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Abstract

We present in this paper a novel post-training quantization (PTQ) method, dubbed
AccuQuant, for diffusion models. We show analytically and empirically that quan-
tization errors for diffusion models are accumulated over denoising steps in a
sampling process. To alleviate the error accumulation problem, AccuQuant mini-
mizes the discrepancies between outputs of a full-precision diffusion model and its
quantized version within a couple of denoising steps. That is, it simulates multiple
denoising steps of a diffusion sampling process explicitly for quantization, account-
ing the accumulated errors over multiple denoising steps, which is in contrast to
previous approaches to imitating a training process of diffusion models, namely,
minimizing the discrepancies independently for each step. We also present an
efficient implementation technique for AccuQuant, together with a novel objective,
which reduces a memory complexity significantly from O(n) to O(1), where n
is the number of denoising steps. We demonstrate the efficacy and efficiency of
AccuQuant across various tasks and diffusion models on standard benchmarks.

1 Introduction

Diffusion models [ 17, 49] have shown the effectiveness for various generation tasks, including text-
to-image generation [4 1, 43], audio generation [29], and video generation [2, |, 12]. In the context of
image generation, diffusion models train neural networks to denoise images progressively, corrupted
by Gaussian noise, reversing the noise-adding process, and recovering original images. At test time,
starting from a random noise, diffusion models perform a sampling process, where the trained neural
networks denoise the corrupted image gradually. To generate realistic images, the sampling process
typically involves lots of denoising steps, which is computationally demanding. To overcome this
problem, many approaches attempt to reduce the number of denoising steps [35, 55], providing an
efficient image generation process. Another line of research focuses on compressing neural networks
themselves (e.g., using network quantization [25, 19] or pruning [4]) to reduce the computational
cost for each denoising step.

Network quantization lowers bit-widths of full-precision weights and activations into lower ones,
enabling a fixed-point computation for efficient inference. There are mainly two approaches to
quantizing neural networks: Quantization-aware training (QAT) and post-training quantization (PTQ).
QAT optimizes network weights and quantization parameters (e.g., step-sizes and zero-points) jointly
using entire training samples, which is computationally expensive, making it hard to apply QAT
for large models (e.g., ViTs [8]). PTQ has recently gained significant attention across various
models [37, 26, 34, 36] due to its efficiency. In contrast to QAT, PTQ calibrates quantization
parameters only without retraining the network weights, using a small subset of training samples.
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Figure 1: Calibration processes of previous approaches and AccuQuant. Left: Previous methods
minimize the quantization error at each denoising step individually, failing to account for accumulated
quantization errors during calibration. Right: AccuQuant addresses this problem effectively and effi-
ciently by simulating multiple denoising steps of diffusion models, that is, aligning generated images
of full-precision and quantized models over multiple denoising steps, with a memory complexity
of O(1), independent of the number of steps.

Albeit efficient, it is challenging to directly apply PTQ methods, designed for neural networks
for discriminative tasks, such as image classification, to diffusion models, since they involve a
sequential process to denoise images. As the sampling process goes on, the quantization error at
each denoising step is propagated. An overall quantization error can then be split into two parts:
Quantization error at the current denoising step and the error accumulated along the previous steps.
Most methods [45, 25, 48, 19] neglect the accumulated error, and try to minimize the quantization
error at each denoising step (Fig. 1(Left)). Specifically, they exploit the same error-free image as
inputs at every step for both full-precision and quantized models, while not considering that the
input of the quantized model could contain quantization error accumulated along previous sampling
steps. They then calibrate quantization parameters to minimize the difference between the outputs
of these models at every step. This is not enough to reduce the overall quantization error, resulting
in substantial performance degradation. Although recent works attempt to address the accumulated
errors, they are able to handle single-step errors only [50] or require additional parameters for error
correction [54, 14].

We introduce in this paper a novel PTQ method for diffusion models, dubbed AccuQuant, that
minimizes an overall quantization error, including the ones accumulated over previous denoising
steps effectively and efficiently (Fig. 1(Right)). To this end, AccuQuant groups a couple of denoising
steps, and minimizes the difference between the outputs of quantized and full-precision models for
each group to calibrate quantization parameters. That is, AccuQuant considers multiple denoising
steps in the diffusion process, in contrast to previous approaches to simulating a single denoising
step only [25, 14, 48, 19], namely, calibrating each step independently. This enables considering the
accumulated quantization errors explicitly within each group to minimize an overall quantization error.
A naive implementation of AccuQuant, however, requires substantial memory storing intermediate
activations for all denoising steps within each group in order to compute gradients, resulting in
a memory complexity of O(n) w.r.t. the number of denoising steps in each group. To address
this, we propose a novel gradient approximation technique, together with a new objective, that
reduces the memory complexity significantly from O(n) to O(1), enabling applying AccuQuant
to large-scale diffusion models efficiently. We show that our approach achieves state-of-the-art
performance across various settings, especially in terms of FID2FP32 [50], which evaluates how
closely the outputs of the quantized model match those of the full-precision model. This suggest
that AccuQuant aligns the quantized model with its full-precision counterpart more effectively than
previous methods [25, 48, 19, 14, 50].

We summarize the main contributions as follows:

* We introduce a novel calibration method for quantizing diffusion models that aligns multiple
denoising steps in the sampling processes of quantized and full-precision diffusion models,
reducing accumulated quantization errors effectively.



» We present a gradient approximation technique for an efficient implementation of AccuQuant,
together with a new objective, reducing the memory complexity significantly to O(1). We
also provide a detailed analysis on quantization errors of diffusion models.

* We demonstrate the effectiveness of AccuQuant through extensive experiments across
various models on standard benchmarks [16, 50, 15, 59, 38, 44].

2 Related work

2.1 Quantization for neural networks

Network quantization reduces the bit-width of weights and/or activations in a neural network. QAT
methods [5, 53, 24, 21] simulate the quantization process at training time by converting the full-
precision weights/activations into lower-precision representations through a rounding function. This
requires retraining the neural network to quantize, which is computationally expensive. On the
other hand, PTQ calibrates quantization parameters only with a small number of calibration samples.
It quantizes neural networks efficiently, without involving a retraining process, but it is limited
to handle outliers in weights/activations. This problem can be alleviated by clipping the outliers,
adopting a outlier channel splitting technique [60], or assigning different quantization step sizes
for weights/activations with large magnitudes [3, 9]. Recent PTQ methods have demonstrated the
effectiveness across various architectures, including CNNs [30, 46, 20] and transformers [57, 27, 36].
In particular, they optimize a rounding function for network weights (i.e., determining each weight to
be rounded up or down), by exploiting the output differences of each layer [37, 51] or a Hessian-based
reconstruction metric [26], before and after quantization.

2.2 Quantization for diffusion models

Most approaches to quantizing diffusion models adopt a PTQ technique, mainly due to its efficiency.
Architectural characteristics of diffusion models make it difficult to directly apply existing PTQ
methods, especially for extremely low bit levels. In particular, Q-Diffusion [25] shows that residual
connections in diffusion models, such as U-Net [42], cause significantly different distributions for
concatenated activations, and introduces a split quantization technique that performs quantization
prior to the concatenation. TFMQ-DM [19] shows that previous PTQ methods, which are not
designed for diffusion models, could disturb temporal features along denoising steps from original
ones, and proposes to quantize temporal embedding layers of diffusion models separately.

Diffusion models apply a denoising operation iteratively over time steps to generate images, providing
different distributions of activations across the denoising steps. In order to consider the time-varying
characteristics of diffusion models for quantization, training samples in calibration datasets would be
carefully chosen. To this end, Q-Diffusion [25] proposes to sample images uniformly along denoising
steps. PTQ4DM [45] exploits a skewed normal distribution to sample more images at later denoising
steps, which typically provide more realistic images.

