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ABSTRACT

While one commonly trains large diffusion models by collecting datasets on tar-
get downstream tasks, it is often desired to finetune pretrained diffusion mod-
els on some reward functions that are either designed by experts or learned from
small-scale datasets. Existing methods for finetuning diffusion models typically
suffer either 1) lack of diversity in generated samples, or 2) costly finetuning
and slow convergence. Inspired by recent successes in generative flow networks
(GFlowNets), a class of probabilistic models that sample with the unnormal-
ized density of a reward function, we propose a novel GFlowNet method dubbed
Nabla-GFlowNet (abbreviated as∇-GFlowNet), together with an objective called
∇-DB, plus its variant residual ∇-DB for finetuning pretrained diffusion models.
These objectives leverage the rich signal in reward gradients for diversity-aware
finetuning. We empirically show that our proposed residual ∇-DB achieves fast
yet diversity- & prior-preserving finetuning of StableDiffusion, a large-scale text-
conditioned image diffusion model, on different realistic reward functions.

1 INTRODUCTION

Diffusion models [14, 50, 41] are a powerful class of generative models that model highly complex
data distributions as the results of a sequence of multi-scale denoising steps. They prove capable
of generating with high-fidelity a wide range of entities, including but not limited to images [41,
9], videos [15], 3D objects [69, 38, 28, 29], molecules [61, 16], languages [43]. State-of-the-arts
diffusion models for downstream applications are typically large in network size and demand a
significant amount of data to train.

It is however often desirable that one finetunes a pretrained diffusion models with a given reward
function —- either from some learned reward function in the scenario of reinforcement learning
from human feedback (RLHF) [6, 34] or from some expert design [47, 33]. While existing methods
achieve fast convergence of reward maximization [60, 7], typically through reinforcement learn-
ing, many of these methods are either mode-seeking and fail in generating diverse samples or too
expensive to use in large-scale settings.

Inspired by recent work in generative flow networks (GFlowNets), a class of probabilistic models
that aim to sample from unnormalized density distributions, we propose a novel training objective,
dubbed ∇-DB, that leverages the rich information in reward gradients. The variant residual ∇-DB,
by leveraging the structure of diffusion models, allows us to perform fast, diversity preserving and
prior-preserving amortized finetuning with rather long sampling sequences of diffusion models.

We summarize our contributions below:

• We propose ∇-DB, a novel objective for GFlowNets that leverages the rich information in
reward gradients.

• For the purpose of finetuning with a pretrained prior, we propose a variant called residual
∇-DB that leverages the properties of diffusion models for efficient finetuning.

• We empirically show that with the propose residual ∇-DB objective, we may achieve
diversity-preserving yet fast finetuning of diffusion models.
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Residual    -DB 

Forward-looking Residual    -DB

Finetuning Progress

Dog

Bird

Cat

Squirrel

Figure 1: Left: Illustration of the proposed residual ∇-DB objective, along with its forward-looking variant.
All “forces” (from the finetuned diffusion model, the pretrained model, the reward gradient and the learned
flow function) on each hexagon should adds to zero. Right: Generated image from a model finetuned with
the proposed residual ∇-DB on Aesthetic Score reward. The text prompt for each row is shown on the left.
The leftmost figure is the image generated by the pretrained model while the rightmost one is from the model
finetuned for 200 iterations.

2 PRELIMINARIES

2.1 DIFFUSION MODELS AND RL-BASED FINETUNING

Diffusion models [14, 48, 50] are a class of hierarchical latent models that model the generation
process as a sequence of denoising steps. Different from the convention in diffusion model literature,
for convenience we adopt in this paper the reverse time of arrow where xT means samples from the
data distribution and the sampling process starts from t = 0. Under this convention, the probability
of the generated samples is:

PF (xT ) =

∫
x0:T−1

P0(x0)
∏

PF (xt|xt−1)dx0:T−1. (1)

Here P0(x0) is a fixed initial distribution, PF (xT ) is the likelihood of the model generating
data xT , and the noisy states xt in the intermediate time steps are constructed by a pre-defined
noising process, and the forward policy PF (xt|xt−1) is the denoising step of the diffusion
model1. Take DDPM [14] as an example: the corresponding noising process is q(xt−1|xt) =

N (
√
αt−1/αtxt,

√
1− αt−1/αtI), which induces q(xt|xT ) = N (

√
αT−txT ,

√
1− αT−tI),

where {αt}t is a noise schedule set. With this noising process defined, the training loss is:

E
t∼Uniform({1,...,T}),ϵ∼N (0,I),xT∼D

w(t)
∥∥∥xθ(√αT−txT +

√
1− αT−tϵ, t)− xT

∥∥∥2, (2)

whereD is a dataset, w(t) is a certain schedule weighting function, and xθ(xt, t) is a data prediction
model that predict the clean data xT given a noisy data xt at time step t.

The sequential sampling process of diffusion models is Markovian and one could construct an
Markov desicion process (MDP) to describe its denoising process. We refer to Black et al. [5], Zhang
et al. [68] for details of the MDP specification. Given such an MDP defined, one may fine-
tune diffusion models with techniques like DDPO [5] by collecting on-policy sample trajectories
{(x1, ..., xT )} and optimize the forward (denoising) policy with a given terminal reward R(xT ).

