti-
vation, our method differs in design and rigor: we construct
a continuous homotopy path in parameter space with con-
vergence guarantees and introduce a principled strategy for
choosing the homotopy step size ∆ε (Theorem 2), which
is absent in (Krishnapriyan et al., 2021).

Contributions. Our key contributions are summarized as
follows:

• We propose Homotopy Dynamics, a novel method for
solving singularly perturbed PDEs with neural networks,
achieving improved training performance (Section 3).

• We provide a theoretical analysis of how the PDE param-
eter ε affects training difficulty, and establish the conver-
gence of our method (Section 4).

• We validate the method on diverse problems, including
the Allen–Cahn equation, high-dimensional Helmholtz
equation, and operator learning for Burgers’ equation
(Section 5).

2. Problem Setup
We begin by introducing the singularly perturbed problems
studied in this work, followed by the neural network-based
solution approach and the training challenges that motivate
our method.

2.1. Singularly perturbed Problems

The form of the singularly perturbed problem is defined as
follows: {

Lεu = f(u), in Ω,
Bu = g(x), on ∂Ω,

(1)

2

Homotopy Dynamics

where Lε is a differential operator defining the PDE with
certain parameters, B is an operator associated with the
boundary and/or initial conditions, and Ω ⊆ Rd. In the con-
sidered PDEs, the parameter ε governs the complexity of
the solution, with smaller values generally leading to more
challenging behaviors. For example, in the Allen–Cahn
equation (4), ε represents the interfacial width parameter,
where smaller ε results in sharper transition layers. In the
Burgers equation (28), ε corresponds to the viscosity co-
efficient, with small values leading to steep gradients or
shock-like structures. In the Helmholtz equation (27), ε
is inversely related to the wave number, and decreasing ε
yields higher-frequency oscillations.

In all cases, as ε becomes small, the solution exhibits
increased complexity—whether through sharp interfaces,
steep gradients, or high-frequency structures—posing sig-
nificant challenges for neural network-based solvers. More
details will be provided in the following section.

2.2. Neural Networks for Solving PDEs

In this section, we focus on solution approximation rather
than operator learning for simplicity, specifically using a
neural network to approximate the PDE solution. In Section
5, we will demonstrate that our Homotopy Dynamics can
also generalize to the operator learning case. The PDE prob-
lem is typically reformulated as the following non-linear
least-squares problem, aiming to determine the parameters
θ of the neural network u(x;θ) (commonly a multi-layer
perceptron, MLP):

min
θ∈Rp

L(θ) :=
1

2nres

nres∑
i=1

(
Lεu(xir;θ)− f(u(xir; θ))

)2
︸ ︷︷ ︸

Lres

+ λ
1

2nbc

nbc∑
i=1

(
Bu(xjb;θ)− g(xjb)

)2
︸ ︷︷ ︸

Lbc

. (2)

Here Lres is the PDE residual loss, Lbc is the boundary loss
and λ is a constant used to balance these two terms. The
sets {xir}

nres
i=1 represent represent the interior sample points,

and {xjb}
nbc
j=1 represent the boundary sample points. We

also introduce the ℓ2 relative error (L2RE) to evaluate the
discrepancy between the neural network solution and the
ground truth, defined as

L2RE =
∥uθ − u∗∥2

∥u∗∥2
,

where uθ is the neural network solution and u∗ is the ground
truth.

Figure 2. Training curves for different values of ε in solving the
1D Allen-Cahn steady-state equation. As ε decreases, the training
error increases, indicating that the training process becomes pro-
gressively more difficult.

2.3. Challenges in Training Neural Networks

In this paper, we consider the following singularly perturbed
elliptic problem:{

−ε2∆u(x) = f(u), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(3)

where ε is a problem parameter that influences both the
structure of the solution and the difficulty of training neural
network solvers. As a representative example, we focus on
the steady-state Allen–Cahn equation in one spatial dimen-
sion: {

−ε2u′′(x) = u3 − u, x ∈ [0, 1],

u(0) = −1, u(1) = 1,
(4)

where the parameter ε controls the width of the internal
interface. As ε decreases, the interface becomes increasingly
sharp, resulting in a solution with higher gradients near the
transition region. The analytic steady-state solution of this
problem is given by

u(x) = tanh

(
x− 0.5√

2ε

)
,

where the interface is centered at x = 0.5. As shown in
Figure 3, the solution becomes sharper as ε becomes smaller.

To show the challenges in the optimization problem defined
in (2), we present the training curves for varying values of ε
in Figure 2. As ε decreases, training errors increase. This
is due to the significantly increased training difficulty and
slower convergence for smaller ε. In the subsequent sections,
we analyze the underlying reasons for this phenomenon and
introduce a homotopy dynamics-based approach to address
the challenge.

3

Homotopy Dynamics

3. Homotopy Dynamics
To address training difficulties in neural networks for sin-
gularly perturbed problems, we introduce a novel approach
termed homotopy dynamics.

3.1. Homotopy Path Tracking

First, we introduce the homotopy function below:

H(u, ε) = Lεu− f(u) ≡ 0, (5)

where ε is the parameter in the PDEs. Specifically, this
formulation represents the PDE problem Lεu = f(u). In
this context, ε is treated as a path-tracking parameter. At ε =
ε0, we assume that the solutions to H(u0, ε0) = 0 are either
known or can be easily approximated by neural networks.
These solutions are referred to as the starting points. At ε =
ε∗, the original system we aim to solve is recovered, which
is referred to as the target system. Therefore, solving the
target system involves tracking the solutions of H(u, ε) = 0
from ε = ε0, where the solutions are known, to ε = ε∗,
where the solutions are sought.

The process of path tracking between ε0 and ε∗ is governed
by solving the Davidenko differential equation:

dH(u(ε), ε)

dε
=

∂H(u(ε), ε)

∂u

du(ε)

dε
+

∂H(u(ε), ε)

∂ε
= 0,

(6)
with the initial condition u(ε0) = u0. Thus, path track-
ing reduces to numerically solving an initial value problem,
with the starting points acting as the initial conditions. Addi-
tionally, the boundary condition in (3) should be taken into
account when solving the initial value problem numerically.

3.2. Incorporating Homotopy Dynamics into Neural
Network Training

To enhance the neural network training process, we incor-
porate homotopy dynamics by gradually transitioning the
network from an easier problem (with a larger ε0) to the
original target problem (with ε∗). This approach helps mit-
igate the challenges associated with training networks for
problems involving small values of ε, where solutions be-
come increasingly sharp or oscillation and harder to com-
pute. Specifically, we denote the neural network solution for
(3) as u(x;θ(ε)). The homotopy path tracking for training
neural networks can then be refined as:

Hu∇θu · dθ(ε)
dε

+Hε = 0, (7)

where Hu = ∂H
∂u , Hε =

∂H
∂ε and ∇θu represents the Jaco-

bian with respect to the neural network parameters θ. Thus
we can derive the homotopy dynamics system as:

dθ(ε)

dε
= −(Hu∇θu)

†Hε, ε ∈ [ε0, ε
∗], (8)

with the initial condition θ(ε0) = θ0 and † stands for
Moore–Penrose inverse (Ben-Israel & Greville, 2006). Thus,
to solve the singularly perturbed problem (3) where ε is
small, we can first solve (3) with a large ε using the loss
function (2). Then, by following the homotopy dynamics
path tracking (8), we can progressively obtain the solution
for smaller values of ε, ultimately solving the singularly
perturbed problem.

In particular, path tracking in homotopy dynamics reduces
to solving initial value problems numerically, with the start
points serving as the initial conditions. For different neural
network architectures, we propose two strategies, which are
summarized in Algorithm 1.

One is to solve the initial value problem by using the forward
Euler method, as follows:

θ(εk) = θ(εk−1)−∆εk∇θu(εk−1)
†H−1

u Hε, (9)

where ∆εk = εk − εk−1. This approach is effective for
small neural networks, as the pseudo-inverse is easy to com-
pute.

The other approach is to introduce the Homotopy Loss in
the optimization, formulated as:

min
θ(εk)∈Rp

LHom(θ(εk)) :=LH + λLbc + αLHε , (10)

where LH is defined in Eq. (12), and LHε is the loss function
from Homotopy Dynamics, which is

LHε =
1

2nres

nres∑
i=1

(
Hu(uθ(εk)(x

i
r), ε)

∆uk
∆εk

+Hε(uθ(x
i
r), ε)

)2
.

This approach is suitable for large neural networks, as it
does not require the computation of the pseudo-inverse, and
∆uk = uθ(εk) − uθ(εk−1).