Related to ours, PTQD [14], TAC [54] and PCR [50] attempt to alleviate the effect of accumulated
quantization errors. PTQD [14] and TAC [54] analyze the relationship between the outputs of a
full-precision network and its quantized counterpart. Assuming that the outputs from these networks
are related at each denoising step, they correct the accumulated errors by computing the correlation
coefficient and bias [14] or the reconstruction coefficient and bias [54]. However, these approaches
require additional memory to store these parameters for each denoising setp, and incur computational
overhead for the error-correction stage. PCR [50] instead tries to reduce the accumulated quantization
error directly in a calibration phase. Similar to ours, PCR [50] calibrates quantized diffusion model
at each denoising step progressively, but it exploits the generated image of a quantized model in a
previous step as inputs for both full-precision and quantized models. This could not account for the
differences between quantized and full-precision models across multiple denoising steps effectively,
mitigating quantization errors within a single denoising step only. On the contrary, our approach
exploits separate inputs for full-precision and quantized models. That is, the inputs for full-precision
and quantized models come from the corresponding models in a previous denoising step, respectively.
This enables minimizing the discrepancies between the quantized and full-precision models across
multiple denoising steps, reducing accumulated quantization errors explicitly. Although a memory
complexity of our approach is O(n) w.r.t. the number of denoising steps, we provide an efficient
alternative with a complexity of O(1).



3 Method

In this section, we briefly describe diffusion models and network quantization (Sec.3.1). We then
provide an analysis on quantization error in detail (Sec.3.2). Finally, we present a detailed description
of AccuQuant, including a gradient approximation technique (Sec.3.3).

3.1 Preliminaries

Diffusion models. During a forward diffusion process, Gaussian noise €, sampled from a normal
distribution N (0, 1), is added to an input image xo progressively over time steps. Specifically, a
noisy image x; at step ¢ can be represented as follows:

xr = gz + V1 —age, e~ N(0,1), )

where o is a noise scheduling coefficient at the denoising step ¢. Diffusion models reverse this
process, gradually removing the noise from the noisy image x; to recover the original one xg. To this
end, a neural network estimates and removes the noise e from the corrupted image z; iteratively, until
a clean image is obtained. For example, for a deterministic sampling of the DDIM sampler [49], a
sampled image of x;_; at step ¢ — 1 is computed as:

— 1=y t
Ti—1 = \/E (xt CZ 169(xt’ )
Va7

where we denote by €y (x4, t) the noise predicted by the neural network, parameterized by 6, for the
image x; at step t.

) + 1-— at—1€0($tat), (2)

Network quantization. Given a floating-point value v and a target bit-width b, network quantization
converts the value v into a low-precision integer v as follows:

% = clip (round (9) 4 2,0,20 — 1) : 3)
S

where we denote by s and z a step-size and a zero-point, respectively. round(-) is a rounding
function (e.g., nearest rounding or adaptive rounding [37, 26]), and clip(-, Umin, Umax ) 1S a clipping
function that maps an input value within a range of [Umin, Umax]- The integer value @ is then re-scaled
to obtain a quantized value ¢ as follows:

0 =s(0 — 2). “)

Note that the quantization parameters of s and z are trained with all training samples for QAT, while
they are computed using a small set of calibration samples for PTQ.

3.2 Quantization errors for diffusion models

In this section, we show that quantized diffusion models suffer from an error accumulation problem,
where quantization error at each step is accumulated along the sampling process progressively,
degrading the quality of generated images.

Let us denote by x; and €y an image and an estimated noise at the denoising step ¢ for a full-precision
model, respectively. We define z; and €y similarly for a quantized diffusion model. We first categorize
the overall quantization error into two parts: a step error d; representing the quantization error for the
estimated noise €4 at step ¢, and an accumulated error A, representing the accumulated quantization
error for the image z; along all the previous steps. We can then represent Z; and €y as follows:

i’t = + Ah (5)
€9(5ct,t) = 69(%},1‘;) + (5,5. (6)

By plugging Egs. (5) and (6) into Eq. (2), we can compute the output image z;_; of the quantized
model at step of t — 1 as follows:
Tpo1 = -1 + 0 + di Ay, (7

where
Vvl a1

—_—
= +V1l—ai, di=
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(a) Quantization errors on CIFAR-10 [23]. (b) FID2FP32 [50] comparisons on CIFAR-10 [23].

Figure 2: (a) We show the magnitude of the step error ¢;d; and the accumulated error d; A, at each
denoising step. The accumulated error increases drastically, while the step error remains relatively
constant, suggesting that reducing the accumulated error is crucial for generating better images,
compared to the step error. (b) Q-Diffusion accumulates quantization errors according to denoising
steps, resulting in a very high FID2FP32 score. On the contrary, our method effectively mitigates the
problem, maintaining a low score.

We show in Fig. 2a the step error of ¢;d; and the accumulated error of d; A, in Eq. (7) at each denoising
step of DDIM [49] on CIFAR-10 [23]. Specifically, we assume that §; is a Gaussian noise with a
zero mean and unit variance, and calculate the accumulated error A;_; recursively, i.e., Ay =
ct0y + dy Ay, starting from A7 being 0, where T is a total number of denoising steps. We can see
that the accumulated error d;A; increases drastically according to denoising steps, while the step
error ¢;0; does not. This suggests that the accumulated error for the image #; have a much greater
impact on the quality of a generated image, compared with the step error for the estimated noise, as
the sampling process goes on.

To further validate our observation, we simulate in Fig. 2b the sampling process of DDIM [49] with Q-
Diffusion [25], and compute FID2FP32 [50] with generated images from full-precision and quantized
models at every 5 steps. Note that FID2FP32 [50] measures the FID score [16] with the outputs of
quantized and full-precision models, evaluating how closely the quantized model approximates the
output from its full-precision counterpart. We can see from the blue line in Fig. 2b that FID2FP32 [50]
increases accordingly along denoising steps, demonstrating once again that quantization errors are
accumulated in the sampling process. Note that all diffusion models, generating images through
multiple denoising steps, suffer from the error accumulation, similar to DDIM [49] in Fig. 2b,
regardless of types of sampling methods. Therefore, reducing the accumulated error would be a key
to maintain the quality of generated images for quantized diffusion models.

3.3 AccuQuant

To address the error accumulation problem, we introduce a novel PTQ method for quantizing diffusion
models, dubbed AccuQuant, that imitates multiple denoising steps of a full-precision diffusion model,
reducing the accumulated error effectively. Unlike previous approaches to focusing on individual
denoising steps [45, 25, 48, 19, 54], our framework simulates the multiple denoising steps in sampling
process of full-precision diffusion model for quantization. This enables considering the accumulated
error during a calibration process (i.e., optimizing quantization parameters), reducing the error for
quantizing diffusion models.

Specifically, we group M consecutive denoising steps, splitting an entire denoising sequence into a
total of 7//M groups. That is, a denoising step for the [™" group starts with step of 7' — M (I — 1).
Given an image obtained from the full-precision model at step ¢, denoted by z;, we apply a denoising
process M times to generate images of x;_ s and Z;_ s from full-precision and quantized models,
respectively, as follows:

zi—n = Dar(we,t),  Fe—nr = Da(@, b 81), 9)

where D), represents a denoising process for the full-precision model over M steps. D,y is defined
similarly for the quantized model with the step size of s; for quantization. To calibrate the step-size

s, for the ™ group, we minimize the mean squared error between x;_ 5y and x4 s as follows:
s; = argmin Lysg(zy, t; 1), (10)
51
where )
Lvse (s s15t) = HDM(xtﬂf) — Dy (g, t; Sl)H2 : (11)



The calibration process is then repeated sequentially for each group. By doing so, AccuQuant accounts
for the overall quantization error (i.e., both quantization errors at individual steps and accumulated
ones within multiple steps), without introducing additional parameters or extra computational costs
during a sampling process.

Gradient approximation. In order to com-
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where g,, is a cumulative product of partial derivatives, across multiple denoising steps, between
input and output images, as follows:

Hj:1 OZy—M+j m 7& M.

This suggests that we should store all intermediate feature maps, calculated across denoising steps
within each group, to compute g,,,. This results in a memory complexity of O(M) w.r.t. the number
of denoising steps, which limits the scalability of AccuQuant.

1 m = M
Im = M—m 8% 144 (13)

To address this, we propose an efficient implementation technique to reduce the memory complexity.
We can represent the gradient between consecutive denoising steps for the quantized diffusion model

as follows: B .
895,5:1 _ VO, te ) (J:"n t)
8xt \/OTt ail't
We have empirically observed in Fig. 3 that the first term in Eq. (14) dominates the entire gradient,
whereas the second one is negligible (see red and blue lines). Similar findings are reported in [40, 58].