2.2 GENERATIVE FLOW NETWORKS (GFLOWNETS)

GFlowNets [4, 2] are a class of probabilistic methods to train a sampling policy PF (s
′|s), where

the generation process starts from some initial state s0, makes a series of stochastic transitions
(s → s′) in a direct acyclic graph of states, and eventually reach a terminal state according to
an unnormalized probability density, or reward. Similar to the role of noising process in diffusion

1The “forward” and “backward” directions in the GFlowNet literature are the opposite of those in the diffu-
sion literature.
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models, in GFlowNets a backward policy PB(s|s′) is defined (either fixed or learnable) to distribute
the unnormalized density of the terminal target distribution back to its ancestor states. One may
imagine that the forward policy PF (s

′|s) distributes density from all states s that lead to s′ and
similarly the backward policy PB(s|s′) distributes density from all states s′ to an ancestor s. If PF

and PB “matches” each other, one obtain on each state s an unnormalized density, called the flow
function F (s). One form of the matching condition states is the the detailed balance condition:

Detailed Balance (DB). A valid GFlowNet with a forward policy PF (s
′|s), a backward policy

PB(s|s′), and a flow function F (s) satisfies the following DB condition for all transition (s→ s′)

PF (s
′|s)F (s) = PB(s|s′)F (s′). (3)

Hence we have the following GFlowNet DB loss on the logarithm probability space:

LDB(s, s
′) =

(
logPF (s

′|s) + logF (s)− logPB(s|s′)− logF (s′)
)2

(4)

with an extra terminal constraint F (sf ) = R(sf ) to incorporate target reward information.

In the context of time-indexed sampling processes such as diffusion models, the transition graph of
states s ≜ (xt, t) is naturally acyclic, as it adheres to the arrow of time [63]. With slight abuse of
terminology that we use xt to represents the tuple (xt, t) when necessary, for time-indexed settings
the forward policy is PF (xt+1|xt), the backward policy is PB(xt|xt+1), and the flow function is
F (xt)

2. The corresponding DB condition is therefore

PF (xt+1|xt)F (xt) = PB(xt|xt+1)F (xt+1). (5)

To finetune a diffusion model with DB losses [68], one can simply set PF (xt+1|xt) to be the sam-
pling process and fix PB(xt|xt+1) to be the noising process used by the pretrained diffusion model.
We refer to Zhang et al. [63], Lahlou et al. [23], Zhang et al. [67] for more detailed discussion about
the theory of diffusion being a specification of GFlowNets.

3 METHOD

3.1 ∇-DB: THE GRADIENT-INFORMED ALTERNATIVE TO DB

In our setting, we do not have access to any dataset of images, but are given an external positive-
valued reward function R(·) and we need to train a generative model to learn from it. While the
GFlowNet-based algorithm can effectively achieve this and also encourages diversity, it only lever-
ages the zeroth-order reward information and does not require any differentiability of the reward
function. Yet, it is often beneficial to directly make use of the reward gradient as signal, since it
brings higher dimensional information about the optimization landscape and thus enables more ef-
fective optimization. We are therefore motivated to develop∇-GFlowNet, a method that builds upon
GFlowNet-based algorithms to take full advantage of the reward gradient signal. To achieve this, we
take derivatives on the logarithms of both sides of the DB condition (logarithm of Equation 5) with
respect to xt+1 and obtain a necessary condition, which we call the forward3 ∇-DB condition:

∇xt+1
logPF (xt+1|xt) = ∇xt+1

logPB(xt|xt+1) +∇xt+1
logF (xt+1), (6)

and hence the corresponding forward∇-DB objective L−→∇DB(xt, xt+1) to be∥∥∥∇xt+1
logPF (xt+1|xt)−∇xt+1

logPB(xt|xt+1)−∇xt+1
logF (xt+1)

∥∥∥2, (7)

with the terminal flow loss on the logarithm scale

L∇DB-terminal(xT ) =
∥∥∥∇xT

logF (xT )− β∇xT
logR(xT )

∥∥∥2, (8)

where β is a temperature coefficient and serve as a hyperparameter in the experiments. Notice that,
by taking derivatives on the logarithms, we obtain the score function ∇xt+1 logPF (xt+1|xt) of the

2We write Ft(xt) as F (xt) out of simplicity.
3Since the derivative is taken with respect to xt+1.
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finetuned diffusion model. Indeed, the ∇-DB loss is closely related to a Fisher divergence, also
known as Fisher information score [21] (see Appendix B.1).

Similarly, by taking the derivative of both sides in Equation 5 with respect to xt, one obtains the
reverse∇-DB objective:

L←−∇DB(xt, xt+1) =
∥∥∥∇xt logPF (xt+1|xt)−∇xt logPB(xt|xt+1) +∇xt logF (xt)

∥∥∥2. (9)

Such∇-GFlowNet objectives constitute a valid GFlowNet algorithm (see the proof in Section B.2):

Proposition 1. If L−→∇DB(xt, xt+1) = L←−∇DB(xt, xt+1) = 0 for any denoising transition (xt, xt+1)

over the state space and L∇DB-terminal(xT ) = 0 for all terminal state xT , then the resulting forward
policy generate samples xT with probability proportional to the reward function R(xT )β .

Remark 2. The original detailed balance condition propagates information from the reward func-
tion to each state flow function in the sense of F (xt+1) → (F (xt), PF (xt+1|xt)), assuming the
backward (noising) policy is fixed (i.e., there is no learning component in the diffusion noising pro-
cess). In our case, if we take a close look at Equation 7, we can see that L−→∇DB(xt, xt+1) could
propagate the information from F (xt+1) to the forward policy PF (xt+1|xt) but not F (xt).

