
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CERTIFIED TRAINING WITH BRANCH-AND-BOUND:
A CASE STUDY ON LYAPUNOV-STABLE
NEURAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Certified training techniques aim to produce neural networks (NNs) with formally
verifiable guarantees by optimizing their verification bounds during training. Ex-
isting work on certified training mainly focused on the local adversarial robustness
of NNs. We consider certified training in a more challenging setting beyond ad-
versarial robustness: we want to obtain NNs with global output guarantees for any
input within an entire region-of-interest. As a case study, we particularly focus on
a task about learning Lyapunov-stable neural controllers which provably satisfy
the Lyapunov asymptotic stability condition with a region-of-attraction. Com-
pared to previous works which commonly used counterexample guided training on
this task, we develop a new certified training framework named CT-BaB, and we
optimize for differentiable verified bounds, to produce verification-friendly mod-
els. In order to handle the relatively large region-of-interest, we propose a novel
framework of training-time branch-and-bound to dynamically maintain a train-
ing dataset of subregions throughout training, such that the hardest subregions are
iteratively split into smaller ones whose verified bounds can be computed more
tightly to ease the training. We demonstrate that our new training framework can
produce models which can be more efficiently verified at test time. On the largest
2D quadrotor dynamical system, verification for our model is more than 5X faster
compared to the baseline, while our size of region-of-attraction is 16X larger than
the baseline.

1 INTRODUCTION

Deep learning techniques with neural networks have greatly advanced abundant domains in recent
years. Despite the impressive capability of neural networks, it remains challenging to obtain prov-
able guarantees on the behaviors of neural networks, while formally verifying certain properties of
neural networks (NNs) and producing provable guarantees is important for the trustworthy deploy-
ment of NNs, especially in safety-critical domains, such as robotic systems with a neural network-
based controller (Chang et al., 2019; Dai et al., 2021; Wu et al., 2023; Yang et al., 2024).

There has been much recent advancement in the area of NN verification (Zhang et al., 2018; Xu
et al., 2020; 2021; Wang et al., 2021; Ferrari et al., 2021; Zhang et al., 2022; Shi et al., 2024; Wu
et al., 2024; Duong et al., 2024) which is typically achieved by provably bounding and checking the
worst-case output of the NN. However, when applying an off-the-shelf NN verifier on a model in-
dependently trained without much consideration on verified bounds, it is often challenging to reach
the desired guarantees efficiently, as regularly trained NNs are often not “verification-friendly” for
NN verifiers to efficiently produce tight bounds for verification, leading to long verification time or
unsuccessful verification especially for larger problems. Therefore, many works have considered
optimizing verified bounds during NN training to produce verification-friendly NNs (a.k.a., “certi-
fied training”) (Wong & Kolter, 2018; Mirman et al., 2018; Gowal et al., 2018; Müller et al., 2022;
Shi et al., 2021; De Palma et al., 2022; Mao et al., 2024). However, they have mostly focused on
achieving adversarial robustness of NNs (Szegedy et al., 2014; Goodfellow et al., 2015). Certified
training for applications beyond adversarial robustness remains under-explored.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In particular, we consider a problem where we want to produce an NN-based model whose output
verifiably satisfies certain properties for any input within a region-of-interest. There is a significant
difference in this problem compared to certified training for adversarial robustness. Specifically,
certified training for adversarial robustness aims to make a model certifiably robust to bounded small
local perturbations for a satisfactory proportion of examples in the dataset, while the model does not
achieve any robustness guarantee for the remaining examples and can make wrong predictions on
many examples even without perturbation. In contrast, the problem we consider here requires that
the model should globally satisfy desired properties on an entire large region-of-interest over the
input space, rather than only local robustness guarantees around a finite number of data points.

An example of such a problem is learning and verifying Lyapunov-stable neural controllers in
discrete-time nonlinear dynamical systems (Wu et al., 2023; Yang et al., 2024), where properties
about the Lyapunov (Lyapunov, 1992) asymptotic stability condition need to verified on the entire
input region-of-interest. It involves finding a Lyapunov function which intuitively characterizes the
energy of input states, where the global minima of Lyapunov function is at an equilibrium point.
If it can be guaranteed that for any state within a region-of-attraction (ROA), the controller always
makes the system evolve towards states with lower Lyapunov function values, then it implies that
starting from any state within the ROA, the controller can always make the system converge towards
the equilibrium point and thus the stability can be guaranteed. As a case study, we focus on this
problem in this paper. The model in this problem contains not only an NN as the controller, but
also a Lyapunov function, as well as nonlinear operators from the system dynamics, introducing
additional difficulty to the training and verification. Although Yang et al. (2024) have used a NN
verifier (Zhang et al., 2018; Xu et al., 2020; 2021; Wang et al., 2021; Zhang et al., 2022; Shi et al.,
2024) to verify their models trained using a counterexample-guided procedure, their training still
had a limited consideration on the NN verification problem and thereby verification at test time took
a long time.

To address these challenges, we propose a new Certified Training framework enhanced with
training-time Branch-and-Bound, namely CT-BaB. We jointly train a NN controller and a Lyapunov
function by computing and optimizing for the verified bound on the violation of the Lyapunov con-
dition. To achieve certified guarantees on the entire region-of-interest, we dynamically maintain a
training dataset which consists of subregions in the region-of-interest. We split hard examples of
subregions in the dataset into smaller ones during the training, along the input dimension where
a split can yield the best improvement on the training objective, so that the training can be eased
with tighter verified bounds for the smaller new subregions. Unlike previous works optimizing for
violations on counterexample data points (Wu et al., 2023; Yang et al., 2024), our proposed method
differs significantly by optimizing for verified bounds on subregions covering the entire region-of-
interest.

Our work makes the following contributions:

• We propose a new certified training framework for producing NNs with relatively global
guarantees which provably hold on the entire input region-of-interest instead of only small
local regions around a finite number of data points. We resolve challenges in certified
training for the relatively large input region-of-interest by proposing a training-time branch-
and-bound method with a dynamically maintained training dataset.

• We demonstrate the new certified training framework on the problem of learning (asymp-
totically) Lyapunov-stable neural controller. To the best of our knowledge, this is also the
first certified training work for the task. Our new approach greatly reduced the training
challenges observed in previous work. For example, unlike previous works (Chang et al.,
2019; Wu et al., 2023; Yang et al., 2024) which required a special initialization from a lin-
ear quadratic regulator (LQR) during counterexample-guided training, our certified training
approach works well by training from scratch with random initialization.