Algorithm 1 Homotopy Dynamics Path Tracking
input tolerance τ , list of parameters ε0, ε1, . . . , εn

Phase I: Directly train NN for large ε0
while L(θ(ε0)) > τ do

minL(θ(ε0))
end while
Phase II: Homotopy dynamics path tracking
for k = 1, . . . , n do

∆εk = εk − εk−1

Strategy 1. Numerical solution via Forward Euler:
θ(εk) = θ(εk−1)−∆εk∇θu(εk−1)

†H−1
u Hε

Strategy 2. Optimization using homotopy loss:
while LHom(θ(εk)) > τ do
minLHom(θ(εk))
end while

end for
output uθ(εn)

If LH and λLbc are omitted in strategy 2, then strategy 2 can
be viewed as an alternative approach to solving the linear

4

Homotopy Dynamics

Table 1. Training loss and L2 error (L2RE) for classical training
vs. homotopy dynamics under different ε. Homotopy dynamics
achieves consistently lower loss and error.

ε = 0.1 ε = 0.03 ε = 0.01
Loss L2RE Loss L2RE Loss L2RE

Classical 5.00e-6 1.71e-2 7.76e-4 1.11 7.21 8.17e-1
Homotopy 5.00e-6 1.71e-2 7.45e-8 9.83e-3 4.63e-8 8.08e-3

Figure 3. Evolution of the Homotopy dynamics for steady state 1D
Allen-Cahn equation. The L2RE for ε = 0.01 is 8.08e− 3.

system given in Eq. (7). However, for certain PDEs or larger
neural networks, directly solving Eq. (7) is unstable because
the term Hu∇θu contains many small singular values, caus-
ing conventional methods (e.g., using SVD) to incur large
errors. Therefore, we opt to solve an optimization problem
in the traditional manner. Within this framework, strategy 2
follows the same dynamic process as strategy 1, yielding
more stable training. Including LH and λLbc ensures that
the obtained solution satisfies the target PDE. Conversely,
even if H(u, ε) = Const ̸= 0, the solutions still follow the
same homotopy dynamics since they share the same LHε .

Example: 1D Allen-Cahn steady-state equation. We
demonstrate our proposed method on the one-dimensional
Allen-Cahn steady-state equation by defining the following
homotopy function:

H(uθ, ε) = ε2u′′
θ(x) + u3

θ − uθ ≡ 0. (11)

Following the homotopy dynamics in Eq. (8), we set the
initial value at ε = 0.1 and gradually decrease it to the final
value εn = 0.01. The initial solution, θ(ε0), is obtained
using the standard training process by directly minimizing
(2). The results and the evolution process are presented
in Table 1 and Figure 3. These results show that when ε
is large, the original training method achieves a relatively
small error, leading to an accurate solution. However, as ε
decreases, the error increases, which reduces the accuracy
of the solution. In contrast, the homotopy dynamics-based
approach maintains accuracy effectively as ε decreases.

4. Theoretical analysis
In this section, we provide theoretical support for homotopy
dynamics. In the first part, we demonstrate that for certain
PDEs with small parameters, direct training using PINN
methods is highly challenging. This analysis is based on the
neural tangent kernel (NTK) framework (Allen-Zhu et al.,
2019). In the second part, we show that homotopy dynamics
will converge to the solution with a small parameter ε, pro-
vided that the dynamic step size is sufficiently small and the
initial solution has been well learned by the neural network.

4.1. Challenges in Training Neural Network with Small
Certain Parameters

Let us consider training neural networks without homotopy
dynamics. The corresponding loss function can be expressed
as

LH(θ) =
1

2n

n∑
i=1

H2(uθ(xi), ε), (12)

where {xi}ni=1 represents the training data used to optimize
the neural network. Here, we assume that the parameter ε
in the PDE appears only in the interior terms and not in the
boundary conditions. Therefore, in this section, we omit
the effect of boundary conditions, as the behavior at the
boundary remains unchanged for any given ε.

Furthermore, to simplify the notation, we use n instead of
nres and denote xir simply as xi comparing with Eq. (2).

In the classical approach, such a loss function is optimized
using gradient descent, stochastic gradient descent, or Adam.
Considering the training process of gradient descent in its
continuous form, it can be expressed as:

dθ

dt
= −∇θLH(θ)

= − 1

n

n∑
i=1

H(uθ(xi), ε)δuθ
H(uθ(xi), ε)∇θuθ(xi),

= − 1

n
H(uθ(x), ε) · S, (13)

where t in this section is the time of the gradient descent
flow, δuθ

is the functional variational corresponding to uθ,
and

H(uθ(x), ε) :=
[
H(uθ(xi), ε)δuθ

H(uθ(xi), ε)
]n
i=1

= lε ·Dε, (14)

and

lε :=
[
H(uθ(xi,θ), ε)

]n
i=1

∈ R1×n,Dε ∈ Rn×n (15)

where Dε represents the discrete form of the variation of
PDEs in different scenarios. Furthermore,

S =
[
∇θuθ(x1), . . . ,∇θuθ(xn)

]
. (16)

5

Homotopy Dynamics

Figure 4. Largest eigenvalue of Dε (21) for different ε. A smaller
ε results in a smaller largest eigenvalue of (21), leading to a slower
convergence rate and increased difficulty in training.

Therefore, we obtain

dLH(θ)

dt
= ∇θLH(θ)

dθ

dt

= − 1

n2
H(uθ(x), ε)SS

⊤H⊤(uθ(x), ε)

= − 1

n2
lεDεSS

⊤D⊤
ε l

⊤
ε . (17)

Hence, the kernel of the gradient descent update is given by

Kε := DεSS
⊤D⊤

ε . (18)

The following theorem provides an upper bound for the
smallest eigenvalue of the kernel and its role in the gradient
descent dynamics:

Theorem 4.1 (Effectiveness of Training via the Eigenvalue
of the Kernel). Suppose λmin(SS

⊤) > 0 and Dε is non-
singular, and let ε ≥ 0 be a constant. Then, we have
λmin(Kε) > 0, and there exists T > 0 such that

LH(θ(t)) ≤ LH(θ(0)) exp

(
−λmin(Kε)

n
t

)
(19)

for all t ∈ [0, T]. Furthermore,

λmin(SS
⊤)λmin(DεD

⊤
ε)

≤ λmin(Kε) ≤ λmin(SS
⊤)λmax(DεD

⊤
ε). (20)

Remark 4.2. For SS⊤, previous works such as (Luo &
Yang, 2020; Allen-Zhu et al., 2019; Arora et al., 2019; Cao
& Gu, 2020; Yang et al., 2025; Du et al., 2019; Li et al.,
2020) demonstrate that it becomes positive when the width
of the neural network is sufficiently large with ReLU acti-
vation functions or smooth functions. Additionally, (Gao

et al., 2023) discusses the positivity of the gradient ker-
nel in PINNs for solving heat equations. Therefore, we
can reasonably assume that SS⊤ is a strictly positive ma-
trix. In Appendix A.1, we present a specific scenario where
λmin(SS

⊤) > 0 holds with high probability.

This theorem demonstrates that the smallest eigenvalue of
the kernel directly affects the training speed. Equation (20)
shows that the upper bound of λmin(Kε) can be influenced
by λmax(DεD

⊤
ε). In many PDE settings, the maximum

eigenvalue λmax(DεD
⊤
ε) tends to be small when ε is small.

For example, in this paper, we consider the Allen–Cahn
equation, given by

−ε2∆u+ f(u) = 0,

where f(u) = u3 − u. In this case, Dε corresponds to the
discrete form of the operator −ε2∆+ f ′(u), which can be
written as

Dε = −ε2∆dis + diag
(
f ′(u(x1)), . . . , f

′(u(xn))
)
. (21)

According to (Morton & Mayers, 2005), the discrete Lapla-
cian −ε2∆dis is strictly positive. Specifically, in the one-
dimensional case, its largest eigenvalue is given by

4ε2n2 cos2
π

2n+ 1
,

which is close 4ε2n2 as n is large enough.

Moreover, since f ′(u(xi)) lies within the interval [−1, 2],
when ε is large (i.e., close to 1), the largest eigenvalue of
Dε becomes very large regardless of the sampling loca-
tions {xi}ni=1 (see Figure 4 for the case n = 200. Other
equations exhibit similar behavior. Please refer to the Ap-
pendix B for detail.) Consequently, by Theorem 4.1 the
upper bound on the smallest eigenvalue of Kε also be-
comes large—specifically, it is of order n4 in this case due
to Weyl’s inequalities. As a result, the training speed can
achieve a rate of exp(−Cn3t) (see Eq. (19)), which is rapid
and indicates that training is relatively easy. In contrast, the
lower bound for the training speed is given by exp(−Ct/n).