Based on this observation, we approximate the gradient in Eq. (14):

(14)
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Using the approximation in Eq. (15), we can represent g,,, in Eq. (13) as:
y—
g~ Y form=1,2,..., M. (16)

AV Ot —m 7

That is, we can simplify the gradient, computed by backpropagating through multiple denoising steps,
into a scalar ratio of noise scheduling coefficients, reducing the memory complexity from O (M)
to O(1). Using the approximation in Eq. (16), the gradient of the objective in Eq. (12) can then be
represented as follows:

881 833,5_M m:l’/at_m 881

To fully exploit the approximated gradient of Eq. (17), we introduce a new loss function:

OLwse _ OLwse [i N a:ztm] a7

Is9(t—ar — Ft—ar) + Ttm — 59(F1—m)||2, (18)

M
r vV Ot—M
AccuQuant = §
m=1 V Ot—m

such that its gradient becomes Eq. (17). Here, sg is a stop-gradient operator preventing computing
gradients. Accordingly, we calibrate the quantization parameters of quantized diffusion models
by optimizing the objective of Eq. (18), while considering the accumulated errors with a memory
complexity of O(1). Detailed derivations for Egs. (16) and (18) and the algorithm of AccuQuant can
be found in the section A.



Table 1: Quantization results for unconditional image generation on CIFAR-10 (32 x 32) [23], LSUN-
Churches (256 x 256) and LSUN-Bedrooms (256 x 256) [56]. t: The official implementation of
TFMQ-DM uses a 32-bit for certain layers, such as attention modules. We modified these components,
such that all layers are quantized with the same bit-width, for fair comparisons with other methods.
TAC [54] does not provide source codes, and thus its performance cannot be measured.

Model Method Bits(W/A) IS FID| FID2FP32) Model Method Bits(W/A) FID sFID| FID2FP32|
Full-Precision 32/32 9.09 4.26 0.00 Full-Precision 3232 391 1010 0.00
— QDiffusion [25] 48 449 10.36 0.79
Q-Diffusion [25]  6/6  8.63 3046  35.24 TEMODMT [19] 478 643 1983 10.14
TEMQ-DMT [19]  6/6 894 7.84 3.64 TAC [54] 4/8 381 - -
Ours 6/6 918 579 330 Ours 4B __ 20 tagy
— QDiffusion [25]  4/6 4524 2596  40.58
Q-Diffusion [25]  4/8  9.12 493 326 TEMQDM! [19] 46 860 2077 1007
TEMQ-DM' [19]  4/8 889 552 152 DM Ours 46 747 1107 4.84
TAC [54] 48 915 489 - LS‘_JN-_CE;(;(C]WS QDiffusion [25]  3/8 568 11.25 149
Ours 48 906 475 115 (teps=300)  rpvgpmt [19] 38 903 2177 1048
TAC [54] s 798 - -
DDIM Q-Diffusion [25] 4/6  9.47 2535  30.66 Ours 3/8 5.04 10.95 1.26
CIFAR-10
(steps=100) TEMQDM' [19] 46 915 1104  7.39 Q-Diffusion [25] 36 4749 2797 4227
Ours 46 899 7.07 394 TEMQDMT [19]  3/6 984 1420  10.19
Ours 36 891 12.58 579
Q-Diffusion [25]  3/8  8.53 1731  13.94
A Full-Precision 23 304 707 0.00
TEMQ-DM' [19]  3/8 840 2847  26.96
TAC [54] 48 886 955 _ QDiffusion [25] 458 546 7.92 192
, TEMQ-DMT [19] 458 733 12.68 459
Ours 38 876 9.03  5.15 Lova  TACEA e aoa -
g . 4 403 781 1.07
Q-Diffusion [25]  3/6  7.51 40.94 4274 Lsggp}:;;f%(;ms Ours 8 0 78 v
TEMODM! [19] 36 834 2929  27.11 Q-Diffusionf[ 1 38 1198 14.02 7.54
TFMQ-DM' [19] 3/8 11.32 11.62 7.64
TAC [54] 36 827 31.88 - TAC [54] 38 514 - -
Ours 36 8.65 989  6.69 Ours 38 418 1045 114

4 Experiments

We describe in this section implementation details (Sec.4.1), and compare our approach with other
quantization methods quantitatively and qualitatively (Sec.4.2). We then present a detailed analysis
of our method (Sec.4.2). More quantitative and qualitative results can be found in the appendix.

4.1 Implementation details

Datasets and models. We apply AccuQuant to various diffusion models and perform extensive ex-
periments on standard benchmarks for unconditional, class-conditional, and text-to-image generation
tasks. For the unconditional generation task, we exploit DDIM [49] on CIFAR-10 [23], and Latent
Diffusion Model (LDM) [41] on LSUN-Bedrooms and LSUN-Churches [56]. For class-conditional
generation, we perform experiments using LDM [4 1] on ImageNet [6]. We use Stable Diffusion (SD)
v1.4 [41] on MS-COCO [28] for text-to-image generation.

Quantization. We employ adaptive rounding [37, 26] for weight quantizers, following prior
approaches [45, 25, 19]. For activation quantization, we split a denoising process into 20 groups for
unconditional image generation, 10 groups for class-conditional image generation and 25 groups
for text-to-image generation. We perform the calibration process for 50, 20, and 10 epochs on
DDIM [49], LDM, and SD [4 1], respectively, using the Adam optimizer [22]. Following the work
of [25], we generate 256 calibration samples for each group with full-precision models, maintaining
the total number of the samples consistent with that of [25] across all experiments. More detailed
settings can be found in the section B.

Evaluation metrics. Following the previous approaches [25, 19, 54], we evaluate 50K images
for unconditional/class-conditional generation with Inception Score (IS) [44], Frechet Inception
Distance (FID) [16], and sFID [38]. We also measure PSNR, SSIM, and LPIPS [59] between
images generated by full-precision and quantized models for class-conditional image generation.
For text-to-image generation, we generate SK images, and evaluate them with FID [16] and CLIP
scores [ 15], following the work of [50]. The ViT-L/14 is used to compute CLIP scores [15]. We also



Table 2: Quantization results for class-conditional image generation on ImageNet (256 x 256) [6].

Model  Method Bits(W/A) FID| sFID, ISt FID2FP32) LPIPS| PSNRT SSIMt
Full-Precision 32/32 1113 7.85 368.19 0.00 0.00 0.00  0.00
Q-Diffusion [25] 4/8 955 13.50 339.44 1.71 0.1912  23.6703 0.8391
PTQD [14] 413 9.99 843 361.95 0.84 0.1598 24.0672 0.8614
TFMQ-DM [19] 4/8 9.80 7.19 35838 1.25 0.1702  23.6309 0.8567
Ours 4/8 939 741 35648 0.65 0.1585 24.4338 0.8713

LDM-4  (_Diffusion [25] 3/8 757 1243 266.65 11.26 0.3741 18.4588 0.6532

ImageNet  pTQD [14] 318 775  9.51 308.47 6.30 03446 19.2485 0.6728

(steps=20)  TEMQ-DM [19] 3/8 7.96 877 295.46 4.47 03942 16.8180 0.7200
Ours 318 6.61 8.65 301.06 3.86 0.2937 19.9392 0.7649
Q-Diffusion [25] 3/6 28.83 3930 9955 4125 0.4666 17.9855 0.6358
PTQD [14] 3/6 9.15 11.42 244.43 13.85 03852  18.1508 0.6662
TFMQ-DM [19] 3/6 8.17 1071 237.32 10.06 0.3928 17.4886 0.7183
Ours 3/6 595 8.61 282.87 6.31 0.3296 19.0135 0.7296

Table 3: Quantization results for text-to-image generation on MS-COCO (512x512) [28]. MP: Mixed-
precision quantization.