• We empirically show that our training framework produces neural controllers which ver-
ifiably satisfy the Lyapunov condition, with a larger region-of-attraction (ROA), and the
Lyapunov condition can be much more efficiently verified at test time. On the largest 2D
quadrotor dynamical system, we reduce the verification time from 1.1 hours (Yang et al.,
2024) to 11.5 minutes, while our ROA size is 16X larger.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

NN verification and certified training. Formally verifying the behaviors of NNs is important for
the trustworthy deployment of NNs in safety-critical applications. Therefore, many NN verification
techniques and tools have been developed in recent years, such as α,β-CROWN (Zhang et al., 2018;
Xu et al., 2020; 2021; Wang et al., 2021; Zhang et al., 2022; Shi et al., 2024), nnenum (Bak, 2021),
NNV (Tran et al., 2020; Lopez et al., 2023), MN-BaB (Ferrari et al., 2021), Marabou (Wu et al.,
2024), NeuralSAT (Duong et al., 2024), VeriNet (Henriksen & Lomuscio, 2020), etc. One technique
commonly used in the existing NN verifiers is linear relaxation-based bound propagation (Zhang
et al., 2018; Wong & Kolter, 2018; Singh et al., 2019), which essentially relaxes nonlinear operators
in the model by linear lower and upper bounds and then propagates linear bounds through the model
to eventually produce a verified bound on the output of the model. Verified bounds computed in this
way are differentiable and thus can be leveraged in training to produce models with tighter verified
bounds (Zhang et al., 2020; Xu et al., 2020). Using verified bounds at training time is also known
as certified training. Some certified training works (Gowal et al., 2018; Mirman et al., 2018; Shi
et al., 2021; Müller et al., 2022; De Palma et al., 2022) used even cheaper verified bounds computed
by Interval Bound Propagation (IBP) which only propagates more simple interval bounds rather
than linear bounds. However, existing certified training works commonly focused on adversarial
robustness for individual data points with small local perturbations. For instance, in one of the
state-of-the-art works on the certified training for robust image classifiers (Müller et al., 2022),
they reported a standard of accuracy of 52.38% and a “certified accuracy” of 35.13% on CIFAR-
10 (Krizhevsky et al., 2009), which implies that the model does not have any guarantee on 64.87% of
the examples in the dataset, and the model makes wrong predictions on 47.62% of the examples even
without perturbation. In contrast, we consider a certified training beyond adversarial robustness,
where we aim to achieve a relatively global guarantee which provably holds within the entire input
region-of-interest rather than only around a proportion of individual examples. Moreover, since
verified bounds computed with linear relaxation can often be loose, many of the aforementioned
verifiers for trained models also contain a branch-and-bound strategy (Bunel et al., 2020; Wang
et al., 2021) to branch the original verification problem into subproblems with smaller input or
intermediate bounds, so that the verifier can more tightly bound the output. In this work, we explore a
novel use of the branch-and-bound concept in certified training, by dynamically expanding a training
dataset and gradually splitting hard examples into smaller ones during the training, to enable certified
training which eventually works for the entire input region-of-interest.

Learning Lyapunov-stable neural controllers. We particularly focus on the problem of learn-
ing (asymptotically) Lyapunov-stable neural controllers to demonstrate the use of our new certi-
fied training framework. Compared to methods using linear quadratic regulator (LQR) or sum-of-
squares (SOS) (Parrilo, 2000; Tedrake et al., 2010; Majumdar et al., 2013; Yang et al., 2023; Dai
& Permenter, 2023) to synthesize linear or polynomial controllers with Lyapunov stability guaran-
tees (Lyapunov, 1992), NN-based controllers have recently shown great potential in scaling to more
complicated systems with larger region-of-attraction. Some works used sampled data points to syn-
thesize empirically stable neural controllers (Jin et al., 2020; Sun & Wu, 2021; Dawson et al., 2022;
Liu et al., 2023) but they did not provide formal guarantees. Among them, although Jin et al. (2020)
theoretically considered verification, they assumed an existence of some Lipschitz constant which
was not actually computed, and they only evaluated a finite number of data points without a formal
verification.

To learn neural controllers with formal guarantees, many previous works used a Counter Exam-
ple Guided Inductive Synthesis (CEGIS) framework by iteratively searching for counterexamples
which violate the Lyapunov condition and then optimizing their models using the counterexamples,
where counterexamples are generated by Satisfiable Modulo Theories (SMT) solvers (Gao et al.,
2013; De Moura & Bjørner, 2008; Chang et al., 2019; Abate et al., 2020), Mixed Integer Program-
ming solvers (Dai et al., 2021; Chen et al., 2021; Wu et al., 2023), or projected gradient descent
(PGD) (Madry et al., 2018; Wu et al., 2023; Yang et al., 2024). Among these works, Wu et al.
(2023) has also leveraged α,β-CROWN only to guarantee that the Lyapunov function is positive
definite (which can also be achieved by construction as done in Yang et al. (2024)) but not other
more challenging parts of the Lyapunov condition; Yang et al. (2024) used α,β-CROWN to ver-
ify trained models without using verified bounds for training. In contrast to those previous works,
we propose to conduct certified training by optimizing for differentiable verified bounds at train-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ing time, where the verified bounds are computed for input subregions rather than violations on
individual counterexample points, to produce more verification-friendly models.

Verification for neural controllers on other safety properties. Apart from Lyapunov asymptotic
stability, there are many previous works on verifying other safety properties of neural controllers.
Many works studied the reachability of neural controllers to verify the reachable sets of neural
controllers and avoid reaching unsafe states (Althoff & Kochdumper, 2016; Dutta et al., 2019; Tran
et al., 2020; Hu et al., 2020; Everett et al., 2021; Ivanov et al., 2021; Huang et al., 2022; Wang
et al., 2023b; Schilling et al., 2022; Kochdumper et al., 2023; Jafarpour et al., 2023; 2024; Teuber
et al., 2024). Additionally, many other works studied the forward invariance and barrier functions
of neural controllers (Zhao et al., 2021; Wang et al., 2023a; Huang et al., 2023; Harapanahalli &
Coogan, 2024; Hu et al., 2024; Wang et al., 2024). In contrast to the safety properties studied
in those works, the Lyapunov asymptotic stability we study is a stronger guarantee which implies
a convergence towards an equilibrium point, which is not guaranteed by reachability or forward
invariance alone.

