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ABSTRACT

Eye gaze, encompassing fixations and saccades, offers valuable insights into hu-
man intentions and future actions. This study presents a novel approach to enhanc-
ing Vision Language Models (VLMs) for human action prediction by integrating
eye gaze data into egocentric video analysis. Existing methods for action pre-
diction in egocentric videos often rely solely on visual data, potentially missing
critical information provided by eye gaze. To address this limitation, we propose a
unique gaze-augmented framework that integrates eye gaze directly into the VLM
architecture and training process. By generating gaze heatmaps from eye gaze co-
ordinates, our model dynamically focuses on regions highlighted by gaze patterns.
Additionally, a gaze-regularization mechanism ensures the model maintains atten-
tion on gaze-allocated areas, thereby improving prediction accuracy and robust-
ness. Our approach significantly enhances the model’s ability to generate precise
and detailed predictions of future actions. Compared to baseline models with-
out leveraging gaze data, our method achieves a nearly 13% improvement in the
semantic score of predictions. This substantial improvement underscores the ef-
fectiveness and novelty of integrating eye gaze with a gaze-regularized attention
mechanism in VLMs for action prediction. Moreover, our work demonstrates that
incorporating eye gaze through this gaze-augmented framework can significantly
boost the predictive capabilities of VLMs, enhancing their potential in applica-
tions that require accurate human action prediction.

1 INTRODUCTION

VLMs are foundation models that combine computer vision and natural language processing to
understand and generate both visual and textual information. Examples of such models include
ViLBERT, LXMERT, and CLIP (Lu et al., 2019a; Tan & Bansal, 2019; Radford et al., 2021). These
models can describe images, answer questions about visual content, and even generate images from
textual descriptions. When oriented to predict future events and actions, VLMs have the potential
to facilitate human-machine interaction in various applications like assistive robots (Li et al., 2024),
accessibility for visually impaired individuals (Zhao et al., 2024b), and autonomous driving (Zhou
et al., 2024), contributing to safer and more inclusive environments.

To achieve the full potential, we propose that the key is to endow VLMs with the capability for fine-
grained action prediction, which provides more actionable information to facilitate human-machine
interaction. While coarse predictions might identify general activities like “brewing coffee,” fine-
grained predictions specify detailed steps such as “reaching for the coffee capsule in the top-right
cabinet, then filling the tank with the cup on the rack.” These detailed predictions provide useful
insights that allow machines to assist more effectively (Goyal & Durrett, 2021). However, achiev-
ing accurate fine-grained predictions requires understanding the human agent’s short-term goals,
which, we propose, can be inferred from eye gaze patterns. On one hand, eye gaze reveals which
objects the human is focusing on or intends to interact with, making it a valuable component for
enhancing action prediction (Frischen et al., 2007),(Tipper, 2010). Moreover, humans often scan
their surroundings to collect information necessary to accomplish short-term goals before executing
an action. Thus, incorporating eye gaze into VLMs for action prediction provides insights into a
person’s intentions, and shall lead to more accurate and reliable predictions of human activities.
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Figure 1: Illustration of human action prediction from egocentric video clips. The input consists of
a sequence of image frames, with the output being predicted future actions in textual form. The base
model predicts the presence of a bowl and selects the incorrect object, whereas the proposed model,
which incorporates gaze data, correctly predicts the object that is about to be picked up. Predicted
future actions (in text) are displayed on the right, while ground-truth annotations and immediate
future frames are provided at the bottom for reference.

In this study, we propose a novel gaze-augmented framework that significantly enhances fine-grained
action prediction by integrating eye gaze information into the VLM architecture and training pro-
cess. Our approach involves generating gaze heatmaps from eye gaze coordinates, which dynami-
cally guides the model’s focus to regions of interest highlighted by gaze patterns. Specifically, the
gaze-augmented framework employs a sophisticated attention mechanism where features derived
from gaze-overlay images serve as queries in a Vision Transformer (ViT) (Dosovitskiy et al., 2021),
while RGB image features act as keys and values. This method ensures that attention is calculated
specifically to emphasize gaze-highlighted regions, which enhances the relevance of the extracted
features. Furthermore, we introduce an explicit gaze-regularization mechanism that enforces the
model to consistently allocate attention to gaze-concentrated areas, thereby promoting the predic-
tive capability of the model.

Our experimental results show that augmenting the VLM architecture with gaze information greatly
improves its performance, with nearly a 13% increase in the semantic score of predictions compared
to baseline models without gaze data. This improvement highlights the effectiveness of using eye
gaze with a regularized attention mechanism for detailed action prediction. By experimenting with
both singular and aggregated gaze-augmented models, we validate the benefits of discounting noisy
and irrelevant eye gaze points, which enhances robustness in highly dynamic environments. Fur-
ther experiments with more detailed annotations show significant improvement in the performance
of gaze-augmented models (by nearly 12%), whereas the base model’s performance remains un-
changed. This indicates that finer-grained annotations can help strengthen and unleash the proposed
model’s potential to leverage gaze data for better action prediction. In summary, our contributions
are 1) A novel gaze-augmented VLM for fine-grained human action prediction; 2) A unique gaze-
regularized attention mechanism that guarantees effective training of the gaze-augmented VLMs; 3)
An efficient gaze sanity check to ensure the relevance of the gaze information; and 4) An extensive
study that demonstrates the effectiveness of the proposed framework and validates the significance
of gaze information for human action prediction.

2 RELATED WORK

Action prediction and activity forecasting tasks Action prediction and activity forecasting tasks
both aim to predict future human actions. While action prediction tasks focus on predicting immedi-
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ate actions given an input image sequence or video clip, activity forecasting emphasizes predicting
broader human activities over a longer time frame (Gao et al., 2017). However, both the tasks
share the same goal of understanding human behaviour and making reasonable predictions. These
tasks have been extensively studied, particularly through the challenges established by the Ego4D
benchmark (Grauman et al., 2022). Previous approaches have leveraged Long Short-Term Memory
(LSTM) networks and modality attention mechanisms (Furnari & Farinella, 2019) to predict future
actions. Other studies have combined bottom-up and top-down approaches to infer latent goals and
predict actions by modeling temporal dynamics (Zhao et al., 2024a). Mascaro et al. (2024) de-
composed the action prediction problem into predicting low-level actions derived from high-level
intentions, which showed an improvement in prediction performance. Similarly,Ashutosh et al.
(2023) presented a hierarchical approach for action anticipation by modeling both short-term low-
level actions (“what the person is doing right now”) and high-level long-term intentions (“what the
person wants to do”) using contrastive learning. Cho et al. (2024) highlighted the significance of
interactions between the next active object and human hands for short-term anticipation, predicting
the next active object first to model future interactions. Transformers and their variants have also
been employed to model interactions between objects and hands, enhancing the prediction of fu-
ture actions (Roy et al., 2024). In our work, we aim to predict future human actions in the form
of fine-grained and descriptive annotations by incorporating eye gaze as an additional modality and
employing a gaze-regularized attention mechanism.