Remark 3. Compared to previous GFlowNet works which use a scalar-output network to parame-
terize the (log-) flow function, in∇-GFlowNet we can directly use a U-Net [42]-like architecture that
(whose output and input shares the same number of dimension) to parameterize ∇ logF (·), which
potentially provides more modeling flexibility. Furthermore, it is possible to initialize ∇ logF (·)
with layers from the pretrained model so that it can learn upon known semantic information.

3.2 RESIDUAL ∇-DB FOR REWARD FINETUNING OF PRETRAINED MODELS

With the ∇-DB losses, one can already finetune a diffusion model to sample from the reward dis-
tribution R(x). However, the finetuned model may eventually over-optimize the reward and thus
forget the pretrained prior (e.g., how natural images look like). Instead, similar to other amortized
inference work [70, 56], we consider the following objective with an augmented reward:

PF (xT ) ∝ R(xT )βP#
F (xT )

η, (10)

where R(x) is the positive-valued reward function, β is the temperature coefficient, η is a parameter
to control the strength of the prior, P#

F (xT ) is the marginal distribution of the pretrained model4 and
PF (xT ) is the marginal distribution of the finetuned model (as defined in Equation 1).

Because both the finetuned and pretrained model share the same backward policy PB (the noising
process of the diffusion models), we can remove the PB term and obtain the forward residual∇-DB
condition by subtracting the forward ∇-DB equation for the pretrained model from the that of the
finetuned model:

∇xt+1
logPF (xt+1|xt)− η∇xt+1

logP#
F (xt+1|xt)︸ ︷︷ ︸

∇xt+1
log P̃F (xt+1|xt): residual policy score function

= ∇xt+1
logF (xt+1)−∇xt+1

logF#(xt+1; η)︸ ︷︷ ︸
∇xt+1

log F̃ (xt+1): residual flow score function

.

(11)

With the two residual terms defined above, we obtain the forward residual ∇-DB objective:

L−→∇DB-res(xt, xt+1) =
∥∥∥∇xt+1 log P̃F (xt+1|xt)−∇xt+1 log F̃ (xt+1)

∥∥∥2 (12)

with the terminal flow loss in Equation 8. Similarly, we have the reverse residual ∇-DB loss:

L←−∇DB-res(xt, xt+1) =
∥∥∥∇xt

log P̃F (xt+1|xt) +∇xt
log F̃ (xt)

∥∥∥2 (13)

The terminal loss of the residual∇-DB method stays the same form as in Equation 8

L∇DB-terminal(xT ) =
∥∥∥∇xT

log F̃ (xT )− β∇xT
logR(xT )

∥∥∥2. (14)

4We use the notation of # to indicate quantities of the pretrained model.
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Proposition 4. If L−→∇DB-res(xt, xt+1) = L←−∇DB-res(xt, xt+1) = 0 for any denoising transition
(xt, xt+1) over the state space and L∇DB-terminal(xT ) = 0 for all terminal state xT , then the re-
sulting forward policy generate samples xT with probability proportional to R(xT )βP

#
F (xT ).

Remark 5. We point out that perform the same way of deriving Equation 11, i.e., subtraction be-
tween GFlowNet conditions from the finetuned and pretrained model, on the DB condition without
gradient, we can obtain a residual DB condition F̃ (xt)PF (xt+1|xt) = P#

F (xt+1|xt)F̃ (xt+1). Mul-
tiplying this condition across time and eliminate the term of intermediate F̃ (xt) will lead to the
objective derived in the relative GFlowNet work [55] as shown in Section B.4, which is a prior
paper that proposes to work on reward finetuning GFlowNets with a given pretrained model.

Remark 6. One may completely eliminate the need for any residual flow score func-
tion with the residual ∇-DB conditions of both directions: ∇xt+1 log P̃F (xt+1|xt) =

−∇xt+1
log P̃F (xt+2|xt+1). The bidirectional residual ∇-DB condition can be analogously un-

derstood as the balance condition of two forces from xt and xt+2 acting on xt+1: if not balanced,
one can locally find some other xt+1 that makes both transitions more probable.

Flow reparameterization through forward-looking (FL) trick. Though mathematically solid,
such a bidirectional condition suffers from inefficient credit assignment for long sequences, a prob-
lem commonly observed in RL settings [52, 54]. Instead, we may leverage the priors we have
from the pretrained diffusion model to speed up the finetuning process, by considering the individ-
ual conditions for the forward and reverse directions. Specifically, we employ the forward-looking
(FL) technique for GFlowNets [35, 68] and parameterize the residual flow score function with a
“baseline” of the “one-step predicted reward gradient”:

∇xt
log F̃ (xt) ≜ βγt∇xt

log R(x̂θ(xt))︸ ︷︷ ︸
predicted reward

+ gϕ(xt) (15)

where γt is the scalar to control the strength of forward looking (with γT = 1) and gϕ(xt) is
the actual neural network with parameters ϕ satisfying a terminal constraint gϕ(xT ) = 0. Here
x̂θ(·) is the one-step clean data prediction defined in Equation 2. This FL technique is to involve
a useful external information, which is a partial signal ∇xt logR(x̂θ(xt)) about state xt, such that
the learning of the flow function becomes easier, as the scale of the difference to its optimal value
becomes smaller [35].