3 METHODOLOGY

3.1 PROBLEM SETTINGS

Certified training problem. Suppose the input region-of-interest of the problem is defined by
B ⊆ Rd for input dimension d, and in particular, we assume B is an axis-aligned bounding box
B = {x | b ≤ x ≤ b, x ∈ Rd} with boundary defined by b,b ∈ Rd (we use “≤” for vectors
to denote that the “≤” relation holds for all the dimensions in the vectors). We define a model (or
a computational graph) gθ : Rd → R parameterized by θ, where gθ generally consists of one or
more NNs and also additional operators which define the properties we want to certify (such as the
Lyapunov condition in this work). The goal of certified training is to optimize for parameters θ such
that the following can be provably verified (we may omit θ in the remaining part of the paper):

∀x ∈ B, gθ(x) ≤ 0, (1)

where any gθ(x) > 0 can be viewed as a violation. Unlike previous certified training works (Gowal
et al., 2018; Mirman et al., 2018; Zhang et al., 2020; Müller et al., 2022) which only considered
certified adversarial robustness guarantees on small local regions as {x : ∥x − x0∥ ≤ ϵ} around
a finite number of examples x0 ∈ B in the dataset, we require Eq. (1) to be fully certified for any
x ∈ B.

Neural network verifiers typically verify Eq. (1) by computing a provable upper bound g such
that g ≥ g(x) (∀x ∈ B) provably holds, and Eq. (1) is considered as verified if g ≤ 0. For
models trained without certified training, the upper bound computed by verifiers is usually loose, or
it requires a significant amount of time to further optimize the bounds or gradually tighten the bounds
by branch-and-bound at test time. Certified training essentially optimizes for objectives which take
the computation of verified bounds into consideration, so that Eq. (1) not only empirically holds for
any worst-case data point x which can be empirically found to maximize g(x), but also the model
becomes more verification-friendly, i.e., verified bounds become tighter and thereby it is easier to
verify g ≤ 0 with less branch-and-bound at test time.

Specifications for Lyapunov-stable neural control. In this work, we particularly focus on the
problem of learning a certifiably Lyapunov-stable neural state-feedback controller with continuous
control actions in a nonlinear discrete-time dynamical system, with asymptotic stability guarantees.
We adopt the formulation from Yang et al. (2024). Essentially, there is a nonlinear dynamical system

xt+1 = f(xt, ut(xt)), (2)

which takes the state xt ∈ Rd at the current time step t and a continuous control input ut(xt) ∈ Rnu ,
and then the dynamical system determines the state at the next time step t + 1. The control input
ut(xt) is generated by a controller which is a NN here. The state of the dynamical system is also
the input of the certified training problem.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lyapunov asymptotic stability can guarantee that if the system begins at any state x ∈ S within
a region-of-attraction (ROA) S ⊆ B, it will converge to a stable equilibrium state x∗. Following
previous works, we assume that the equilibrium state is known, which can be manually derived
from the system dynamics for the systems we study. To certify the Lyapunov asymptotic stability,
we need to learn a Lyapunov function V (xt) : Rd → R, such that the Lyapunov condition provably
holds for the dynamical system in Eq. (2):

∀xt ̸= x∗ ∈ S, V (xt) > 0, V (xt+1)− V (xt) ≤ −κV (xt), (3)

and V (x∗) = 0, where κ > 0 is a constant which specifies the exponential stability convergence rate.
This condition essentially guarantees that at each time step, the controller always make the system
progress towards the next state with a lower Lyapunov function value, and thereby the system will
ultimately reach x∗ which has the lowest Lyapunov function value given V (x∗) = 0. Following
Yang et al. (2024), we guarantee V (x∗) = 0 and ∀xt ̸= x ∈ Rd, V (xt) > 0 by the construction of
the Lyapunov function, as discussed in Section 3.4, and we specify the ROA using a sublevel set of
V as S := {x ∈ B | V (x) < ρ} with sublevel set threshold ρ. Since ROA is now restricted to be a
subset of B and the verification will only focus on B, we additionally need to ensure that the state at
the next time step does not leave B, i.e., xt+1 ∈ B.

Overall, we want to verify g(xt) ≤ 0 for all xt ∈ B, where g(xt) is defined as:

g(xt) := min

{
ρ−V (xt), σ(V (xt+1)−(1−κ)V (xt))+

∑
1≤i≤d

σ([xt+1]i−bi)+σ(bi−[xt+1]i)

}
,

(4)
where xt+1 is given by Eq. (2), and σ(x) = max{x, 0} is also known as ReLU. For the specification
in Eq. (4), ρ − V (xt) means that for a state which is provably out of the considered ROA as
V (xt) ≥ ρ, we do not have to verify Eq. (3) or xt+1 ∈ B, and it immediately satisfies g(xt) ≤ 0;
σ(V (xt+1)− (1− κ)V (xt)) is the violation on the V (xt+1)−V (xt) ≤ −κV (xt) condition in Eq.
(3); and the “

∑
1≤i≤d” term in Eq. (4) denotes the violation on the xt+1 ∈ B condition. Verifying

Eq. (4) for all xt ∈ B guarantees the Lyapunov condition for any x ∈ S in the ROA (Yang et al.,
2024). In the training, we try to make g(xt) ≤ 0 verifiable by optimizing the parameters in the
neural controller ut and the Lyapunov function V (xt).

3.2 TRAINING FRAMEWORK

As we are now considering a challenging setting, where we want to guarantee g(x) ≤ 0 on the
entire input region-of-interest B, directly computing a verified bound on the entire B can produce
very loose bounds. Thus, we split B into smaller subregions, and we we maintain a dataset with n
examples D = {(x(1),x(1)), (x(2),x(2)), · · · , (x(n),x(n))}, where each example (x(k),x(k)) (1 ≤
k ≤ n) is a subregion in B, defined as a bounding box {x : x ∈ Rd, x(k) ≤ x ≤ x(k)} with
boundary x(k) and x(k), and all the examples in D cover B as

⋃
(x,x)∈D(x,x) = B. We dynamically

update and expand the dataset during the training by splitting hard examples into more examples
with even smaller subregions, as we will introduce in Section 3.3.