Model Method Bits(W/A) FID|  FID2FP32)  CLIP Scoret
Full-Precision 32/32 27.50 0.00 26.46
Stable Diffusion vl1.4  Q-Diffusion [25] 4/8 27.87 20.42 26.15
MS-COCO PTQ4DM [45] 4/8 25.64 17.73 26.25
(steps=50) PCR [50] 4/8.1 (MP)  23.86 14.39 26.35
PCR [50] 4/8.4 (MP)  22.04 14.25 26.48
Ours 4/8 22.73 10.99 26.85

use FID2FP32 [50] computing FID of generated images by quantized models, but with the images
from full-precision models as a reference, measuring accumulated errors from quantized models for
all experiments.

4.2 Results

Quantitative results. We show in Tables 1-3 quantitative comparisons of our method and the state
of the art [25, 19, 54] for unconditional image generation (i.e., CIFAR-10 [23], LSUN-Bedrooms,
and LSUN-Churches [56]), class-conditional image generation (i.e., ImageNet [0]) and text-to-image
generation (i.e. MS-COCO [28]), respectively. For fair comparison, we report the results of TFMQ-
DM [19], with official source codes provided by authors, under the same settings as ours. We refer to
the results from the papers for other methods that do not provide official implementations.

We summarize our findings as follows: (1) AccuQuant outperforms all previous approaches [45, 25,

, 19, 54, 54], specially designed to quantize diffusion models, by significant margins in terms of
FID2FP32 [50]. Specifically, it provides better results than PCR [50], even with lower bit-widths.
This demonstrates that AccuQuant reduces accumulated errors effectively, and better maintains the
behavior of full-precision models compared to other methods. (2) AccuQuant achieves significant
performance gains, especially in low-bit settings for activation quantization. Note that low-bit
settings are more vulnerable to accumulated errors, due to the limited representational capacity.
This demonstrates the robustness of AccuQuant and its ability to maintain high performance, even
under constrained conditions. (3) AccuQuant outperforms the state-of-the-art methods [25, 19, 54]
in various standard benchmarks, verifying that considering multiple denoising steps in a sampling
process is effective to reduce accumulated errors for quantizing diffusion models.

Qualitative results. We provide in Fig. 4 visual comparisons of generated images by full-
precision model, Q-Diffusion [25], TFMQ-DM [19] and AccuQuant on LSUN-Bedrooms and
LSUN-Churches [56] for unconditional image generation. We can see that AccuQuant provides
more realistic images, and they are more close to the results from full-precision models, verifying
once more that AccuQuant minimizes the discrepancies between full-precision and quantized models
effectively. We also show Fig. 5 generated images, conditioned on text prompts, by SD v1.4 [41] and
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Figure 4: Visual comparisons of generated images on (Top) LSUN-Bedrooms [56] and
(Bottom) LSUN-Churches [56] for unconditional image generation under a 3/8-bit setting.

Full-Precision Q- D1ffus1on [2\] PCR (7 = 0.20) [50]
Figure 5: Visual comparisons of generated images conditioned on text prompts. We generate
images by SD v1.4 [41] and its quantized versions using PCR [50] under a 4/8.4-bit setting and
Q-Diffusion [25], AccuQuant under a 4/8-bit setting. 7 = 0.20 indicates setting 20% of entire
denoising steps into 10 bits. The prompts corresponding to each column are: “A puppy wearing a
hat" and “A cute teddy bear in front of a plain wall, warm and brown fur."

its quantized versions using Q-Diffusion [25], PCR [50] and AccuQuant on MS-COCO [28]. We can
observe that AccuQuant generates high-quality images that closely resemble those obtained by the
full-precision model, compared to Q-Diffusion [25] and PCR [50]. Note that PCR [50] exploits more
bit-widths than ours, demonstrating the effectiveness of our approach to minimizing accumulated
quantization errors. For example, the detailed shape of the hat, and the pose of the dog and teddy bear
are preserved well for our method, while Q-Diffusion [25] and PCR [50] do not. More qualitative
results can be found in the appendix.

4.3 Discussion

Analysis of a group size. We compare in Table 4 Table 4: Quantitative comparisons of Ac-

quantization results of AccuQuant, with different cuQuant under a 6/6-bit setting with varying
group sizes, for DDIM [49] on CIFAR-10 [23]. We  group size.

can see that AccuQuant performs better accordingly
with an increase of a group size from 1 to 5, con- Group size ISt FID| FID2FP32 |

firming once again that it is effective for quantizing 1 917 6.96 562
diffusion models to account for the behaviors of full- 5 9202 682 4.48
precision and quantized models within multiple de- 5 918 5.79 3.30
noising steps. This also suggests that considering 10 913  6.18 430
accumulated errors is not enough with few denoising 50 8.69 14.52 14.19
steps. On the other hand, the quantization perfor- 100 7.86  50.11 57.96

mance degrades, when the number of denoising steps
is too large. This indicates that it is hard to estimate appropriate quantization parameters reducing
the accumulated error across many denoising steps. To this end, the group size is treated as a
hyperparameter that balances two objectives: (1) sufficiently capturing accumulated errors across
multiple timesteps, and (2) ensuring stable optimization of quantization parameters. As shown in
Table 4, if the group size is too small, it may fail to capture the long term error accumulation; if it
is too large, the optimization becomes unstable as a single set of parameters must account for the
diverse behaviors of many timesteps. The optimal group size can vary depending on the model and
dataset, but we empirically found that dividing the timesteps into 10 to 20 groups yields consistently
strong results across our experiments.



8;’51 ), Jacobian ~ Table 6: Quantitative comparisons

Tt . .
0 (Z4,t) . . . of AccuQuant with and without gra-
term (cy o5 ) and our approximation. We quantize dient approximation. We quantize

DDIM [49] with CIFAR-10 [23] under W4AS settings and DDIM [49] on CIFAR-10 [23] with
report the mean and the entire range of the gradient at every
20 timestep.

Table 5: Comparison of the full gradient (

group size 5.

Timestep 100 80 60 40 20 pits (wya) _ FID L/ FID2FP32 |
Oty 10221 1.058 1.0273 1.0082  1.0008 W/0 Approx.  w/ Approx.
RED +0.112  +0.059 +0.034 +0.034 +0.071 6/6 6.13/402  5.79/3.30
Deo(3et) -0.1236 -0.0097 -0.0015 -0.0006 -0.0002 4/8 526/232  4.75/115
Ct™ oz, +0.112 +0.059 +0.034 +0.034 -+0.071 46 721/5.18  7.07/3.94
- 38 9.72/534  9.03/5.15
\/ :17?1 1.1457 1.0683 1.0288 1.0088 1.0010 3/6 10.26 / 7.80 9.89/6.69

Analysis of gradient approximation. We show in Table 6 quantitative comparisons of AccuQuant
with and without the gradient approximation technique. It shows that 1) AccuQuant with our
gradient approximation technique even provides better results quantitatively, with much less memory,
compared with those obtained without using the approximation, and 2) the performance gains are
more significant for FID2FP32. This suggests that gradients of Eq. (14) are corrupted by substantial
noise before the quantization parameters s; of Eq. (10) converge, which makes the calibration process
unstable. Specifically, we show in Table 5 the same statistics as in Fig. 3 with the entire range to
better illustrate the variability of the gradients. As shown in the Table 5, Jacobian component (i.e.,
Row 2 in Table 5) is significantly smaller in average magnitude compared to the dominant scalar
coefficient (i.e., Row 3 in Table 5), but it exhibits a high dynamic range that introduce substantial
noise into the full gradient (i.e., Row 1 in Table 5). This high-variance noise causes the quantization
parameters to update inconsistently at each step, leading to an unstable and unreliable calibration
process. In contrast, our gradient approximation exploit only the dominant scalar coefficient (i.e., Row
3 in Table 5) by omitting the highly dynamic Jacobian term. This leads to more stable convergence
during calibration and ultimately yields more optimal results, as demonstrated in Table 6.

5 Limitation

AccuQuant requires multiple denoising steps during the calibration phase. While AccuQuant effec-
tively mitigates accumulated errors and achieves strong performance even in few-step settings such as
20 steps on ImageNet [0], it may have limited efficacy when applied to diffusion models employing
only 1-2 denoising steps [35, 55]. In addition, AccuQuant has a hyperparameter, the group size,
which is currently fixed across all groups. Exploring adaptive strategies to dynamically determine the
optimal group size for each group would be an interesting direction for future work.