The fastest rate is attained in the special situation where
there exists a nonzero vector x that is an eigenvector corre-
sponding to the largest eigenvalue of D⊤

ε Dε and, simultane-
ously, Dεx is an eigenvector corresponding to the smallest
eigenvalue of S⊤S. This scenario may occur under particu-
lar configurations of S and Dε, which in turn depend on the
underlying PDE and the distribution of the sampling points.

On the other hand, when ε is small (close to 0), the largest
eigenvalue of Dε is only of order 1 with respect to n. Conse-
quently, the upper bound on the smallest eigenvalue of Kε

no longer scales as a constant with respect to n. In this case,
the training speed is reduced to exp(−Ct/n) (as indicated
in Eq. (19)), which is significantly slower and suggests that

6

Homotopy Dynamics

�� �� � �� � ��. ������ �� � �� � ��. �� �� �� � �� � ��. �� �� �� � �� � ��. ���� �� �� � ��. ����; �� � ��. ������

Figure 5. 2D Allen Cahn Equaiton. (Top) Evolution of the Homotopy Dynamcis. (Bottom) Plot for Cross-section of u(x, y) at y = 0.5
i.e., u(x, y = 0.5). The reference solution u∞(x) represents the ground truth steady-state solution. The L2RE is 8.78e− 3. Number of
residual points is nres = 50× 50.

training becomes difficult. Therefore, while a larger ε may
yield relatively easy training in some instances, a smaller ε
will invariably lead to challenging training conditions.

4.2. Convergence of Homotopy Dynamics

In this section, we aim to demonstrate that homotopy dynam-
ics is a reasonable approach for obtaining the solution when
ε is small. Recall that Strategy 2 is merely an alternative ap-
proach for solving the linear system in our framework, with
the underlying principles remaining the same. Therefore,
our theoretical analysis is primarily based on Strategy 1. For
simplicity of notation, we denote u(ε) as the exact solution
of H(u, ε) = 0 and U(ε) as its numerical approximation in
the simulation. Suppose H(u(ε), ε) = 0, and assume that
∂H(u(ε),ε)

∂u is invertible. Then, the dynamical system (6) can
be rewritten as

du

dε
= −

(
∂H(u(ε), ε)

∂u

)−1
∂H(u(ε), ε)

∂ε
=: h(u(ε), ε).

(22)
Applying Euler’s method to this dynamical system, we ob-
tain

U(εk+1) = U(εk) + (εk+1 − εk)h(U(εk), εk). (23)

The following theorem shows that if u(ε0)−U(ε0) is small
and the step size (εk+1 − εk) is sufficiently small at each
step, then u(εk)− U(εk) remains small.

Theorem 4.3 (Convergence of Homotopy Dynamics). Sup-
pose h(ε, u) is a continuous operator for 0 < εn ≤ ε0 and
u ∈ H2(Ω), and

∥h(u1, ε)− h(u2, ε)∥H2(Ω) ≤ Pε∥u1 − u2∥H2(Ω).

Assume there exists a constant P such that (εk −
εk+1)Pεk ≤ P · ε0−εnn , e0 := ∥u(ε0)− U(ε0)∥H2(Ω) ≪ 1
and

τ :=
n

ε0 − εn
sup

0≤k≤n
(εk − εk+1)

2∥u(εk)∥H4(Ω) ≪ 1,

then we have

∥u(εn)− U(εn)∥H2(Ω)

≤e0e
P (ε0−εn) +

τ(eP (ε0−εn) − 1)

2P
≪ 1. (24)

The proof of Theorem 4.3 is inspired by (Atkinson et al.,
2009).

Theorem 4.3 shows that if e0 is small and the step size
(εk+1 − εk) is sufficiently small at each step and satisfies
(εk−εk+1)Pεk ≤ P · ε0−εnn i.e., the training step size should
depend on the Lipschitz constant of h(u, ε), ensuring stable
training, then u(εk)−U(εk) remains small. In other words,
when ε → 0, Pε may not be bounded. Nonetheless, we
do not require ε to be exactly zero; it only needs to be a
small constant. For a small ε, Pε might be large but remains
finite. In this case, one must choose sufficiently small steps
εk+1 − εk to ensure that the training error stays controlled.
The initial error e0 can be very small since we use a neural
network to approximate the solution of PDEs for large ε,
where learning is effective.

The total error e0 consists of approximation, generalization,
and training errors. The training error can be effectively
controlled when ε is large (Theorem 4.1), while the approxi-
mation and generalization errors remain small if the sample
size is sufficiently large and the neural network is expressive
enough. Theoretical justifications are provided in (Yang

7

Homotopy Dynamics

Table 2. λmin(Kε) for different initialization for ε = 0.01 in Equation (4).
Initialization Xavier Hom ε = 0.1 Hom ε = 0.05 Hom ε = 0.03 Hom ε = 0.02
λmin(Kε) 7.38e-8 2.11e-6 7.77e-5 1.57e-4 1.48e-2

Table 3. 2D Allen-Cahn Equation. Relative L2 error comparison across various training strategies.
Method Original PINN Curriculum (Krishnapriyan et al., 2021) Time Seq. (Wight & Zhao, 2020; Mattey & Ghosh, 2022) Resampling Homotopy
L2RE 9.56e-1 8.89e-1 8.95e-2 8.25e-1 8.78e-3

et al., 2023; Yang & He, 2024) and further discussed in
Appendix A.4.

For Strategy 2, we enforce Hε = 0 by retraining the net-
work from scratch at each homotopy step rather than by
integrating the path with Euler’s method. Each iteration
uses the previous solution as the initial guess for the next,
producing progressively better starting points. To illustrate,
we consider the 1D Allen–Cahn equation (Eq. (4)) with
ε = 0.01. As shown in Table 2, smaller increments ∆ε
increase λmin(Kε), indicating improved conditioning and
faster convergence. In our experiments, ε = 0.02 yielded
the best initialization for ε = 0.01, highlighting that select-
ing a homotopy parameter close to the final target provides
the most effective initial guess—this encapsulates the key
idea behind Strategy 2.

5. Experiments
We conduct several experiments across different problem
settings to assess the efficiency of our proposed method. In
the following experiments, we adopt Strategy 2 for all train-
ing procedures. Detailed descriptions of the experimental
settings are provided in Appendix B.

5.1. 2D Allen Cahn Equation

First, we consider the following time-dependent problem:

ut = ε2∆u− u(u2 − 1), (x, y) ∈ [−1, 1]× [−1, 1]

u(x, y, 0) = − sin(πx) sin(πy) (25)
u(−1, y, t) = u(1, y, t) = u(x,−1, t) = u(x, 1, t) = 0.

We aim to find the steady-state solution for this equation
with ε = 0.05 and define the homotopy as:

H(u, s, ε) = (1− s)
(
ε(s)2∆u− u(u2 − 1)

)
+ s(u−u0),

where s ∈ [0, 1]. Specifically, when s = 1, the initial
condition u0 is automatically satisfied, and when s = 0,
it recovers the steady-state problem. The function ε(s) is
given by

ε(s) =

{
s, s ∈ [0.05, 1],
0.05, s ∈ [0, 0.05].

(26)

Here, ε(s) varies with s during the first half of the evolution.
Once ε(s) reaches 0.05, it remains fixed, and only s contin-

ues to evolve toward 0. As shown in Figure 5 and Table 3,
our method achieves superior solution accuracy compared
to the other approaches.

5.2. High-Dimensional Helmholtz Equation

One of the advantages of solving differential equations using
neural networks is their potential to overcome the curse of
dimensionality and tackle high-dimensional problems. In
this example, we demonstrate this capability by comparing
the performance of the standard PINN approach with our
proposed homotopy-based training method on the following
high-dimensional Helmholtz equation:

−ε2∆u− 1
du = 0 in Ω, u = g on ∂Ω, (27)

where Ω = [−1, 1]d. This problem admits the exact solution

u(x) = sin

(
1

d

d∑
i=1

1

ε
xi

)
.

The corresponding homotopy is defined by

H(u, ε) = ε2∆u+
1

d
u.

Here, we start the homotopy training by ε0 = 1. The
numerical results for dimension d = 20 are reported in Ta-
ble 4, where we compare the relative L2 errors obtained
by classical PINN training and the proposed homotopy dy-
namics for different values of ε. As shown in the table, the
homotopy-based approach achieves consistently lower er-
rors, especially for small ε, where classical training suffers
from significant accuracy degradation.

Table 4. Comparison of relative L2 errors achieved by classical
training and homotopy dynamics for different ε values in the high-
dimensional Helmholtz equation.