During the training, for each training example (x,x), we compute a verified upper bound of g(x)
for all x (x ≤ x ≤ x) within the subregion, denoted as g(x,x), such that

g(x,x) ≥ g(x) (∀x, x ≤ x ≤ x). (5)

Thereby, g(x,x) is a verifiable upper bound on the worst-case violation of Eq. (1) for data points in
[x,x]. To compute g(x,x), we mainly use the CROWN (Zhang et al., 2018; 2020) algorithm which
is based on linear relaxation-based bound propagation as mentioned in Section 2, while we also use
a more simple Interval Bound Propagation (IBP) (Gowal et al., 2018; Mirman et al., 2018) algorithm
to compute the intermediate bounds of the hidden layers in NNs. Such intermediate bounds are re-
quired by CROWN to derive linear relaxation for nonlinear operators including activation functions,
as well as nonlinear computation in the dynamics of the dynamical system. We use IBP on hidden
layers for more efficient training and potentially easier optimization (Lee et al., 2021; Jovanović
et al., 2021). Verified bounds computed in this way are differentiable, and then we aim to achieve
g(x,x) ≤ 0 and minimize g(x,x) in the training.

We additionally include a training objective term where we try to empirically find the worst-case
violation of Eq. (1) by adversarial attack using projected gradient descent (PGD) (Madry et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2018), denoted as gA(x,x) := g(A(x,x)), where A(x,x) ∈ Rd (x ≤ A(x,x) ≤ x) is a data point
found by PGD to empirically maximize g(A(x,x)) within the domain:

argmax
x∈Rd (x≤x≤x)

g(x), (6)

but A(x,x) found by PGD is not guaranteed to be the optimal solution for Eq. (6). Since it is easier
to train a model which empirically satisfies Eq. (1) compared to making Eq. (1) verifiable, we add
this adversarial attack objective so that the training can more quickly reach a solution with most
counterexamples eliminated, while certified training can focus on making it verifiable. This objec-
tive also helps to achieve that at least no counterexample can be empirically found, even if verified
bounds by CROWN and IBP cannot yet verify all the examples in the current dataset (x,x) ∈ D,
as we may still be able to fully verify Eq. (1) at test time using a stronger verifier enhanced with
large-scale branch-and-bound.

Overall, we optimize for a loss function to minimize the violation of g(x,x) and gA(x,x):

L =

(
E(x,x)∈D σ(g(x,x) + ϵ) + λmaxσ(gA(x,x) + ϵ)

)
+ Lextra, (7)

where σ(·) is ReLU, ϵ is small value for ideally achieving Eq. (1) with a margin, as g(x,x) ≤ −ϵ
and gA(x,x) ≤ −ϵ, λ is a coefficient used to for assigning a weight to the PGD term, and Lextra
is an extra loss term which can be used to control additional properties of the model. After the
training, the desired properties as Eq. (1) are verified by a formal verifier such as α,β-CROWNwith
larger-scale branch-and-bound, and thus the soundness of the trained models can be guaranteed as
long as the verification succeeds at test time.

We have formulated our general training framework in this section, and we will instantiate our train-
ing framework on the particular task of learning Lyapunov-stable neural controllers in Section 3.4.

3.3 TRAINING-TIME BRANCH-AND-BOUND

We now discuss how we initialize the training dataset D and dynamically maintain the dataset during
the training by splitting hard examples into smaller subregions.

Initial splits. We initialize D by splitting the original input region-of-interest B into grids along
each of its d dimensions, respectively. We control the maximum size of the initial regions with a
threshold l which denotes the maximum length of each input dimension. For each input dimension
i (1 ≤ i ≤ d), we uniformly split the input range [bi,bi] into mi = ⌈bi−bi

l ⌉ segments in the
initial split, such that the length of each segment is no larger than the threshold l. We thereby create∏d

i=1 mi regions to initialize D, where each region is created by taking a segment from each input
dimension, respectively. Each region (x,x) ∈ D is also an example in the training dataset. We set
the threshold l such that the initial examples fill 1∼2 batches according to the batch size, so that
the batch size can remain stable in the beginning of the training rather than start with a small actual
batch size.

Splits during the training. After we create the initial splits with uniform splits along each input
dimension, during the training, we also dynamically split hard regions into even smaller subregions.
We take dynamic splits instead of simply taking more initial splits, as we can leverage the useful
information during the training to identify hard examples to split where the specification has not
been verified, and we also identify the input dimension to split such that it can lead to the best
improvement on the loss values.

In each training batch, we take each example (x(k),x(k)) with g(x(k),x(k)) > 0, i.e., we have not
been able to verify that g(x) ≤ 0 within the region [x(k),x(k)]. We then choose one of the input
dimensions i(1 ≤ i ≤ d) and uniformly split the region into two subregions along the chosen input
dimension i. At dimension i, suppose the original input range for the example is [x

(k)
i ,x

(k)
i ], we

split it into [x
(k)
i ,

x
(k)
i +x

(k)
i

2 ] and [
x
(k)
i +x

(k)
i

2 ,x
(k)
i ], while leaving other input dimensions unchanged.

We remove the original example from the dataset and add the two new subregions into the dataset.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In order to maximize the benefit of splitting an example, we decide the input dimension to choose
by trying each of the input dimensions j(1 ≤ j ≤ d) and computing the total loss of the two
new subregions when dimension j is split. Suppose L(x(k),x(k)) is the contribution of an example
(x(k),x(k)) to the loss function in Eq. (7). We take the dimension j to split which leads to the lowest
loss value for the new examples:

argmin
1≤j≤d

L(x(k),x(k,j)) + L(x(k,j),x(k)), where x
(k,j)
j = x

(k,j)
j =

x
(k)
j + x

(k)
j

2
, (8)

and x
(k,j)
i = x

(k)
i ,x

(k,j)
i = x

(k)
i keep unchanged for other dimensions i ̸= j not being split. All

the examples requiring a split in a batch and all the input dimensions to consider for the split can be
handled in parallel on GPU.

3.4 MODELING AND TRAINING OBJECTIVES FOR LYAPUNOV-STABLE NEURAL CONTROL

To demonstrate our new certified training framework, we focus on its application on learning veri-
fiably Lyapunov-stable neural controllers with state feedback. Since our focus is on a new certified
training framework, we use the same model architecture as Yang et al. (2024). We use a fully-
connected NN for the controller u(x); for the Lyapunov function V (x), we either use a model based
on a fully-connected NN ϕ(x) as V (x) = |ϕ(x) − ϕ(x∗)| + ∥(ϵV I + R⊤R)(x − x∗)∥1, or a
quadratic function as V (x) = (x−x∗)⊤(ϵV I +R⊤R)(x−x∗), where R ∈ Rnr×nr is an optimiz-
able matrix parameter, and ϵV > 0 is a small positive value to guarantee that ϵV I+R⊤R is positive
definite. The construction of the Lyapunov functions automatically guarantees that V (x∗) = 0 and
V (x) > 0 (∀x ̸= x∗) (Yang et al., 2024) required in the Lyapunov condition.