6 Conclusion

We have shown a detailed analysis on quantization errors of diffusion models that the errors are
accumulated over denoising steps. Based on this, we have introduced a novel PTQ method, dubbed
AccuQuant, that alleviates the error accumulation problem by simulating multiple denoising steps in
a sampling process of a diffusion model. We have also presented a gradient approximation technique
to reduce the computational overhead of storing gradients for intermediate activations along the
denoising steps. We have demonstrated that AccuQuant outperforms state-of-the-art PTQ methods
across various bit-widths on standard benchmarks.

10



Acknowledgments and Disclosure of Funding

This work was supported by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grants funded by the Korea government (MSIT) (No.RS-2022-00143524, Develop-
ment of Fundamental Technology and Integrated Solution for Next-Generation Automatic Artificial
Intelligence System, No.RS-2025-09942968, Al Semiconductor Innovation Lab(Yonsei University)),
the National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIT) (No.
2023R1A2C2004306, RS-2025-02216328), Samsung Electronics Co., Ltd (10240520-10013-01),
and the Yonsei Signature Research Cluster Program of 2025 (2025-22-0013).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]
(18]

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video
diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In CVPR,
2023.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In CVPR, 2017.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. LD-Pruner: Efficient pruning
of latent diffusion models using task-agnostic insights. In CVPR, 2024.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, I Pierce, Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. PACT: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In NeurlPS,
2021.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. In
ICLR, 2021.

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H Hassoun.
Post-training piecewise linear quantization for deep neural networks. In ECCV, 2020.

Tomer Garber and Tom Tirer. Image restoration by denoising diffusion models with iteratively precondi-
tioned guidance. In CVPR, 2024.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional neural
networks. In CVPR, 2016.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
Dahua Lin, and Bo Dai. AnimateDiff: Animate your personalized text-to-image diffusion models without
specific tuning. In /CLR, 2023.

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-aware
fine-tuning of low-bit diffusion models. In ICLR, 2024.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-training
quantization for diffusion models. In NeurIPS, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A reference-free
evaluation metric for image captioning. In EMNLP, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPSW, 2021.

11



(19]

[20]

(21]
(22]
(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]
[40]

[41]

(42]

[43]

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. TFMQ-DM: Temporal feature
maintenance quantization for diffusion models. In CVPR, 2024.

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr.BiQ: Post-training non-uniform
quantization based on minimizing the reconstruction error. In CVPR, 2022.

Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-aware quantization. In /CCV, 2021.
Diederik P Kingma. Adam: A method for stochastic optimization. In /CLR, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, 2009.

Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-wise gradient
scaling. In CVPR, 2021.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt
Keutzer. Q-Diffusion: Quantizing diffusion models. In /CCV, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu.
BRECQ: Pushing the limit of post-training quantization by block reconstruction. In /CLR, 2021.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. RepQ-ViT: Scale reparameterization for post-
training quantization of vision transformers. In /CCV, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll4r,
and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In ICML, 2023.

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. PD-Quant: Post-training
quantization based on prediction difference metric. In CVPR, 2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In ICLR, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

Cheng Lu, Zhou Yuhao, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In NeurlIPS, 2022.

Chengtao Lv, Hong Chen, Jinyang Guo, Yifu Ding, and Xianglong Liu. PTQ4SAM: Post-training
quantization for segment anything. In CVPR, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In CVPR, 2023.

Jaehyeon Moon, Dohyung Kim, Junyong Cheon, and Bumsub Ham. Instance-aware group quantization
for vision transformers. In CVPR, 2024.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In /CML, 2020.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with sparse
representations. In /CML, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In /CCV, 2023.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
In ICLR, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
Booth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR, 2023.

12



[44]

[45]

[46]

(47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

(561

(571

(58]

(591

[60]

Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANSs. In NeurIPS, 2016.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion
models. In CVPR, 2023.

Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. Post-training sparsity-aware quantization.
In NeurIPS, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

Junhyuk So, Jungwon Lee, Daechyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. In NeurIPS, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In /CLR, 2020.

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu. Post-
training quantization with progressive calibration and activation relaxing for text-to-image diffusion models.
In ECCV, 2024.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. QDrop: Randomly dropping
quantization for extremely low-bit post-training quantization. In /CLR, 2022.

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptg4dit: Post-training quantiza-
tion for diffusion transformers. In NeurIPS, 2024.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Hougiang Li, Bing Deng, Jiangiang Huang, and Xian-sheng
Hua. Quantization networks. In CVPR, 2019.

Yuzhe Yao, Feng Tian, Jun Chen, Haonan Lin, Guang Dai, Yong Liu, and Jingdong Wang. Timestep-aware
correction for quantized diffusion models. In ECCV, 2024.

Tianwei Yin, Michaé€l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and
Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. LSUN:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. PTQ4ViT: Post-training quantiza-
tion framework for vision transformers with twin uniform quantization. In ECCV, 2020.

Kexun Zhang, Xianjun Yang, William Yang Wang, and Lei Li. Redi: Efficient learning-free diffusion
inference via trajectory retrieval. In ICML, 2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In /CML, 2019.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce a quantization framework for diffusion models that reduces
accumulated errors. We demonstrate the effectiveness of our framework on various bit-
widths, model architectures, datasets, and baseline quantization methods.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe the limitations of AccuQuant in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We conduct a theoretical analysis of the accumulated quantization error in
diffusion model quantization. We visualize the accumulated quantization error in Fig. 2a
and Fig. 2b to validate our assumptions, and we also include the detailed derivation of
AccuQuant in the Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed AccuQuant algorithm in the Appendix. We also
specify the various experimental settings such as group size, optimizer, epochs, batch size,
learning rate, dataset, and models for each configuration in both the Sec.4 and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not release our code due to copyright restrictions. However, we include
detailed pseudocode of our algorithm, dataset descriptions, and experimental guidelines in
Sec. 4, enabling straightforward reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed calibration and inference settings, including group size,
batch size, optimizer, learning rate, number of epochs, dataset, and model in both Sec. 4 and
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide standard deviations in the Fig. 3 and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the GPUs used for our experiments and report the memory usage
in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms to it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work presents a framework for quantizing diffusion models. We believe
that it has no direct positive or negative societal impact.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not involve any data or models that pose a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the owners of all assets used in this work (e.g.,
CIFAR-10 [23], LSUN [56], ImageNet [6], and MS-COCO [28]) and clearly stated each
license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct any crowdsourcing experiments or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not conduct any crowdsourcing experiments or research with human
subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components. We use LLMs only for grammer checking.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Detailed algorithm for AccuQuant

A.1 Algorithm table for AccuQuant

Algorithm 1 Pseudo code of AccuQuant.

HH R HHH

#

X_

t

M : group size

x_T : random gaussian noise

fp_model : full-precision model

quant_model : quantized model

gather_output() : one iteration of diffusion denoising step
sg() : stop gradient operation

Initialize
t =xT
=T

group_index = 0

for i in range(number_of_groups):

# Gather x_(t-M) from Full Precision Model
with torch.no_grad():
fp_x_M = gather_output(fp_model,x_t,t)

# Reconstruction stage
quant_model.set_group(group_index)
optimizer=torch.optim.Adam(quant_params,learning_rate)

for epoch in range(epochs):
# Gather \tilde x_(t-M) with stop gradient
with torch.no_grad():
sg_quant_x_M = gather_output(quant_model,x_m,m,quant_params)

optimizer.zero_grad()

# Accumulate the gradient

for m in range(M):
# Calculate gradient scaling factor
g m =sqrt_alpha_M / sqrt_alpha_.m

# Gather \tilde x_(t-m)
quant_x_m = gather_output(quant_model,x_m,m,quant_params)

# Compute \tilde x_(t-M) with stop gradient
quant_x_M = sg_quant_x_M - sg(quant_x_m) + quant_x_m

# Compute Loss for current step
loss_accuquant = torch.mse(fp_x_M - quant_x_M) * g_m

# Update quantization parameters with accumulated gradients
loss_accuquant.backward()

optimizer.step()

# update indices
x_t = fp_x_M

t =1t-M
group_index += 1
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A.2 Detailed derivations of Eq. (15)