Dimension d = 20 ε = 1/2 ε = 1/20 ε = 1/50
Classical Training 1.23e-3 7.21e-2 9.98e-1

Homotopy Dynamics 5.86e-4 5.00e-4 5.89e-4

5.3. Burgers Equation

In this example, we adopt the operator learning framework
to solve for the steady-state solution of the Burgers equation,

8

Homotopy Dynamics

𝜺(𝒔)

𝒔

Homotopy Evolution

𝜺 𝒔 = 𝟎. 𝟓

𝜺 𝒔 = 𝟎. 𝟏

𝜺 𝒔 = 𝟎. 𝟎𝟓

𝒔 = 𝟎. 𝟎𝟎𝟏 𝒔 = 𝟎. 𝟎𝟏

Towards steady state solution

(a)

(b)

(c) (d)

Figure 6. 1D Burgers’ Equation (Operator Learning): Steady-state solutions for different initializations u0 under varying viscosity ε: (a)
ε = 0.5, (b) ε = 0.1, (c) ε = 0.05. The results demonstrate that all final test solutions converge to the correct steady-state solution. (d)
Illustration of the evolution of a test initialization u0 following homotopy dynamics. The number of residual points is nres = 128.

given by:

ut +

(
u2

2

)
x

− εuxx = π sin(πx) cos(πx), x ∈ [0, 1]

u(x, 0) = u0(x), (28)
u(0, t) = u(1, t) = 0,

with Dirichlet boundary conditions, where u0 ∈
L2
0((0, 1);R) is the initial condition and ε ∈ R is the

viscosity coefficient. We aim to learn the operator map-
ping the initial condition to the steady-state solution, G† :
L2
0((0, 1);R) → Hr

0 ((0, 1);R), defined by u0 7→ u∞ for
any r > 0. As shown in Theorem 2.2 of (Kreiss & Kreiss,
1986) and Theorems 2.5 and 2.7 of (Hao & Yang, 2019), for
any ε > 0, the steady-state solution is independent of the
initial condition, with a single shock occurring at xs = 0.5.
Here, we use DeepONet (Lu et al., 2021a) as the network
architecture. The homotopy definition, similar to Equa-
tion (25), can be found in Appendix B.6. The results can be
found in Figure 6 and Table 5. Experimental results show
that the homotopy dynamics strategy performs well in the
operator learning setting as well. As shown in Appendix 8,
DeepONet trained via homotopy dynamics achieves com-
parable accuracy but significantly faster inference than the
finite difference method.

6. Conclusion
In this work, we explore the challenges of using neural net-
works to solve singularly perturbed problems. Specifically,

Table 5. Homotopy Dynamics Results on operator learning for
Burgers Equation: Homotopy Loss, Relative L2 Error, and Shock
Localization Accuracy

ε = 0.5 ε = 0.1 ε = 0.05
Homotopy Loss LH 7.55e-7 3.40e-7 7.77e-7

L2RE 1.50e-3 7.00e-4 2.52e-2
MSE Distance at xs 1.75e-8 9.14e-8 1.2e-3

we analyze the training difficulties caused by certain pa-
rameters in the PDEs. To overcome these challenges, we
propose a training method based on homotopy dynamics to
avoid training original and singularly perturbed problems
directly and to improve the training performance of neural
networks to solve such problems. Our theoretical analysis
supports the convergence of the proposed homotopy dy-
namics. Experimental results demonstrate that our method
performs well across a range of singularly perturbed prob-
lems. In solution approximation tasks, it accurately captures
the steady-state solutions of the Allen–Cahn equation and
effectively handles high-dimensional Helmholtz equations
with large wave numbers. Moreover, in the context of opera-
tor learning, it achieves strong performance on the Burgers’
equation. Both the theoretical analysis and experimental re-
sults consistently validate the effectiveness of our proposed
method.

Looking ahead, it will be valuable to explore whether homo-
topy dynamics can be applied to a wider range of practical
problems. We believe that homotopy dynamics offers a
natural entry point for comparing neural-network methods
with traditional techniques.

9

Homotopy Dynamics

Acknowledgements
Y.Y. and W.H. was supported by National Institute of
General Medical Sciences through grant 1R35GM146894.
The work of Y.X. was supported by the Project of Hetao
Shenzhen-HKUST Innovation Cooperation Zone HZQB-
KCZYB-2020083.

We would like to acknowledge helpful comments from the
anonymous reviewers and area chairs, which have improved
this submission.

Impact Statement
This paper presents work whose goal is to advance the field
of scientific machine learning. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Allen, S. M. and Cahn, J. W. Coherent and incoherent

equilibria in iron-rich iron-aluminum alloys. Acta Metal-
lurgica, 23(9):1017–1026, 1975.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
conference on machine learning, pp. 242–252. PMLR,
2019.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. Advances in neural information process-
ing systems, 32, 2019.

Atkinson, K., Han, W., and Stewart, D. E. Numerical solu-
tion of ordinary differential equations, volume 81. John
Wiley & Sons, 2009.

Ben-Israel, A. and Greville, T. N. Generalized inverses:
theory and applications. Springer Science & Business
Media, 2006.

Burgers, J. M. A mathematical model illustrating the theory
of turbulence. Advances in applied mechanics, 1:171–
199, 1948.

Cao, Y. and Gu, Q. Generalization error bounds of gra-
dient descent for learning over-parameterized deep relu
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3349–3356, 2020.

Chen, C., Yang, Y., Xiang, Y., and Hao, W. Auto-
matic differentiation is essential in training neural net-
works for solving differential equations. arXiv preprint
arXiv:2405.14099, 2024a.

Chen, C., Zhou, Q., Yang, Y., Xiang, Y., and Luo, T. Quanti-
fying training difficulty and accelerating convergence
in neural network-based pde solvers. arXiv preprint
arXiv:2410.06308, 2024b.

Chen, J., Chi, X., Yang, Z., et al. Bridging traditional and
machine learning-based algorithms for solving PDEs: the
random feature method. J Mach Learn, 1:268–98, 2022.

Chen, Q. and Hao, W. A homotopy training algorithm
for fully connected neural networks. Proceedings of the
Royal Society A, 475(2231):20190662, 2019.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific Machine Learning Through
Physics–Informed Neural Networks: Where We Are and
What’s Next. J. Sci. Comput., 92(3), 2022.

Dong, S. and Wang, Y. A method for computing inverse
parametric PDE problems with random-weight neural net-
works. Journal of Computational Physics, 489:112263,
2023.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks. In
International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

E, W. and Yu, B. The Deep Ritz Method: A Deep Learning-
Based Numerical Algorithm for Solving Variational Prob-
lems. Communications in Mathematics and Statistics, 6
(1):1–12, 2018.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Gao, Y., Gu, Y., and Ng, M. Gradient descent finds the
global optima of two-layer physics-informed neural net-
works. In International Conference on Machine Learning,
pp. 10676–10707. PMLR, 2023.

Gao, Z., Tang, T., Yan, L., and Zhou, T. Failure-informed
adaptive sampling for pinns, part ii: combining with re-
sampling and subset simulation. Communications on
Applied Mathematics and Computation, 6(3):1720–1741,
2024.

Geng, Y., Teng, Y., Wang, Z., and Ju, L. A deep learn-
ing method for the dynamics of classic and conservative
Allen-Cahn equations based on fully-discrete operators.
Journal of Computational Physics, 496:112589, 2024.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010.

Grisvard, P. Elliptic problems in nonsmooth domains. SIAM,
2011.

10

Homotopy Dynamics

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Hao, W. and Yang, Y. Convergence of a homotopy finite
element method for computing steady states of burgers’
equation. ESAIM: Mathematical Modelling and Numeri-
cal Analysis, 53(5):1629–1644, 2019.

Hao, W., Li, R. P., Xi, Y., Xu, T., and Yang, Y. Multi-
scale neural networks for approximating green’s func-
tions. arXiv preprint arXiv:2410.18439, 2024.

Hao, W., Liu, X., and Yang, Y. Newton informed neural
operator for solving nonlinear partial differential equa-
tions. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2025.

He, J., Liu, X., and Xu, J. Mgno: Efficient parameterization
of linear operators via multigrid. In 12th International
Conference on Learning Representations, ICLR 2024,
2024.

Hilbert, D. Methods of mathematical physics. CUP Archive,
1985.

Huang, J., You, R., and Zhou, T. Frequency-adaptive multi-
scale deep neural networks. Computer Methods in Ap-
plied Mechanics and Engineering, 437:117751, 2025.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kreiss, G. and Kreiss, H.-O. Convergence to steady state
of solutions of burgers’ equation. Applied Numerical
Mathematics, 2(3):161–179, 1986. ISSN 0168-9274.
doi: https://doi.org/10.1016/0168-9274(86)90026-7.
URL https://www.sciencedirect.com/
science/article/pii/0168927486900267.
Special Issue in Honor of Milt Rose’s Sixtieth Birthday.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. In Advances in
Neural Information Processing Systems, 2021.

