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ABSTRACT

Over the past few years, research on animal pose estimation in computer vision field has grown in
many aspects such as 2D and 3D pose estimation, 3D mesh reconstruction, and behavior prediction.
Promoted by deep learning, more and more animal pose estimation tools and animal pose datasets
have also been made publicly available. However, compared to human pose estimation, which already
has high accuracy and high applicability for complex scenes, animal pose estimation is still at a pre-
liminary stage. The huge domain shift between each species, the scarce datasets, and uncooperative
research subjects all pose intractable challenges to the development of robust and accurate animal pose
estimation algorithms. In this review paper, we summarize the recent (from 2013 to 2021) work in
animal pose estimation from computer vision perspective in order to present the state-of-the-art ap-
proaches and highlight the challenges they face in this field. We first categorize the various methods of
animal pose estimation and present them according to several keywords. Also, we sort and introduce
the released annotated image, video, and 3D models of animal poses as well as a promising substitute
for real dataset. We also report the performances of the existing algorithms and visualize their results.
Finally, we provide an in-depth analysis of the persisting obstacles in this field based on existing work,
and offer potential solutions.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Pose estimation in the computer vision field is the specific
task of localizing the joint positions or predefined keypoints of
an object (e.g. a car, a human body, or a dog) in an image. It
goes back to the early works of the 1990s, which were aimed
at human detection, motion tracking, and facial pattern estima-
tion (Yang and Huang, 1994; Sung and Poggio, 1998). Over
the last decade, the cost and technical difficulties for pose es-
timation have become considerably lower. As such, its appli-
cations have gradually been integrated into all aspects of our
lives, including (1) gesture-based human-computer interaction
(Nguyen et al., 2020), (2) assessment and correction of hu-
man movement and posture in healthcare and sport applications
(Chen and Yang, 2020; Chen et al., 2018a), (3) social security
– detection of adversary actions (Tsiktsiris et al., 2020), and
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(4) gaming and 3D avatar generation in virtual/augmented real-
ity environments (Obdrzalek et al., 2012), among others. This
remarkable progress is attributed to the introduction of deep
learning, which has led to an explosive increase in pose esti-
mation works, opening the door to other branches of this topic
including animal pose estimation.

Animal pose estimation plays an essential role in learning
and understanding animal behavior (Anderson and Donath,
1990; Butail et al., 2015; Del Pero et al., 2015a; Joska et al.,
2021), preserving animal’s appearance information (Duncan
et al., 2017), protecting endangered species (Zuffi et al., 2019),
understanding the migration of wild animals (Li et al., 2014;
Bauer and Klaassen, 2013), and even taking care of our pets
(Biggs et al., 2020). However, animal pose estimation has many
challenges not present in the human pose estimation problem.
In terms of public attention, it has little influence on human-
specific healthcare (Huang et al., 2021; Liu et al., 2022) or mili-
tary tasks, making it more difficult to secure funding. Until now,
animal keypoint detection tasks are still rarely seen in the im-
age processing challenge held at international computer vision
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conferences. In terms of data acquisition, most live animals
are more uncooperative than humans, so collecting rich sets of
pose data from them is burdensome. Researchers can conduct
3D scanning (Duncan et al., 2017) and take photos (Russello
et al., 2021; Mathis et al., 2021) of domesticated animals, such
as cow and horses on farms and in zoos. People can even put
dogs in the motion capture suit (Ricardo, 2022) to collect the
precise 3D pose. However, for lions and tigers with high ag-
gression, or for elephants and giraffes with large bodies, it is
unlikely to make them stay in the monitoring spot obediently.
In works such as Joska et al. (2021), high-speed cameras are
set up to collect the data of several raised cheetahs in the wild;
however, these cases are difficult to replicate, especially for the
endangered species (Zuffi et al., 2019) that should be interfered
with. In addition, obtaining data by tracking animals in the
wild requires tons of manpower, materials, and funds, which
at the end could be still very limited due to the adverse vision
conditions such as occlusions and huge illumination changes.
While there are many publicly available large-scale human pose
datasets, such as MPII human pose (Andriluka et al., 2014a),
COCO (Lin et al., 2014b), and SMPL (Loper et al., 2015), the
scarcity of the annotated animal pose datasets hinders the use
of well-developed human pose/shape estimation model struc-
tures in supervised fashion. In terms of model, human and an-
imal pose estimation can share a similar structure and back-
bone. However, the design for animal pose estimation models
must take into account data scarcity and the diversity of animal
species. Under the same network, the human body can achieve
high-precision pose estimation since there are many large-scale
human pose datasets available. In contrast, animal pose esti-
mation models are suffering from both data scarcity and lack
of model variety. Furthermore, the huge differences in physical
characteristics among animals species cause a large domain dis-
crepancy, as a network trained with images of cats will not be
generalized to images of giraffes due to differences in their bone
structure, shapes, and textures. Although some works (Mathis
et al., 2021; Yu et al., 2021a; Cao et al., 2019; Li and Lee, 2021)
have confirmed that it is possible to train models with general-
ization ability on the unseen animal, the accuracy obtained on
the out-domain data is obviously lower than that obtained on
in-domains data.

Despite the difficulties throughout the development of animal
pose estimation algorithms, many gratifying results have been
achieved in last few years. As listed in Table 1, these methods
can be categorized into 2D pose estimation, 3D pose estima-
tion, model reconstruction and behavior prediction, based on
the objectives of the algorithms. In the 2D and 3D pose estima-
tion, Cao et al. (2019) analyzed and mitigated the domain shift
between human and animals and among different species, and
fine-tuned a human pose estimator, AlphaPose (Hao-Shu Fang
and Cewu Lu, 2017), for animal pose estimation. Meanwhile,
Li and Lee (2021) and Mu et al. (2020) trained their model with
the combination of synthetic data and real data and designed a
domain adaptation module to reduce the synthetic vs. real do-
main gaps. There are also a series of end-to-end pose estimation
toolboxes (Graving et al., 2019a; Mathis et al., 2018), which are
based on deep neural networks and their derivative works (Nath

Fig. 1: Different keypoints and skeleton annotations on human and animals,
where (a) shows a standard for human pose annotation used in (Andriluka et al.,
2014b), while three types of annotation for animal pose are from (b) (Biggs
et al., 2020), (c) (Cao et al., 2019), and (d) (Pero et al., 2016). The red points
mark the keypoint on the image and the blue lines which connect the keypoints
denote the skeleton.

et al., 2019; Lauer et al., 2021). The introduction of Skinned
Multi-Animal Linear (SMAL) model in (Zuffi et al., 2017) has
opened up the field of reconstructing animal models from a sin-
gle image (Zuffi et al., 2018, 2019; Biggs et al., 2018b, 2020;
Kanazawa et al., 2018a). SMAL greatly reduces the difficulty
of modeling endangered species in the wild. Also, it provides
an effective way to lifting 2D to 3D poses.

In this review paper, in order to provide an informative sur-
vey in the topic of animal pose estimation, we first need to have
a comprehensive understanding of the capabilities and draw-
backs of the current state-of-the-art (SOTA). This will allow us
to obtain inspiration, identify existing challenges, and plan for
future directions in this field. This review paper presents an
overview of the SOTA animal pose estimation work and makes
the following contributions:

• Collecting and categorizing animal pose estimation work
from 2013 to 2021 into 2D and 3D pose estimation, model
reconstruction, and behavior prediction, focusing mainly
on the larger quadruped mammals, as listed in Table 1.

• Sorting and reporting publicly available animal pose
datasets based on their animal classes, data types, anno-
tation types, and data sizes as listed in Table 2.

• Summarizing the quantitative evaluation of the SOTA ani-
mal pose estimation works.

• Discussing the challenges and remaining gaps in the field,
and exploring the existing opportunities as well as offering
potential solutions/next steps.

The rest of the paper is organized as follows. Section 2 pro-
vides a comparison between the pose-based keypoint definition
of human vs. animal. In Section 3, we describe the SOTA
animal pose estimation methods categorized based on their ob-
jectives. We report the publicly available animal pose datasets
in Section 4. In Section 5, we compare the results of the SOTA
animal pose estimation models. Finally in Section 6 and Sec-
tion 7, we conclude this survey by discussing the existing gaps
and opportunities.

2. Animal Pose Definition

Animal or human pose estimation is about localizing their
body joints. In this section, we describe the differences between
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the definition of joints in human vs. animals. Some examples
of these differences can be seen in Fig. 1. In Fig. 1(a), the key-
points and skeleton of a human subject in the MPII dataset (An-
driluka et al., 2014b) is shown. Compared to the MPII, which
is mainly used for human action detection, COCO dataset (Lin
et al., 2014b), another human pose dataset, pays more atten-
tion to human facial features. Thus, it has more keypoints on
the eyes, nose and ears than those in the MPII. In Fig. 1(b),
Biggs et al. (2020) chose to set 2 keypoints on each ear and tail
and no keypoints on the eyes. In Fig. 1(d), the TigDog dataset
(Pero et al., 2016) focuses more on the body posture of the an-
imal, so there is no landmark on the ear and tail. By observing
the distribution of animal keypoints among the three works in
Fig. 1(b)-(d) (Andriluka et al., 2014b; Biggs et al., 2020; Cao
et al., 2019), it is apparent that while the objectives of these
studies could be different, the definition and distribution of the
keypoints greatly overlap among quadrupeds. Around 21 key-
points are annotated for these larger mammals including two
eyes, one nose, one neck, two ears, four ankles, four knees,
four elbows, and one tail-base.

In many cases, the keypoint distribution in the large-scale
human pose datasets is similar to those of the larger-in-size
quadruped animals, which is due to the morphological simi-
larity between humans and quadruped mammals. Recent work
attempted and succeeded in proving that the existing dense pose
recognition (Güler et al., 2018), detection and segmentation can
be transferred between human and animal poses which is pos-
sible for some animals that are physically similar to human,
such as chimpanzees (Sanakoyeu et al., 2020). For example,
Neverova et al. (2020) transferred information between humans
and quadrupeds such as cats, dogs, elephants, giraffes, horses,
bears, etc., by using functional maps (Ovsjanikov et al., 2012)
to relate different 3D shape. This extended the field of cross-
domain adaptation to more species of animals. However, there
are many animals whose pose estimation face serious domain
shifts when relying on human-specific pose models. Cao et al.
(2019) pointed out that the differences in defined “bones” be-
tween each keypoint would also cause a great domain shift
even among similar species, let alone between human and ani-
mals. The relative length of the defined “bones” of the human
is shorter in upper body, while the relative length is longer in
lower body than that of the quadruped. Animals with special
physical characteristics, such as giraffes, will have more seri-
ous domain shifts. Therefore, solving this domain shift will
greatly alleviate the data scarcity problem faced by animal pose
estimation.