We have discussed the formulation of g(x) in Eq. (4). When bounding the violation term V (xt+1)−
(1− κ)V (xt) in Eq. (4), we additionally apply a constraint V (xt+1) ≥ ρ+ ϵ for xt+1 /∈ B. It is to
prevent wrongly minimizing the violation by going out of the region-of-interest as xt+1 /∈ B while
making V (xt+1) (xt+1 /∈ B) small, such that the violation V (xt+1)− (1− κ)V (xt) appears to be
small yet missing the xt+1 ∈ B requirement.

As mentioned in Eq. (4), an additional term Lextra can be added to control additional properties
of the model. We use the extra loss term to control the size of the region-of-attraction (ROA). We
aim to have a good proportion of data points from the region-of-interest x ∈ B, such that their
Lyapunov function values are within the sublevel set V (x) < ρ where the Lyapunov condition is to
be guaranteed. To do this, we randomly draw a batch of nρ samples within B, as x̃1, x̃2, · · · , x̃nρ

∈
B, and we define Lextra as:

Lextra = I
(

1

nρ

nρ∑
i=1

I(V (x̃i) < ρ) < ρratio

)
λρ

nρ

nρ∑
i=1

σ(V (x̃i) + ρ− ϵ), (9)

which penalizes samples with V (x̃i) > ρ − ϵ when the ratio of samples within the sublevel set is
below the threshold ρratio, where ϵ is a small value for the margin as similarly used in Eq. (7) and λρ

is the weight of term Lextra Eq. (7). In our implementation, we simply fix ρ = 1 and make nρ equal
to the batch size of the training. The threshold ρratio and the weight λρ can be set to reach the desired
ROA size, but setting a stricter requirement on the ROA size can naturally increase the difficulty of
training.

All of our models are randomly initialized and trained from scratch. This provides an additional
benefit compared to previous works (Wu et al., 2023; Yang et al., 2024) which commonly required
an initialization for a traditional non-learning method (linear quadratic regulartor, LQR) with a small
ROA. Yang et al. (2024) also proposed to enlarge ROA with carefully selected candidates states
which are desired to be within the ROA by referring to LQR solutions. In contrast, our training does
not require any baseline solution. Thus, this improvement from our method can reduce the burden
of applying our method without requiring a special initialization.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Dynamical systems used in the experiments. All these settings follow Yang et al. (2024).
d means the dimension of input states and nu means the dimension of control input which is from
the output of the controller. There is a limit on the control input u and the output of the controller is
clamped according to the limit, where some symbols in the limit on u are from the dynamics of the
systems: m for mass, g for gravity, l for length, and v for velocity. Size of the region-of-interest here
is represented by the upper boundary b, and b = −b holds for all the systems here. Equilibrium
state of all the systems here is x∗ = 0.

System d nu Limit on u Region-of-interest

Inverted pendulum 2 1 |u| ≤ 8.15 ·mgl (large torque)
[12, 12]|u| ≤ 1.02 ·mgl (small torque)

Path tracking 2 1 |u| ≤ 1.68 · l/v (large torque)
[3, 3]|u| ≤ l/v (small torque)

2D quadrotor 6 3 ∥u∥∞ ≤ 1.25 ·mg [0.75, 0.75, π, 2, 4, 4, 3]

Table 2: Comparison on the verification time cost and the size of ROA. “Pendulum” refers to the
inverted pendulum system. Model checkpoints for Wu et al. (2023) are obtained from the source
code of Yang et al. (2024) and the same models have been used for comparison in Yang et al. (2024),
where “-” denotes that on some of the systems models for Wu et al. (2023) are not available. Yang
et al. (2024) and ours have the same model architecture on each system.

System Wu et al. (2023) CEGIS (Yang et al., 2024) Ours
Time ROA Time ROA Time ROA

Pendulum (large torque) 11.3s 53.28 33s 239.04 32s 495.36
Pendulum (small torque) - - 25s 187.20 26s 275.04
Path tracking (large torque) 11.7s 14.38 39s 18.27 31s 21.60
Path tracking (small torque) - - 34s 10.53 27s 11.51
2D quadrotor - - 1.1hrs 3.29 11.5min 54.39

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dynamical systems. We demonstrate our new certified training work on learning Lyapunov-stable
neural controllers with state feedback in several nonlinear discrete-time dynamical systems follow-
ing Wu et al. (2023); Yang et al. (2024), as listed in Table 1: Inverted pendulum is about swinging up
the pendulum to the upright equilibrium; Path tracking is about tracking a path for a planar vehicle;
and 2D quadrotor is about hovering a quadrotor at the equilibrium state. For inverted pendulum
and path tracking, there are two different limits on the maximum allowed torque of the controller,
where the setting is more challenging with a smaller torque limit. Detailed definition of the system
dynamics (f in Eq. (2)) is available in existing works: Wu et al. (2023) for inverted pendulum and
path tracking, and Tedrake (2009) for 2D quadrotor.

Implementation. We use the PyTorch library auto LiRPA (Xu et al., 2020) to compute CROWN
and IBP verified bounds during the training. After a model is trained, we use α,β-CROWN to finally
verify the trained model, where α,β-CROWN is configured to use verified bounds by auto LiRPA
and run branch-and-bound on the input space to tighten the verified bounds until the verification
succeeds, which has been used in the same way in Yang et al. (2024). Additional details of the
experiments are included in Appendix A.

4.2 MAIN RESULTS

We show the main results in Table 2, where we compare the verification time cost and size of ROA
with the previous state-of-the-art method based on CEGIS (Yang et al., 2024), as well as an earlier
work (Wu et al., 2023) on applicable systems. Following Wu et al. (2023), we estimate the size of
ROA by considering grid points in the region-of-interest B and counting the proportion of grid points
within the sublevel set of the Lyapunov function where the Lyapunov condition is verified, multiplied

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Runtime of training, size of the training dataset, and the ratio of examples in the training
dataset verifiable by CROWN without further branch-and-bound. “Initial dataset size“ denotes the
size of the training dataset at the start of the training, and “final dataset size” denote the size at the
end of the training. All the models can be fully verified at test time using α,β-CROWN with branch-
and-bound at the input space, as shown in Table 2.