We therefore obtain the forward-looking version of residual ∇-DB losses of both directions:

L−→∇DB-FL-res(xt, xt+1) =
∥∥∥∇xt+1 log P̃F (xt+1|xt; θ)−

[
βγt∇xt+1 logR(x̂θ(xt+1)) + gϕ(xt+1)

]∥∥∥2.
(16)

L←−∇DB-FL-res(xt, xt+1) =
∥∥∥∇xt log P̃F (xt+1|xt) +

[
βγt∇xt logR(x̂θ(xt)) + gϕ(xt)

]∥∥∥2. (17)

What’s more, the corresponding terminal loss objective now becomes

L∇DB-FL-terminal(xT ) =
∥∥∥∇xT

log F̃ (xT )− βγt∇xT
logR(xT )

∥∥∥2 =
∥∥∥gϕ(xT )∥∥∥2, (18)

which indicates that the actual parameterized flow network gϕ should take a near-zero value for
terminal states xT . The total loss on a collected trajectory τ = (x1, ..., xT ) is therefore∑

t

[
wF (t)L−→∇DB-FL-res(xt, xt+1) + wB(t)L←−∇DB-FL-res(xt, xt+1)

]
+ L∇DB-FL-terminal(xT ) (19)

where wF (t) and wB(t) are scalar weights to control the relative importance of each term.

We summarize the resulting algorithm in Algorithm 1 in Appendix.

Choice of FL scale. Naïvely setting γt = 1 can be too aggressive especially when the reward scale
η and the learning rate are set to a relatively high value. Inspired by the fact that in diffusion models
Ft(xt) can be seen as R(x) smoothed with a Gaussian kernel, we propose to set γt = αT−t. We
compare this design choice with the naïve one in the appendix.

5
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4 EXPERIMENTS

4.1 BASELINES

For gradient-free methods, we consider DAG-DB [68] (i.e., GFlowNet finetuning with the DB ob-
jective) and DDPO [5]. Since the original DB objective aims to finetune with Rβ(x) instead of
P#
F (xT )R

β(xT ), we also consider the residual DB loss, defined as

LDB-FL-res(xt, xt+1) =
(
log P̃F (xt+1|xt)− β logR(x̂θ(xt+1))− g(xt+1;ϕ)

)2

. (20)

For other gradient-aware finetuning methods, we consider ReFL [60] and DRaFT [7]. ReFL samples
a trajectory and stops some random time step t, with which it maximizes R(x̂θ( /∇(xt)) where x̂θ(·)
is the one-step sample prediction function and /∇ is the stop-gradient operation. Different from
ReFL, DRaFT samples some time step T − K (typically K = 1) and expand the computational
graph of DDPM from /∇(xT−K) to xT so that the reward signal R(xT ) can be backpropated to
xT−K , with all xt in the previous time steps removed from this computational graph. A variant
of DRaFT called DRaFT-LV performs few extra steps of “noising-denoising” on the sampled xT
before feeding it into the reward function R(·).

4.2 REWARD FUNCTIONS, PROMPT DATASETS AND METRICS

For the main experiments, we consider two reward functions: Aesthetic Score [24], Human Prefer-
ence Score (HPSv2) [57, 58] and ImageReward [60], all of which trained on large-scale human pref-
erence datasets such as LAION-aesthetic [24]. For base experiments with Aesthetic Score, we use a
set of 45 simple animal prompts as used in DDPO [5]; for those with HPSv2, we use photo+painting
prompts from the human preference dataset (HPDv2) [57]. To measure the diversity of generated
images, we follow Domingo-Enrich et al. [10] and compute the variance of latent features extracted
from a batch of generated images (we use a batch of size 64). Using the same set of examples, we
evaluate the capability of prior following, we compute the per-prompt FID score between images
generated from the pretrained model and from the finetuned model and take the average FID score
over all evaluation prompts.

4.3 EXPERIMENT SETTINGS

For all methods, we use 50-step DDPM sampler to construct the MDP. We use StableDiffusion-v1.5
[41] as the base models. For the finetuned diffusion model policies, we use low-rank adaptation
(LoRA) [17]. The residual flow score function in residual ∇-DB is set to be a scaled-down version
of the StableDiffusion U-Net, whereas the flow function (in DAG-DB and residual DB) is set to be a
similar network but without the U-Net decoding structure (since the desired output is a scalar instead
of an image vector). Both networks are initialized with tiny weights in the final output layers.

As the landscape of R(x) can be highly non-smooth, we approximate ∇xt
logR(x̂θ(xt))

with Eϵ∼N (0,c)∇xt
logR(x̂θ(xt) + ϵ) where c is a tiny constant. For StableDiffusion

[41], since the diffusion process runs in the latent space, the reward function is instead
Eϵ∼N (0,c)∇xt

logR(decode(x̂θ(xt) + ϵ)) in which decode(·) is the pretrained (and frozen) VAE
decoder and c is set to 2 × 10−3, slightly smaller than one pixel (i.e., 1/255). We approximate this
expectation with 3 independent samples for each transition in each trajectory. For all experiments,
we try 3 random seeds. Unless otherwise specified, we set wB(t) = 1.