Lan, Y., Li, Z., Sun, J., and Xiang, Y. Dosnet as a non-
black-box pde solver: When deep learning meets operator
splitting. Journal of Computational Physics, 491:112343,
2023.

Lanthaler, S., Mishra, S., and Karniadakis, G. E. Error
estimates for deeponets: A deep learning framework in
infinite dimensions. Transactions of Mathematics and Its
Applications, 6(1):tnac001, 2022.

Li, C.-K. and Mathias, R. The Lidskii-Mirsky-Wielandt
theorem–additive and multiplicative versions. Nu-
merische Mathematik, 81:377–413, 1999.

Li, W., Bazant, M. Z., and Zhu, J. Phase-field deeponet:
Physics-informed deep operator neural network for fast
simulations of pattern formation governed by gradient
flows of free-energy functionals. Computer Methods in
Applied Mechanics and Engineering, 416:116299, 2023.

Li, Y., Luo, T., and Yip, N. Towards an understanding of
residual networks using neural tangent hierarchy (nth).
arXiv preprint arXiv:2007.03714, 2020.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
Neural Operator for Parametric Partial Differential Equa-
tions. In International Conference on Learning Represen-
tations, 2021.

Liu, H., Yang, H., Chen, M., Zhao, T., and Liao, W. Deep
nonparametric estimation of operators between infinite
dimensional spaces. Journal of Machine Learning Re-
search, 25(24):1–67, 2024a.

Liu, X., Xu, B., Cao, S., and Zhang, L. Mitigating spectral
bias for the multiscale operator learning. Journal of
Computational Physics, 506:112944, 2024b. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2024.112944.
URL https://www.sciencedirect.com/
science/article/pii/S0021999124001931.

Liu, Z. Multi-scale deep neural network (mscalednn) for
solving poisson-boltzmann equation in complex domains.
Communications in Computational Physics, 28(5), 2020.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021a.

Lu, Y., Lu, J., and Wang, M. A priori generalization analysis
of the deep Ritz method for solving high dimensional
elliptic partial differential equations. In Conference on
learning theory, pp. 3196–3241. PMLR, 2021b.

Luo, T. and Yang, H. Two-layer neural networks for partial
differential equations: Optimization and generalization
theory. arXiv preprint arXiv:2006.15733, 2020.

Mattey, R. and Ghosh, S. A novel sequential method to
train physics informed neural networks for allen cahn and
cahn hilliard equations. Computer Methods in Applied
Mechanics and Engineering, 390:114474, 2022.

Morton, K. W. and Mayers, D. F. Numerical solution of par-
tial differential equations: an introduction. Cambridge
university press, 2005.

11

https://www.sciencedirect.com/science/article/pii/0168927486900267
https://www.sciencedirect.com/science/article/pii/0168927486900267
https://www.sciencedirect.com/science/article/pii/S0021999124001931
https://www.sciencedirect.com/science/article/pii/S0021999124001931

Homotopy Dynamics

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. arXiv
preprint arXiv:1912.01703, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell, M.
Challenges in training pinns: A loss landscape perspec-
tive. arXiv preprint arXiv:2402.01868, 2024.

Siegel, J. W. and Xu, J. Approximation rates for neural net-
works with general activation functions. Neural Networks,
128:313–321, 2020.

Sun, J., Dong, S., and Wang, F. Local randomized neural
networks with discontinuous Galerkin methods for partial
differential equations. Journal of Computational and
Applied Mathematics, 445:115830, 2024.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wang, B. Multi-scale deep neural network (mscalednn)
methods for oscillatory stokes flows in complex domains.
Communications in Computational Physics, 28(5):2139–
2157, 2020.

Wang, S., Wang, H., and Perdikaris, P. On the eigenvec-
tor bias of fourier feature networks: From regression to
solving multi-scale pdes with physics-informed neural
networks. Computer Methods in Applied Mechanics and
Engineering, 384:113938, 2021.

Wight, C. L. and Zhao, J. Solving Allen-Cahn and Cahn-
Hilliard equations using the adaptive physics informed
neural networks. arXiv preprint arXiv:2007.04542, 2020.

Xu, X. A variational analysis for the moving finite
element method for gradient flows. arXiv preprint
arXiv:2009.01393, 2020.

Xu, Z.-Q. J., Zhang, Y., and Luo, T. Overview frequency
principle/spectral bias in deep learning. Communica-
tions on Applied Mathematics and Computation, pp. 1–
38, 2024.

Yang, Y. DeepONet for solving PDEs: Generalization analy-
sis in Sobolev training. arXiv preprint arXiv:2410.04344,
2024.

Yang, Y. and He, J. Deeper or wider: A perspective from
optimal generalization error with sobolev loss. Forty-first
International Conference on Machine Learning, 2024.

Yang, Y. and Xiang, Y. Approximation of functionals by
neural network without curse of dimensionality. J Mach
Learn, 1 (4):342–372, 2022.

Yang, Y., Wu, Y., Yang, H., and Xiang, Y. Nearly opti-
mal approximation rates for deep super relu networks on
sobolev spaces. arXiv preprint arXiv:2310.10766, 2023.

Yang, Y., Chen, Q., and Hao, W. Homotopy relaxation train-
ing algorithms for infinite-width two-layer relu neural
networks. Journal of Scientific Computing, 102(2):40,
2025.

Zhang, J., Zhang, S., Shen, J., and Lin, G.
Energy-dissipative evolutionary deep operator
neural networks. Journal of Computational
Physics, 498:112638, 2024. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2023.112638.
URL https://www.sciencedirect.com/
science/article/pii/S0021999123007337.

Zhang, Z., Li, J., and Liu, B. Annealed adaptive im-
portance sampling method in pinns for solving high
dimensional partial differential equations. Journal of
Computational Physics, 521:113561, 2025. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2024.113561.
URL https://www.sciencedirect.com/
science/article/pii/S002199912400809X.

12

https://www.sciencedirect.com/science/article/pii/S0021999123007337
https://www.sciencedirect.com/science/article/pii/S0021999123007337
https://www.sciencedirect.com/science/article/pii/S002199912400809X
https://www.sciencedirect.com/science/article/pii/S002199912400809X

Homotopy Dynamics

A. Proofs of Theorems 4.1 and 4.3
Before we prove Theorem 4.1, note that our method can be readily generalized to deep neural networks, as the underlying
theoretical techniques remain the same; we merely need to combine our approach with the results in (Du et al., 2019). In
this paper, we employ a two-layer neural network to simplify the notation and enhance readability, focusing on explaining
why training becomes challenging when ε is small.

A.1. λmin(SS
⊤) > 0

In this subsection, we consider a two-layer neural network defined as follows:

ϕ(x;θ) :=
1√
m

m∑
k=1

ak σ
(
ω⊤
k x
)
, (29)

where the activation function σ satisfies the following assumption:

Assumption A.1. The function σ(·) is analytic and not a polynomial. Moreover, there exists a positive constant c such that

|σ(x)| ≤ c|x|

for all x.

Note that both σ(x) = ln(1 + exp(x)) and σ(x) = 1
1+exp(−x) satisfy Assumption A.1.

We assume that the weights and biases are sampled as follows:

ωk ∼ N (0, Id) , ak ∼ N(0, 1), (30)

where N(0, 1) denotes the standard Gaussian distribution.

The kernels characterizing the training dynamics take the following form:

k[a](x,x′) :=Eωσ(ω
⊤x)σ(ω⊤x′)

k[ω](x,x′) :=E(a,ω)a
2σ′(ω⊤x)σ′(ω⊤x′)x · x′. (31)

The Gram matrices, denoted as K [a] and K [ω], corresponding to an infinite-width two-layer network with the activation
function σ, can be expressed as follows:

K
[a]
ij = k[a](xi,xj), K

[a] = (K
[a]
ij)n×n,

K
[ω]
ij = k[ω](xi,xj), K

[ω] = (K
[ω]
ij)n×n. (32)

Lemma A.2 ((Du et al., 2019)). Suppose that Assumption A.1 holds and for any i, j ∈ [n], i ̸= j,xi ∦ xj . Then the matrices
K [ω] and K [a] are strictly positive, i.e.

λ1 := min
{
λmin

(
K [ω]

)
, λmin

(
K [a]

)}
> 0. (33)

It is easy to check that
K [ω] +K [a] = lim

m→∞
SS⊤ (34)

based on the law of large numbers. Furthermore, we can show that the accuracy decreases exponentially as the width of the
neural network increases.

Definition A.3 ((Vershynin, 2018)). A random variable X is sub-exponential if and only if its sub-exponential norm is finite
i.e.

∥X∥ψ1
:= inf{s > 0 | EX [e|X|/s ≤ 2.] (35)

Furthermore, the chi-square random variable X is a sub-exponential random variable and Cψ,d := ∥X∥ψ1 .