System Runtime Initial dataset size Final dataset size Verified by CROWN

Pendulum (large torque) 6min 58080 68686 100%
Pendulum (small torque) 32min 58080 657043 100%
Path tracking (large torque) 17min 40400 7586381 94.95%
Path tracking (small torque) 16min 40400 222831 99.97%
2D quadrotor 107min 46336 34092930 88.18%

by the volume of B. Models by Wu et al. (2023) have much smaller ROA than Yang et al. (2024), and
thus we focus on comparing our method with Yang et al. (2024). On inverted pendulum, our method
produces much larger ROA with similar verification time, and on path tracking, our method produces
larger ROA while also reducing the verification time. On these two systems, the verification time
cannot be greatly reduced, due to the overhead of launching α,β-CROWN and low GPU utilization
when the verification is relatively easy. On 2D quadrotor with a much higher difficulty, our method
significantly reduces the verification time (11.5 minutes compared to 1.1 hours by Yang et al. (2024))
while also significantly enlarging the ROA (54.39 compared to 3.29 by Yang et al. (2024)). These
results demonstrate the effectiveness of our method on producing verification-friendly Lyapunov-
stable neural controllers and Lyapunov functions with larger ROA. In Figure 1, we visualize the
ROA on 2D quadrotor, with different 2D views, which demosntrates a larger ROA compared to the
Yang et al. (2024) baseline. In Appendix B, we visualize the distribution of the subregions after
our training-time branch-and-bound, which suggests that much more extensive splits tend to happen
when at least one of the input states is close to that of the equilibrium state, where Lyapunov function
values are relatively small and the training tends to be more challenging.

In Table 3, we show information about the training, including the time cost of training, size of the
dynamic training dataset and the ratio of training examples which can be verified using verified
bounds by CROWN (Zhang et al., 2018; Xu et al., 2020) at the end of the training. Our training
dataset is dynamically maintained and expanded as described in Section 3.3, and the dataset size
grows from the “initial dataset size” to the “final dataset size” shown in Table 3. At the end of
the training, most of the training examples (more than 88%) can already be verified by CROWN
bounds. Although not all of the training examples are verifiable by CROWN, all the models can
be fully verified when we use α,β-CROWN to finally verify the models at test time, where α,β-
CROWN further conducts branch-and-bound on the input space using CROWN bounds.

Ours Yang et al (2024)

Figure 1: Visualization of the Lyapunov function (color plots) and ROA (contours) on the 2D
quadrotor system with three different 2D views compared to Yang et al. (2024). The system contains
6 states denoted as x = [x, y, θ, ẋ, ẏ, θ̇]. Our method demonstrates a 16X larger ROA (in terms of
the volume of ROA on the 6-dimensional input space) compared to Yang et al. (2024).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Training and test results of ablation study conducted on the 2D quadrotor system. For
training results, we report the dataset size at the end of the training and the ratio of training examples
verified by CROWN, where “verified (all)” is evaluated on all the training examples, while “verified
(within the sublevel set)” excludes examples verified to be out of the sublevel set with V (x) < ρ.
For test results, we report if the model can be fully verified at test time by α,β-CROWN and a
“candidate ROA” size which denotes the volume of the sublevel set with V (x) < ρ. “Candidate
ROA” is the true ROA if the model is fully verified.

Method Training Test
Dataset size Verified (all) Verified (within the sublevel set) Fully verified Candidate ROA

Default 34092930 88.18% 86.95% Yes 54.39
No dynamic split 64916160 99.95% 38.29% No 0.08
Naive dynamic split 20477068 90.05% 55.62% No 0.0095

4.3 ABLATION STUDY

In this section, we conduct an ablation study to demonstrate the necessity of using our dynamic
splits to maintain the training dataset as described in Section 3.3, on the largest 2D quadrotor system.
We consider two variations of our proposed method: No dynamic split means that we use a large
number of initial splits by reducing the threshold l which controls the maximize size of initial regions
mentioned in Section 3.3, and the dataset is then fixed and there is no dynamic split throughout the
training; Naive dynamic split means that we use dynamic splits but we simply split along the input
dimension with the largest size, as argmax1≤j≤d(x

(k)
i − x

(k)
j ), instead of taking the best input

dimension in terms of reducing the loss value as Eq. (8). We show the results in Table 4. Neither of
“no dynamic split” and “naive dynamic split” can produce verifiable models. We observe that they
both tend to make the sublevel set with V (x) < ρ very small, which leads to a very small ROA size
even if the model can be verified (if the weight on the extra loss term for ROA in Eq. (9) is increased,
the training does not converge with many counterexamples which can be empirically found). For
the two variations, although most of the training examples can still be verified at the end of training,
if we check nontrivial examples which are not verified to be out of the sublevel set (see “verified
(within the sublevel set)” in Table 4), a much smaller proportion of these examples are verified.
Without our proposed dynamic splits decided by Eq. (8), these two variations cannot identify hard
examples to split and split along the best input dimension to efficiently ease the training, leaving
many unverified examples among those possibly within the sublevel set, despite that the size of
the sublevel set is significantly shrunk. This experiment demonstrates the benefit of our proposed
dynamic splits.

5 CONCLUSION

To conclude, we propose a new certified training framework for training verification-friendly mod-
els where a relatively global guarantee can be verified for an entire region-of-interest in the input
space. We maintain a dynamic dataset of subregions which cover the region-of-interest, and we
split hard examples into smaller subregions throughout the training, to ease the training with tighter
verified bounds. We demonstrate our new certified training framework on the problem of learning
and verifying Lyapunov-stable neural controllers. We show that our new method produces more
verification-friendly models which can be more efficiently verified at test time while the region-of-
attraction also becomes much larger compared to the state-of-the-art baseline.

A limitation of this work is that only low-dimensional dynamical systems have been considered,
which is also a common limitation of previous works on this Lyapunov problem (Chang et al.,
2019; Wu et al., 2023; Yang et al., 2024). Future works may consider scaling up our method to
higher-dimensional systems. Since splitting regions on the input space can become less efficient
if the dimension of the input space significantly increases, future works may consider applying
splits on the intermediate bounds of activation functions (potentially with sparsity), which has been
commonly used in state-of-the-art NN verifiers (mentioned in Section 2) for verifying trained models
on high-dimensional tasks such as image classification.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

Matthias Althoff and Niklas Kochdumper. Cora 2016 manual. TU Munich, 85748, 2016.

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA Formal Methods Symposium, pp. 19–36. Springer, 2021.

Rudy Bunel, P Mudigonda, Ilker Turkaslan, P Torr, Jingyue Lu, and Pushmeet Kohli. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research,
21(2020), 2020.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural infor-
mation processing systems, 32, 2019.