Attention and gaze-augmented models Attention-based models facilitate the discovery of im-
portant features and enhance performance on downstream tasks, and have been applied to various
domains, including autonomous driving (Braunagel et al., 2017) , action prediction and human-
computer interaction (Weber et al., 2020; Shafti et al., 2019; Aronson et al., 2018). For example -
class activation maps have been used to leverage pooling layers in deep learning networks to generate
class saliency maps (Sudhakaran & Lanz, 2018), allowing the model to focus on regions contain-
ing objects that correlate with the activity being considered for action anticipation and prediction.
Guided-attention mechanisms have also been employed to model the next active object and predict
future interactions (Thakur et al., 2023). The Spatiotemporal Attention Module (STAM) (Lu et al.,
2019b) uses eye gaze information as supervision to train a network that predicts an attention map
for activity recognition. Other studies similarly also use gaze as supervision to form attention maps
for activity recognition tasks (Min & Corso, 2020; Awale & Sarikaya, 2022).

A lot of the previous work has utilized eye gaze data as ground truth to train attention prediction
networks and to predict eye gaze. However, in our study, we use eye gaze data as a direct signal for
human action prediction, building a gaze-regularized attention mechanism. With advancements in
eye-tracking methods and devices, and the abundance of egocentric videos, eye gaze can be easily
obtained and should be used as a direct signal. Our model conditions predictions on eye gaze data
as an input signal to output fine-grained text annotations of human actions.

3 METHOD

We aim to develop a VLM that can accurately predict fine-grained human actions in text to facilitate
human-machine interaction or collaboration in the physical world. In the following, we first formal-
ize the problem and specify the training data, after which, we elaborate on the proposed mechanism
that regularizes the attention in VLMs with gaze for enhanced predictions.

Problem setup Given egocentric video frames (observation) {Ii}τoi=1 over the past τo seconds
(observation time), the action prediction VLM we aim to develop shall output text descriptions
{ℓi}

τo+τp
i=τo+1 corresponding to future frames (what will happen) in the imminent τp seconds (predic-

tion time). Let ϕgaze represent the gaze augmented VLM which aims to model the likelihood of the
fine grained text descriptions (represented by ℓi) when eye gaze information is also provided:

ϕgaze(ℓ, {I}, {H}, {G}) =
τo+τa∏
i=τo+1

p(ℓi | ℓ<i, I≤τo ,H≤τo ,G≤τo) , (1)

where {H} represents the gaze heatmaps and {G} represents the gaze overlaid images obtained
by blending the gaze heatmaps and the video frames. It is shown by Lee et al. (2021) that human
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brains make predictions of the future over a hierarchy of timescales: ranging from fine-grained
changes of words or images (in a duration of 1 to 4 seconds) to coarse-grained evolution of movie
plots (up to 15 seconds). Since we focus on developing a model that can anticipate detailed human
activities to facilitate human-machine interaction, we set the prediction time ‘τp’ to 2 seconds by
default. Furthermore, Seidel et al. (2014) discovered that attention control mechanisms, in response
to duress or stimuli, are activated for up to 2 seconds before the actual event, thus the observation
time ‘τo’ is set to a value larger than 2 seconds. An ablation study of different observation/prediction
horizons is reported in Sec. 8.3.4 in the Appendix. Next, we detail the training data and how the
gaze information is utilized to promote human action prediction.

3.1 DATASET CONSTRUCTION

We use the Ego4D dataset (Grauman et al., 2022), which includes video clips with eye-gaze data
and textual action-object annotations. Gaze points are converted into images to highlight important
visual regions. Videos are downsampled to one frame per second to reduce computational load.

For fine-grained action prediction, we enhance existing annotations with detailed textual descrip-
tions using GPT-4V (OpenAI, 2023). This involves generating initial frame-by-frame descriptions
and refining them by iteratively improving the prompt based on manual feedback. The final text
annotations provide contextually coherent descriptions for each frame. During model training and
testing, a sequence of images is input, and the subsequent text annotations serve as ground truth for
action prediction.

Specifically, for every image frame Ii, we obtain a corresponding text annotation li. Figure 5 and
Figure 6 in the Appendix provides a diagram illustrating this process, along with an example of the
resulting annotations (Figure 7). For training and testing, the model is provided with a sequence of
images {Ii}τoi=1, while the text annotations {li}

τo+τp
i=τo+1 corresponding to the image frames {Ii}

τo+τp
i=τo+1

serve as the ground truth for predicting the anticipated actions. Here, τo represents the observation
time, set to 5 seconds, and τp represents the prediction time, set to 2 seconds. Please refer to
Sec. 8.1.1 for more details on the dataset construction pipeline. Next, we introduce the base model
without eye gaze enhancement before delving into the proposed techniques that leverage eye gaze
by regularizing the attention maps in the prediction.

3.2 BASE MODEL

Leveraging Flamingo’s capability to model cross-modal interactions between images and language,
we adapt the open-source Flamingo model (Awadalla et al., 2023) for our base model. We train
the perceiver resampler in the vision block and the cross-attention layers in the language block,
keeping other components frozen. The input image sequence {Ii}τoi=1 is processed by a pre-trained
ViT to extract visual features, which are then fed into a perceiver resampler, learning a fixed-size
representation of the visual data and leveraging time embeddings to capture temporal relationships.
The output from the perceiver resampler connects to the language module to generate predicted
text annotations. This base model, trained without gaze information, serves as a benchmark for
evaluating our gaze-augmented models. Let ϕ represent the base model, then the problem can be
formulated as follows:

ϕ(ℓ, {I}) =
τo+τa∏
i=τo+1

p(ℓi | ℓ<i, Ii≤τo) . (2)

Furthermore, let P (ℓ) be the actual probability distribution of the ground-truth text, and ϕ(ℓ, {I})
the model predicted distribution. The cross-entropy loss to be minimized for training can be written
as:

LCE({I}, ℓ) = −
∑

P (ℓ) log(ϕ(ℓ, {I})) . (3)

This setup establishes a clear baseline, allowing us to measure the impact of incorporating gaze
information in subsequent models after we elaborate on the regularization technique for enhanced
human action prediction in the following.
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Figure 2: Overview of the Architecture A ViT encoder extracts features from video frames and
gaze-overlaid images. A gaze-regularized attention block processes both the original and gaze-
overlaid images, focusing on regions indicated by gaze patterns to produce gaze-enhanced features.
These features are then passed to a Perceiver Resampler, which generates a fixed-size representation
for the language module to predict future actions. A gaze regularizer aligns the model’s attention
with human gaze patterns by minimizing the Kullback–Leibler divergence between the attention
distribution obtained from the attention block and the gaze distribution obtained from the binary
heatmap images.