To stabilize the training process of our method (residual ∇-DB), we follow the official repo of
DAG-DB and uses output regularization: λ∥ϵθ(xt) − ϵθ†(xt)∥2 where θ† is the diffusion model
parameters in the previous update step5. We set the output regularization strength λ = 1000 in
Aesthetic Score experiments and λ = 100 in HPSv2 experiments. For all experiments with residual
∇-DB, we set the learning rate to 1×10−3 and ablate over a set of choices of reward temperature β,
in a range such that the reward gradients are more significant than the residual policy score function
∇xt logPF (xt+1|xt) of the pretrained model. We always set wF (t) = 1 for all t’s and unless

5Essentially a Fisher divergence between the pretrained and the finetuned distributions conditioned on xt.
Similar regularization with KL divergence has been seen in popular on-policy RL algorithms like TRPO [44]
and PPO [45].
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Pretrained

Residual DB

DAG-DB

ReFL

DRaFT-LV

DDPO

Residual -DB

r = 5.14

r = 7.87

r = 7.29

r = 7.29

r = 6.00

r = 6.29

r = 6.79

Figure 2: Comparison between images generated by models finetuned with different methods for a maximum
of 200 update steps. For each method, we pick the model trained that produces the most visually-appealing
figure among all model checkpoints, as methods like ReFL and DRaFT-LV easily collapses (as illustrated in
Fig. 3). For each method, we show the average reward of the corresponding presented images.

otherwise specified we set wb(t) = 1. For each epoch, we collect 64 generation trajectories for each
of which we randomly shuffle the orders of transitions. We use the number of gradient accumulation
steps to 4 and for each 32 trajectories we update both the forward policy and the residual flow score
function. For residual ∇-DB in most of the experiments, we sub-sample 10% of the transitions
in each collected trajectory for training by taking one single uniformly sample in uniformly split
time-step intervals but ensure that the final transition step always included.

Epoch 10 Epoch 20 Epoch 40 Epoch 70

Residual DB

ReFL

DRaFT-LV

Residual -DB

Figure 3: Finetuning with our ∇-GFlowNet
is stable compared to other baselines.

For residual DB and DAG-DB, we set the learning rate
to 3 × 10−4 with output regularization strength λ = 1
The sampling and training procedures are similar to that
of residual ∇-DB experiments. For ReFL, we follow the
official repo and similarly set the random stop time steps
to between 35 and 49. For DRaFT, since the official code
is not released, we follow the settings in AlignProp [39],
a similar concurrent paper. We set the loss for both ReFL
and DRaFT to −ExT∼PF

ReLU(R(decode(xT ))) where
the ReLU function is introduced for training stability in
the case of the ImageReward reward function.

4.4 RESULTS

General experiments. In Figure 6 and Table 1, we show the evolution of reward, DreamSim diver-
sity of all methods with the mean curves and the corresponding standard deviations (on 3 random
seeds). Our proposed residual ∇-DB is able to achieve comparable convergence speed, measured
in update steps, to that of the gradient-free baselines while those diversity-aware baselines fail to
do so. In Figure 7, we plot the diversity-reward tuples and FID-reward tuples for models evaluated
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Pretrained Residual DB DDPO ReFL DRaFT-1Residual -DB

Prompt: A painting of a Bladerunner interior room in Africa with detailed artwork.

Prompt: A broken videogame console with a colorful and compelling painting.

Prompt: The image features a castle surrounded by a dreamy garden with roses and a cloudy sky in the background.  

Figure 4: Qualitative results on HPSv2.

Pretrained Residual DB DDPO ReFL DRaFT-1Residual -DB
Prompt: An IT-guy trying to fix hardware of a PC tower is being tangled by the PC cables like Laokoon. 

Marble, copy after Hellenistic original from ca. 200 BC. Found in the Baths of Trajan, 1506.

Prompt: A zebra underneath a broccoli.

Prompt: A blue colored dog.

Figure 5: Qualitative results on ImageReward.

at different checkpoints (every 5 update steps) and show that our method achieves better trade-off
between diversity and reward and between prior-following and reward. The gradient-informed base-
lines, ReFL and the DRaFT variants, generally behave worse than residual∇-DB due to their mode-
seeking nature. Qualitatively, we show that the model finetuned with residual ∇-DB on Aesthetic
Score generate more aesthetic and more diverse samples in both style and subject identity (Fig. 2,
and Fig. 24 in the appendix), while the other baselines exhibit mode collapse or even catastrophic
forgetting of pretrained image prior. We also demonstrate some of the images generated by the dif-
fusion model finetuned with residual∇-DB on HPSv2 in Figure 4 and on ImageReward in Figure 5.
Furthermore, we qualitatively show that residual ∇-DB is robust while with the gradient-informed
baseline methods are prone to training collapse (Fig. 3). Due to the limited space, we some ablation
studies to Appendix F, and only show the most important ones in the main text. For the same reason,
we also leave plots for experiments on HPSv2 and ImageReward to Appendix E.
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Method
Aesthetic Score HPSv2 ImageReward

Reward
(↑)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑, 10−1)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑, 10−1)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Base Model 5.83±0.01 35.91±0.00 216±1 2.38±0.13 37.75±0.21 563±5 −0.38±0.12 41.09±0.03 468±1

Ours
(wB=1) 7.90±0.09 2.97 ±0.05 317±15 3.53±0.04 24.39±0.87 1000±39 2.23±0.34 39.85 ±0.67 501 ±7

Ours
(wB=0) 7.86±0.06 2.92±0.02 318±13 3.53±0.03 24.40±0.56 973±5 5.33±0.62 35.85±0.66 638±15

residual DB 7.20±0.92 1.94±0.41 1065±587 2.55±0.06 32.49±0.47 840±107 6.47 ±0.54 25.52±0.35 772±19

DAG-DB 7.73±0.07 1.59±0.07 595±87 2.52±0.06 32.50 ±0.59 866±41 4.70±0.75 26.78±0.64 809±34

DDPO 6.68±0.14 3.30±0.10 312 ±9 2.52±0.04 3.49±0.03 681 ±16 0.27±0.38 38.51±1.49 714±25

ReFL 9.53±0.46 0.82±0.31 1765±51 3.67±0.06 19.84±1.70 1191±46 1.36±0.30 36.50±0.52 597±10

DRaFT-1 10.16±0.13 0.42±0.05 1665±182 3.70±0.06 18.96±1.35 1222±84 1.59±0.25 37.27±0.49 531±13

DRaFT-LV 10.21 ±0.34 0.64±0.17 1854±296 3.75 ±0.08 21.13±1.19 1164±43 1.44±0.25 37.56±0.09 529±18

Table 1: Comparison between the models finetuned with our proposed method residual ∇-DB and the baselines.
All models are finetuned with 200 update steps. For each method, the model with the best mean reward is used
for evaluation. Note that while baselines like DDPO can achieve better scores on some metric, it often comes
with the price of much worse performance on some other.