Shaoru Chen, Mahyar Fazlyab, Manfred Morari, George J Pappas, and Victor M Preciado. Learning
lyapunov functions for hybrid systems. In Proceedings of the 24th International Conference on
Hybrid Systems: Computation and Control, pp. 1–11, 2021.

Hongkai Dai and Frank Permenter. Convex synthesis and verification of control-lyapunov and bar-
rier functions with input constraints. In IEEE American Control Conference (ACC), 2023.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-stable neural-
network control. arXiv preprint arXiv:2109.14152, 2021.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, 2022.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008.

Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M Pawan Kumar, and Robert Stan-
forth. Ibp regularization for verified adversarial robustness via branch-and-bound. arXiv preprint
arXiv:2206.14772, 2022.

Hai Duong, Dong Xu, ThanhVu Nguyen, and Matthew B Dwyer. Harnessing neuron stability to
improve dnn verification. Proceedings of the ACM on Software Engineering, 1(FSE):859–881,
2024.

Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Sherlock-a
tool for verification of neural network feedback systems: demo abstract. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 262–263,
2019.

Michael Everett, Golnaz Habibi, Chuangchuang Sun, and Jonathan P How. Reachability analysis of
neural feedback loops. IEEE Access, 2021.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2021.

Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: An smt solver for nonlinear theories over
the reals. In International conference on automated deduction, pp. 208–214. Springer, 2013.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Akash Harapanahalli and Samuel Coogan. Certified robust invariant polytope training in neural
controlled odes. arXiv preprint arXiv:2408.01273, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine-
ment and adversarial search. In ECAI 2020, pp. 2513–2520. IOS Press, 2020.

Haimin Hu, Mahyar Fazlyab, Manfred Morari, and George J Pappas. Reach-sdp: Reachability
analysis of closed-loop systems with neural network controllers via semidefinite programming.
In 2020 59th IEEE conference on decision and control (CDC), pp. 5929–5934. IEEE, 2020.

Hanjiang Hu, Yujie Yang, Tianhao Wei, and Changliu Liu. Verification of neural control barrier
functions with symbolic derivative bounds propagation. In 8th Annual Conference on Robot
Learning, 2024.

Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. Polar: A polynomial arithmetic
framework for verifying neural-network controlled systems. In International Symposium on Au-
tomated Technology for Verification and Analysis, pp. 414–430. Springer, 2022.

Yujia Huang, Ivan Dario Jimenez Rodriguez, Huan Zhang, Yuanyuan Shi, and Yisong Yue. Fi-ode:
Certified and robust forward invariance in neural odes. arXiv, 2023.

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George Pappas, and Insup Lee.
Verisig 2.0: Verification of neural network controllers using taylor model preconditioning. In
International Conference on Computer Aided Verification, pp. 249–262. Springer, 2021.

Saber Jafarpour, Akash Harapanahalli, and Samuel Coogan. Interval reachability of nonlinear dy-
namical systems with neural network controllers. In Learning for Dynamics and Control Confer-
ence, pp. 12–25. PMLR, 2023.

Saber Jafarpour, Akash Harapanahalli, and Samuel Coogan. Efficient interaction-aware interval
analysis of neural network feedback loops. IEEE Transactions on Automatic Control, 2024.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Neural certificates for safe control
policies. arXiv preprint arXiv:2006.08465, 2020.

Nikola Jovanović, Mislav Balunović, Maximilian Baader, and Martin Vechev. On the paradox of
certified training. arXiv preprint arXiv:2102.06700, 2021.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open-and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,
pp. 16–36. Springer, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, 2009.

Sungyoon Lee, Woojin Lee, Jinseong Park, and Jaewook Lee. Towards better understanding of
training certifiably robust models against adversarial examples. Advances in Neural Information
Processing Systems, 34:953–964, 2021.

Simin Liu, Changliu Liu, and John Dolan. Safe control under input limits with neural control barrier
functions. In Conference on Robot Learning. PMLR, 2023.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T Johnson. Nnv 2.0: the
neural network verification tool. In International Conference on Computer Aided Verification, pp.
397–412. Springer, 2023.

Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion. International
journal of control, 55(3):531–534, 1992.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories with
sums of squares programming. In 2013 IEEE International Conference on Robotics and Automa-
tion, pp. 4054–4061. IEEE, 2013.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuhao Mao, Mark Müller, Marc Fischer, and Martin Vechev. Connecting certified and adversarial
training. Advances in Neural Information Processing Systems, 36, 2024.

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 3575–3583, 2018.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training: Small
boxes are all you need. arXiv preprint arXiv:2210.04871, 2022.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robust-
ness and optimization. California Institute of Technology, 2000.

Christian Schilling, Marcelo Forets, and Sebastián Guadalupe. Verification of neural-network con-
trol systems by integrating taylor models and zonotopes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8169–8177, 2022.

Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust
training with short warmup. Advances in Neural Information Processing Systems, 34, 2021.

Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
verification with branch-and-bound for general nonlinearities. arXiv preprint arXiv:2405.21063,
2024.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):41, 2019.

Wei Sun and Tianfu Wu. Learning layout and style reconfigurable gans for controllable image
synthesis. IEEE transactions on pattern analysis and machine intelligence, 44(9):5070–5087,
2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014.

Russ Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile ma-
chines. Course notes for MIT, 6:832, 2009.

Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. Lqr-trees: Feedback motion
planning via sums-of-squares verification. The International Journal of Robotics Research, 2010.

Samuel Teuber, Stefan Mitsch, and André Platzer. Provably safe neural network controllers via
differential dynamic logic. arXiv preprint arXiv:2402.10998, 2024.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. Nnv: the neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems. In International Conference
on Computer Aided Verification, pp. 3–17. Springer, 2020.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 34:29909–29921,
2021.

Xinyu Wang, Luzia Knoedler, Frederik Baymler Mathiesen, and Javier Alonso-Mora. Simulta-
neous synthesis and verification of neural control barrier functions through branch-and-bound
verification-in-the-loop training. In 2024 European Control Conference (ECC), pp. 571–578.
IEEE, 2024.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593–36604. PMLR, 2023a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yixuan Wang, Weichao Zhou, Jiameng Fan, Zhilu Wang, Jiajun Li, Xin Chen, Chao Huang, Wen-
chao Li, and Qi Zhu. Polar-express: Efficient and precise formal reachability analysis of neural-
network controlled systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023b.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 5283–5292, 2018.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer
of neural networks. In International Conference on Computer Aided Verification, pp. 249–264.
Springer, 2024.