We provide a detailed derivation of Eq. (15). We can represent the gradient between consecutive
denoising steps for the quantized diffusion model as follows:

N - — T o
&m4“%1]+< me 1%4>8@@hﬂ' (19)

0%, Va 0%,

Here, I is the identity matrix, and €y (Z¢, t) is the output of the quantized model. We have empirically
observed in Fig. 3 that the first term in Eq. (14) dominates the entire gradient, whereas the second
one is negligible. Based on this observation, we approximate the gradient in Eq. (14) by omitting the
second term as follows:
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A.3 Detailed derivation of the objective in Eq. (18) with the gradient approximation

We derive a loss function in Eq. (18) incorporating our gradient approximation of Eq. (24). First, by
substituting Eq.(24) into Eq. (12), we obtain:
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Note that we omit identity matrix in Eq. (24) for simple notation. From Eq. (28), we derive a loss
function whose gradient matches the derived expression by adding x;_,, and subtracting a detached
version of x;_,, within the squared term:

'CAcchuant HSQ(xt M _xt IVI) +xt m Sg(xt m)HQ (29)
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In this formulation, we compute x;_ s and Z;_ s before updating gradients without saving inter-
mediate feature maps and treat it as a constant during optimization. We then compute loss term
inside the summation and accumulate its gradients progressively over multiple denoising steps. After
completing M denoising steps, we update the step size using the cumulative gradient. The detailed
pipeline of our method is provided in Algorithm 1.
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B Implementation details

For weight quantization, we adopt a uniform quantizer identical for all denoising steps, following
Q-Diffusion [25], since the weights remain invariant across different denoising steps. For the CIFAR-
10 [23], we employ the DDIM [49] with 100 total denoising steps, grouping them into 20 sets of 5
denoising steps each and setting learning rate in {1 x 1072, 4 x 10~}. For the LSUN-Bedroom [56],
we use LDM-4 [41] and the DDIM sampler [49] with 200 total denoising steps, grouping them into
20 sets of 10 denoising steps each and setting learning rate into 4 x 10~°. For the LSUN-Church [56],
we use LDM-8 [41] and the DDIM sampler [49] with 500 total denoising steps, grouping them into
20 sets of 25 denoising steps each and setting learning rate into 4 x 10~°. For the ImageNet [6],
we employ LDM-4 [41] and the DDIM sampler [49] with 20 total denoising steps and forming 10
groups and setting learning rate into 1 x 10~3. For text-to-image generation, we employ Stable-
Diffusion v1.4 * with the PNDM sampler [3 1], using 50 total denoising steps and forming 25 groups
and setting learning rate into 1 x 10~°. We set the calibration batch size to 8 for DDIM [49] and
LDMs [41], and to 1 for Stable Diffusion [41]. All other experimental settings are identical to those
of Q-Diffusion [25]. We also retain the default settings [4 1] during the sampling phase, ensuring that
we can conduct all experiments on a single A100 (80 GB) GPU. Also, to ensure a fair comparison,
we quantize every layer of TFMQ-DM [19], such as attention-modules and skip-connections for
unconditional image generation. Finally, we evaluate the FID [16] and IS [44] scores, including
the FID2FP32 metric [50], using the torch-fidelity library 4 and the official Guided Diffusion [7]
codebase.

C Detailed analysis of quantitative results

In this section, we analyze the quantitative results presented in Tables 1-3. Firstly, Table 1 shows
that AccuQuant outperforms other methods in most settings. In particular, AccuQuant achieves
overwhelmingly superior performance on the FID2FP32 [50] metric across all bit-widths, and this
effect becomes more pronounced at lower bit-widths (e.g., 3/6 bits). Furthermore, AccuQuant
achieves higher scores on the FID [16], sFID [38], and IS [44] metrics compared to previous
methods [25, 19, 54], which are not designed for reducing the accumulated quantization error. These
findings indicate that AccuQuant effectively reduces accumulated quantization error allowing better
performance and confirms that minimizing the accumulated quantization error constitutes a crucial
factor in diffusion model quantization. Secondly, for the class-conditional image generation task
reported in Table 2, we draw on previous work [54] showing that FID [16] does not perform reliably
on ImageNet [6] and therefore we report LPIPS [59], PSNR, and SSIM metrics to quantify differences
between the full precision and quantized models. Likewise to FID2FP32 [50], these metrics measure
how closely the quantized model’s outputs match those of the full precision model. We find that
AccuQuant outperforms previous methods in terms of FID2FP32 [50], LPIPS [59], PSNR, and SSIM
across all bit-widths, demonstrating that AccuQuant generates images that most closely resemble
the full precision model’s outputs while maintaining high visual quality. These results imply that
accumulated quantization error remains critical even when employing few denoising steps, such as 20.
Furthermore, even compared to PTQD [14], which is designed to reduce accumulating quantization
error, AccuQuant outperforms it in FID2FP32 [50], LPIPS [59], PSNR, and SSIM across all bit widths,
demonstrating the superiority of our framework in explicitly reducing accumulating quantization
error. Finally, the text-to-image generation results in Table 3 reveal that, despite PCR [50] use of
more bit-widths (i.e., 8.4 bits for activations) and adopting independent quantizer at every denoising
steps, AccuQuant achieves a better FID2FP32 [50] score. Additionally, AccuQuant attains the highest
CLIP-Score [15], indicating that it not only reproduces images similar to the full precision model
but also aligns them effectively with the text prompts. To this end, our findings demonstrate that the
AccuQuant framework outperforms existing methods for reducing accumulated quantization error,
and that AccuQuant not only achieves results comparable to those of the full-precision model but
also confirms the fidelity term by resulting superior performance on FID [16], sFID [38], and CLIP
score [15].

3https://huggingface.co/CompVis/stable—diffusion—v—1—4—0riginal
4https://github.com/toshas/torch—fidelity
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Figure 6: Visual comparisons of DDIM [49] for unconditional image generation on CIFAR-10 [23]
under various group sizes. Both weights and activations were quantized to 6 bits for a visually distinct
and clear comparison. From top to bottom, the presented sequences correspond to the full-precision
model, our method with group sizes of 1, 5, and 100.

Table 7: Quantitative comparisons of AccuQuant with and without the gradient approximation via
various group sizes. We quantize DDIM [49] on CIFAR-10 [23] under a 4/8-bit setting.

Group size FID | / FID2FP32 |
P w/o Approximation w/ Approximation
1 6.88/3.11 6.88/3.11
5 5.26/2.32 4.75/1.15
10 5.27/1.62 5.07/1.88
25 5.73/1.49 5.24/1.49
= 40k -m- wj/o Approximations ,,r"/.
Z w/ Approximations -
o 30k -
g I laal
:‘;szok ’r,,—'"
% 10k /./"/
% 4261 _m- 0
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Group size
Figure 7: Comparisons of a total amount of memory of AccuQuant with and without the gradient
approximation. We measure the memory usage during the calibration process of AccuQuant under a
6/6-bit setting for DDIM [49] on CIFAR-10 [23].

D Qualitative results for group sizes

In this section, we present the qualitative results for various group sizes, as reported in Table 4. We
observe from Fig. 6 that selecting an appropriate group size (e.g., group size of 5) generate images
that closely resembling those of the full-precision model, under low bit-widhts. For example, in the
first row of generated horse images, we can see that when the group size is set to 1, the quantized
model fails to adequately account for accumulated errors, leading to the generation of distorted and
unrealistic shapes. Similarly, when the group size is excessively large (e.g., group size of 100), the
quantized model is unable to effectively manage the substantial accumulation of errors, resulting
in unrealistic image outputs. In contrast, with an appropriately chosen group size (e.g., group size
of 5), the accumulated errors are effectively mitigated, allowing the generated images to maintain
a structure and appearance comparable to those of the full-precision model. In the dog images of
column 6, using a group size of 5 yields images that most closely match the full-precision model
in both texture and shape, outperforming group sizes 1 and 100. This indicates that an appropriate
group sizes is a crucial factor to mitigate the accumulating quantization error.
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Figure 8: Plots of the gradient in Eq. (19) and its components over denoising steps. The gradients are

calculated during a calibration process of AccuQuant for LSUN-Bedroom [56] on the left and
LSUN-Church [56] on the right.