Effect of reward temperature. We perform ablation study on Aesthetic Score with β ∈
{5000, 7000, 1000} in residual ∇-DB. Not surprisingly, a higher reward temperature leads to faster
convergence at the cost of worse diversity and worse prior-following, as observed in Figure 8.

Effect of sub-sampling. Typically, sub-sampling results in worse gradient estimates. We empiri-
cally study how sub-sampling may effect the performance and show the results in Figure 10 and ??
in the appendix. We empirically do not observe huge performance drop due to subsampling strategy,
potentially because the rich gradient signals in both the reward and the flow are sufficient.

Effect of different prior strengths. We experiment with choices of prior strengths η and observed
in Fig. 16 and 17 that lower η lead to better diversity-reward trade-off and faster reward convergence.

Reward finetuning with other sampling algorithms. To show that our method generalizes to
different sampling diffusion algorithms, we construct another MDP based on SDE-DPM-Solver++
[30], with 20 inference steps. In Fig. 18 and 19, we obverse that our residual∇-DB can still achieve
a good balance between reward convergence speed, diversity preservation and prior following.

Residual -DB Residual DB DDPO ReFL DRaFT-LV
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Figure 6: Convergence curves of different metrics for different methods throughout the finetuning process on
Aesthetic Score. Finetuning with our proposed residual ∇-DB converges faster than the non-gradient-informed
methods and with better diversity-preserving and prior-following capability.

5 RELATED WORK

Reward finetuning of diffusion models. The demand for reward finetuning is probably most
commonly seen in alignment, where one obtains utilize a human reference reward function to
align the behavior of generative models [18, 1, 57] for better instruction following capability and
better AI safety. With a reward function, typically obtained by learning from human preference
datasets [72, 51], one may use reinforcement learning (RL) algorithms, for instance PPO [45], to
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Figure 7: Trade-offs between reward, diversity and priority following (measured by FID) for different reward
finetuning methods. Dots represent the evaluation results of models checkpoint saved after every 5 iterations of
finetuning, where ones with larger reward, larger diversity scores and smaller FID scores are considered better.
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Figure 8: Higher temperature β leads to faster convergence but with less diversity and less prior following.

adapt not only autoregressive language models [34] which naturally admits a Markov decision pro-
cess (MDP), but also diffusion models [5, 12]. Specifically, one can construct MDPs from some
diffusion sampling algorithm [48, 30] by considering each noisy image at some inference step as
a state and each denoising step as an action. Besides RL algorithms, there exist some other ap-
proaches, including stochastic optimal control [10, 53], GFlowNets [68] and some other ones akin
to RL methods [26, 11]. While most of the aforementioned approaches train with only black-box
rewards, once we have access to a differentiable reward function we may accelerate the finetun-
ing process with reward gradient signals. For instance, methods exist to construct a computational
graph from sampled generation trajectories to directly optimize for rewards [7, 39, 59], yet with
these methods models are not trained to correctly sample according to the reward function. While
one may also generate samples from the reward function without finetuning using plug-in guidance
methods for diffusion models [9, 49, 22, 13] as an alternative, but the generated distributions are
often very biased. Besides, reward finetuning for diffusion models is typically memory consuming
as many methods require a large computational graph rolled out from long generation trajectories,
for which it is typical to employ efficient finetuning techniques [17, 40, 27].

GFlowNets. Generative flow network [3], or GFlowNet in short, is a high-level algorithmic
framework that introduces sequential decision-making into generative modeling [63], bridging
methodology between reinforcement learning [66, 36, 37, 35, 25] and energy-based modeling [64].
GFlowNets perform amortized variational inference [32] and generate samples with probability pro-
portional to a given density or reward function, in contrast to the typical reward maximization ob-
jective in reinforcement learning. GFlowNets can therefore be used to generate high-quality and
diverse samples for applications including but not limited to drug discovery [19, 20, 46], structure
learning [8], phylogenetic inference [71] and combinatorial optimization [62, 65].

6 CONCLUSION

We propose ∇-GFlowNet, a fast, diversity-preserving and prior-following reward finetuning
method for diffusion models, by leveraging gradient information in the probabilistic framework of
GFlowNets that aims to sample according to a given unnormalized density function. Our empirical
results show that ∇-GFlowNet achieves a better trade-off between convergence speed, diversity in
generated samples and prior following. We hope that our method sheds lights on future studies on
more efficient reward finetuning strategies of diffusion models as well as related applications.
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A ALGORITHM

Algorithm 1 Diffusion Finetuning with residual ∇-DB

1: Inputs: Pretrained diffusion model fθ# , reward function R(·).
2: Initialization: Model to finetune fθ with θ = θ#, residual flow score function gϕ(·).
3: Sample the initial batch of trajectoriesDprev = {(x1, ..., xT )i}i=1...N with the current finetuned

diffusion model fθ.
4: while not converged do
5: Sample a batch of trajectoriesDcurr = {(x1, ..., xT )i}i=1...N with the finetuned

diffusion model.
6: Subsample the time steps to train with: the full set Ti = {1, ..., T} or the

sampled set Ti = Sample-N({1, ..., T}).
7: Compute the loss∑

t∈Ti,(x1:T )i∈Dprev
L∇DB-FL-res(xt, xt+1; θ, θ

#, ϕ) + L∇DB-FL-terminal(xT ;ϕ) +

λ∥fθ(xt)− fθ#(xt)∥2.
8: Update the diffusion model and the residual flow score function.
9: Set Dprev ← Dcurr.