13

Homotopy Dynamics

Lemma A.4. Suppose that w ∼ N (0, Id) , a ∼ N(0, 1) and given xi,xj ∈ Ω. Then we have

(i) if X := σ
(
w⊤xi

)
σ (x · xj), then ∥X∥ψ1

≤ cdCψ,d, where c is the constant shown in Assumption A.1.

(ii) if X := a2σ′ (w⊤xi
)
σ′ (w⊤xj

)
xi · xj , then ∥X∥ψ1

≤ cdCψ,d.

Proof. (i) |X| ≤ d∥w∥22 = dZ and

∥X∥ψ1 = inf {s > 0 | EX exp(|X|/s) ≤ 2}
= inf

{
s > 0 | Ew exp

(∣∣σ (w⊤xi
)
σ
(
w⊤xj

)∣∣ /s) ≤ 2
}

≤ inf
{
s > 0 | Ew exp

(
cd∥w∥22/s

)
≤ 2
}

= inf {s > 0 | EZ exp(cd|Z|/s) ≤ 2}
= cd inf {s > 0 | EZ exp(|Z|/s) ≤ 2}
= cd

∥∥χ2(d)
∥∥
ψ1

≤ cdCψ,d

(ii) |X| ≤ cd|a|2 ≤ cdZ and ∥X∥ψ1 ≤ cdCψ,d.

Proposition A.5 (sub-exponential Bernstein’s inequality (Vershynin, 2018)). Suppose that X1, . . . ,Xm are i.i.d. sub-
exponential random variables with EX1 = µ, then for any s ≥ 0 we have

P

(∣∣∣∣∣ 1m
m∑
k=1

Xk − µ

∣∣∣∣∣ ≥ s

)
≤ 2 exp

(
−C0mmin

(
s2

∥X1∥2ψ1

,
s

∥X1∥ψ1

))
,

where C0 is an absolute constant.

Proposition A.6. Suppose that Assumption A.1 holds, and given δ ∈ (0, 1), w ∼ N (0, Id) , a ∼ N(0, 1) and the sample
set S = {xi}ni=1 ⊂ Ω with xi ’s drawn i.i.d. with uniformly distributed with and any i, j ∈ [n], i ̸= j,xi ∦ xj . If

m ≥ 16n2c2d2Cψ,d
C0λ2 log 4n2

δ then with probability at least 1− δ over the choice of θ(0), we have

λmin

(
SS⊤

)
≥ 3

4
(λmin(K

[a]) + λmin(K
[ω])).

Proof. Recall that

S =
[
∇θuθ(x1), . . . ,∇θuθ(xn)

]
, (36)

and θ contain two parts, a and w parts, therefore SS⊤ can be rewrite as SaS⊤
a + SwS⊤

w where

Sa =
[
∇auθ(x1), . . . ,∇auθ(xn)

]
, Sw =

[
∇wuθ(x1), . . . ,∇wuθ(xn)

]
(37)

For any ε > 0, we define

Ω
[a]
ij :=

{
θ |
∣∣∣(SaS⊤

a)ij(θ)−K
[a]
ij

∣∣∣ ≤ ε

n

}
, Ω

[w]
ij :=

{
θ |
∣∣∣(SwS⊤

w)ij(θ)−K
[w]
ij

∣∣∣ ≤ ε

n

}
. (38)

Setting ε ≤ cndCψ,d, by Proposition A.5 and Lemma A.4, we have

P(Ω
[a]
ij) ≥ 1− 2 exp

(
− mC0ε

2

n2d2c2Cψ,d

)
, P(Ω

[w]
ij) ≥ 1− 2 exp

(
− mC0ε

2

n2d2c2Cψ,d

)
. (39)

Due to inclusion-exclusion Principle, we have

P
({

θ |
∥∥∥SaS⊤

a (θ)−K [a]
∥∥∥
F
≤ ε
}
∩
{
θ |
∥∥∥SwS⊤

w(θ)−K [w]
∥∥∥
F
≤ ε
})

≥
n∑

i,j=1

(
P(Ω

[a]
ij) +P(Ω

[w]
ij)
)
− 2n2 − 1,

(40)

14

Homotopy Dynamics

therefore, with probability at least

1− 4n2 exp

(
− mC0ε

2

n2d2c2C2
ψ,d

)
over the choice of θ, we have ∥∥∥SaS⊤

a (θ)−K [a]
∥∥∥
F
≤ ε,

∥∥∥SwS⊤
w(θ)−K [w]

∥∥∥
F
≤ ε (41)

Hence by taking ε = λ1

4 and δ = 4n2 exp
(
− mC0λ

2
1

16n2d2c2C2
ψ,d

)
, where λ1 = min{λmin(K

[a]), λmin(K
[ω])}

λmin

(
SS⊤

)
≥ λmin

(
SaS

⊤
a

)
+ λmin

(
SωS

⊤
ω

)
≥ λmin(K

[a]) + λmin(K
[ω])−

∥∥∥SaS⊤
a (θ)−K [a]

∥∥∥
F
−
∥∥∥SwS⊤

w(θ)−K [w]
∥∥∥
F

≥ 3

4
(λmin(K

[a]) + λmin(K
[ω])). (42)

Combining Lemma A.2 and Proposition A.6, we obtain that under the conditions stated in Proposition A.6, the following
holds with high probability:

λmin(SS
⊤) > 0. (43)

A.2. Proof of Theorem 4.1

We can analysis the smallest eigenvalue of the problems based on the following lemma:

Lemma A.7 ((Li & Mathias, 1999)). Let A be an n× n Hermitian matrix and let Ã = T ∗AT . Then we have

λmin (T
∗T) ≤ λmin(Ã)

λmin(A)
≤ λmax (T

∗T) .

Proof of Theorem 4.1. We first show that λmin(Kε) > 0, which follows directly from Lemma A.7:

λmin(Kε) ≥ λmin(SS
⊤) · λmin(DεD

⊤
ε) > 0.

Therefore, at the beginning of gradient descent, the kernel of the gradient descent step is strictly positive. We then define T
as

T := inf{t | θ(t) ̸∈ N(θ(0))}, (44)

where

N(θ) :=

{
θ | ∥Kε(θ(t))−Kε(θ(0))∥F ≤ 1

2
λmin(Kε)

}
.

We now analyze the evolution of the loss function:

dLH(θ(t))

dt
= ∇θLH(θ)

dθ

dt

= − 1

n2
lεDεSS

⊤D⊤
ε l

⊤
ε

≤ − 2

n
λmin(Kε(θ(t)))L(θ(t)), (45)

where we use the fact that lε · l⊤ε = 2nLH(θ(t)).

Furthermore, for t ∈ [0, T], we have

∥Kε(θ(t))−Kε(θ(0))∥F ≤ 1

2
λmin(Kε).

15

Homotopy Dynamics

This implies
λmin(Kε(θ(t))) ≥ λmin

(
Kε(θ(t))−Kε(θ(0))

)
+ λmin

(
Kε(θ(0))

)
≥ λmin

(
Kε(θ(0))

)
− σmin

(
Kε(θ(t))−Kε(θ(0))

)
≥ λmin

(
Kε(θ(0))

)
− ∥Kε(θ(t))−Kε(θ(0))∥F

≥ 1

2
λmin

(
Kε(θ(0))

)
.

Therefore, we obtain

dLH(θ(t))

dt
≤ − 1

n
λmin(Kε(θ(0)))LH(θ(t)), (46)

for t ∈ [0, T]. Solving this differential inequality yields

LH(θ(t)) ≤ LH(θ(0)) exp

(
−λmin(Kε)

n
t

)
(47)

for all t ∈ [0, T].

Finally, for the inequality

λmin(SS
⊤)λmin(DεD

⊤
ε) ≤ λmin(Kε) ≤ λmin(SS

⊤)λmax(DεD
⊤
ε), (48)

it follows directly from Lemma A.7.