Junlin Wu, Andrew Clark, Yiannis Kantaros, and Yevgeniy Vorobeychik. Neural lyapunov control
for discrete-time systems. Advances in neural information processing systems, 36:2939–2955,
2023.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. In Advances in Neural Information Processing Systems, 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In International Conference on Learning Representations, 2021.

Lujie Yang, Hongkai Dai, Alexandre Amice, and Russ Tedrake. Approximate optimal controller
synthesis for cart-poles and quadrotors via sums-of-squares. IEEE Robotics and Automation
Letters, 2023.

Lujie Yang, Hongkai Dai, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, and Huan Zhang. Lyapunov-
stable neural control for state and output feedback: A novel formulation. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
work robustness certification with general activation functions. In Advances in Neural Information
Processing Systems, pp. 4944–4953, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
International Conference on Learning Representations, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. arXiv preprint
arXiv:2208.05740, 2022.

Hengjun Zhao, Xia Zeng, Taolue Chen, Zhiming Liu, and Jim Woodcock. Learning safe neural
network controllers with barrier certificates. Formal Aspects of Computing, 33:437–455, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS OF THE IMPLEMENTATION AND EXPERIMENTS

We directly adopt the model architecture of all the controllers and Lyapunov functions from Yang
et al. (2024) (we follow their source code which has some minor difference with the information
provided in their paper). The controller is always a fully-connected NN with 8 hidden neurons in
each hidden layer. For inverted pendulum and path tracking, there are 4 layers, and for 2D quadrotor,
there are 2 layers. ReLU is used as the activation function. A NN-based Lyapunov function is used
for inverted pendulum and path tracking, where the NN is a fully-connected NN with 4 layers, and
the number of hidden neurons is 16, 16, and 8 for the three hidden layers, respectively. Leaky ReLU
is used as the activation function for NN-based Lyapunov functions. A quadratic Lyapunov function
with nr = 6 is used for 2D quadrotor. For κ in Eq. (3), κ = 0.001 is used for inverted pendulum
and path tracking, and κ = 0 is used for 2D quadrotor, following Yang et al. (2024).

We use a batch size of 30000 for all the training. We mainly use a learning rate of 5× 10−3, except
2 × 10−2 for path tracking. In the loss function, we set λ to 10−4, λp to 0.1, and ϵ to 0.01. We
try to make ρratio as large as possible for individual systems, as long as the training works. We set
ρratio = 0.1 for 2D quadrotor. For inverted pendulum and path tracking, the range of ρratio is between
0.5 and 0.9 for different settings. We start our dynamic splits after 100 initial training steps and
continue until 5000 training steps (for 2D quadrotor) or if the training finishes before that (for other
systems). For the adversarial attack, we use PGD with 10 steps and a step size of 0.25 relative to
the size of subregion. We fix ρ = 1.0 during the training. At test time, we slightly reduce ρ to
0.9 for 2D quadrotor while we keep ρ = 1.0 for other systems. Using a slightly smaller ρ at test
time instead of the value used for training has been similarly done in Yang et al. (2024) to ease the
verification. Each training is done using a single NVIDIA GeForce RTX 2080 Ti GPU, while the
verification with α,β-CROWN at test time is done on a NVIDIA RTX A6000 GPU which is the
same GPU model used by Yang et al. (2024).

B VISUALIZATION OF BRANCH-AND-BOUND

In this section, we visualize the distribution of subregions in the training dataset D at the end of the
training, in order to understand where the most extensive branch-and-bound happens. Specifically,
we check the distribution of the center of subregions. For systems with two input states (inverted
pendulum and path tracking), we use 2D histogram plots, as shown in Figure 2 and 3. For the 2D
quadrotor system which has 6 input states (and thus a 2D histogram plot cannot be directly used),
we plot the distribution for different measurements of the subregion centers, including the ℓ1 norm,
ℓ∞ norm, and the minimum magnitude over all the dimensions, as shown in Figure 4. We find that
much more extensive splits tend to happen when at least one of the input states is close to that of the
equilibrium state. Such areas have relatively small Lyapunov function values and tend to be more
challenging for the training and verification. Specifically, in Figure 2a, 3a and 3b, extensive splits
happen right close to the equilibrium state, while in Figure 2b, although extensive splits are not fully
near the equilibrium state, extensive splits happen for subregions where the value for the θ̇ input
state is close to 0 (i.e., value of θ̇ for the equilibrium state). The observation is also similar for the
2D quadrotor system, where Figure 4c shows that most subregions have at least one input state close
to 0.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10 5 0 5 10
 (rad)

10

5

0

5

10

 (r
ad

/s
)

250

500

750

1000

1250

1500

1750

(a) Large torque.

10 5 0 5 10
 (rad)

10

5

0

5

10

 (r
ad

/s
)

25000

50000

75000

100000

125000

150000

175000

200000

(b) Small torque.

Figure 2: Visualization for the distribution of subregions in D at the end of the training for the
inverted pendulum system, with large torque limit and small torque limit, respectively. The 2D
histogram plots show the distribution of the center of subregions. θ and θ̇ denote the angular position
and angular velocity, respectively, for the two input states in inverted pendulum.

2 1 0 1 2
ed (m)

2

1

0

1

2

e
 (r

ad
)

1

2

3

4

1e6

(a) Large torque.

2 1 0 1 2
ed (m)

2

1

0

1

2

e
 (r

ad
)

2000

4000

6000

8000

10000

12000

14000

16000

(b) Small torque.

Figure 3: Visualization for the distribution of subregions in D at the end of the training for the path
tracking system, similar to Figure 2. ed and eθ denote the distance error and angle error, respectively,
for the two input states in path tracking.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12
1 norm

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

t

1e7

(a) ℓ1 norm.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Maximum magnitude dimension (  norm)

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

t

1e7

(b) ℓ∞ norm.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Minimum magnitude dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
un

t

1e7

(c) Minimum magnitude over all the dimensions.

Figure 4: Visualization for the distribution of subregions in D at the end of the training for the 2D
quadrotor system. We check the distribution of ℓ1 norm, ℓ∞ norm, and the minimum magnitude
over all the dimensions (all the input states), respectively, for the subregion centers.

17


	Introduction
	Related Work
	Methodology
	Problem Settings
	Training Framework
	Training-Time Branch-and-Bound
	Modeling and Training Objectives for Lyapunov-stable Neural Control

	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusion
	Details of the Implementation and Experiments
	Visualization of Branch-and-Bound