3. Animal Pose Estimation Models

The human pose estimation has been developed for decades,
and the usage of deep learning and convolutional neural net-
works since 2014 has made many major breakthroughs in the
computer vision field. Meanwhile, the animal pose estimation
topic that has been gradually developed in the past ten years,
naturally refers to many algorithms developed for human pose
estimation. Taking advantage of this history, we classify animal
pose estimation methods into three main categories of: (1) 2D

animal pose estimation, (2) 3D animal pose estimation, and (3)
3D animal mesh recovery. The categorization of animal pose
estimation works from 2013 to 2021 is summarized in Table 1,
while a generic pipeline for such works in demonstrated Fig. 2.

3.1. 2D Animal Pose Estimation

2D pose estimation aims to detect the 2D coordinates of the
keypoints (joints) of an animal in a single image or a sequence
of images. 2D pose estimation is the basis of the majority of
the pose estimation studies. According to the number of tar-
get animals in the scene that we are processing, we can divide
the pose estimation problems into single animal pose estimation
and multiple animal pose estimation. In terms of the input data
to the models, these methods can be further classified as image-
based vs. video-based, when a single image or a sequence of
images is used, respectively.

3.1.1. Single Animal Pose Estimation
Individual pose estimation (single-task) means estimating for

just one specific target in an image, whereas multiple pose es-
timation (multi-task) aims to estimate all target subjects in the
image. The performance of animal pose estimation is primar-
ily determined by its backbone as well as human pose estima-
tion. We would like to briefly introduce two backbones widely
used in animal pose estimation. The first one is Residual Neu-
ral Network (ResNet) (He et al., 2016) which was proposed in
2015. The residual block structure of ResNet enables the net-
work to perform identity mapping between layers to avoid the
exponential decay of the gradient correlation of the network due
to the increasing of the number of layers. The simple and ef-
ficient structure makes it a viable backbone for many animal
pose estimations (Li and Lee, 2021; Mu et al., 2020; Mathis
et al., 2018). The second backbone, High-Resolution Network
(HRNet) (Wang et al., 2020),is one of the best and most popular
networks in both of human and animal pose estimation. As the
depth of the network increases, HRNet continues to add parallel
branches of low-resolution feature maps while keeping high-
resolution feature maps. Accurate keypoint prediction can be
achieved by fusing the semantic information in low-resolution
feature maps and the precise feature which doesn’t suffer infor-
mation loss during down-sampling in high-resolution feature
maps. (Yu et al., 2021a; Huang et al., 2021; Liu et al., 2022).

On the other hand, as we mentioned in Section 1, the perfor-
mance of 2D pose estimation also depends heavily on handling
the limited data. 2D single-task in the Table 1 can be divided
into three types according to the solutions to data scarcity. The
first is to use prior-aware synthetic data augmentation (Li and
Lee, 2021; Mu et al., 2020). These works learn prior knowledge
from massive synthetic animals datasets with labels and silhou-
ettes. Then, unlabeled real data can be exploited by being as-
signed the pseudo-labels which are generated from the model
trained with synthetic data. Another approach is to transfer
learning from existing animals datasets or even humans (Cao
et al., 2019). By defining the same labels based on the simi-
lar feature, a self-supervised joint training network can be con-
structed to refine the pseudo-labels. In addition, pre-training
on large datasets such as ImageNet (Deng et al., 2009) has
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Table 1: An overview and categorization of the animal pose estimation works from 2013 to 2021.

Year First Authors Animal Classes Training Data Type Research Direction Highlights

2021 Russello et al. (2021) Cow bounding box, 2D annotations 2D pose

Based on LEAP (Pereira et al., 2019), T-LEAP improves the robustness to the vary-
ing background by increasing the depth of LEAP neural network.3D convolution is
applied to spatial-temporal dimension to leverage the temproal information in videos
and deal with occlusions.

2021 Mathis et al. (2021) Horse 2D annotations 2D pose
The generalization ability for pose estimation and the robustness to image corrup-
tions are analyzed on Mobilenetv2 (Sandler et al., 2019), EfficientNets (Tan and Le,
2020),ResNets (He et al., 2016).

2021 Joska et al. (2021) Cheetah 2D annotations 2D pose and 3D pose
Provide a huge cheetahs dataset in the wild through using multi-view synchronized
high-speed camera system and DeepLabCut for 2D annotation; 3D pose estimation is
also produced by using three methods.

2021 Zhang et al. (2021) Mouse 2D annotations 3D pose
Hierarchical von Mises-Fisher-Gaussian model that incorporates prior distributions of
spatiotemporal constraints to make keypoint predictions based on Bayesian inference.

2021 Li and Lee (2021) Horse, Tiger 2D annotations 2D pose
Multi-scale domain adaptation module (MDAM) to solve the domain shift between
synthetic data and real data, combined with a pseudo label updating strategy to pre-
serve annotations through the domain shift.

2020 Biggs et al. (2020) Dog (120 breeds)
2D annotations, silhouettes,

3D priors
3D mesh

(provide 3D pose and 2D pose)
End to end method for dog’s 3D pose and shape estimation from single images based
on SMAL; good generalization to new domain.

2020 Bala et al. (2020) Rhesus macaque 2D annotations 3D pose
Multiview 3D reconstruction with augmented annotated data from 62 cameras, used
to train a view invariant pose detector containing a deep neural network, that predicts
3D pose.

2020 Liu et al. (2020) Mouse, Zebra, Monkey 2D annotations 3D pose
Video-based pose estimation architecture that combines a flexible base model called
FlexibleBaseline to account for shape variety and an optical flow model to interpret
video frames, to generate enhanced keypoint predictions.

2020 Zhang and Park (2020) Monkey, Dog 2D annotations 3D pose
Semi-supervised model is trained with only less than 4% labeled data under cross-
view supervision, temporal supervision and visibility supervision.

2020 Mu et al. (2020) Quadruped Mammal
synthetic CAD model,

pose segmentation,
2D and 3D joints

2D pose
Generate synthetic dataset from CAD animal models to mitigate the lack of labeled
data; consistency-constrained semi-supervise learning is used to bridge the domain
gap between synthetic and real data.

2019 Zuffi et al. (2019) Zebra, horse
2D joints, Silhouettes,

3D priors
3D mesh

(provide 3D pose and 2D pose)

Model is trained with synthetic dataset with real instance and synthesized pose, shape,
texture, and background; Texture prediction is linked to 3D pose and shape through a
shared feature space.

2019 Cao et al. (2019) Quadruped Mammal 2D annotations, bounding box 2D pose
Find the shared features between human and animals and learn from their labeled data
to estimate the pose of unseen categories; make full use of unlabeled data through
progressive pseudo-label-based optimization.

2019 Graving et al. (2019a)
Grévy’s zebra, Desert locust,

Vinegar fly 2D annotations 2D pose
Animal pose estimation toolbox based on Stacked DenseNet deep learning model; The
processing speed is 2 times faster than DeeplabCut through using Stack DenseNet and
a fast GPU-based peak-detection method.

2019 Pereira et al. (2019) Mouse 2D annotations 2D pose
Toolbox containing a graphical user interface for body-part labeling in images and a
deep convolution neural network that produces probability distributions for the loca-
tions of each body part.

2018 Zuffi et al. (2018) Quadruped Mammal 2D annotations, Silhouettes 3D mesh
Initial mesh which has been aligned to one image is optimized through being fitted to
other images on multi-view; Model’s texture is recovered from images by defining a
UV map of texture coordinates.

2018 Biggs et al. (2018b) Quadruped Mammal 2D annotations, Silhouettes
3D mesh

(provide 3D pose & 2D pose)

2D joints are regressed from silhouettes by using multimodal heatmaps; 2D-to-3D cor-
respondences are defined through optimal joint assignment and minimize the complex
objective by using genetic algorithm (GA).

2018 Mathis et al. (2018) Mouse bounding box, 2D annotations 2D pose and 3D pose
The animal pose estimation toolbox based on DeeperCut feature detector architecture
which can get human-level labeling accuracy by being trained only with 200 frames.

2017 Zuffi et al. (2017) Quadruped Mammal 2D joints, Silhouettes 3D mesh
Model is trained with 3D scans of toy figurines; GLoSS model: shape deformations
are performed in each part locally.

2016 Reinert et al. (2016) Quadruped Mammal 2D joints, Silhouettes 3D mesh
The skeletal sketch is tracked through image sequences by using optical flow; Mesh is
composed of aligned “generalized 3D cylinder” for each limb.

2015 Kanazawa et al. (2015) Cat, Horse
2D joints, 3D Priors

, silhouettes 3D mesh
Deform the mesh based on the local stiffness which value is various from skull to
joints instead of ARAP.

2015 Ntouskos et al. (2015) Giraffe silhouettes 3D mesh Animal is segmented into several components and modeled separately.

2013 Vicente and Agapito (2013) Giraffe, Dolphins, Goose Silhouettes 3D mesh
Template based 3D recovery method which uses silhouette based method to recovery
the template mesh from single images.

also been shown to improve model accuracy and generaliza-
tion (Mathis et al., 2018, 2021; Yu et al., 2021a). We would
discuss these solutions in detail in the Section 6. Besides,
Zhang and Park (2020) also reduces the need for labeled data
by building a multi-camera systems for 2D animal pose estima-
tion. Based on the supervision of spatio-temporal continuity of
the keypoints movement and the characteristic that one pose in
multi-view data must satisfy epipolar constraints (Hartley and
Zisserman, 2003), they can train the end-to-end neural network
with extensively unlabeled data and few real images. The re-
sult proves that the high precision pose estimation of both non-
human and human subjects can be realized with highly limited
labeled data. However, the multi-view camera system required
by this method makes it difficult to be extended to animal pose
estimation in the wild.