3.3 GAZE AUGMENTED MODEL

Human gaze patterns reveal key insights into attention and focus, providing clues about intentions,
thoughts, and potential actions (Tipper, 2010; Frischen et al., 2007). Leveraging this natural atten-
tion mechanism, we propose a gaze-regularized attention block to enhance visual features from the
pre-trained ViT before passing them to the Perceiver Resampler. The input to the gaze-regularized
block includes a sequence of RGB images from the video, {Ii}τoi=1, where i denotes time in seconds
and τo is the observation time. Additionally, we incorporate corresponding binary heatmap images
{Hi}τoi=1, highlighting regions of gaze. These heatmaps are generated from textual eye gaze data
and are blacked out except for the gaze points, which are smoothed using a Gaussian filter to create
a smooth heatmap. Moreover, these heatmaps generate a gaze distribution, indicating how gaze is
distributed across image patches. Unlike the base model, the gaze-augmented model utilizes both
eye gaze data and RGB images. The binary heatmap images and gaze-overlay images derived from
the eye gaze data are shown in Figure 3. More information about the gaze-augmented model and
it’s components can be found in Sec.8.2 of the Appendix.

3.3.1 GAZE DISTRIBUTION COMPUTATION

Each binary heatmap image is first divided into patches. Since gaze is usually concentrated on
specific regions, not every patch will contain gaze information. Pixels occupied by gaze are indicated
by non-zero pixel values, while pixels without gaze are blacked out, having values of zero. For a
binary heatmap image denoted as Ht, let N represent the total number of patches. The proportion
of gaze occupied within a patch Ni,j , where (i, j) represents the patch’s position in the grid, can be
calculated as follows:

Ni,j =

∑ (j+1)(h)
nv

y=
j(h)
nv

∑ (i+1)(w)
nh

x=
i(w)
nh

pxy∑h
y=0

∑w
x=0 pxy

for i ∈ {0, nh − 1} and j ∈ {0, nv − 1} . (4)

Here, h and w represent the height and width of the image, nh and nv denote the number of hori-
zontal and vertical patches, respectively, and pxy is a binary variable representing the pixel value at
position (x, y), which can be either 0 or 1. The denominator corresponds to the total value of all
pixels in the image. For each binary heatmap image Ht, we derive a gaze distribution Ĥt, which
is a vector of shape (1, nh × nv). The number of patches, N , in the gaze distribution is equal to
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the number of tokens produced per image by the ViT. This gaze distribution plays a crucial role in
the gaze regularizer used in the attention block, acting as the target distribution that we want the
attention distribution to mimic, which will be discussed in the following section.

3.3.2 GAZE-REGULARIZED ATTENTION BLOCK

To obtain features from the RGB images and gaze-overlaid images respectively, we utilize the ViT,
and additional information can be found in Sec. 8.2.1 of the Appendix. The features derived from the
gaze-overlaid images serve as queries (Q) in the gaze-regularized attention block. Simultaneously,
the scene image features from the RGB images and are used as keys (K) and values (V ). Attention
is then calculated based on the following equation:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V = AV , (5)

where A represents the attention weights. Simply using gaze features as queries does not guaran-
tee that the attention will be concentrated on gaze-allocated regions. The attention scores will be
distributed across the image. We aim to guide the model to prioritize these regions, directing more
focus (attention) towards areas where gaze is present. To this end, we introduce a gaze regularizer
designed to enhance the model’s attention on gaze-allocated regions.

The gaze regularizer is implemented using Kullback-Leibler (KL) divergence, which is applied to
the training of the gaze-augmented model. The aim of the regularizer is to ensure that the distribution
of the attention weights is more closely aligned with the gaze distribution obtained from the binary
heatmap image. We denote the attention weight distribution as A, while the gaze distribution is
represented by H . The KL divergence for the two distributions can be obtained using the following
equation:

DKL(A∥H) =
∑
i

Ai log
Ai

Hi
. (6)

The binary heatmap images are not used as queries because doing so could lead to important image
information being overlooked. For instance, the heatmap images for two totally different images
could be the same if one looks at the center of the image.

To avoid this, we use gaze-overlaid images as queries, which preserve the gaze information while
also retaining the unique visual content of each image. It is crucial to preserve the visual content
while aligning the attention distribution with the gaze distribution to ensure the model properly
integrates both sources of information.

The overall objective function we minimize to train the gaze-augmented model is as follows:

Ltotal = LCE + λ ∗DKL(A∥H) , (7)

where λ is the coefficient of the regularization term in the proposed objective function, and the cross-
entropy loss is similar to the loss from the base model. By utilizing this gaze-regularized attention
mechanism within the model, we can orient the model’s attention to regions highlighted by gaze,
and thus improve the quality of the predicted future actions.

3.3.3 SINGULAR AND AGGREGATED GAZE AUGMENTED MODELS

In eye-tracking literature, eye movements are primarily categorized into fixations and saccades.
During a fixation, the eyes pause and focus on a specific area, gathering detailed visual information.
Most visual data is acquired during fixations, which typically last around 200 ms (Rayner, 2009).
Although small involuntary eye movements may occur during fixations, they still concentrate on a
specific region of interest. Saccades, on the other hand, are rapid eye movements that shift focus
from one point of interest to another, causing significant changes in the visual scene. Saccades are
crucial for visual search, and two consecutive saccades can cover considerable distances. Given the
nature of saccades and fixations, as well as their average durations, detailed or relevant information
is typically collected within a temporal window of δ = 200 milliseconds.

Correspondingly, we provide both a singular gaze-augmented model and an aggregated gaze-
augmented model. For each image frame It, we generate a heatmap image Ht and a gaze-overlaid
image Gt using gaze coordinates available at time t. Gaze data from the Ego4D dataset (Grauman
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Figure 3: Heatmap creation. Illustration of gaze data collection for generating gray-scale heatmaps
and gaze-overlaid images. On the left, the aggregated gaze model incorporates multiple gaze points
collected over the interval [t − δ, t] to generate the heatmap. On the right, the singular gaze model
uses a single gaze point collected at time t. Both with Gaussian smoothing.

et al., 2022) is sampled at 30 frames per second and stored in the format gt = (timestamp, x, y),
where (x, y) is the coordinate of the gaze point. For the singular gaze-augmented model, the
heatmap at time t, Ht, is:

Ht = f(gt) . (8)
Here, the function f represents a mechanism to construct the heatmap, such as a Gaussian smooth-
ing. In the singular gaze-augmented model, we use a single gaze point captured at the timestamp
nearest to when the RGB image is obtained.

However, a singular gaze point can be noisy due to measurement errors or micro-saccades (Rolfs,
2009; Ratliff & Riggs, 1950; Collewijn & Kowler, 2008). An aggregated gaze pattern can account
for such variations. To minimize the impact of noise and ensure a sufficient time frame for collecting
detailed information, we propose aggregating points within a fixed time interval δ around the image
frame It. The corresponding heatmap Ht at time t is then:

Ht =
∑

f(gi), ∀i ∈ [t− δ, t] , (9)

which is normalized by the length of the interval, and gi for all i ∈ [t−δ, t] represents the set of gaze
points lying within the vicinity of timestamp t. These gaze points are used to obtain both the binary
heatmap image Ht and the gaze-overlaid image Gt. However, aggregation can sometimes include
gaze points that may be occluded in the final frame. To address this, we implement an occlusion
check using forward and backward optical flow consistency. The purpose of the occlusion check is
to ensure that if significant occlusion occurs, the corresponding gaze points are excluded from the
heatmap creation process. More information about the occlusion check can be found in Sec. 8.2.3.
An example of using the occlusion check is shown in Figure 10.

