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ABSTRACT

Diffusion models have recently emerged as a powerful class of generative models
and have achieved state-of-the-art performance in various image synthesis tasks.
However, training diffusion models generally requires large amounts of data and
suffer from overfitting when the dataset size is limited. To address these limi-
tations, we propose a novel method called WILD-Diffusion, which is inspired
by Wasserstein Distributionally Robust Optimization (WDRO), an important and
elegant mathematical formulation from robust optimization area. Specifically,
WILD-Diffusion utilizes WDRO to iteratively generate new training samples
within a Wasserstein distance based uncertainty set centered at the limited data
data distribution. This carefully designed method can progressively augment the
training set throughout the training process and effectively overcome the obstacles
caused by the limited data issue. Moreover, we establish the convergence guar-
antee for our algorithm even though the mixture of diffusion process and WDRO
brings significant challenges to our analysis in theory. Finally, we conduct a set
of experiments to verify the effectiveness of our proposed method. With WILD-
Diffusion, we can achieve more than a 10% reduction in FID using only 20% of
the training data across different datasets. Moreover, our method can attain state-
of-the-art FID with as few as 100 images, both in pretrained and non-pretrained
settings.

1 INTRODUCTION

Diffusion models (Ho et al.l [2020; |[Sohl-Dickstein et al.l [2015; |Song & Ermonl [2019; |Song et al.,
2020) have become a leading family of deep generative models. Unlike generative adversarial net-
works (GANSs) (Goodfellow et al.,[2014)) and variational autoencoders (VAEs) (Kingma et al., 2013;
Rezende et al}[2014), which generate samples by decoding from a low dimensional latent variable,
diffusion models learn to iteratively denoise a noise corrupted signal through a forward-reverse dif-
fusion process (Yang et al., | 2023b). Recent studies show that diffusion models have been shown to
outperform GANSs in many image generation tasks, including image editing (Huang et al., 2025} |Gu
et al.| 2023} [Kawar et al., 2023} |Yang et al.| [2023a)), image restoration (Xia et al.l 2023} [Fei1 et al.
2023;Zhu et al.| |2023; Lin et al., 2024), style transfer (Zhang et al.,2023b; Wang et al.,|2023d;|Yang
et al., |2023c)), and text-to-image generation (Zhang et al., |2023a); Saharia et al., 2022; Ruiz et al.,
2023)).

However, the increasingly impressive results of diffusion models are fueled by the seemingly un-
limited supply of images. In other words, diffusion models require large amounts of data for stable
training (Wang et al., [2023a; |Li et al., 2025; Zhang et al., 2025), which hinders the application of
diffusion models in limited data settings. For example, training a vanilla diffusion model (Ho et al.,
2020) on only 2,000 samples from the FFHQ dataset (Karras et al., 2019) (about 4% of the full
dataset) leads to a sharp performance drop, with the FID increasing from about 2.5 (full dataset)
to about 30. To address this limitation, recent studies have explored fine-tuning for image gener-
ation under limited data (Ruiz et al., [2023; Moon et al.l [2022; [Zhu et al.l [2022; Hur et al., [2024;
Yang et al., 2024} |Lu et al.| 2023} Zhang et al., |2025)). For example, Ruiz et al.| (2023) applied fine-
tuning to transfer knowledge from models pre-trained on large-scale external datasets, which allows
the model to synthesize high-quality images using only a few target examples. However, these ap-
proaches heavily rely on the similarity between the source (i.e., large-scale external datasets) and
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the target dataset (i.e., the limited dataset) (Hur et al,, [2024). This reliance hinders the broader
adoption of generative diffusion models in data-sensitive fields such as medicine (Kazerouni et al.,
2022). More critically, Moon et al.| (2022) observed that when limited data are used to fine-tune a
pretrained diffusion backbone, the model suffers from overfitting, which means that it memorizes
individual training examples rather than captures the underlying data distribution, and this results in
near-duplicate outputs and reduced diversity (Webster et al.,|2019; |[Karras et al., [2020). This prob-
lem is particularly severe under limited data settings, where the scarcity of training samples makes
the model prone to memorization rather than generalization.