3.1.2. Multiple Animal Pose Estimation
Compared to the single animal pose estimation problem,

multiple pose estimation is conducive to analyzing and under-
standing the social interaction between animals. Multiple pose
estimation is not a simple composition of individual pose esti-
mation. Generally speaking, the methods of multiple pose es-
timation are divided into top-down and bottom-up. In a top-
down network (e.g. Stacked Hourglass (Newell et al., 2016)

and HRNet (Wang et al., 2020)), the target detection will be
performed firstly on the image to find all individuals, then in-
dividual pose estimation will be applied on each individual
within the identified regions. In other words, top-down means
transforming the multiple pose estimation into several individ-
ual pose estimation. Although top-down usually achieves high
precision because each individual is processed separately, it is
likely to be affected when animals are occluded by one another
(Lauer et al., 2021). On the other hand, bottom-up networks
(e.g. OpenPose (Cao et al., 2019; Cao et al., 2018), Higher-
Resolution Networks (Cheng et al., 2019)), will find all the key-
points in the image first, and then assemble the points to each
individual. Obviously, the main error comes from wrong as-
sembly. Inspired by OpenPose (Cao et al., 2018), Lauer et al.
(2021) purposes a novel multi-task architecture DLCRNet. In
the encoder, DLCRNet which adopts the structure of HRNet,
also builds a multi-fusion architecture to fuse the feature maps
with various resolutions on parallel branches. In the decoder,
in addition to the branch which predicts the score map of key-
points, a part affinity field (Cao et al., 2017), which can predict
the location and orientation of limbs, is used to link the specific
keypoints within one animal.
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Fig. 2: An overview flow chart describing the generic workflow of existing animal pose or shape estimation methods. The input data of the networks can be video
sequences or images with one or multiple animals in a monocular view or a multi-view. The raw data then can be pre-processed by being cropped or segmented,
based on the requirement of each model. The model will learn the relevant representation by doing feature extraction and predict the pose, shape or texture based
on the objective of the algorithm to output 2D/3D poses or 3D meshes.

3.1.3. Video-based Animal Pose Estimation

Video-based pose estimation requires a set of images con-
secutive in time and space as input for the inference model. It
can produce more robust predictions by analyzing the tempo-
ral information and forcing temporal consistency in the image
sequence. Russello et al. (2021) is a typical work of extract-
ing temporal information from consecutive images to alleviate
the environmental occlusion which often occurs in the wild. By
adding one more dimension to the encoder and decoder of its
original model LEAP (Pereira et al., 2019), the network can
predict the pose of one image based on the feature maps ex-
tracted from its several adjacent images. The input of the new
model is not a single image but a sequence of frames of length
T while the output remains a single frame. Moreover, to cope
with the increased data complexity, one additional 3D convo-
lutional layer is added to the encoder and decoder of LEAP to
extract more complex spatio-temporal features. The only prob-
lem is that they only test the model on the process of the cows
walking from left to right.

The optical flow (Baker and Matthews, 2004) is another
choice which is used in Zhang and Park (2020) to enforce the
temporal consistency across an image stream. Optical flow is
an excellent method to track the apparent motion of individual
pixels on an image based on the color-immutability of a pixel in
adjacent frames (Turaga et al., 2010). The continuously chang-
ing pose can be supervised by tracking the dense optical flow. In
order to address the tracking drift caused by occlusion, Zhang
and Park (2020) also wraps all of the keypoint as a whole to
eliminate the argmax operation and apply the temporal supervi-
sion only on the frames with sufficient magnitude of the integral
dense optical flow. Apart from these methods, in Table 1, most
of the video-based pose estimation works are only based on the
composition of pose estimation on single frame (Mathis et al.,
2021, 2018; Biggs et al., 2018b). Compared to the pose esti-
mation on single image, video-based pose analysis can not only
be used to estimate poses, but also predict and analyze animal
behavior and their group interactions by looking at dynamics of
the pose data over time (Mathis et al., 2018; Bala et al., 2020).

3.2. 3D Animal Pose Estimation
3D animal pose estimation means predicting the joint posi-

tions of an animal in the 3D space from one or multiple images.
Compared with the 2D pose, a more comprehensive pose de-
scription enables 3D pose estimation to be applied in wild as-
pects, such as animal ethology (Bala et al., 2020; Bauer et al.,
2020), robotics (Joska et al., 2021; Peng et al., 2020). We divide
the existing 3D works on animal pose estimation into multi-
view vs. monocular (i.e. single view) 3D pose estimation and
discuss them separately.

3.2.1. Multi-view 3D Pose Estimation
Multi-view pose estimation requires a camera system com-

posed of multiple cameras to take several photos of animals
synchronously. 2D pose estimation is performed on each per-
spective, and the 3D keypoints are calculated using the spatial
relationship of the camera systems. Since the depth informa-
tion of the keypoints can be easily calculated by using the cal-
ibration parameters of multiple cameras (Iskakov et al., 2019;
Ummenhofer et al., 2017), the multi-view 3D pose estimation is
still the most accurate method to obtain the 3D pose of animals.

In Bala et al. (2020), OpenMonkeyStudio, currently the best
macaques deep learning-based markless motion capture sys-
tem, is built to estimate the 3D pose (13 joints) of macaques.
The system can observe the free movement of macaques from
all directions through 62 synchronized high-definition cameras.
The Convolutional Pose Machine (CPM) (Wei et al., 2016) is
used to estimate the 2D pose in each image, from which the 3D
pose is triangulated, and then the reconstructed 3D pose can be
used to augment the 2D pose-labeled data. A large macaques
dataset containing about 200k images is also proposed follow-
ing. Similarly, Joska et al. (2021) builds a multi-view synchro-
nized camera system with six GoPro cameras to collect data
from 10 cheetahs in the wild. They utilize DeepLabCut (Mathis
et al., 2018) as the 2D pose detector which is trained with Aci-
noSet dataset (Daniel et al., 2021). Then, they apply two more
methods for multi-camera 3D pose estimation besides triangu-
lation (Page, 2005), including Extended Kalman Filter (EKF)
(Forsyth, 2002) and Full Trajectory Estimation (FTE) (Joska
et al., 2021). Based on the result of the three baseline methods,
they generate the first animal 3D pose in-the-wild benchmark.
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It is true that we can obtain accurate 3D pose by using multi-
camera system, but the difficulty of data collection is much
higher than for monocular pose estimation. Most of the works
have no choice but to collect data from animals in cages (Bala
et al., 2020; Zhang and Park, 2020). It is challenging to set
up and calibrate many cameras and collect data from animals
in the wild. Therefore, the potential value of monocular pose
estimation is immeasurable.

3.2.2. Monocular 3D Pose Estimation

Compared to the multi-view, monocular 3D pose estimation
has far more unsolved challenges. Under the situation of 2D
data scarcity, it even suffers from the more severe shortage of
3D pose-labeled data whose ground truth should be obtained
through motion capture (MoCap) systems. Moreover, since one
2D pose can correspond to multiple possible 3D poses, elevat-
ing a 2D pose estimated in a single image to a 3D pose must
face inherent ambiguity in depth. To accurately estimate the
depth of keypoints, geometric prior knowledge of the target
which can serve as a strong constraint needs to be learned first.

The SMAL model (Zuffi et al., 2017) which can generalize
to many types of animals becomes the best option for provid-
ing the geometric prior. The monocular 3D pose estimation task
can be simplified into fitting the pose, shape, and camera param-
eters of the parametric mesh. After reconstructing the animal’s
mesh from a single image, the 3D keypoint can be obtained
from the coordinate of the vertex in the SMAL mesh. Due to
the powerful generalization ability of the SMAL model, almost
all the current monocular 3D pose estimation works are based
on the SMAL model. In Zuffi et al. (2019), Zuffi et al. train
an end-to-end neural network, SMAL with learned Shape and
Texture (SMALST), using synthetic Grevy’s zebra data. After
that, Biggs et al. (2020) proposed an end-to-end neural network,
Skinned Multi-Breed Linear Model for Dogs (SMBLD), suit-
able for a wide variety of dogs by enriching the shape parame-
ters of the SMAL and learning more shape priors. We present
the above works in detail in the 3D Animal Mesh Recovery.

Besides, Liu et al. (2021) also summarizes monocular human
pose estimation methods from 2014 to 2021. Although there is
no large 3D pose-labeled animal datasets like human do, such as
Human3.6M (Ionescu et al., 2014; Catalin Ionescu, 2011), there
are still many ideas which we can learn from. For example,
Chen et al. (2019) proposed an unsupervised 2D-to-3D lifting
method to eliminate the rely on 3D ground truth. This method
first projects the lifted 3D poses from random views back to 2D
images to supervise depth estimation using generated adversar-
ial 2D poses. They then lift the randomly projected 2D pose to
3D and supervise the difference between its 2D projection from
the original view and the original 2D pose input. This way, the
model can be properly trained without any 3D annotations. Last
but not least, we can also get synthetic 3D data and its ground
truth from 3D animal meshes easily. A large number of 2D-3D
pose pairs can be generated by projecting the 3D pose back to
the 2D image plane, which can conducive to lifting 2D Pose to
3D (Chen and Ramanan, 2017).

3.3. 3D Animal Mesh Recovery

3D mesh reconstruction is a long-standing but still challeng-
ing task. At present, we can easily reconstruct the 3D mesh
from the object’s point cloud, which can be collected through
RGBD cameras (Vyas et al., 2019) and 3D scanners (Duncan
et al., 2017) or even be calculated from dozens of multi-view
photos of objects (Agisoft, 2022). These methods are very con-
venient for rigid objects or cooperative humans, but they are
hard to be conducted on non-cooperative, live and deformable
animals. Therefore, recovering 3D mesh from single-view pic-
tures is ideal for studying animals. Like pose estimation, 3D
animal mesh recovery also plays a vital role in behavior stud-
ies of pets, wild animals and endangered species (Biggs et al.,
2020; Zuffi et al., 2019; Youwang et al., 2021). This section
will summarize the work of 3D animal mesh recovery from a
single image, especially on the most popular method, model-
based methods.

3.3.1. Model-based Methods
The core of the model-based approach is a parameterized

deformable template mesh, whose parameters include mesh
shape, pose, deformation, etc. The shape and pose parame-
ters are estimated from a single image to compute the defor-
mation of the template mesh, and the deformed mesh is con-
strained and optimized through comparing the intermediate es-
timations, such as silhouettes, 2D keypoint and camera param-
eters, against their ground truth. In the past, people would
use rough meshes made by 3D animators as deformable tem-
plates, such as dolphins (Cashman and Fitzgibbon, 2012a), cats
(Kanazawa et al., 2015), horse (Kanazawa et al., 2015), birds
(Kanazawa et al., 2018a). However, the quality of model-based
methods largely depends on the quality of the parameterized
template, which requires many 3D scans to learn. Therefore,
the model-based method was hard to conduct prior to the in-
vention of the SMAL model (Zuffi et al., 2017).