A.3. Proof of Theorem 4.3

Proof of Theorem 4.3. First, we have

u(εk+1) = u(εk) + (εk+1 − εk)u
′(εk) +

1

2
(εk+1 − εk)

2u′′(ξk)

= u(εk) + (εk+1 − εk)h(εk, u(εk)) +
1

2
(εk+1 − εk)

2u′′(ξk), (49)

where ξk lies between εk+1 and εk and depends on x. Therefore, we obtain

e(εk+1) = e(εk) + (εk+1 − εk)(h(εk, u(εk))− h(εk, U(εk))) +
1

2
(εk+1 − εk)

2u′′(ξk), (50)

where e(εk) = u(εk)− U(εk). Then, we have

∥e(εk+1)∥H2(Ω)

=∥e(εk)∥H2(Ω) + (εk+1 − εk)∥h(εk, u(εk))− h(εk, U(εk))∥H2(Ω)

+
1

2
(εk+1 − εk)

2∥u′′(ξk)∥H2(Ω)

≤∥e(εk)∥H2(Ω) + (εk+1 − εk)Pεk∥e(εk)∥H2(Ω) +
1

2

ε0 − εn
n

τ

≤∥e(εk)∥H2(Ω) + P · ε0 − εn
n

∥e(εk)∥H2(Ω) +
1

2

ε0 − εn
n

τ. (51)

Recalling that e0 = ∥u(ε0)− U(ε0)∥H2(Ω), we obtain

∥e(εn)∥H2(Ω) ≤ e0

(
1 + P · ε0 − εn

n

)n
+

τ

2

ε0 − εn
n

n−1∑
n=0

(
1 + P · ε0 − εn

n

)n
= e0

(
1 + P · ε0 − εn

n

)n
+

τ

2

(
1 + P · ε0−εnn

)n − 1

P

≤ τ(eP (ε0−εn) − 1)

2P
+ e0e

P (ε0−εn), (52)

16

Homotopy Dynamics

where the last step follows from the inequality
(1 + a)m ≤ ema,

for a > 0.

Corollary A.8 (Convergence of Homotopy Functions). Suppose the assumptions in Theorem 4.3 hold, and H(εn, u) is
Lipschitz continuous in H2(Ω), i.e.,

∥H(u1, εn)−H(u2, εn)∥H2(Ω) ≤ L∥u1 − u2∥H2(Ω).

Then, we have

∥H(U(εn), εn)∥H2(Ω)

≤L

[
e0e

P (ε0−εn) +
τ(eP (ε0−εn) − 1)

2P

]
≪ 1. (53)

Proof. The proof follows directly from the result in Theorem 4.3.

A.4. Discussion on e0

In Theorem 4.3 and Corollary A.8, one important assumption is that we assume e0 is small. Here, we discuss why this
assumption is reasonable.

First, we use physics-informed neural networks (PINNs) to solve the following equations:{
Lεu = f(u), in Ω,
Bu = g(x), on ∂Ω,

(54)

where Lε is a differential operator defining the PDE with certain parameters, B is an operator associated with the boundary
and/or initial conditions, and Ω ⊆ Rd.

The corresponding continuum loss function is given by:

Lc(θ) :=
1

2

∫
Ω

(Lεu(x;θ)− f(u))
2
dx+

λ

2

∫
∂Ω

(Bu(x;θ)− g(x))
2
dx. (55)

We assume this loss function satisfies a regularity condition:

Assumption A.9. Let u∗ be the exact solution of Eq. (54). Then, there exists a constant C such that

∥u(x;θ)− u∗(x)∥H2(Ω) ≤ CLc(θ). (56)

The above assumption holds in many cases. For example, based on (Grisvard, 2011), when L is a linear elliptic operator
with smooth coefficients, and f(u) reduces to f(x) ∈ L2(Ω), and if Ω is a polygonal domain (e.g., [0, 1]d), then, provided
the boundary conditions are always satisfied, the assumption holds.

Therefore, we only need to ensure that Lc(θs) is sufficiently small, where θs denotes the learned parameters at convergence.
Here, Lc(θs) can be divided into three sources of error: approximation error, generalization error, and training error:

θc = argmin
θ

Lc(θ) = argmin
θ

1

2

∫
Ω

(Lεu(x;θ)− f(u(x)))
2
dx+

λ

2

∫
∂Ω

(Bu(x;θ)− g(x))
2
dx,

θd = argmin
θ

L(θ) = argmin
θ

1

2nr

nr∑
i=1

(
Lεu(xir;θ)− f(u(xir;θ))

)2
+

λ

2nb

nb∑
j=1

(
Bu(xjb;θ)− g(xjb)

)2
, (57)

where xir,x
j
b are sampled points as defined in Eq. (2).

17

Homotopy Dynamics

The error decomposition can then be expressed as:

ELc(θs) ≤ Lc(θc) + EL(θc)− Lc(θc) + EL(θd)− EL(θc) + EL(θs)− EL(θd) + ELc(θs)− EL(θs)
≤ Lc(θc)︸ ︷︷ ︸

approximation error

+EL(θc)− Lc(θc) + ELc(θs)− EL(θs)︸ ︷︷ ︸
generalization error

+EL(θs)− EL(θd)︸ ︷︷ ︸
training error

, (58)

where the last inequality is due to EL(θd)− EL(θc) ≤ 0 based on the definition of θd.

The approximation error describes how closely the neural network approximates the exact solution of the PDEs. If f is a
Lipschitz continuous function, Lε is Lipschitz continuous from W 2,1(Ω) → L1(Ω), and B is Lipschitz continuous from
L1(∂Ω) → L1(∂Ω), with u(x;θ), u∗ ∈ W 2,∞(Ω̄) and ∂Ω ∈ C1(Ω), then we have

Lc(θ) =

∫
Ω

(Lεu(x;θ)− f(u(x)))
2 − (Lεu∗ − f(u∗))

2
dx+

λ

2

∫
∂Ω

(Bu(x;θ)− g(x))
2 − (Bu∗ − g(x))

2
dx

≤ C1

(
∥Lε(u(x;θ)− u∗)∥L1(Ω) + ∥f(u(x;θ))− f(u∗)∥L1(Ω)

)
+ C2∥B(u(x;θ)− u∗)∥L1(∂Ω)

≤ C3∥u(x;θ)− u∗∥W 2,1(Ω) + C4∥u(x;θ)− u∗∥W 1,1(Ω)

≤ C∥u(x;θ)− u∗∥W 2,1(Ω), (59)

where the second inequality follows from the trace theorem (Evans, 2022). Therefore, we conclude that Lc(θ) can be
bounded by ∥u(x;θ)− u∗∥W 2,1(Ω), which has been widely studied in the context of shallow neural networks (Siegel & Xu,
2020) and deep neural networks (Yang et al., 2023). These results show that if the number of neurons is sufficiently large,
the error in this part becomes small.

For the generalization error, it arises from the fact that we have only a finite number of data points. This error can be bounded
using Rademacher complexity (Yang et al., 2023; Luo & Yang, 2020), which leads to a bound of O

(
n
− 1

2
r

)
+O

(
n
− 1

2

b

)
. In

other words, this error term is small when the number of sample points is large.

For the training error, Theorem 4.1 shows that when ε is large in certain PDEs, the loss function can decay efficiently,
reducing the training error to a small value.

B. Details on Experiments
B.1. Overall Experiments Settings

Examples. We conduct experiments on function learning case: 1D Allen-Cahn equation, 2D Allen-Cahn equation, high
dimension Helmholz equation, high frequency function approximation and operator learning for Burgers’ equation. These
equations have been studied in previous works investigating difficulties in solving numerically; we use the formulations in
Xu (2020); Zhang et al. (2024); Hao & Yang (2019) for our experiments.

Network Structure. We use multilayer perceptrons (MLPs) with tanh activations and three hidden layers with width 30.
We initialize these networks with the Xavier normal initialization (Glorot & Bengio, 2010) and all biases equal to zero.

Training. We use Adam to train the neural network and we tune the learning rate by a grid search on
{10−5, 10−4, 10−3, 10−2}. All iterations continue until the loss stabilizes and no longer decreases significantly.

Device. We develop our experiments in PyTorch 1.12.1 (Paszke et al., 2019) with Python 3.9.12. Each experiment is run on
a single NVIDIA 3070Ti GPU using CUDA 11.8. As summarized in Table 6, we report the training cost (per epoch and
total epochs) for experiments in our paper.

B.2. 1D Allen-Cahn Equation

Number of residual points nres = 200 and number of boundary points nbc = 2. In this example, we use forward Euler
method to numerically solve the homotopy dynamics. And ε0 = 0.1 and εn = 0.01, here we choose ∆εk = 0.001. Here,
we use strategy 1 to train the neural network.

The results for using original training for this example Figure 7. As shown in the figure, the original training method results
in a large training error, leading to poor accuracy.

18

Homotopy Dynamics

Figure 7. Solution for 1D Allen-Cahn equation for origin training.

Table 6. Training Cost for Different Examples. The table summarizes training time per epoch and total number of epochs for various
PDE problems.

Example 1D Allen-Cahn Equation Example 5.1 Example 5.2 Example 5.3
Training Time per Epoch 0.05s 0.09s 0.01s 0.4s

Total Epochs (Steps) 1.0× 103 4.0× 106 4.0× 106 2.0× 106

B.3. 2D Allen-Cahn Equation

Number of residual points nres = 50× 50 and number of boundary points nbc = 198. For a fair comparison, all methods
were implemented using the same neural network architecture, specifically a fully connected network with layer sizes
[2, 30, 30, 30, 1]. In this example, we optimize using the Homotopy Loss. We set s0 = 1.0 and sn = 0, initially choosing
∆s = 0.1, and later refining it to ∆t = 0.01. When s = 0.05, ε(s) = 0.05 we fix ε = 0.05 and gradually decrease s to 0.