Table 8: Quantization results for unconditional image generation with DPM-Solver++ sampler [33]
on CIFAR-10 (32 x 32) [23].

Model Method Bits(W/A) IST FID| FID2FP32]
Full-Precision 32/32 942 3.59 0.00
Q-Diffusion [25] 4/8 9.40 10.25 7.65
Ours 4/8 931 5.75 2.57

DPM-Solver++
CIFAR-10 Q-Diffusion [25] 4/6 7.88 52.65 49.21

(steps=50) Ours 4/6 933 7.34 4.28
Q-Diffusion [25] 3/8 9.57 4041 39.04
Ours 3/8 9.11 22.36 20.90

E Quantitative results for group sizes and gradient approximation

In this section, we show in Table. 7 quantitative ablation results for varying group sizes, both with and
without gradient approximation, for 4/8-bit quantized DDIM [49] on CIFAR-10 [23]. We observe
that both FID [16] and FID2FP32 [50] degrade at group sizes of 1 and 25, since a group size of 1 fails
to capture accumulated quantization error, whereas 25 is too large to find quantization parameters
minimizing the error. This result highlights the importance of selecting appropriate group sizes and
aligns with the findings discussed in the main paper. We also investigate the impact of gradient
approximation. When the group size is 1, we calculate the gradient at every denoising steps and
therefore the approximation has no effect on performance. We show that using gradient approximation
usually yields better performance, since the gradients of Eq. (14) are corrupted before the quantization
parameters s; converge, leading unstable calibration process. We also show in Fig. 7 a total amount of
memory of AccuQuant with and without the gradient approximation, w.r.t. the group size. The results
show that the memory requirement grows linearly with group size in the absence of the gradient
approximation, whereas it remains constant across all group sizes when the approximation is applied.
Consequently, omitting the noisy gradient term effectively reduce memory requirement and ensure
calibration process stable.

F Gradient approximation across different dataset

In this section, we visualize the gradient approximation on LDM-4 and LDM-8 [4 1] across diverse
datasets, including LSUN-Bedroom and LSUN-Church [56], as illustrated in Fig. 8. We plot the full
gradients of Eq. (19), the gradient approximation of Eq. (20), and the residual term (i.e., ¢, %‘;"t))
at 200 and 500 denoising steps. The results show that, consistent with the behavior observed in
Fig. 8, the gradient approximation remains closely aligned with the full gradient throughout multiple
denoising steps on both datasets, thereby corroborating the validity of our approximation. Moreover,
as discussed in Table. 6 and Table. 7, by omitting the residual term we avoid noisy updates during the
calibration phase, resulting in a more stable calibration process.
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Figure 9: Visual comparisons of generated images on CIFAR-10 [23] (32x32) for unconditional
image generation with 3rd order DPM-Solver++ [33] under a 4/8-bit setting. From top to bottom, the
presented sequences correspond to the Full precision, Q-Diffusion [25], and Ours.

G Evaluation with advanced sampler

In this section, we report additional results for the advanced sampler (i.e., 3rd-order DPM-
Solver++ [33]). We have already reported performance for Stable Diffusion [4 1] with the PNDM
sampler [31] in Table. 3. Here, we show in Table. § a quantitative comparisons between our method
and Q-Diffusion [25] for unconditional CIFAR-10 generation [23] over 50 denoising steps. For
quantization, we devide the 50-step denoising process into 17 groups: the first 16 groups contain
three consecutive steps each, and the final group contains two steps. We observe that our method
consistently outperforms Q-Diffusion [25] in both FID [16] and FID2FP32 [50], demonstrating
robustness across different samplers. Notably, in the 4/6-bit setting, our approach yields substantial
gains, indicating enhanced tolerance to accumulated quantization error under low-bit activations. In
Fig. 9, we present qualitative comparisons between our method and Q-Diffusion [25] under 4/8-bit
quantization. It demonstrates that our approach recovers visual fidelity close to the full-precision
model, whereas Q-Diffusion [25] produces visibly degraded outputs. This qualitative results further
validates the ability of our method to mitigate accumulated quantization error.

H Additional visualization on various benchmarks

In this section, we show additional qualitative results for unconditional image generation, class-
conditional image generation and text-to-image generation. For unconditional image generation,
we conduct the LSUN-Bedroom [56] using LDM-4 [41] with 200 denoising steps, and LSUN-
Church [56] using LDM-8 [41] with 500 denoising steps. The model weights and activations are
quantized to 3/8 bits respectively. As illustrated in Fig. 10 and Fig. 11, AccuQuant successfully
prevents the accumulation of quantization errors, ensuring that generated images closely match their
full precision counterparts with images containing rich semantics even in low-bit configurations.
For example, in Fig. 10, we observe that Q-Diffusion [25] and TFMQ-DM [19] present an overall
monotonous coloration compared to the full precision results and generate different content of the
bed due to the accumulated quantization error. In contrast, AccuQuant preserves a coloration and the
content similar to that of the full precision model. For class conditional image generation, we conduct
the ImageNet [6] using LDM-4 [4 1] with 20 denoising steps and quantized weights and activations to
3/8 bits respectively. As illustrated in Fig. 12, Q-Diffusion [25] and TFMQ-DM [19], which do not
account for accumulating quantization error, respectively exhibit chroma noise or produce monotone
coloration. PTQD [14], which does account for accumulating quantization error, generates vivid
colors but alters content compared to full precision and producing unrealistic artifacts such as a
chicken with two heads (i.e., row 3, column 3 in Fig. 12). In contrast, AccuQuant generates vibrant
colors, realistic imagery, and outputs that closely match those of the full precision model. For text-
to-image generation, we use COCO validation prompts [28] in Fig. 13 and user defined prompts in
Fig. 14 with 50 denoising steps of Stable Diffusion v1.4 * quantized into 4/8 bit-widths. As illustrated
in Fig. 13, PCR [50], which is designed to mitigate accumulating quantization error, allocates more
bit-width to activations yet still produces images with altered style or distortion compared to the full
precision model. In contrast, AccuQuant uses fewer quantizers and a lower bit-width than PCR [50]
but effectively minimizes accumulated quantization error, generating realistic images that closely

26



Table 9: Computational cost of calibration process for DDIM [49] on CIFAR-10 (32 x 32) [23] with
100 timesteps.

Method Bits (W/A) Batchsize Calibration time (h) Energy (Wh) FID| FID2FP32|
Full-Precision 32/32 8 - - 4.26 0.00
Q-Diffusion [25] 6/6 8 5.97 519.39 30.46 35.24
Ours 6/6 8 5.56 561.56 5.79 3.30

Table 10: Computational cost of real-time CPU inference. Experiments are conducted on CIFAR-10
(32 x 32) [23] with DDIM [49] over 100 timesteps.

Method Bits (W/A) Batchsize GBops Memory (MB) CPU latency (s) Model size (MB) Speedup (x)
Full-Precision 32/32 64 6597 1726.0 94.589 143.08 1.00
Q-Diffusion [25] 8/8 64 798 1541.7 31.322 36.57 3.02
Ours 8/8 64 798 1541.7 31.380 36.58 3.01

Table 11: Comparison against lightweight QAT. Experiments are conducted on ImageNet (256 x
256) [6] with LDM-4 [2] over 20 timesteps. * denotes result under the same resource constraint.

Method W/A  Calibration time (h) # of calibration data FID| sFID] ISt FID2FP32|
Full-Precision 32/32 - - 11.13 7.85 368.19 0.00
EfficientDM* 4/8 434 5120 1243 25.07 197.86 14.55
EfficientDM-Full [13]  4/8 6.50 32000 9.92 740 351.79 1.63
Ours 4/8 434 5120 9.39 741  356.48 0.65

match those of the full precision model. We also visualize generated images conditioned on user
defined prompts. As illustrated in Fig. 14, Q-Diffusion [25] and PCR [50] generates output that
differ from those of the full precision model and misalign with the text prompt (e.g., No astronaut
in row 2, column 2 and row 3, column 4 in Fig. 14a), while AccuQuant align strongly with the
prompts. In summary, AccuQuant not only achieves superior performance on quantitative evaluation
metrics but also qualitatively generates images that most closely resemble full precision outputs
among state-of-the-art methods, align strongly with the prompts, and exhibit naturalness and semantic
richness, demonstrating the superiority of our framework.