Currently, most of the animal 3D mesh reconstruction works
are based on the SMAL model which is the animal version
of Skinned Multi-Person Linear model (SMPL) (Loper et al.,
2015), because of its powerful functionality. The best human
body models are learned from thousands of 3D scans of human
bodies, but that is infeasible with many live animals. Thus,
Zuffi et al. (2017) trained the model with the scans of a set of
animal toys. They built a template mesh which is segmented
into 33 parts and fit the template mesh to diverse poses and
shapes by controlling the shape and pose parameters of each
part. Regarding model deformation, they proposed global/local
stitched shape model (GLoSS), which locally defines deforma-
tion of each part and stitches the parts by minimizing a stitch-
ing cost at the their interfaces. After the GLoSS model is fitted
to all 3D scans, Zuffi et al. learn the parametric mean model
of all animals by computing the shape difference’s principal
component (PCA). Finally, the parametric SMAL mesh can be
reconstructed from a single image by fitting the shape, pose,
and camera parameters to the labels and silhouette. Later, they
proposed SMAL with Refinement (SMALR) Zuffi et al. (2018)
that improves on the original SMAL. SMALR requires images
of animals from multiple perspectives and 2D their silhouettes
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as its input data. The 2D silhouettes and 2D keypoints from
different perspectives are used as constraints to reduce the am-
biguity during 3D pose estimation. Then, the 2D projection is
re-projected to the 3D mesh to optimize the generated model
and make it fit the images better. In Zuffi et al. (2017) and Zuffi

et al. (2018), the 2D label and silhouette are still required as
ground truth to constrain the deformation while the end-to-end
neural network SMALST (Zuffi et al., 2019) was purposed later.
Since the model is only trained with the data of a certain animal,
grevy’s zebra, 3D pose, shape and even texture can be regressed
from a single grevy’s zebra image without any annotation and
silhouette.

Besides, Biggs et al. (2020) purposed a specific SMAL
model called SMBLD for dogs, by adding 6 new shape parame-
ters to account for the variation of dogs. For the large variation
in shape and appearance between dog breeds, they learn a de-
tailed 3D prior from a large-scale dog dataset (Benjamin et al.,
2020). Also, the domain gap between the manual designed
shape prior and the real data is also alleviated through regularly
updating the means and variances for each mixture component
and per-image mixture weights based on the observed shapes in
the training set with expectation maximization (EM). However,
the texture cannot be regressed from SMBLD. Youwang et al.
(2021) even realized a stable multi-task to estimate SMPL and
SMAL model at the same time by unifying the label of human
and animal in the same image. In addition to recovering the
model from single RGB image, we can also consider using the
depth information of a single RGBD image to implement an ad-
ditional weak supervision to strengthen the 2D supervision (Cai
et al., 2018; Chen et al., 2021).

Silhouette is an important constraint in model-based method
(Cashman and Fitzgibbon, 2012a; Kanazawa et al., 2018b; Zuffi

et al., 2017, 2018; Biggs et al., 2018b). It plays a role in fitting
the generated model by comparing the generated mesh’s pro-
jection on a certain plane to the manually created silhouettes.
Although there are some large animal datasets for classifica-
tion, detection, and instance segmentation, they only cover a
small part of the world’s animal species. In fact, researchers
still need to generate the silhouettes themselves. One method is
using deep learning models for semantic image segmentation,
as shown in Deeplabv3+ (Chen et al., 2018b) and Mask-RCNN
(Waleed, 2017). However, the performance of these models will
depend on the trained networks. The emergence of synthetic
datasets can be an effective solution of this problem Biggs et al.
(2018b); Zuffi et al. (2017, 2018, 2019); Mu et al. (2020). The
SMAL model and animal’s CAD model can accurately give the
silhouettes of a large number of animals with different poses
and even the ground truth of their 2D and 3D keypoints.

3.3.2. Other Mesh Recovery Methods
Mesh Recovery from Template Mesh recovery from tem-

plate, which can be called template-based method, is a simple
alternative to the model-based approach, without training a pa-
rameterized template mesh (Vicente and Agapito, 2013; Malti
et al., 2013). Both of them are the mesh deformation meth-
ods. In the template-based method, The relationship between
the image and the template mesh is only established through the
known corresponding points. The geometric constraint, such

as As-Rigid-As-Possible (ARAP) (Sorkine and Alexa, 2007)
and Isometric and Conformal (Malti et al., 2013), is used to
constrain the deformation space instead of calculating defor-
mation based estimated pose and shape parameters. Template-
based methods mainly aim to reconstruct a bounded surface
which are fully visible in the image, such as a paper or face.
In order to apply the method on more challenging objects, Vi-
cente and Agapito (2013) purpose a method to reconstruct the
closed surface without boundaries. They obtained the template
closed surface from the image through a contour-based monoc-
ular mesh recovery method (Oswald et al., 2012). The closed
surface template is deformed to fit the input image according to
the silhouette, region constraints, and point correspondences.
Although they can reconstruct the basic shape and pose of the
animal from a single image conveniently, the generated model
lacks accuracy. However, after the appearance of the human
model SMPL and general animal model SMAL, the accuracy
and generalization of the model increases, and the cost of train-
ing a parameterized model decreases, which make model-based
methods become mainstream gradually.

Mesh Recovery from Generalized Cylinders The 3D mesh
can also be restored from a few simple geometric shapes,such
as cuboids or generalized cylinders (Terzopoulos et al., 1988).
Based on it, Gingold et al. (2009) and Reinert et al. (2016) pur-
pose the pipeline to recover the mesh from the combination of
the generalized cylinders with user-defined sketch drawn in the
video. It allows the user to draw strokes along a body part of
a creature (torso, limbs, tail, etc.) on a sequence of sparse key
frames in the video. Optical flow (Pérez et al., 2013) is then
used to automatically track and expand the strokes to all frames
and instance is segmented on the basis of strokes through the
cost-volume filtering (Hosni et al., 2012). Then, cylindrical
fitting is performed on each part of the body according to the
strokes and segmentation. This method does not require any
3D prior and can be widely used for a variety of animals, even
giraffes and elephants. However, due to the lack of depth infor-
mation in the video (they do not use animal model like SMAL
as a template), the 3D error of the generated model could be
relatively higher than that of model-based method which has
strong geometric prior.

4. Existing Animal Pose Datasets

The development of new animal pose estimation models is
more than often accompanied by release of new animal pose
datasets. Unlike the human pose estimation, the physical di-
versity among animal species makes it difficult for researchers
to use the datasets composed of different subjects. Although
several works aim to overcome the cross-domain gaps between
different species Yu et al. (2021a); Cao et al. (2019), their per-
formances are obviously worse than those which use specific
animals for training. Also, due to the lack of a widely accepted
standard, the types of annotations vary from one dataset to an-
other. In this section, we introduce exiting easily accessible and
open-source animal datasets, as tabulated in Table 2.
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Table 2: Summary of publicly-available animal pose datasets. Majority of them are annotated image/video datasets, with only a few unannotated image and 3D
mesh datasets. The missing elements in each dataset is highlighted in red.

Year Dataset Animal Classes Size Data Type Annotation First Released/ Introduced

2021 AP-10K Dataset (Yu et al., 2021a) 23 animal families and 54 species
10K labeled images,

50K unlabeled images 2D images 17 Landmarks (2D pose) (Yu et al., 2021b)

2021 Horse-10 Dataset (Rogers et al., 2021) Horses 8.1K images 2D images 22 Landmarks Mathis et al. (2021)

2021 AcinoSet (Daniel et al., 2021) Cheetahs 119K frames Multi-view video, 2D images
20 Landmarks (2D pose),

3D Pose Prediction Joska et al. (2021)

2020 StanfordExtra (Benjamin et al., 2020) Dogs 12K images 2D images 20 landmarks (2D pose) Biggs et al. (2020)

2020 Synthetic Animal Dataset (Mu et al., 2019)
Synthetic Hound, Tiger,
Horse, Sheep, Elephant 50K 2D images

18 Landmarks (2D pose),
Segmentation Mu et al. (2020)

2019 ATRW dataset (Jianguo et al., 2019) Amur tigers 8k images 2D images 15 Landmarks (2D pose) Li et al. (2019)
2019 Synthetic Grevy’s Zebra Dataset(Silvia et al., 2019) Synthetic grevy’s zebra 13K images 2D images 28 Landmarks (2D pose) Zuffi et al. (2019)

2019 Animal Pose (Jinkun et al., 2019)
Dogs, Cats, Cows, Horses,

Sheep, the other 7 categories 710 MB 2D images 20 Landmarks (2D pose), Bounding boxes Cao et al. (2019)

2018 Animals-10 (Alessio, 2018a) Dog, Cat, Horse, Sheep, Cow, Elephant 586 MB 2D images No Alessio (2018b)

2018 BADJA (Biggs et al., 2018a)
Bears, Camels, Cows, Dogs,

Horses, Tigers, Cats 2.8GB 2D frames from video 20 Landmarks (2D pose), Segmentation Biggs et al. (2018b)

2017 Digital Life 3D (Duncan et al., 2017) Rhino, Lizard, Dolphin N/A 3D mesh (with texture) No Duncan et al. (2017)
2016 TigDog (Pero et al., 2016) Dogs, Horses, Tigers 7.5 GB 2D video 19 Landmarks (2D pose) Del Pero et al. (2015b) Del Pero et al. (2017)

2014 COCO (Lin et al., 2014a)
Cat, Dog, Horse, Sheep,

Cow,Elephant, Bear, Giraffe, Zebra 18GB 2D images Bounding Box, Segmentation, Class label Lin et al. (2014b)

2012 Poselets (Bourdev, 2012) Dogs, Cats, horses, Sheep, Cows 1.6GB 2D images 16 Landmarks (2D pose), Bounding box Bourdev (2012)
2011 Stanford Dogs (Aditya et al., 2011) Dogs(120 breeds, 20K) 2.8GB 2D images Class labels, Bounding box Khosla et al. (2011) Deng et al. (2009)

2009 Non-rigid world (Alexander et al., 2009)
Cats, Dogs, Wolves,

Horses,Lions, Gorillas 24MB 3D mesh (without texture) No Bronstein et al. (2006) Bronstein et al. (2007)

4.1. Image-based Animal Pose Datasets

The image-based animal pose dataset consists of individ-
ual images that are not related to each other. That is to say,
these images usually contain a large number of animal instance
with different textures and shapes, and an assortment of diverse
backgrounds, lighting, camera angles, and occlusions. There-
fore, it is constructive for training the generalization ability,
texture robustness, and occlusion robustness of the model with
image-based dataset.