To recap, for the aggregated gaze-augmented model, we collect gaze data points over a fixed interval,
denoted as δ, to establish a more informative gaze pattern. This aggregation of gaze points, after an
occlusion check, is then used to create a heatmap, which is subsequently overlaid on the RGB scene
image to produce the gaze-overlaid image. Next, we demonstrate the effectiveness of the proposed
gaze-regularization mechanisms for human action prediction.

4 EXPERIMENTS

In this section, we begin by outlining the evaluation metrics used to assess model performance.
Then, we compare the base models with the gaze-augmented models to emphasize the significance
of incorporating gaze as a signal along with gaze-regularized attention. Following this, we explore
multiple variations of the gaze-augmented models to identify the best-performing configuration and
to justify the effectiveness of gaze in different settings discussed in the previous section. Finally, we
present evidence supporting the use of finer-grained text annotations for gaze-augmented models to
enhance overall performance. Additional information about the other experiments conducted as part
of our study can be found in Sec.8.3 whereas the training and evaluation details for the models can
be found in Sec.8.5.
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Figure 4: Action prediction results for the base model (without gaze) and our gaze-augmented model
are presented for an observation horizon of 5 seconds. Past frames are omitted, but ground-truth
annotations and future frames with a prediction duration of 2 seconds are provided as references.
Keywords from each set of annotations are highlighted for easier reading.

4.1 EVALUATION METRICS

For evaluation, we propose using a semantic transformer (Reimers & Gurevych, 2019) to provide
a quantifiable score that compares the generated output with the ground-truth action text. This
scoring system is designed to ensure that the model does not penalize variations of sentences that
are semantically similar. Additionally, we aim for the model to penalize sentences where the word
order is nonsensical or incomprehensible to humans. Alongside the semantic score, we also utilize
the ROUGE-L score and METEOR score, which are widely employed to assess text similarity.

4.2 COMPARISON BETWEEN BASE MODEL AND GAZE-AUGMENTED MODELS

The objective of this experiment is to quantify the impact of eye gaze data on human action pre-
diction by comparing model performance using measurable metrics. The base model receives only
RGB image frames as input, while the gaze-augmented models incorporate multiple variations of
gaze information. All gaze-augmented models share the same architecture but differ in the way gaze
data is utilized. In the Singular Gaze-Augmented Model, for each image frame It at time t, the
corresponding heatmap Ht is generated using a single gaze point gt, obtained from the timestamp
closest to t. In the Aggregated Gaze-Augmented Model, for each image frame It at time t, the cor-
responding heatmap Ht is generated using aggregated gaze points gk, where k ∈ [t − δ, t] and δ is
set to 200 milliseconds.

All models are trained under identical conditions. As shown in Table 1, the gaze-augmented models
outperform the base model across all evaluation metrics. Using aggregated gaze points over a 200-
millisecond interval shows a noticeable improvement in performance compared to using a single
gaze point. This can be attributed to the larger focus area and the temporal gaze pattern enabled by
the aggregation, allowing the model to capture a broader context for inferring the intent and better
facilitate the anticipation of future actions. Please refer to Figure 4 for qualitative results.

4.3 EFFECT OF THE GAZE REGULARIZER

We assess the impact of the gaze regularizer using the aggregated gaze-augmented model to deter-
mine its importance. The final objective function includes the gaze regularization coefficient λ, and

8
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Table 1: Evaluation of base model and gaze-augmented models with varying granularity in action
annotations (i.e., GPT-4V and ShareCaptioner).

Annotation Semantic Meteor Rouge-L (↑)

Model source Score(↑) Score(↑) Precision Recall F-score

Base (no gaze) GPT-4V 0.6525 0.4075 0.4335 0.4301 0.4318
Singular Gaze GPT-4V 0.7316 0.4501 0.4822 0.5309 0.5054
Aggregated-Gaze GPT-4V 0.7826 0.5033 0.5193 0.5644 0.5405
Base (no gaze) ShareCaptioner 0.6437 0.5060 0.5730 0.5566 0.5646
Singular Gaze ShareCaptioner 0.8212 0.6514 0.6906 0.6914 0.6905
Aggregated-Gaze ShareCaptioner 0.9125 0.7114 0.7617 0.7717 0.7666

Table 2: Effect of regularization on aggregated gaze-augmented models.
Regularization Semantic Meteor Rouge-L (↑)

coefficient Score(↑) Score(↑) Precision Recall F-score

0 0.6317 0.4094 0.3872 0.3622 0.3738
100 0.7826 0.5033 0.5193 0.5644 0.5405
1000 0.7798 0.4963 0.5127 0.5558 0.5330

we evaluate the model’s performance on the test set using different values of λ. When λ = 0, the
gaze regularizer is inactive and has no effect on the loss function, while larger values of λ increase
its influence. As shown in Table 2, the performance of the aggregated gaze-augmented model with-
out regularization is comparable to the base model. Optimal performance is achieved at moderate
λ values, with a slight decline at higher regularization levels. The diminished performance without
regularization underscores the significance of aligning attention with the gaze distribution through
the gaze regularizer when the gaze attention block is included.

4.4 GAZE-REGULARIZED ATTENTION BLOCK

The gaze-regularized attention block is a critical addition to the baseline OpenFlamingo model.
In our ablation studies, we examine the model’s performance as the number of gaze-regularized
attention blocks varies, aiming to identify the optimal number of blocks for further training. As
shown in Table 3, the performance improves up to n = 2, after which it slightly declines with
additional blocks. Further training confirms that using two gaze-regularized attention blocks yields
the best results, as this configuration balances aligning the gaze and attention distributions while
preventing over-alignment.

4.5 EFFECT OF OCCLUSION CHECK ON AGGREGATED GAZE-AUGMENTED MODELS

In the aggregated gaze model, gaze points are collected within a specified time interval δ (200 ms).
However, in dynamic environments, aggregating gaze points from the interval [t−δ, t] may introduce
inaccuracies due to changes in the scene or camera movement. To mitigate this, we introduced an

Table 3: Effect of the number of gaze-regularized attention blocks on the performance of the aggre-
gated gaze-augmented models.

Attention Semantic Meteor Rouge-L (↑)

blocks Score(↑) Score(↑) Precision Recall F-score

1 0.7434 0.4945 0.5065 0.5630 0.5328
2 0.7826 0.5033 0.5193 0.5644 0.5405
5 0.7765 0.5013 0.5098 0.5528 0.5301
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Table 4: Comparison of the aggregated gaze-augmented models with and without occlusion check.
Aggregated gaze Semantic Meteor Rouge-L (↑)

model Score(↑) Score(↑) Precision Recall F-score

w/o occlusion-check 0.7616 0.4718 0.5090 0.5508 0.5286
with occlusion-check 0.7826 0.5033 0.5193 0.5644 0.5405

occlusion check to ensure that only relevant gaze points are aggregated. More details about the
occlusion check method can be found in Sec. 8.2.3 in the Appendix.