10: end while
11: return finetuned model fθ.

B ALGORITHMIC DETAILS

B.1 ∇-DB OBJECTIVE AS A STATISTICAL DIVERGENCE

L∇DB (Equation 7) is analogous to a Fisher divergence (up to a constant scale) if we always use
on-policy samples to update the diffusion model and the flow function:

DFisher

(
PF (xt+1|xt)

∣∣∣∣∣∣PB(xt|xt+1)F (xt+1)

F (xt)

)
=

1

2
E

xt+1∼PF (xt+1|xt)

∣∣∣∣∣∣∇xt+1 logPB(xt|xt+1)−∇xt+1 log
PB(xt|xt+1)F (xt+1)

F (xt)

∣∣∣∣∣∣2
=

1

2
E

xt+1∼PF (xt+1|xt)
L∇DB(xt, xt+1). (21)

B.2 PROOF OF PROPOSITION 1

Proof. When the training objectives equal 0 for all states, we would have

∇xt+1 logPF (xt+1|xt) = ∇xt+1 logPB(xt|xt+1) +∇xt+1 logFt+1(xt+1) (22)
∇xt

logPF (xt+1|xt) = ∇xt
logPB(xt|xt+1)−∇xt

logFt(xt) (23)
∇xT

logF (xT ) = β∇xT
logR(xT ) (24)

for any trajectory (x0, . . . , xT ).

Through indefinite integral, these indicate that there exist a function Ct(xt) satisfies

Ct(xt)PF (xt+1|xt) = Ft+1(xt+1)PB(xt|xt+1) (25)
Ft(xt)PF (xt+1|xt) = Ct+1(xt+1)PB(xt|xt+1) (26)

F (xT ) ∝ R(xT )β . (27)

Therefore, we have
Ct(xt)

Ft(xt)
=
Ft+1(xt+1)

Ct+1(xt+1)
, ∀(xt, xt+1). (28)

The right hand side does not depend on xt, therefore, the left hand side is a constant. So we have

Ct(xt) ∝ Ft(xt), ∀t. (29)
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The probability of generating a data xT then equals

PF (xT ) =

∫
P0(x0|⊘)

∏
t

PF (xt+1|xt)dx0:T−1 (30)

=

∫
F0(x0)

∏
t

Ft+1(xt+1)PB(xt|xt+1)

Ct(xt)
dx0:T−1 (31)

∝
∫
F0(x0)

∏
t

Ft+1(xt+1)PB(xt|xt+1)

Ft(xt)
dx0:T−1 (32)

∝ F (xT )
∫ ∏

t

PB(xt|xt+1)dx0:T−1 (33)

∝ F (xT ) ∝ R(xT )β , (34)

which proves the validness of the∇-GFlowNet algorithm.

B.3 PROOF OF PROPOSITION 4

When the training objectives equal 0 for all states, we have

∇xt+1
log P̃F (xt+1|xt) = ∇xt+1

log F̃ (xt+1) (35)

∇xt
log P̃F (xt+1|xt) = −∇xt

log F̃ (xt) (36)

∇xT
log F̃ (xT ) = β∇xT

logR(xT ) (37)

for any trajectory (x0, . . . , xT ).

Through indefinite integral, these indicate that there exist a function Ct(xt) satisfies

Ct(xt)P̃F (xt+1|xt) = F̃ (xt+1) (38)

F̃ (xt)P̃F (xt+1|xt) = Ct+1(xt+1) (39)

F̃ (xT ) ∝ R(xT )β . (40)

Thus we have

Ct(xt)

F̃t(xt)
=
F̃t+1(xt+1)

Ct+1(xt+1)
, ∀(xt, xt+1). (41)

The right hand side does not depend on xt, therefore, the left hand side is a constant. So we have

Ct(xt) ∝ F̃t(xt), ∀t. (42)

The probability of generating a data xT then equals

PF (xT ) =

∫
P0(x0|⊘)

∏
t

PF (xt+1|xt)dx0:T−1 (43)

=

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)

∏
t

P̃F (xt+1|xt)dx0:T−1 (44)

=

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)

F̃t+1(xt+1)

Ct(xt)
dx0:T−1 (45)

∝ F̃T (xT )

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)dx0:T−1 (46)

∝ R(xT )βP#
F (xT ). (47)

This completes the validness proof.
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B.4 RELATIONSHIP BETWEEN RESIDUAL DB AND TRAJECTORY BALANCE

Here we illustrate the Remark 5. A different but equivalent condition for GFlowNets states:

Trajectory Balance (TB) [31]. The following TB condition must hold for any transition sequence
(s0, s1, ..., sN ) where x0 is the unique starting state in the MDP and sN is a terminal state, given a
GFlowNet with the forward policy PF (s

′|s) and the backward policy PB(s|s′):

log
Z
∏
PF (s

′|s)
R(xT )

∏
PB(s|s′)

= 0 (48)

where Z = F (x0) is the total flow and R(xT ) = F (xT ) the reward. The proof is immediate with a
telescoping product of the DB condition.