AP-10K (Yu et al., 2021a) is the latest and largest labeled
dataset for general animal pose estimation. This dataset, which
was just released in 2021, consists of 10,000 labeled images and
50,000 unlabeled images of 23 animal families and 54 species,
covering a large number of common animal family , such as
Canidae, Felidae , Bovidae, Equidae, Ursidae, and Cercopithe-
cidae. The labels are consistent with the COCO dataset labels
(Lin et al., 2014b), including 2 eyes, 1 nose, 1 neck, 1 root
of tail, and 3 joints in each limb. 13 well-trained annotators
are recruited to annotate all the keypoints and three rounds of
cross-checking and correction are then carried out to ensure the
high quality of the annotation. Since the labels are provided
following the COCO dataset style, we can do transfer learning
easily between the human dataset and animal dataset (Cao et al.,
2019). In addition, the rich animal species and diverse animal
posture, backgrounds, and occlusions will greatly facilitate the
generalization ability of animal pose estimation models intra-
family and even inter-family. However, due to the considerable
differences in physical characteristics between species and be-
tween animals and humans, it still remains to be seen whether
the label entirely consistent with the human dataset (Lin et al.,
2014a) will meet the requirements for animal research.

Poselets (Bourdev, 2012) is a publicly available dataset built
by Lubomir Bourdev in 2009. It is mainly composed of the
annotated human instance from PASCAL VOC 2007 to 2011.
It also includes the keypoints and bounding box annotations for
all animal instance from PASCAL 2011. In the dataset, there
are 1266 cats, 642 cows, 1571 dogs, 760 horses and 878 sheep.
The keypoints include 2 eyes, 2 ears, 1 nose, 4 paws, 4 elbows,
1 throat, 1 withers, and 1 tailbase. All of the annotations were
manually labeled by using the H3D annotation tools (Lubomir
and Jitendra, 2011).

Animals-10 (Alessio, 2018b) is a large animal image dataset,

which is collected by Corrado Alessio from google images.
It contains 6 categories of mammal: dog (4863 images), cat
(1668 images), horse (2623 images), sheep (1820 images), cow
(1866 images), and elephant (1446 images). Unfortunately, this
dataset does not have any pose labels. However, the large col-
lection of categorized images can be conducive to the establish-
ment of general animal pose dataset, like Animal Pose dataset
(Jinkun et al., 2019).

Animal Pose (Cao et al., 2019) is a collection of Poselets
dataset whose annotations were extended by Jinkun Cao et al to
20 keypoints (original 16 keypoints plus 4 knees). In addition,
they also extended the size of this dataset through annotating
more images from the Animals-10 dataset. This dataset has two
subsets. Subset 1 only includes the five categories in Poselets
and it provides more than 6000 pose-labeled instances in 4608
images. The annotation in subset 1 has already been aligned
to the format of MS COCO. In subset 2, there are only bound-
ing box annotations for other 7 animal categories, such as deer,
monkey, hippo, bear and rhino. Due to its large amount of data,
specialized labels, rich and representative species, this dataset
is often used in the training of models with cross-domain adap-
tation (Cao et al., 2019; Mathis et al., 2021) and the evaluation
of model generalization ability (Mathis et al., 2021; Li and Lee,
2021).

Stanford Dogs (Khosla et al., 2011; Deng et al., 2009) is a
large dog dataset released in 2011 by Aditya Khosla (Khosla
et al., 2011). This dataset contains 20,580 images of 120
dog breeds and each class has more than 150 images. There
are class labels and bounding box annotations for each im-
age. These images were generated from ImageNet (Deng et al.,
2009) and verified by Amazon Mechanical Turk (MTurk). Al-
though there is no pose label data, the comprehensiveness of the
canine family’s images contained in this dataset make it a good
research material for object segmentation and pose estimation
(Biggs et al., 2020).

StanfordExtra (Biggs et al., 2020) is a new large-scale dog
dataset with 2D keypoints and instance segmentation annota-
tions released in 2020. The authors extracted 8,476 images
(which are suitable for keypoint annotation and 3D reconstruc-
tion) from the Stanford Dogs dataset, and annotate 20 keypoints
and binary silhouette for each image through MTurk. The key-
points include 2 ear-base, 2 ear-tip, 1 nose, 1 jaw, 1 tail-base, 1
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Table 3: Pose estimation accuracy (in PCK@0.05 metric) of a few models applied on the horse and tiger portion of the TigDog dataset. The first and second rows
indicate the results of ResNet-50 (He et al., 2016) trained only with real labeled data or synthetic labeled data. CC-SSL (Mu et al., 2020) and MDAM (Li and Lee,
2021) models both represent the models trained with labeled synthetic data and unlabeled real data.

Method Training
Data

PCK@0.05 Accuracy on Horse Data PCK@0.05 Accuracy on Tiger Data
Eye Chin Shoulder Hip Elbow Knee Hoove Average Eye Chin Shoulder Hip Elbow Knee Hoove Average

ResNet-50 Real 79.04 89.71 71.38 91.78 82.85 80.80 72.76 78.98 96.77 93.68 65.90 94.99 67.64 80.25 81.72 81.99
ResNet-50 Synthetic 46.08 53.86 20.46 32.53 20.20 24.20 17.45 25.33 23.45 27.88 14.26 52.99 17.32 16.27 19.29 21.17
CC-SSL Synthetic&Real 84.60 90.26 69.69 85.89 68.58 68.73 61.33 70.77 96.75 90.46 44.84 77.61 55.82 42.85 64.55 64.14
MDAM Synthetic&Real 91.05 93.37 77.35 80.67 73.63 81.83 73.67 79.50 97.01 91.18 46.63 78.08 50.86 61.54 70.84 67.67

tail-tip and 3 joints in each limb. This dataset is one of the few
datasets that takes into account the peculiarities of animal stud-
ies and thus adds labels such as ear and tail that are not common
in human datasets. Due to the inheritance of the comprehensive
canine breeds of the stanford dogs dataset, researchers can train
the model with strong shape and appearance robustness.

4.2. Video-based Animal Pose Datasets

Video-based animal pose datasets are often obtained by
shooting a few animal instances continuously in order to study
a particular species. Because of the fixed camera angle, the
small number of objects, and the monotonous background, it is
hard to train a model with strong robustness on a video-based
dataset. However, consecutive shots can make it easier for re-
searchers to obtain more significant amounts of data and various
poses. And, in addition to pose estimation and object segmen-
tation, video data can also be used for animal behavior analysis.

BADJA (Biggs et al., 2018b) is a video-based animal dataset
of 2D pose annotation released in 2018 (Biggs et al., 2018b).
This dataset is composed of two parts. In the first part, there are
7 video sequences which are from the DAVIS video segmen-
tation dataset Pont-Tuset et al. (2017). The other 4 video se-
quences in the second part were collected individually and seg-
mented by using Adobe’s UltraKey tool Adobe (2018). There
are 8 animal categories in total: bear, camel, cat, dog, horse,
cow, impala, and tiger. Each video sequence is no more than
100 frames and each was annotated every 5 frames with 20 key-
points and visibility indicators. The keypoints include 2 ears, 1
nose, 1 jaw, 3 for tail (from base to tip), 1 neck, 4 knees, 4
ankles, and 4 toes.

TigDog (Del Pero et al., 2015b, 2017) is a large video-based
animal dataset which was released with Del Pero et al. (2015b)
2015 and Del Pero et al. (2017) 2016. All of the video se-
quences were annotated with behavior labels, keypoints, and
the instance segmentation. Tigdog includes 3 animal cate-
gories: dog, horse and tiger. 19 keypoints are annotated in all
16,000 frames of the horse class, and in 17,000 of the tiger
class.The annotations include: eyes (2), neck (1), chin (1),
hooves (4), hips (4) and knees (4). For tigers: eyes (2), neck
(1), chin (1), ankles (4), feet (4) and knees (4). The ability of
this dataset to train models with strong generalization and ro-
bustness has been verified in several works (Mu et al., 2020; Li
and Lee, 2021).

AcinoSet (Joska et al., 2021) is a cheetah video dataset,
which contains 119,490 frames taken by multi-view synchro-
nized high speed cameras in the wild, released in 2021 (Joska
et al., 2021). Its 7,588 frames are manually annotated as ground
truth. Besides, all 119K frames have the predicted 2D key-
points, which are estimated through DeepLabCut (Mathis et al.,
2018). Furthermore, 3D pose estimation was also conducted in

this work; 3D trajectories (generated through Full Trajectory
Estimation (Joska et al., 2021)) and human-checked 3D key-
points ground truth are provided.

ATRW (Li et al., 2019) is the Amur Tiger Re-identification
in the Wild dataset. More than 8,000 Amur tiger footage and
92 instances are collected from around 10 zoos in China. The
bounding box, 15 keypoints and individual identity are manu-
ally labeled in this dataset. It will be greatly conducive to the
conservation, information preservation of endangered species

Horse-10 Dataset (Rogers et al., 2021) is composed of more
than 8,000 frames extracted from video footage captured with
GoPro camera. It includes 30 different thoroughbred horses and
most of them have more than 200 annotated poses. There are
22 landmarks on each horse: nose (1), eye (1), each leg (3),
shoulder (1), mid-shoulder (1), hip (1), girth (1), elbow (1),
wither (1), stifle (1), ischium (1). All the frames were anno-
tated through DeepLabCut 2.0 toolbox (Nath et al., 2019). The
diversity of horse breeds is helpful for the research on general-
ization ability of the pose estimation model.

4.3. 3D Animal Model Datasets
3D animal model datasets have always served as the training

data for 3D reconstruction works Zuffi et al. (2017, 2018); Mu
et al. (2020). Their production often requires sophisticated 3D
scanners or 3D animators.

Non-rigid World (Bronstein et al., 2006, 2007) is a high-
resolution non-rigid 3D shapes dataset. This dataset has 7 kinds
of animal models, including cat (11 poses), dog (9 poses), wolf
(3 poses), horse (17 poses), lion (15 poses), and gorilla (21
poses). All of the models are manually designed. In Kanazawa
et al. (2015), the cat and horse models were used as the template
3D surface in the 3D mesh deformation.