To evaluate the impact of this adjustment, we conducted experiments comparing models with and
without the occlusion check. As shown in Table 4, the model incorporating the occlusion check
slightly outperforms the one without it. The difference in the evaluation metrics can be attributed to
the fact that only relevant and accurate gaze points are considered, which reduces noise and prevents
the model from being confused by irrelevant data.

4.6 IMPACT OF THE ANNOTATION QUALITY ON MODEL PERFORMANCE

To facilitate our experiments, we designed a prompt-based method to automatically generate text
annotations for image frames using GPT-4V. Although these annotations were more detailed than
the originals, we also generated additional annotations using ShareCaptioner (Chen et al., 2024), a
tool specifically designed to produce comprehensive captions that capture changes between frames.
We aim to compare the descriptive quality of these annotations and evaluate their impact on both the
base and gaze-augmented models.

We find that annotations generated by ShareCaptioner are notably more detailed and fine-grained
than those from our initial setup. While the base model’s performance remained similar with both
sets of annotations, the gaze-augmented model showed a nearly 12 percent improvement when using
the more fine-grained annotations, as shown in Table 1. This improvement can likely be attributed
to the model’s ability to leverage areas of concentrated gaze when processing more descriptive cap-
tions, allowing for better prediction of detailed actions. From the experiment, we conclude that the
importance of eye gaze increases even further when the granularity of the annotations is higher.

5 CONCLUSION

Our work demonstrates that incorporating gaze data significantly enhances the predictive abilities of
VLMs, proving valuable for applications requiring precise human action prediction, such as assistive
robotics and human-machine collaboration. By integrating eye gaze data, our approach improves the
model’s focus on critical image features, leading to enhanced prediction accuracy and reliability.

Our gaze-augmented model is trained with a gaze-regularized attention strategy, which simulates the
natural attention mechanism driven by human gaze. This integration results in improved semantic
and ROUGE scores, underscoring the effectiveness of gaze-regularized attention in boosting model
performance. Through additional experiments, we highlight the crucial role of employing a gaze
regularizer and gaze-augmented attention blocks, which provide insight into how to maximize the
utilization of gaze information.

Looking ahead, we aim to further refine our model by enhancing the integration of gaze data and
exploring other training techniques. We also plan to develop a dedicated large-scale dataset to
support other researchers in running their models and advancing this methodology. To facilitate
further research and development, we will make our code and dataset publicly available, allowing
others to build upon our architecture and enhance its capabilities.

6 ETHICS STATEMENT

We declare that our research does not present any potential ethical issues and is in compliance with
the ICLR code of ethics. The study does not involve human subjects, sensitive data, or methodolo-
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gies that could result in harmful outcomes or biases. All data this work uses is publicly available,
and no privacy or security concerns are implicated.

7 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. A code example is
provided as supplementary material, demonstrating the core components of our approach. Upon
acceptance, we will release all of the data and the complete training and testing code to facilitate the
full reproducibility of our results.
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8 APPENDIX

In this appendix, we present supplementary material related to our study. This includes detailed in-
formation on the dataset creation process and the design of the prompts used in our experiments. We
also include results from several ablation studies conducted during our research. Finally, we provide
essential details about the model training process to assist readers who may wish to reproduce our
work from scratch.

8.1 DATASET

The Ego4D and Epic-Kitchens datasets consist of egocentric videos capturing camera-wearers per-
forming daily activities in controlled settings (Grauman et al., 2022; Damen et al., 2022). Other
relevant datasets include the EGTEA+ Gaze dataset, which offers 28 hours of content focused on
cooking and kitchen activities (Li et al., 2020), and the more recent Visual Data Experience (VDE)
dataset, which contains around 240 hours of clips documenting day-to-day activities coupled with
gaze and head tracking (Greene et al., 2024).

These datasets are supplemented with text annotations in the form of (action, verb) tuples as well as
coarse-grained narrations, which are used for action anticipation and activity forecasting challenges.
For our study, we collected visual eye gaze data from the Ego4D dataset and modified the text
annotations from coarse-grained descriptions to more descriptive fine-grained descriptions. In the
future, we plan to incorporate the more recent VDE dataset into our study as well.

In this section, we provide details about the dataset creation process used for model training and
testing, the prompt design, and alternative sources of annotations in the form of VLMs.

8.1.1 DATASET CONSTRUCTION AND PROMPT DESIGN

The Ego4D dataset comprises egocentric video clips along with supplementary data such as audio,
text annotations, eye gaze data, and additional metadata (Grauman et al., 2022). For our project, we
focused on the subset of video clips that include eye gaze data, containing approximately 33.3 hours
of egocentric videos recorded from 80 participants. The eye gaze data is provided in numerical
form, containing canonical timestamps and the pixel coordinates of gaze points. We transform gaze
points to images to represent important visual regions, aligning with how humans perceive spatial
information (Laeng et al., 2014). Due to the minute differences between consecutive images in
the original videos, we perform downsampling to one image per second to reduce computational
requirements while remaining effective.

Since our focus is fine-grained action prediction from ego-centric videos, we augment existing anno-
tations with detailed textual descriptions to enhance human-machine interaction. We leverage GPT-
4V to generate annotations for video frames by processing a sequence of images and prompting it to
describe each frame. This method ensures contextual coherence across frames. After obtaining ini-
tial descriptions, we manually evaluate their quality and provide feedback to refine the output. This
feedback is used to modify the prompt, which is then fed back into GPT-4V with the image frames.
We conduct prompt selection and refinement using multiple sequences from different video clips to
ensure generalizability. This iterative process continues until we establish an optimal prompt tem-
plate that consistently yields accurate and contextually appropriate annotations, confirmed through
human evaluation.

Specifically, we start by passing a small set of images to GPT-4V with a basic prompt like: “Describe
what is happening in the image sequence and output the text descriptions.” The initial output was
manually evaluated, and feedback was provided. This feedback, along with the original prompt, was
passed to ChatGPT to refine the prompt for generating accurate and meaningful text annotations.
The manual evaluation process ensured that the generated annotations met the following criteria:

1. A clear description of the objects being manipulated or focused on in the scene.

2. A detailed account of the actions being performed by both the camera wearer and other
individuals present in the images.

3. Information about any trajectories or movements that take place within the scene.
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Figure 5: GPT-4V Iterative Prompting Workflow. The process begins with a sequence of images
and an initial prompt, which are input into GPT-4V to generate annotations for each image. The user
then evaluates these annotations and provides feedback, which is incorporated into the prompt using
a language model. This modified prompt is used to refine the annotations in a continuous cycle. The
objective is to improve the quality and relevance of the output with each iteration until the user is
satisfied. For GPT-4V, a set of 10 images is provided at once, ensuring that the annotations maintain
contextual coherence.

4. Clear, fine-grained annotations that fulfill these criteria in a way that is easily understand-
able by both humans and machines, such as robots that may use these instructions for task
execution.

After several iterations of refining the prompt and evaluating the results, we identified a suitable
template for generating high-quality text annotations. This final template was then used to annotate
the image sequences using GPT-4V. More details on the prompt design process can be found in
Figure 5 and Figure 6.