I Computational cost and efficiency

In this section, we provide a detailed analysis of computational cost and efficiency in terms of
calibration and inference. In Tab. 9, we compare AccuQuant with Q-Diffusion [25] in terms of
computational cost for calibration and the generation performance. We can see that AccuQuant
achieves superior performance with shorter calibration time compared to Q-Diffusion. We note that
although AccuQuant may require more computational cost for one loss calculation, it only requires
50 epochs per group. In contrast, Q-diffusion calibrates each layer and residual block for 5000 epochs.
Although AccuQuant incurs a marginal increase in energy consumption, it delivers a favorable
trade-off for real-world deployment. In addition, we evaluate the inference efficiency of our quantized
diffusion model against both Q-Diffusion and the full-precision baseline. Since the official PyTorch
quantization API does not support bit-widths lower than 8, we quantize both weights and activations
to 8 bits and measure the memory usage and runtime latency using ONNX Runtime with the Intel
Xeon Gold 6226R CPU. As shown in Tab. 10, both quantized models achieve over a 3 times speedup
compared to the FP model. Our method incurs a marginally higher latency (by less than 0.18%)
and larger model size (by 0.006 MB) compared to Q-Diffusion, which we attribute to the separate
quantization parameters per group. We also compare in Tab. 11 AccuQuant with a lightweight
QAT approach, EfficientDM [13]. We report the results both under the same resource constraints
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Table 12: Quantitative results for Gaussian deblurring on CelebA (256 x 256) [32].

Method W/A  PSNRT LPIPS)
Full precision 32/32  31.23 0.0584
Q-Diffusion [25]  4/8 27.63 0.2131

Ours 4/8 30.57 0.0984
Q-Diffusion [25] 3/8 24.70 0.4574
Ours 3/8 26.15 0.3979

Table 13: Quantitative results for style transfer on the COCO validation set (512x512) [28]. We
report SSIM, PSNR, LPIPS, style loss, content loss, and FID2FP32. All scores are calculated using
the output of the full-precision model, since ground truth images are not available for style transfer.

Method W/A SSIMt PSNRT LPIPS| Styleloss| Contentloss| FID2FP32|
Q-Diffusion [25]  4/8  0.6645 18.50 0.3310 0.0012 13.2267 14.20
Ours 4/8  0.7444 2049 0.2594 0.0006 9.3687 10.81

Table 14: Quantization results of DIT-XL/2 with 100 denoising steps on ImageNet (256 x 256) [23].
W/A denotes bit-widths of weights and activations. (a) without classifier-free guidance. (b) with
classifier-free guidance scale of 1.5.

Method W/A FID| SsFID| Method W/A FID| SsFID|
Full-precision 32/32 1241 19.23 Full-precision 32/32 5.31 17.61
PTQ4DM [45] 4/8 213.66 85.11 PTQ4DM [45] 4/8 215.68 86.63
RepQ-ViT [27] 4/8 224.14 81.24 RepQ-ViT [27] 4/8 226.60 77.93
TFMQ-DM [19] 4/8 143.47  61.09 TFMQ-DM [19] 4/8 14190 56.01
PTQ4DiT [52] 4/8 28.90 34.56 PTQ4DiT [52] 4/8 7.75 2201
Ours 4/8 18.60 18.83 Ours 4/8 6.80 17.78
(a) without classifier-free guidance (b) with classifier-free guidance

(denoted as EfficientDM*) and using the official training recipe > with larger training data and longer
training time (denoted as EfficientDM-Full). We find that under an identical setting, AccuQuant
achieves substantially better performance than EfficientDM*, suggesting that QAT frameworks
cannot converge sufficiently within limited resource budgets. Furthermore, although EfficientDM-
Full benefits from extended training time and larger datasets, AccuQuant still outperforms it in
terms of FID2FP32, demonstrating the effectiveness of our method. In summary, although our
method marginally increases latency and model size compared to Q-Diffusion, the benefits of reduced
calibration time and improved generation quality offer a favorable trade-off for practical deployment.

J Expanding to various tasks and advanced models

In this section, we demonstrate the generalization ability of AccuQuant by evaluating image restora-
tion (e.g., Gaussian deblurring), style transfer, and applying to transformer-based diffusion mod-
els [39]. For Gaussian deblurring, we leverage the pre-trained DDPG [10] model from the official
GitHub repository © on the CelebA dataset (256 x 256 resolution, 1K images) [32], injecting noise
with oy = 0.05. Also, we use 100 total timesteps with a group size of 5 and calibrate with 64
samples obtained from a full-precision model. In Tab. 12, AccuQuant consistently outperforms

5https://github.com/ThisisBillhe/EfficientDM
6https://github.com/tirer—lab/DDPG
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Q-Diffusion [25] across both PSNR and LPIPS metrics, demonstrating its effectiveness in the restora-
tion setting. For style transfer (Fig. 13), we use Stable Diffusion v1.4 7 with the prompt ’A cartoon
style’ and evaluated on the COCO validation set [28], with the entire timestep of 35 using the DDIM
sampler [49]. Since ground-truth images are unavailable for style transfer, we evaluate by comparing
to the outputs obtained from the full-precision model. Note that we compute style and content
losses following [ ], using feature maps from a VGG network [47]. In Tab. 13, AccuQuant outper-
forms all evaluated metrics, highlighting its robustness for diverse generative tasks beyond standard
image synthesis. For transformer-based diffusion model [39] adaptation, we compare AccuQuant
to recent diffusion-focused quantization methods [45, 19] including diffusion-transformer based
quantization [52] and advanced transformer quantization method [27]. We conduct experiments on
the ImageNet dataset [6] using the DiT-XL/2 [39] with 100 timesteps, under both without and with
classifier-free guidance settings [18]. As shown in Tab. 14, AccuQuant outperforms transformer-
based, diffusion-focused, and even DiT-specific quantization methods, demonstrating that reducing
the accumulating error across diffusion timesteps is the key factor for quantizing diffusion models. In
summary, by designing the quantization methods at the diffusion framework level rather than for a
specific diffusion architecture, AccuQuant generalizes to diverse tasks and diffusion models.

Thttps: //huggingface.co/CompVis/stable-diffusion-v-1-4-original
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Figure 10: Visual comparisons of generated images on LSUN-Bedrooms [56] (256 %256) for uncon-
ditional image generation with LDM-4 [41] under a 3/8-bit setting. Each row corresponds to Full
Precision, Q-Diffusion [25], TFMQ-DM [19], and Ours.
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Figure 11: Visual comparisons of generated images on LSUN-Church [56] (256 x256) for uncon-
ditional image generation with LDM-8 [41] under a 3/8-bit setting. Each row corresponds to Full
Precision, Q-Diffusion [25], TFMQ-DM [19], and Ours.
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Figure 12: Visual comparisons of generated images on ImageNet [0] (256x256) for class-conditional
image generation with LDM-4 [4 1] under a 3/8-bit setting. Each row corresponds to Full Precision,
Q-Diffusion [25], PTQD [14], TEMQ-DM [19], and Ours.
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"A table with some oranges and some cups."
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Figure 13: Visual comparisons of generated images (512x512) conditioned on COCO validation
prompts [28]. We generate images by SD v1.4 [41] and its quantized versions using Q-Diffusion [25]
and AccuQuant under a 4/8-bit setting and PCR [50] in 4/8.4-bit setting. Each row corresponds to
Full Precision, Q-Diffusion [25], PCR(7 = 0.2) [50] and Ours.
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“A robot assistant helping in a modern kitchen."



“Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired”

Figure 14: Visual comparisons of generated images (512x512) conditioned on user defined prompts.
We generate images by SD v1.4 [41] and its quantized versions using Q-Diffusion [25] and AccuQuant
under a 4/8-bit setting and PCR [50] in 4/8.4-bit setting. Each row corresponds to Full Precision,
Q-Diffusion [25], PCR(7 = 0.2) [50] and Ours.
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