Digital Life 3D (Duncan et al., 2017) aims to create precise
and high-resolution 3D models of animals on the earth for an-
imal conservation and education, providing both paid and free
3D models. The paid models are made by 3D animators and
even contain fantasy creatures. Meanwhile, the free models
are generated through scanning the real animals. University of
Massachusetts at Amherst built a photography system consist-
ing of 20 cameras and placed the animal, such as a turtle, in the
center. The coarse models are generated by using photogram-
metry software RealityCapture. 3D artists would use Blender
to improve the coarse models and get the final model of the
animal.

4.4. Synthetic Animal Pose Datasets
As we mentioned above, a common problem in animal pose

or shape estimation is the scarcity of data. Generally it is diffi-
cult to obtain large amounts of real data with the diverse pose,
shape, and camera angle, which is required to train an accurate
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model using deep learning, as manually labeling data is expen-
sive and time-consuming. Therefore, we tend to recommend a
promising substitute, synthetic data, for real data in this section.

Synthetic Grevy’s Zebra Dataset (Silvia et al., 2019) is the
training set generated in Zuffi et al. (2019). In Zuffi et al. (2019),
they first reconstructed 10 zebra models from 57 images by us-
ing 3D mesh recovery pipeline SMALR (Zuffi et al., 2018).
Next, they randomly changed the pose, texture and shape of
these 10 models to enrich the model set. The pose of each zebra
model can be changed by adjusting 3D Rodrigues vectors which
describe the model’s pose. Further, noise is randomly added to
the brightness, hue, saturation levels, shape and camera focus
to vary the appearance, shape and size of zebras. 12,850 im-
ages with different backgrounds are rendered by using neural
3D mesh renderer (Kato et al., 2018). In addition to the basic
labels of the COCO dataset, it also includes ear, tail, cheek and
mouth in the 28 landmarks, which makes it one of the richest
datasets in terms of labels. Since these labels are automati-
cally generated by projecting the corresponding points on the
3D mesh into 2D images, they can be changed and added label
at any point on the mesh.

Synthetic Animal Dataset (Mu et al., 2019) is composed
of 50K synthetic images generated in (Mu et al., 2020). Un-
like Zuffi et al. (2019), CAD animal models are used as the
template and the images are rendered with Unreal Engine 4.
There are 5 species in the dataset, including hound, tiger, horse,
sheep, and elephant. All of the labels provided are consis-
tent with the TigDog dataset except the neck. Compared with
models trained with real data, training with synthetic animal
dataset has better domain generalization performance in multi-
ple visual domains (Mu et al., 2020). Table 3 shows that both
Consistency-Constrained Semi-Supervised Learning (CC-SSL)
(Mu et al., 2020) and Multi-scale Domain Adaptation Module
(MDAM) (Li and Lee, 2021) models which are trained with la-
beled synthetic data and unlabeled real data have comparable
performance with the supervised model, ResNet-50 (He et al.,
2016), trained only with the real data and even surpass it for
some parts of the horse in TigDOg dataset (Pero et al., 2016).

5. Performance Evaluation of Animal Pose Estimation
Models

Animal pose estimation problem involves many different
species and datasets. Here, we further summarize the type of re-
sults, test datasets, evaluation protocols, and main experimental
results in Table 4 according to works listed in Table 1. Due to
the diversity of the evaluation metrics in each work, it is diffi-
cult to know and compare the state-of-the-art on animal pose
estimation. Therefore, we introduce several evaluation met-
rics which are widely used at present: root mean square error
(RMSE), percentage of correct keypoints (PCK), intersection
over union (IoU), and mean average precision (mAP). Finally,
we compare and visualize the results of several methods with
common evaluation metrics.

5.1. Evaluation Metrics
PCK was first introduced by Yang and Ramanan (2012) as a

better substitute for the probability of a correct pose (PCP) to

evaluate the joint localization accuracy. It shows the percent-
age of the predicted keypoints which fall within a normalized
threshold of the ground truth. The PCK of the ith keypoint in N
targets is calculated as the following equation.

PCKi =

∑
n δ(

dni
sn
< α)∑

n 1
, (1)

where, n means the the nth target; dni is the the Euclidean dis-
tance between the ith predicted keypoint and its ground truth of
the nth target; α is a constant parameter which controls the rel-
ative correctness of the evaluation and sn is a normalized scalar
of the nth target. α and s are various among different works.
For instance, in the FLIC dataset (Sapp and Taskar, 2013),the
Euclidean distance from the left shoulder to the right hip or
the Euclidean distance from the right button to the left hip is
defined as the normalized scalar while the MPII dataset (An-
driluka et al., 2014b) employs Euclidean distance of the di-
agonal of the bounding box of the person’s head as the scale
factor. However, because of the various shape of animal, the
length of head or torso is difficult to be widely adopted as a
fair normalizer unless there is only a single species in this work
(Mathis et al., 2021). For the reasons above, the square root
of the area of the data can be considered a fair scale factor and
be widespread in animal pose estimation (Li and Lee, 2021;
Mu et al., 2020; Zuffi et al., 2019; Mathis et al., 2021). The
threshold is distributed between 0.05 and 0.3. And PCK@0.05
is usually considered a high precision regime.

mAP, which is based on Object Keypoint Similarity (OKS)
became another commonly used metric for pose estimation af-
ter the appearance of COCO keypoint challenge (Lin et al.,
2022). OKS is a metric to evaluate the similarity between the
predicted keypoints with the ground truth and Average Preci-
sion (AP) is employed to see the performance of the prediction
on the dataset by giving a threshold which is compared against
OKS. mAP is the mean of multiple AP which have different
threshold. OKS and AP is defined as:

OKS =

∑
i exp( −d2

i

2s2k2
i
)δ(vi > 0)∑

i δ(vi > 0)
, (2)

AP =

∑
n δ(OKS n > T )∑

n 1
, (3)

where, di is the the Euclidean distance between the ith predicted
keypoint and its ground truth; s is the scale factor of this tar-
get, whose value is equal to the square root of the area of the
target’s bounding box; ki is the special constant, which controls
fall off of the ith keypoint and COCO dataset; (Lin et al., 2014a)
provides special constants for the 17 different labels; vi shows
the visibility of the annotated keypoint which can be 0, 1, 2
for unlabeled, labeled but occluded and labeled and visible re-
spectively; OKS n is the OKS of the nth target; T is the given
threshold.

PCK aims to judge whether the prediction is correct or not
for each key point separately, while mAP pays more attention
to the overall evaluation of all key points of a target and makes
the evaluation more accurate by giving each key point a dif-
ferent scalar. If the predicted dataset has the same label as the
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Table 4: Performance evaluation of the existing animal pose estimation models. In the type of result, KP means keypoint. The missing elements in each dataset is
highlighted in red.

Year First Authors Type of result Test Dataset Evaluation Protocol Result

2021 Russello et al. (2021) 2D KP CoWalk-10 and CoWalk-30 dataset (Russello et al., 2021) PCKh@0.2 (%)
CoWalk-30: No-occlusion=99.0, 3 occlusions=88.4;
CoWalk-10: known cow=93.8, unknown cow=87.6

2021 Mathis et al. (2021) 2D KP Horse-10 and Horse-C (Rogers et al., 2021) PCKh@0.3 (%) Efficientnet-B6: known horse=99.9; unknown horse=88.4
2021 Joska et al. (2021) 3D KP AcinoSet (Daniel et al. (2021)) RMSE,SEM,NRSME (pixels) Run: RMSE=28.24; Dive: RMSE=76.35
2021 Zhang et al. (2021) 3D KP Multi-view video (Zhang et al., 2021) Mean Position Error (mm) Mouse=5.77
2021 Li and Lee (2021) 2D KP TigDog (Pero et al. (2016)), VisDA2019 (Kate et al. (2019)) PCK@0.05 (%) Horse=79.5; Tiger=67.76
2020 Biggs et al. (2020) 3D mesh, 3D KP StanfordExtra (Benjamin et al. (2020)), Animal pose (Jinkun et al. (2019)) IoU (%), PCK@0.15 (%), IOU= 74.2; PCK= 78.8
2020 Bala et al. (2020) 3D KP OpenMonkeyPose dataset head location error (m) mean error=0.0714; standard deviation=0.0234
2020 Liu et al. (2020) 2D KP N/A aPCK error (%) (Liu et al., 2020) Mouse≈ 10; Monkey ≈ 0.4
2020 Zhang and Park (2020) 2D KP Multi-view images on human and animal (Zhang and Park, 2020) AUC on PCKh (%) Human=95.1; Dog=94.8; Monkey=92.2
2020 Mu et al. (2020) 2D KP TigDog (Pero et al. (2016)), VisDA2019 (Kate et al. (2019)) PCK@0.05 (%) Horse=82.43; Tiger=84
2019 Zuffi et al. (2019) 3D mesh, 3D KP 200 annotated zebra image (Zuffi et al. (2019)) PCK@0.05 (%), PCK@0.1 (%), IOU (%) PCK@0.05=62.3; PCK@0.1=81.2; IOU=42.2
2019 Cao et al. (2019) 2D KP Animal Pose (Jinkun et al. (2019)), COCO Dataset (Lin et al. (2014b)) mAP (%) mAP=65.7
2019 Graving et al. (2019a) 2D KP Fly,locust, Grevy’s zebra dataset(Graving et al. (2019b)) RMSE (pixels) Zebra=1.85
2019 Pereira et al. (2019) 2D KP Fly dataset (Pereira et al., 2018) RMSE (pixels) Fly=1.63 per 47µm
2018 Zuffi et al. (2018) 3D Mesh Frames from GreenScreenAnimal or YouTube 3 views of each mesh No Quantitative Evaluation

2018 Biggs et al. (2018b) 3D Mesh, 2D KP BADJA PCK@0.2 (%)
Felidae=95; Canidae=87.4; Equidae=89.8;

Bovidae=95; Hippopotamidae=93.9
2018 Mathis et al. (2018) 2D KP Fly and mouse hand dataset (Mathis et al. (2018)) RMSE (pixels) Fly=4.17 ± 0.32; Mouse hand= 5.21 ± 0.28
2017 Zuffi et al. (2017) 3D mesh, 3D KP TigDog, images from internet Mean normalized distance error Horse: 0.068(5 images), Rhino:0.069(5 images)

2016 Reinert et al. (2016) 3D Mesh N/A IoU (%)
IOU 3D: Horse=63.53; Camel=58.31;
IoU 2D: Horse=85.85; Camel=83.95

2015 Kanazawa et al. (2015) 3D Mesh Non-rigid world (Alexander et al. (2009)) 1 view mesh No Quantitative Evaluation

2015 Ntouskos et al. (2015) 3D Mesh
Image from Flickr,

model from Warehouse-SketchUp
Mean normalized Hausdorff distance error

(Aspert et al., 2002)
Cat=0.012; Dog=0.012; Cow=0.03;

Sheep=0.04; Hippo=0.013; Giraffe=0.018
2013 Vicente and Agapito (2013) 3d Mesh Dolphin Dataset (Cashman and Fitzgibbon (2012b)) 2 views of each mesh No Quantitative Evaluation

COCO dataset, then mAP can be calculated using COCO-api
(Lin, 2020; Cao et al., 2019). However, if the dataset labels
are different from the COCO dataset, the scalar for the labels
according to the dataset must be calculated. Due to the un-
certainty of animal labels, mAP is not as universal as PCK in
animal pose estimation.