8.1.2 TEXT ANNOTATIONS USING AN ALTERNATE VLM

In the previous section, we obtained text annotations using GPT-4V. In addition, we conduct further
experiments using an alternate VLM to generate text annotations for the same video clips.

Specifically, we employed ShareCaptioner (Chen et al., 2024) to annotate the entire dataset. Under
similar training conditions, we compared the empirical performance of the models using annotations
from GPT-4V and ShareCaptioner. The purpose of this comparison was to assess whether there is
a significant performance variation – either a drop or improvement – when text annotations are
sourced from a different VLM. Additionally, we aimed to confirm whether the trend of superior
performance in gaze-incorporated models persists regardless of the annotation source. Finally, we
sought to investigate if the granularity of the annotations impacts the model’s performance.

As part of this investigation, we also experimented with an open-source implementation of LLaVA
to generate finer-grained annotations Lin & Long (2024). However, upon manual evaluation, we
found no significant difference between the annotations produced by ShareCaptioner and those gen-
erated by LLaVA. In order to have a dedicated comparison between fine-grained annotations and
finer-grained annotations on the base model and the gaze-augmented model, we decided to proceed
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with GPT-4V annotations and ShareCaptioner annotations. However, a comparison of the semantic
scores obtained by the base model and aggregated gaze-augmented models for all three annotation
models can be found in Figure 7. We observed that the gaze-augmented models exhibited a 10-12
percent improvement in performance when utilizing the finer-grained annotations, indicating that
more detailed descriptions can further enhance model accuracy in predicting future actions.

Examples of the annotations obtained for a sample image, as well as the semantic scores for the
base models and the gaze-augmented models, can be seen in Figure 7. These examples highlight the
difference in performance under varying quality of the fine-grained text annotations.

Note: It is important to emphasize that our goal is not to compare the performance of ShareCaptioner
and GPT-4V, but rather to evaluate the quality of the annotations obtained from each system and the
effect of the quality on the gains of employing gaze in the prediction. The differences in annotation
granularity may be influenced by cost and time constraints, as the setups used to generate these
annotations varied. Therefore, a direct comparison of the VLMs themselves would be inappropriate.

Figure 6: ShareCaptioner Iterative Prompting Workflow. The process begins with a sequence of
images accompanied by a starter prompt, which is processed by ShareCaptioner to generate initial
annotations. The user then reviews these annotations and provides feedback. This feedback is
integrated into the prompt using a language model. The updated prompt is subsequently used to
enhance the annotations through an iterative cycle. This cycle continues until the output meets
the user’s satisfaction, focusing on improving both quality and relevance. Additionally, a sliding
window mechanism is employed to traverse the image sequence, capturing and describing changes
as they occur to ensure that all actions are accurately recorded.

8.2 MODEL OVERVIEW AND COMPONENTS

In our study, we employ the open-source version of the Flamingo model (Awadalla et al., 2023),
built upon the foundational work of the original Flamingo developed by Alayrac et al. (2022). The
Flamingo is a VLM designed to leverage interleaved text and image data. It features a pre-trained
vision encoder to extract input features, a trainable perceiver resampler for creating fixed-size rep-
resentations of the input features, and trainable cross-attention layers on the language side. The
latent features learned by the perceiver resampler are integrated into the language module. These
features, along with the processed text, are input to the cross-attention layers in the language module
which combines the visual features with the language features. The model utilizes a cross-entropy

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Left: Examples of annotations generated for a sample image by three different annotators:
ShareCaptioner, Open Llava, and GPT-4V. The annotations from ShareCaptioner and Open Llava
are more fine-grained compared to those produced by GPT-4V in our experimental setup. Right:
A graph comparing the performance of the base model and gaze-augmented models, illustrating the
impact of using text annotations of varying granularity.

loss mechanism, aiming to maximize the probability of predicting the correct text token based on
preceding image and text.

In addition to traditional input modalities, such as RGB images, recent advancements have high-
lighted the potential of integrating various modalities beyond vision, including gaze, gait, and tactile
sensors (Boshoff et al., 2024; Yang et al., 2024). Building on this premise, our approach incorporates
eye gaze as an additional signal. Specifically, we introduce a gaze-regularized attention mechanism
to make use of eye gaze as a signal. The base model without eye gaze data serves as a benchmark and
relies exclusively on RGB images for input. In contrast, the gaze-augmented model integrates eye
gaze data alongside the RGB images. The key distinction of the gaze-regularized attention models
is their ability to condition the output using both RGB images and eye gaze data.

In the following section, we provide more details about some of the components in the model ar-
chitecture, as well as provide information about the occlusion check which is used for gaze point
correction during aggregation of gaze points.

8.2.1 VISION TRANSFORMER ENCODER

In both the base and gaze-augmented models, we utilize a pre-trained Vision Transformer (ViT) as
the image encoder. Images are processed as sequences, where each image is tokenized into patches
that are flattened and then transformed into embeddings. To maintain spatial relationships between
the patches, these embeddings are supplemented with positional embeddings, ensuring coherence
across the entire image. An illustration of the ViT architecture is provided in Figure 8. In the figure,
as an example, we show how an image is divided into nine tokens, each of which is assigned a
positional embedding. These tokenized patches are then passed through the pre-trained transformer
encoder, resulting in an embedding that represents the original sequence of image patches. The
pre-trained vision encoder employed in our study is ViT-L-14, which results in the formation of
256 tokens for each image. In the example shown in Figure 8, the observation length (τo) is set
to 5 seconds, meaning that the image sequences span a 5-second interval. The primary distinction
between the original design and the approach used in our study is the omission of the final MLP
head, as our focus is exclusively on extracting image features.
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Figure 8: An example of how images are processed by the Vision Transformer in our model. In this
case, each image is tokenized into 9 patches. Positional embeddings are then added to the patches,
which are subsequently passed through an attention module. In this model, the final MLP head is
omitted, as we are focused solely on extracting image features for further analysis.

8.2.2 GAZE-GUIDED ATTENTION BLOCK

In our study, we propose the inclusion of a gaze-regularized attention mechanism, which features
a gaze-guided attention block that operates in conjunction with the gaze regularizer. In the gaze-
guided attention block, gaze-overlaid images are processed through the ViT to extract features that
serve as queries for the attention module. These queries contain information about both the scene
and the regions occupied by gaze, leading us to refer to this block as the gaze-guided attention block.
Once the gaze-based features are obtained, they pass through a learnable linear layer to produce the
queries involved in the attention mechanism. The visual features obtained from the RGB image
frames, after passing through the ViT, are used as keys and values within the gaze-guided attention
block. Similar to the gaze-based features , the features obtained from the RGB image frames pass
through a linear layer to form the keys and values for the attention mechanism. The final output,
consists of gaze-enhanced features that are informed by the gaze-based queries.

Additionally, the attention distribution is calculated, reflecting how attention is allocated across all
tokenized patches. Initially, this attention distribution may not align with the gaze distribution.
Therefore, through regularization, we aim to progressively align the attention distribution with the
gaze distribution over time. A closer look at the gaze-guided attention block can be found in Fig-
ure 9.