The reference ground truth solution is obtained using the finite difference method with N = 1000× 1000 grid points. The
result is shown in Figure 8.

Figure 8. Reference Solution for 2D Allen-Cahn equation.

The result obtained using PINN is shown in the Figure 9. It is evident that the solution still deviates significantly from the
ground truth solution.

The result obtained using curriculum regularity strategy (Krishnapriyan et al., 2021) is shown in the Figure 10 below, where
∆ε = 0.01.

The result obtained using Sequence-to-sequence training strategy (Wight & Zhao, 2020; Mattey & Ghosh, 2022) is shown in
the Figure 11 below, where ∆t = 0.01.

The result obtained using resampling strategy is shown in the Figure 12. In all resampling strategies, additional sample
points are eventually concentrated near the sharp interface region. In our comparative experiments, we start with a uniform

19

Homotopy Dynamics

Figure 9. Solution for 2D Allen-Cahn equation for origin training.

(1) (2)

(3) (4)

Figure 10. Numerical results for the 2D Allen–Cahn equation using the Curriculum training strategy.

grid of 50× 50 sample points and augment it by adding 5000 points in the vicinity of the sharp interface.

20

Homotopy Dynamics

(1) (2)

(3) (4)

(5) (6)

Figure 11. Numerical results for the 2D Allen–Cahn equation using the Sequence-to-sequence training strategy.

B.4. High Dimension Helmholtz Equation

Number of residual points nres = 10000 and number of boundary points nbc = 2000. Neural network architecture is a
fully connected network with layer sizes [2, 30, 30, 30, 1]. In this example, we optimize using the Homotopy Loss. We set
ε0 = 1.0, initially choosing ∆ε = 0.1, and later refining it to ∆ε = 0.01 until εn = 1

50 .

Largest eigenvalue of Dε. As shown in Figure 13, a smaller ε results in a smaller largest eigenvalue of (60), leading to a
slower convergence rate and increased difficulty in training.

21

Homotopy Dynamics

(1) (2)

Figure 12. Numerical results for the 2D Allen–Cahn equation using the Resampling training strategy.

Figure 13. Largest eigenvalue of Dε (60) for different ε. A smaller ε results in a smaller largest eigenvalue of (60), leading to a slower
convergence rate and increased difficulty in training.

Dε = −ε2∆dis +
1

d
diag

(
1, . . . , 1) (60)

B.5. High Frequency Function Approximation

We aim to approximate the following function: u = sin(50πx), x ∈ [0, 1]. The homotopy is defined as H(u, ε) =
u− sin(1επx), where ε ∈ [1

50 ,
1
15]. Number of residual points nres = 300. In this example, we optimize using the Homotopy

Loss. We set ε0 = 1
15 and εn = 1

50 , the list for {εi} is [1
15 ,

1
20 ,

1
25 ,

1
30 ,

1
35 ,

1
40 ,

1
45 ,

1
50]. From this example, we observe that

the homotopy dynamics approach can also mitigate the slow training issue caused by the Frequency Principle (F-Principle)
when neural networks approximate high-frequency functions.

As shown in Figure 14, due to the F-principle (Xu et al., 2024), training is particularly challenging when approximating
high-frequency functions like sin(50πx). The loss decreases slowly, resulting in poor approximation performance. However,
training based on homotopy dynamics significantly reduces the loss, leading to a better approximation of high-frequency
functions. This demonstrates that homotopy dynamics-based training can effectively facilitate convergence when approx-
imating high-frequency data. Additionally, we compare the loss for approximating functions with different frequencies
1/ε using both methods. The results, presented in Table 7, show that the homotopy dynamics training method consistently
performs well for high-frequency functions.

22

Homotopy Dynamics

Table 7. Comparison of the lowest loss achieved by the classical training and homotopy dynamics for different values of ε in approximating
sin

(
1
ε
πx

)
ε = 1/15 ε = 1/35 ε = 1/50

Classical Loss 4.91e-6 7.21e-2 3.29e-1
Homotopy Loss LH 1.73e-6 1.91e-6 2.82e-5

Origin Evolution

Homotopy Evolution

𝜺 = 𝟏/𝟏𝟓 𝜺 = 𝟏/𝟐𝟓 𝜺 = 𝟏/𝟑𝟓 𝜺 = 𝟏/𝟒𝟓 𝜺 = 𝟏/𝟓𝟎

Figure 14. High-frequency function sin(50πx) approximation: Comparison of loss curves between original evolution and homotopy
evolution. The comparison shows that homotopy evolution effectively reduces the loss, successfully approximating the high-frequency
function, while the original evolution fails. The number of residual points is nres = 300.

B.6. Operator Learning 1D Burgers’ Equation

In this example, we apply homotopy dynamics to operator learning. The neural network architecture follows the DeepONet
structure:

Gθ(v)(y) =

p∑
k=1

n∑
i=1

aki σ

 m∑
j=1

ξkijv (xj) + cki

σ (wk · y + bk) . (61)

Here, σ (wk · y + bk) represents the trunk net, which takes the coordinates y ∈ D′ as input, and σ
(∑m

j=1 ξ
k
iju (xj) + cki

)
represents the branch net, which takes the discretion function v as input. Rigorous error bounds for DeepONet are established
in (Lanthaler et al., 2022; Liu et al., 2024a; Yang, 2024), so we omit them here. We can interpret the trunk net as the basis
functions for solving PDEs. For this example, the input is u0 and the output is u∞. We still train using the homotopy
loss. It is important to emphasize that, unlike conventional operator learning, which typically follows a supervised learning
strategy, our approach adopts an unsupervised learning paradigm. This makes the training process significantly more
challenging. The initial condition u0(x) is generated from a Gaussian random field with a Riesz kernel, denoted by
GRF ∼ N

(
0, 492(−∆+ 49I)−4

)
and ∆ and I represent the Laplacian and the identity. We utilize a spatial resolution of

128 grids to represent both the input and output functions.

We want to find the steady state solution for this equation and ε = 0.05. The homotopy is:

H(u, s, ε) = (1− s)

((
u2

2

)
x

− ε(s)uxx − π sin(πx) cos(πx)

)
+ s(u− u0), (62)

where s ∈ [0, 1]. In particular, when s = 1, the initial condition u0 automatically satisfies and when s = 0 becomes the
steady state problem. And ε(s) can be set to

23

Homotopy Dynamics

Figure 15. Largest eigenvalue of Dε (64) for different ε. A smaller ε results in a smaller largest eigenvalue of (64), leading to a slower
convergence rate and increased difficulty in training.

Table 8. Comparison of accuracy and efficiency between Finite Difference Method (FDM) and DeepONet (trained via Homotopy
Dynamics).

ε ∆t Finite Difference Method (FDM) DeepONet (trained by Homotopy)
L2RE MSE (xs) Comp. Time (s) Loss LH L2RE MSE (xs) Inference Time (s)

0.5 5× 10−5 1.63e-12 7.35e-13 239.98 7.55e-7 1.50e-3 1.75e-8 0.2
0.1 1× 10−5 5.83e-4 1.57e-5 1239.77 3.40e-7 7.00e-4 9.14e-8 0.2

0.05 5× 10−6 1.01e-2 4.20e-3 2416.23 7.77e-7 2.52e-2 1.20e-3 0.2

ε(s) =

{
s, s ∈ [0.05, 1],
0.05 s ∈ [0, 0.05].

(63)

Here, ε(s) varies with s during the first half of the evolution. Once ε(s) reaches 0.05, it is fixed at ε(s) = 0.05, and only s
continues to evolve toward 0.

Largest eigenvalue of Dε. As shown in Figure 15, a smaller ε results in a smaller largest eigenvalue of (64), leading to a
slower convergence rate and increased difficulty in training.

Dε = −ε2∆dis + diag
(
u(x1)

d

dx dis
+

du(x1)

dx
, . . . , u(xn)

d

dx dis
+

du(xn)

dx

)
. (64)

Compare with tradition method.

The table reports both inference time and accuracy metrics across varying ε. While FDM achieves high accuracy, its
computational cost increases significantly for small ε due to CFL constraints. Moreover, its accuracy deteriorates under
small ε, possibly due to resolution limitations. In contrast, our DeepONet model yields substantially faster inference with
only moderate accuracy degradation, making it well-suited for many-query scenarios such as uncertainty quantification or
real-time control.

24