RMSE is a metric to calculate the Euclidean distance error in
pixels between model-generated annotation with the manual an-
notation (ground truth). RMSE can show the annotation error at
a specific body part, averaged over the whole body, or averaged
over a image sequence. It is always used by the works with such
high accuracy that PCK can hardly evaluate the performance of
the model. Take DeepLabCut (Mathis et al., 2018) as exam-
ple, the error can be reduced to 5 pixels when 100 frames are
used to train the model. RMSE is now widely accepted as the
main evaluation metric by the “out-of-the-box” animal pose es-
timation toolboxes and the work based on them, as it is used to
evaluate DeepLabCut, DeepPoseKit and LEAP (Mathis et al.,
2018; Graving et al., 2019a; Pereira et al., 2019).

IoU is the overlap rate between the generated candidate
bound (CB) and the ground truth bound (GB), that is, the ratio
of their intersection and union. The ideal situation is complete
overlap, then the ratio would be 1. This is a metric for detec-
tion and it can also be used to evaluate the generated 3D mesh
through calculating the IoU of the projection of generated 3D
mesh on certain plane.

IoU =
area of [CB ∩GB]
area of [CB ∪GB]

. (4)

5.2. Results Comparison and Visualization

In this section, we compare three cases of animal pose es-
timation algorithms and visualize their results using common
evaluation metrics.

Case #1: In this case, we mainly focus on three recent an-
imal pose estimation toolboxes. By comparing their RMSE
after each training iteration as well as their training time, we
can make a preliminary evaluation on the performance of these
three toolboxes. In Graving et al. (2019a), the DeepPoseKit,

Fig. 3: RMSE performance comparison of DeepLabCut, DeepPoseKit, and
LEAP, after being applied on the same fruit fly, locust and zebra 2D pose-
labeled datasets (Graving et al., 2019a)

.

DeepLabCut, and LEAP toolboxes were each given 9 itera-
tions of model training (with optimization to the model after
each iteration) and the RMSE was recorded at the end of each
iteration. Across the 9 iterations, DeepPoseKit had the low-
est RMSE (Fig. 3). Training time is another important metric
used to compare animal pose estimation toolboxes and as Fig. 4
shows the training time required to reach the minimum RMSE
was lowest for DeepPoseKit. As such, it is accurate to say that
DeepPoseKit is the best performing toolbox among the models
we examined.

Case #2: In this case, we mainly visualize the results from
six works which use PCK as their evaluation protocol in Fig. 5.
As mentioned above, the value of PCK obtained from the same
job will increase when its relative correctness becomes larger.
Therefore, it is difficult to assess which work has better per-
formance by comparing some works using different correctness
PCK as protocol. Generally speaking, a work will have better
performance if the relative correctness is lower and the accu-
racy is higher.

Case #3: In this case, we show several results on 3D mesh
recovery. These works only evaluated the shape estimation,
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instead of texture. In the Fig. 6, we can see that the sketch-
ing 3D mesh recovery method utilized by Reinert et al. (2016)
achieves a good performance on horse and camel data, espe-
cially in 2D IoU which reached the state of the art. This is
because the sketching method does not have any prior informa-
tion. The generalized cylinder is used to construct the animal’s
body, and the cylinder is fitted according to the segmentation
of the animal. On the other hand, some model-based methods,
like SMAL, is constrained by the template mesh. Therefore,
the sketching method can achieve high 2D IoU, but less de-
tails on the mesh. Also, the 3D IoU value would be relatively
low due to the lack of depth information and 3D prior. Then
for dog’s mesh recovery, Biggs et al. (2020) accomplishes the
highest IoU, 74.2%, which surpasses the 70.5% produced by
SMAL pipeline (Zuffi et al., 2018). Besides, SMALST pipeline
(Zuffi et al., 2019) reached the state-of-the-art on the 3D mesh
recovery of Grevy’s zebra. However, due to the lack of real data
from Grevy’s zebra, the network is trained with synthetic data.
The IoU produced by SMALST on Grevy’s zebra is 42.2%.

6. Discussion on Existing Challenges

So far, we have described different techniques of animal
pose estimation that have been developed over the past few
years and categorized them based on the algorithms they use
to accomplish this task. We have learned that the data/label
scarcity is comparable to a dark cloud shrouding an unculti-
vated field. Due to the lack of sufficient annotated data for
training, some models used for human pose estimation find it
difficult to achieve the same performance in animal pose esti-
mation. Although more large-scale labeled datasets for general
animal pose estimation are being released (Yu et al., 2021a),
the species included is a drop in the ocean for all animal on the
earth. Therefore, at the end of the article, we further the dis-
cussion on this issue and analyze plausible methods available
to overcome these challenges.

6.1. Data/Label Scarcity
Data scarcity can be subdivided into two types. The most

common one is label scarcity. Due to the huge difference in

Fig. 4: Comparison of the performance of DeepLabCut, DeepPoseKit, and
LEAP by runtime.

Fig. 5: Comparison of the performance of six animal pose estimation ap-
proaches. SMALST is the method in Zuffi et al. (2019), MDAM represents
Li and Lee (2021), CC-SSL represents Mu et al. (2020), EfficientNet-B6 is
used in Mathis et al. (2021), T-LEAP is introduced in Russello et al. (2021) and
OJA-GA denotes Biggs et al. (2018b).

texture and shape between species, pose or shape estimation
research on certain animal requires a corresponding labeled
dataset. Although some researchers are able to create spe-
cialized datasets for their own research (Joska et al., 2021; Li
et al., 2019), unfortunately, the time-consuming and laborious
labeling task still hinders many studies. The other type is data
scarcity. It is difficult even to collect enough unlabeled data.
They are commonly seen in studies of endangered species in
the wild (Zuffi et al., 2019; Li et al., 2019).

6.2. Prominent Solution

One promising solution is to use massive synthetic datasets,
which are automatically annotated, to make up a deficiency of
real data. In addition, the domain gap between synthetic and
real animal data is easier to manage than the gap between other
domains such as humans and animals (Li and Lee, 2021). In
Zuffi et al. (2019), due to the lack of real Grevy’s zebra data in
the wild, they chose to train the model with a large synthetic
dataset generated by a 3D animal models recovery pipeline
(Zuffi et al., 2018) based on few real data, from which the
2D/3D ground truth and silhouettes can be produced automat-
ically. This greatly reduces the time required to annotate pose

Fig. 6: Comparison of the performance of four 3D mesh recovery approaches
for four animals. Sketching is the method in Reinert et al. (2016), SMBLD rep-
resents Biggs et al. (2020), SMAL represents Zuffi et al. (2017) and SMALST
is Zuffi et al. (2019). On the left side, the 3D mesh is evaluated on 2D IoU; On
the right side, the mesh is evaluated on 3D IoU.
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data. Similarly, in order to solve the lack of labeled data, Mu
et al. (2020) we can generate a large general animal synthetic
dataset with CAD models and Unreal Engine and designed
a model (Consistency-Constrained Semi-Supervised Learning)
which can be trained with a mix of labeled/unlabeled real data
and synthetic data. Coarse labels are assigned to unlabeled im-
ages based on prior knowledge learned from synthetic data and
the coarse labels are continuously optimized during joint train-
ing on real and synthetic data. The accuracy of joint training
on labeled real data and synthetic data can even go beyond the
model trained only with real data while joint training on un-
labeled real data and synthetic data can achieve a close perfor-
mance. However, due to the domain gap between synthetic data
and real data, the pseudo labels generated by the model trained
with the synthetic data will be noisy and difficult to filter out
based on confidence score. Mu et al. (2020), Li and Lee (2021)
further improved the model trained with mixed datasets by alle-
viating the domain shift in the data using a domain classifier to
learn domain invariant features. We showed their results in Ta-
ble 3. In addition to using the above two method, generating a
synthetic dataset from animal toys is an another convenient and
affordable way. There are many existing works such as (Liu and
Ostadabbas, 2018; Vyas et al., 2021), which have already built
pipelines to generate 3D Synthetic model from mannequins or
toys and rig them in software (Blender). By rendering the syn-
thetic model with varying pose, shape, lighting, camera, and
background, we can easily obtain large amount of animal im-
age in different perspective and environment without any real
data.