8.2.3 GAZE AGGREGATION WITH OCCLUSION CORRECTION

The input image sequence can exhibit dynamic changes due to environmental movement or the
movement of the camera wearer. The method for aggregating gaze points is suitable only when the
frames within the δ interval for which aggregation is done, shows moderate movement. However,
preventing movement in a dynamic environment is challenging. If we aggregate gaze points in
the [t − δ, t] interval to construct the heatmap Ht and there is major occlusion between the earlier
frames [t − δ, t) and the final frame at timestamp t, it becomes impractical to include gaze points
from the occluded frames. In such cases, collecting gaze points from occluded frames may lead
to inaccurate or misleading representations in the heatmap. To alleviate this issue, we perform an
occlusion check between each frame in the [t − δ, t) interval and the final frame at time t to ensure
appropriate gaze aggregation. In the case of significant occlusion or a drastic change in the scene,
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Figure 9: Closer look at the gaze-guided attention block in the pipeline. Gaze overlaid images are
passed as queries, whereas the corresponding RGB images are passed as key and value. The binary
heatmap image is used to obtain the gaze distribution, which is used in the regulariser by comparing
it with the attention distribution obtained from the gaze-guided attention block. The regulariser
attempts to align the attention distribution more towards the gaze distribution.

gaze points corresponding to the earlier frames should not be collected for the aggregation and
subsequent formation of the heatmap Ht.

Using a method similar to the consistency check with optical flow presented by Hur & Roth (2017),
we explicitly exclude gaze points that are occluded in the current frame. If a pixel is correctly
translated and there is no major occlusion, then the difference between the forward optical flow
displacement of this pixel (x, y) and the displacement of the translated pixel (x̂, ŷ) with backward
optical flow should be close to zero.

For an RGB image It at time t, we gather the image frames {Ik} for all k ∈ [t−δ, t). Let the forward
optical flow between images {Ik} and {It} in the horizontal direction be denoted by Fxk→t and the
backward optical flow by Fxt→k. Similarly, Fyk→t represents the forward optical flow in the
vertical direction, and Fyt→k represents the backward optical flow in the vertical direction. Let the
coordinates of a designated pixel pi be (xi, yi). The new coordinates of the translated pixel in the
subsequent frame, using optical flow, are computed as follows:

x̂i = xi + Fxk→t(xi) ,

ŷi = yi + Fyk→t(yi) .
(10)

Next, we calculate the distance moved by this designated pixel in the horizontal and vertical direc-
tions according to the following equations:

dxi
= |Fxk→t(xi)| − |Fxt→k(x̂i)| ,

dyi
= |Fyk→t(yi)| − |Fyt→k(ŷi)| .

(11)

If the observed proportion of pixels ηobserved exceeding the distance discrepancy is more than a
predefined threshold η, we conclude that a major occlusion has occurred; otherwise, the occlusion
is minor. The observed proportion of such pixels ηobserved is calculated as:

ηobserved =

∑h×w
i=1 1condition

(√
(dxi

)2 + (dyi
)2 > ϵ

)
∑h×w

i=1 1
, (12)

where the denominator represents the total number of pixels in the image.
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We disregard the gaze points for frames {Ik} where there is major occlusion with respect to the
image frame It. If the occlusion is minor, the appropriate gaze points {gi} for all i ∈ [t − δ, t] are
then translated into their new coordinates {ĝi} and collected for the formation of heatmap Ht and
subsequently, for the gaze-overlaid image Gt. The transformed gaze points are computed as follows:

(ĝi)x = (gi)x + Fxk−→t((gi)x) ,

(ĝi)y = (gi)y + Fyk−→t((gi)y) .
(13)

As mentioned above, the idea is that if there is a major occlusion, the difference between the distance
traversed by a pixel during forward optical flow,and the distance traversed by the translated pixel
during backward optical flow will be significantly greater than in cases where the occlusion is minor.
Optical flow was calculated using the implemntation of the RAFT model developed by Teed & Deng
(2020). Human feedback was utilized to distinguish between major and minor occlusions on sample
image sequences, which informed the selection of hyperparameters ϵ and η. The hyperparameter ϵ
is the threshold distance, which was set to 20, whereas η is the threshold proportion of pixels that
have exceeded the occlusion limit, set to 0.60. An example of the result of our occlusion check can
be found in Figure 10. It can be observed that if the occlusion check is not present, the aggregation
points do not accurately reflect where the person was looking in the final frame on which gaze is
overlaid. The occlusion check ensures that the correction is effective.

Figure 10: An example of gaze aggregation on the final image frame is shown. Bottom left: Result
without occlusion check. Bottom right: Result with occlusion check applied. The fridge is absent
in the final frame, indicating significant occlusion. Therefore, the gaze points from the first two
frames, which are associated with the fridge, should not be overlaid on the final frame as the object
is no longer visible.

8.3 OTHER EXPERIMENTS

In this section, we provide some details about the ablation studies conducted during the course
of our study. We first explore the impact of the size of the gaze points used in the formation of
the heatmap on the model performance. In addition, we employ a self-attention block to the base
model without gaze to assess the result comparison with the gaze-augmented model. We also utilize
gaze in text form to investigate whether our need to use gaze based images is necessary or not,
followed by an investigation of the impact of changing observational and prediction horizons on
model performance.

8.3.1 CHANGES IN THE SIZE OF THE OVERLAYS OF THE GAZE POINTS

In our exploration of gaze-augmented models, we investigated two primary approaches: the singular
gaze model and the aggregated gaze model. The singular gaze model utilizes only one gaze point to
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Table 5: Effect of the size of the gaze point overlays on model accuracy
Gaze Semantic Meteor Rouge-L (↑)

Model Score(↑) Score(↑) Precision Recall F-score

Singular 0.7316 0.4501 0.4822 0.5309 0.5054
Singular (larger overlays) 0.7683 0.4922 0.5123 0.5508 0.5304
Aggregated 0.7826 0.5033 0.5193 0.5644 0.5405
Aggregated (larger overlays) 0.7816 0.5060 0.5128 0.5556 0.5330

Table 6: Comparison of base model with attention block against gaze augmented models
Semantic Meteor Rouge-L (↑)

Model Score(↑) Score(↑) Precision Recall F-score

Base 0.6525 0.4075 0.4335 0.4301 0.4318
Base (w self-attention) 0.6701 0.4215 0.4292 0.4508 0.4393
Aggregated gaze 0.7826 0.5033 0.5193 0.5644 0.5405

create the binary heatmap and the gaze-overlaid image. To assess the impact of the gaze point size
on model performance, we conducted experiments where we increased the size of the overlaid gaze
points on the heatmap. Our findings indicated that performance improved with larger gaze point
overlays in the singular gaze model.

In contrast, the aggregated gaze model, which combines multiple gaze points and includes an occlu-
sion check, did not exhibit significant performance gains when the size of the overlaid points was
increased. Table 5 highlights the results of this experiment. The results suggest that the aggregated
gaze model’s incorporation of multiple gaze points and an occlusion check is more effective than
merely enlarging individual gaze points in the singular model.