With an (ideal) pretrained model P#
F and the satisfication of the finetuning objective of Equation 10,

one can prove the conclusion in [55]:

log
Z
∏
PF (s

′|s)
Z#

∏
P#
F (s′|s)

= β logR(xT ), (49)

which is also an immediate result of a telescoping products of the residual DB condition (which
leads to Equation 20):

log P̃F (xt+1|xt) = log F̃ (xt+1)− log F̃ (xt). (50)

While Equation 49 and residual DB are mathematically equivalent, implementation-wise TB in
Equation 49 demands the whole sampling sequence be stored in the memory for gradient com-
putation, or one has resort to the time-costly technique of gradient checkpointing. In comparison,
with DB-based methods one may amortize the computational cost into flows at different time steps
and therefore allow diffusion finetuning with flexible sampling sequence, of which the distribution
approximation capacity and generation performance are generally greater.

C CORRECTIONS FOR NON-IDEAL PRETRAINED MODELS

For non-ideal pretrained models in which P#
F does not match PB (i.e., the DB condition is violated),

the original residual∇-DB objective is apparently biased. We may introduce an additional learnable
term h(xt, xt+1;ψ) to compensate for this error, with which we obtain:

L−→∇DB-res-v2(xt, xt+1) =
∥∥∥∇xt+1 log P̃F (xt+1|xt)−∇xt+1 log F̃ (xt+1) +∇xt+1h(xt, xt+1;ψ).

∥∥∥2
(51)

and

L←−∇DB-res-v2(xt, xt+1) =
∥∥∥∇xt

log P̃F (xt+1|xt) +∇xt
log F̃ (xt+1) +∇xt

h(xt, xt+1;ψ).
∥∥∥2.

(52)
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D FINETUNING CONVERGENCE IN WALL TIME

We further show the convergence speed measured in relative wall time on a single node with 8
80GB-mem A100 GPUs in Fig. 9.
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Figure 9: Convergence curves of different metrics for different methods throughout the finetuning process on
Aesthetic Score, with the x-axis being the relative wall time. All methods are benchmarked on a single node
with 8 80GB-mem A100 GPUs.
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E FIGURES FOR ABLATION RESULTS
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Figure 10: Ablation study on the effect of subsampling rate on the collected trajectories for computing the
residual ∇-DB loss.
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Figure 11: Pareto frontiers for reward, diversity and prior-following (measured by FID) of models trained
with different subsampling rate. In expectation, higher subsampling rates seem to slightly help in increasing
diversity.
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Figure 12: Convergence curve of metrics of different methods throughout the finetuning process on the HPSv2
reward model.
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Figure 13: Pareto frontiers for reward, diversity and prior-following (measured by FID) on HPSv2.
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Figure 14: Convergence curve of metrics of different methods throughout the finetuning process on the Im-
ageReward reward model.
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Figure 15: Pareto frontiers for reward, diversity and prior-following (measured by FID) on ImageReward.
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Figure 16: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with different strength of prior η.
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Figure 17: Pareto frontiers for reward, diversity and prior-following (measured by FID) on Aesthetic Score
with different strength of prior η.
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Figure 18: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with the MDP constructed by SDE-DPM-Solver++ (with 20 inference steps).
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Figure 19: Pareto frontiers for reward, diversity and prior-following (measured by FID) on Aesthetic Score
with the MDP constructed by SDE-DPM-Solver++ (with 20 inference steps).
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F ADDITIONAL ABLATION EXPERIMENTS

Effect of attenuating scaling on predicted reward. In Fig. 20 and 21, we show the comparison
between models with and without time-dependent attenuation of reward signals, where both models
are trained with β = 10000. While setting γt = 1 for all t can slightly increase the convergence
speed, it comes at the cost of worse diversity and prior-following capability.’

Effect of 2nd-order gradients in finetuning. In Fig. 22 and 23, we show the comparison between
models with and without 2nd-order gradients, where both models are trained with β = 10000. Em-
pirically, 2nd-order gradients hurts the trade-off between reward convergence, diversity preservation
and prior following.
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Figure 20: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with time-dependent attenuation of predicted rewards. Both models are trained with β = 10000. With
decayed predicted rewards, the convergence speed is slower but due to less aggressive prediction on reward
signal, the model with reward attenuation achives better diversity and prior-following results.
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Figure 21: Pareto frontiers for reward, diversity and prior-following (measured by FID) on Aesthetic Score
with time-dependent scaling of predicted rewards.
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Figure 22: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with and without 2nd-order gradients.
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Figure 23: Pareto frontiers for reward, diversity and prior-following (measured by FID) on Aesthetic Score
with and without 2nd-order gradients.
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G MORE SAMPLES (AESTHETIC SCORE)

Figure 24: Additional uncurated samples from the model finetuned with residual ∇-DB on the reward model
of Aesthetic Score.
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H MORE SAMPLES (HPSV2)

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: An ultra-realistic illustration of a bird god swinging a gold metal stick weapon, 
with a blue man face and yellow bird mouth, and intricate traditional Chinese elements..  

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: A female archer elf leads a group of adventurers through a forest of crystal trees in a fantasy matte painting.  

Figure 25: More comparison between samples generated by residual ∇-DB and the baseline methods. The
model finetuned with residual ∇-DB is capable of following the instructions while generating diverse samples.
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Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: A surreal cat with a smile and intricate details.  

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: Redhead punk girl playing electric guitar in an oil painting masterpiece.  

Figure 26: HPSv2 samples, Continued.
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