Another approach is transferring learning from an existing
real dataset. The intention of transfer learning is to save the
cost of manually labeling by transfer the feature domain of
the unlabeled data (target domain data) to existing labeled data
(source domain data). A model suitable for the target do-
main can be trained without much labeled target domain data.
This is based on learning prior knowledge from numerous la-
beled human data due to the similarity between humans and
quadruped. In Cao et al. (2019), the author propose a cross-
domain adaptation to enforce the existing massive labeled hu-
man data and labeled/unlabeled animal data to share the same
feature space. By unifying the label format of humans and
the different kinds of animals, the pseudo labels can be esti-
mated for the unlabeled animal data based on the model trained
with human and labeled animal data. Then, the joint and al-
ternating training with human, labeled/unlabeled animals data
can be conducted to update the pseudo labels. Through mixing
the human and several categories datasets, the data requirement
of one certain category can be reduced. Similarly, Youwang
et al. (2021) also finds the morphological similarity between
the human and quadruped. They categorized physical corre-
sponding body parts exist among human and quadruped, such
as arms and legs, and defined them as sub-keypoints. The re-
construction loss of sub-keypoints is used as a bridge to realize
a stable multi-task with both SMPL (Loper et al., 2015) and
SMAL (Zuffi et al., 2017). Transfer learning between similar
quadrupeds also becomes remarkable after the issue of multi-
species datasets for animal pose estimation, like AP-10K (Yu

et al., 2021a) and Animal Pose (Jinkun et al., 2019).
Training an accurate model with only a small amount of la-

beled data is also an attractive direction. In recent years, animal
pose estimation toolboxes, such as DeepLabCut, DeepPoseKit
and LEAP (Graving et al., 2019a; Pereira et al., 2019; Mathis
et al., 2018), which are based on the state-of-the-art pose esti-
mation model such as DeeperCut (Insafutdinov et al., 2016),
DenseNet (Pereira et al., 2019) were purposed one by one.
DeepLabCut (Mathis et al., 2018) demonstrates that pretrain-
ing on ImageNet (Deng et al., 2009) enables the model to have
good object segmentation and keypoint regression capabilities
before training on the dataset. By using the model pretrained
on ImageNet, 200 annotated frames are enough to produce a
model with ability of achieving human-level labeling accuracy
(Nath et al., 2019). In addition, (Mathis et al., 2021; Yu et al.,
2021a) show that pretraining on ImageNet or human dataset
will increase the accuracy of intra-species estimation and the
generalization of inter-species. Like using synthetic data, an-
other benefit of using these toolboxes is customization. Users
can freely define the labels and the toolbox will track the labels
automatically in the video. This will allow researchers to de-
sign more appropriate labels for the animals they study without
being limited by the existing large labeled datasets.

7. Conclusion

In this paper, we accumulated and categorized the research
on animal pose or shape estimation from computer vision per-
spective mainly published between 2013 to 2021. We classified
these techniques into three categories based on their final ob-
jective, including 2D pose estimation, 3D pose estimation, and
3D mesh recovery. For each category, we discussed the most
prominent approaches and different methods used to solve the
task at hand. We also looked at several animal pose and mesh
datasets available publicly while exploring the use of synthetic
data generation for animals that are difficult to capture in the
wild. Then, we introduced the state-of-the-art animal pose esti-
mation performance and compared these techniques using pop-
ular evaluation metrics used in the computer vision literature.
Finally, we listed some of the major difficulties that researchers
face when trying to solve animal pose estimation problem ef-
ficiently and explored certain promising solutions. Although,
we are excited by the recent progress that has been made in this
domain, there is still a lot of room for further development.
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Güler, R.A., Neverova, N., Kokkinos, I., 2018. Densepose: Dense human pose
estimation in the wild, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7297–7306.

Hao-Shu Fang, Shuqin Xie, Y.W.T., Cewu Lu, C.L., 2017. Alphapose. https:
//github.com/MVIG-SJTU/AlphaPose.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision.
Cambridge university press.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778.

Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M., 2012. Fast cost-
volume filtering for visual correspondence and beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35, 504–511.

Huang, X., Fu, N., Liu, S., Ostadabbas, S., 2021. Invariant representation learn-
ing for infant pose estimation with small data, in: 2021 16th IEEE Interna-
tional Conference on Automatic Face and Gesture Recognition (FG 2021),
IEEE. pp. 1–8.

Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B., 2016.
Deepercut: A deeper, stronger, and faster multi-person pose estimation
model, in: European Conference on Computer Vision, Springer. pp. 34–50.

Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C., 2014. Human3.6m: Large
scale datasets and predictive methods for 3d human sensing in natural envi-
ronments. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 1325–1339.

http://dx.doi.org/10.1109/ICME.2002.1035879
http://dx.doi.org/10.1109/ICME.2002.1035879
https://sites.google.com/view/wldo/home
https://sites.google.com/view/wldo/home
https://github.com/benjiebob/BADJA
https://github.com/benjiebob/BADJA
https://www.blender.org/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
http://arxiv.org/abs/2006.11718
https://github.com/African-Robotics-Unit/AcinoSet
https://github.com/African-Robotics-Unit/AcinoSet
http://digitallife3d.org/3d-model
https://www.flickr.com/
https://github.com/MVIG-SJTU/AlphaPose
https://github.com/MVIG-SJTU/AlphaPose


15

Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y., 2019. Learnable trian-
gulation of human pose, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

Jianguo, L., Weiyao, L., Tang, H., Greg, M., Joachim, D., 2019. Iccv 2019
workshop & challenge on computer vision for wildlife conservation (cvwc).
https://cvwc2019.github.io/challenge.html.

Jinkun, C., Hongyang, T., Hao-Shu, F., Xiaoyong, S., Cewu, L., Yu-Wing,
T., 2019. Animal pose dataset. https://sites.google.com/view/

animal-pose/.
Joska, D., Clark, L., Muramatsu, N., Jericevich, R., Nicolls, F., Mathis, A.,

Mathis, M.W., Patel, A., 2021. Acinoset: A 3d pose estimation dataset and
baseline models for cheetahs in the wild. arXiv preprint arXiv:2103.13282 .

Kanazawa, A., Kovalsky, S., Basri, R., Jacobs, D., 2015. Learning 3d articula-
tion and deformation using 2d images. CoRR .

Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J., 2018a. Learning category-
specific mesh reconstruction from image collections, in: Proceedings of the
European Conference on Computer Vision (ECCV).

Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J., 2018b. Learning category-
specific mesh reconstruction from image collections, in: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 371–386.

Kate, S., Xingchao, P., Ben, U., Kuniaki, S., Ping, H., 2019. Visual domain
adaptation challenge (visda-2019). https://ai.bu.edu/visda-2019/.

Kato, H., Ushiku, Y., Harada, T., 2018. Neural 3d mesh renderer, in: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp.
3907–3916.

Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F., 2011. Novel dataset for fine-
grained image categorization: Stanford dogs, in: Proc. CVPR workshop on
fine-grained visual categorization (FGVC), Citeseer.

Lauer, J., Zhou, M., Ye, S., Menegas, W., Nath, T., Rahman, M.M., Di Santo,
V., Soberanes, D., Feng, G., Murthy, V.N., et al., 2021. Multi-animal pose
estimation and tracking with deeplabcut. bioRxiv .

Li, C., Lee, G.H., 2021. From synthetic to real: Unsupervised domain adapta-
tion for animal pose estimation, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 1482–1491.

Li, S., Li, J., Tang, H., Qian, R., Lin, W., 2019. Atrw: a benchmark for amur
tiger re-identification in the wild. arXiv preprint arXiv:1906.05586 .

Li, X., Zhang, J., Yin, M., 2014. Animal migration optimization: an optimiza-
tion algorithm inspired by animal migration behavior. Neural Computing
and Applications 24, 1867–1877.

Lin, T.Y., 2020. cocoapi. https://github.com/cocodataset/cocoapi.
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,

P., Zitnick, C.L., 2014a. Coco dataset. https://cocodataset.org/

#download.
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,

P., Zitnick, C.L., 2014b. Microsoft coco: Common objects in context, in:
European conference on computer vision, Springer. pp. 740–755.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2022. Coco keypoint challenge. https://cocodataset.

org/#home.
Liu, S., Huang, X., Fu, N., Li, C., Su, Z., Ostadabbas, S., 2022. Simultaneously-

collected multimodal lying pose dataset: Enabling in-bed human pose mon-
itoring. IEEE Transactions on Pattern Analysis and Machine Intelligence
.

Liu, S., Ostadabbas, S., 2018. A semi-supervised data augmentation approach
using 3d graphical engines. arXiv:1808.02595.

Liu, W., Bao, Q., Sun, Y., Mei, T., 2021. Recent advances in monocular 2d
and 3d human pose estimation: A deep learning perspective. arXiv preprint
arXiv:2104.11536 .

Liu, X., Yu, S.y., Flierman, N., Loyola, S., Kamermans, M., Hoogland, T.M.,
De Zeeuw, C.I., 2020. Optiflex: video-based animal pose estimation using
deep learning enhanced by optical flow. BioRxiv .

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J., 2015.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia) 34, 248:1–248:16.

Lubomir, B., Jitendra, M., 2011. The human annotation tool. https://www2.
eecs.berkeley.edu/Research/Projects/CS/vision/shape/hat/.

Malti, A., Hartley, R., Bartoli, A., Kim, J.H., 2013. Monocular template-based
3d reconstruction of extensible surfaces with local linear elasticity, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Mathis, A., Biasi, T., Schneider, S., Yuksekgonul, M., Rogers, B., Bethge, M.,
Mathis, M.W., 2021. Pretraining boosts out-of-domain robustness for pose

estimation, in: Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1859–1868.

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W.,
Bethge, M., 2018. Deeplabcut: markerless pose estimation of user-defined
body parts with deep learning. Nature neuroscience 21, 1281–1289.

Mu, J., Qiu, W., Hager, G.D., Yuille, A.L., 2019. Syn-
thetic animal dataset. https://github.com/JitengMu/

Learning-from-Synthetic-Animals.
Mu, J., Qiu, W., Hager, G.D., Yuille, A.L., 2020. Learning from synthetic

animals, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12386–12395.

Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., Mathis, M.W., 2019.
Using deeplabcut for 3d markerless pose estimation across species and be-
haviors. Nature protocols 14, 2152–2176.

Neverova, N., Novotny, D., Khalidov, V., Szafraniec, M., Labatut, P., Vedaldi,
A., 2020. Continuous surface embeddings. arXiv:2011.12438.

Newell, A., Yang, K., Deng, J., 2016. Stacked hourglass networks for human
pose estimation, in: European conference on computer vision, Springer. pp.
483–499.

Nguyen, N.H., Phan, T.D.T., Lee, G.S., Kim, S.H., Yang, H.J., 2020. Gesture
recognition based on 3d human pose estimation and body part segmentation
for rgb data input. Applied Sciences 10.

Ntouskos, V., Sanzari, M., Cafaro, B., Nardi, F., Natola, F., Pirri, F., Ruiz, M.,
2015. Component-wise modeling of articulated objects, in: Proceedings of
the IEEE International Conference on Computer Vision, pp. 2327–2335.

Obdrzalek, S., Kurillo, G., Han, J., Abresch, T., Bajcsy, R., 2012. Real-time
human pose detection and tracking for tele-rehabilitation in virtual reality,
Studies in Health Technology and Informatics. pp. 320–324.
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