8.3.2 INCLUSION OF SELF-ATTENTION BLOCK IN BASE MODEL WITHOUT GAZE

Building on the insights from the previous section, a natural question arises: what happens if we
employ a self-attention block in the base model, providing the largest possible overlay—the entire
image itself? In this experiment, we integrated a self-attention block into the base model without
gaze. The features obtained from the ViT were passed into the self-attention block, where the
queries, keys, and values were derived from these image features.

The objective of this modification was to investigate the effects of using a full image overlay as the
query input to the attention block in the base model. The resultant features from the self-attention
block were then forwarded to the perceiver resampler for further processing. Our results showed that
while the performance of the base model improved with the inclusion of the self-attention block, it
still remained below that of the gaze-augmented models, as shown in Table 6. This indicates that
although leveraging the entire image enhances the base model’s capabilities, it does not fully match
the performance benefits achieved by incorporating eye gaze signal and using gaze-regularized at-
tention mechanism.

8.3.3 USING GAZE IN TEXT FORM

In our studies, we converted gaze data from coordinate text form into heatmaps, which were then
overlaid on scene images to create a more visual representation. This transformation allows us
to highlight important visual regions and aligns more closely with how humans perceive spatial
information. (Laeng et al., 2014). To conduct a sanity check and assess whether using gaze data
in visual form is more suitable than using gaze in text form , we trained a gaze-augmented model
that utilizes gaze coordinates as text input. Let ϕgaze,text represent the gaze augmented VLM which
aims to model the likelihood of the fine grained text descriptions (represented by ℓi) when eye gaze
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Table 7: Effect of using gaze information in text form and comparison with other models
Semantic Meteor Rouge-L (↑)

Model Score(↑) Score(↑) Precision Recall F-score

Base 0.6525 0.4075 0.4335 0.4301 0.4318
Aggregated gaze(in text form) 0.7021 0.4428 0.4642 0.4621 0.4630
Aggregated gaze 0.7826 0.5033 0.5193 0.5644 0.5405

information in the form of text coordinates {(x, y)} is also provided:

ϕgaze,text(ℓ, {I}, {(x, y)}) =
τo+τa∏
i=τo+1

p(ℓi | ℓ<i, I≤τo , {(x, y)}≤τo) (14)

Our results indicated that using gaze data in text form improved performance compared to the base
model without gaze. However, it still fell short of the performance achieved by the aggregated gaze-
augmented model (as shown in Table 7). This experiment demonstrates that incorporating gaze
information as a signal is essential. However, utilizing gaze in conjunction with the gaze-regularized
attention mechanism significantly enhances model performance

8.3.4 CHANGING PREDICTION AND OBSERVATION HORIZONS

To investigate the effect of sequence length on model performance, we conduct experiments by ad-
justing the prediction horizon (τp) and observation horizon (τo). First, we extend the prediction hori-
zon from 2 to 5 seconds to evaluate both the base and gaze-augmented models (using the aggregated
gaze model with occlusion check). As shown in Table 8, the gaze-augmented model consistently
outperforms the base model, even with a longer prediction horizon reinforcing the intuition that gaze
is important to predict intentions and future actions. We also reduce the observation horizon to 3
seconds while keeping the prediction horizon fixed at 2 seconds. The gaze-augmented model again
outperforms the base model (Table 9). Interestingly, the shorter observation horizon shows slightly
increased performance compared to the main results reported with a longer observation horizon.
This could indicate a potential improvement of our approach, by accounting for the visual working
memory humans utilize.

Table 8: On increasing the prediction horizon (from 2 seconds) to predict future actions up to 5
seconds, the gaze-augmented model is able to outperform the base model.

Semantic Meteor Rouge-L (↑)

Model Score(↑) Score(↑) Precision Recall F-score

Base 0.6297 0.3972 0.4393 0.4065 0.4220
Aggregated Gaze 0.7519 0.4891 0.5332 0.5410 0.5386

Table 9: On decreasing the observation horizon (from 5 to 3 seconds) to predict future actions up to
2 seconds, the gaze-augmented model is again able to outperform the base model.

Semantic Meteor Rouge-L (↑)

Model Score(↑) Score(↑) Precision Recall F-score

Base 0.6716 0.4284 0.4544 0.4627 0.4581
Aggregated Gaze 0.7855 0.5132 0.5399 0.5523 0.5457

8.4 LIMITATIONS

In this section, we highlight the key limitations of our work, which is as follows:
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• Dataset Creation: The dataset was created using an iterative prompt mechanism to refine a
suitable template, which was then tested on a smaller subset of the data. Template approval
was carried out by two individuals, but we acknowledge that the suitability of annotations
can be subjective, potentially leading to varying results across different individuals. Due to
the impracticality of manually verifying all annotations, we randomly checked 200 anno-
tations from various videos in the dataset to ensure suitability. While mistakes were found
and rectified, we acknowledge that the annotations may still contain imperfections. Ad-
ditionally, comparisons with different modalities (e.g., audio) were not feasible, as not all
gaze-equipped videos in the dataset had accompanying modalities. As a result, we did not
propose a new benchmark but focused on demonstrating the importance of including eye
gaze as an additional modality in a VLM to enhance its predictive capabilities.

• Inference Speed Analysis: A detailed study comparing the real-time inference speed of
the baseline model and the gaze-augmented model could further strengthen our findings.
However, this analysis was not conducted due to the lack of appropriate equipment.

• SOTA Comparison: Since our dataset and problem definition differ from prior studies,
a direct comparison with state-of-the-art (SOTA) methods was not performed. Nonethe-
less, we emphasize that the primary contribution of this work is not the introduction of a
new dataset or benchmark but rather the demonstration of how incorporating eye gaze into
VLMs can improve their predictive tasks compared to relying solely on traditional inputs.

8.5 TRAINING AND EVALUATION DETAILS

Both the base model and the gaze-augmented model were trained using two NVIDIA A800 40GB
GPU cards. The base model required approximately 36-38 hours for training, while the gaze-
augmented model took around 50 hours. The training utilized a batch size of 32 and a learning
rate of 7e− 5. The vision encoder is pre-trained by OpenAI. Additionally, the tokenizer for the text
annotations used was the OPT (Open Pre-trained Transformer) language model developed by Meta.
To accelerate the training process, we employed Fully Sharded Data Parallel (FSDP), a technique
that efficiently distributes model parameters and gradients across multiple GPUs, reducing memory
usage and improving training speed. Data loading was managed using the WebDataset loader, and
the dataset was converted to .tar files to align with the format required for integration with both the
WebDataset loader and FSDP.

In terms of model complexity, the base model has approximately 944 million parameters. The gaze-
augmented model with 5 layers contains about 996 million parameters while the gaze-augmented
model with 1 layer has around 955 million parameters. Lastly, the model with 2 layers, which is the
best performing model, has approximately 966 million parameters.

For evaluation, both models were assessed using the semantic transformer (SBERT) developed by
Reimers & Gurevych (2019), along with ROUGE-L and Meteor scores. The inference time on the
test set for the base model was approximately one hour, while the gaze-augmented model had a
slightly longer inference time but remained comparable to that of the base model.
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