To further illustrate this overfitting phenomenon, we conduct an empirical study to examine how
training data size influences their convergence behavior. Specifically, we investigate the performance
dynamics by training a denoising diffusion probabilistic model (DDPM) (Ho et al.|[2020) on subsets
of FFHQ (64 x64) (Karras et al [2018). We measure the quality by computing Fréchet inception
distance (FID) (Heusel et al.,2017)) between 50k generated images and all available training images.
As shown in Fig. [Ip, the FID curve exhibits a “U-shaped” trend: it decreases in the early stages,
reaches a minimum FID, and then worsens as training continues; smaller datasets yield an earlier
turning point and a higher final FID, which clearly indicates overfitting. It is worth noting that
previous work (Karras et al., |2020) reported similar convergence behavior for GANs. Furthermore,
we also evaluated DDPM on the CelebA-HQ (64 x64) (Liu et al.,[2015) dataset. The results, shown
in Fig.[Tb, are consistent with the above findings that the FID curves also exhibit a U-shaped trend.
For completeness, we also illustrate that the training loss decreases monotonically in all cases (as
shown in Fig.[Tk), while at the same time the FID curve exhibits a U-shaped pattern, which indicates
that overfitting indeed exists.
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Figure 1: Evidence of overfitting in diffusion models with limited data. (a, b) FID curves of DDPM
on FFHQ (64x64) and CelebA-HQ (64x64) datasets, both exhibiting a “U-shaped” trend where
smaller datasets yield earlier turning points and higher final FID. Percentages (e.g., 50%) indicate
the fraction of training data used. (c) Training loss decreases monotonically across all cases.

For classification models, a wide range of methods have been developed to address the problem
of overfitting. These approaches can be broadly divided into two categories: (1) regularization-
based techniques, such as L;/L, penalties (Tibshirani, [1996; Ngl 2004); and (2) data augmentation
strategies, such as Cutout (DeVries & Taylor, [2017), Mixup (Zhang et al., 2018)), and CutMix (Yun
et al., 2019). However, most of these methods are tailored to classification objectives and cannot
be directly transferred to handle diffusion models due to the following two main reasons. (R1)
Regularization-based techniques are primarily designed to improve the generalization of decision
boundaries in classification models; they provide limited benefit when the goal is to capture the un-
derlying data distribution, as in diffusion models. (R2) Augmentation-based techniques are typically
static and rule-driven. These methods can not adaptively constrain distributional shift, and may even
exacerbate the discrepancy by pushing the training marginal distribution further away from the true
data distribution. As a result, the model could learn off-distribution artifacts and reproduce them at
generation time, where this problem is called “augmentation leakage” in (Karras et al., 2020).

In this paper, our proposed method is inspired by Wasserstein Distributionally Robust Optimization
(WDRO) (Gao & Kleywegtl [2023; [Sinha et al., 2018} [Huang & Ding] [2025)), an elegant and pow-
erful mathematical framework from the field of robust optimization. A major advantage is that it
operates directly on data distribution and adaptively expands the support of the training distribution
while remaining close to the true data distribution. Specifically, WDRO replaces empirical risk min-
imization (ERM) on the limited data data distribution pga, With optimization against the worst-case
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distribution in a Wasserstein uncertainty set

up(pdata) = {p : Wc(papdata) < P}’ (1

a p-neighborhood of the distribution pg,, under the Wasserstein metric W, (-, -) (see Section
for a formal definition). WDRO has been proven to effectively mitigate overfitting in supervised
learning (e.g., adversarial training (Liu et al.| [2025) and continual learning (Wang et al.| 2023c)),
by dynamically adjusting the data distribution. Conceptually, WDRO can be viewed as an adaptive
method for support expansion: rather than fitting only the narrow support of pg,, (a key source of
overfitting in limited data settings), the learner is trained to perform well over a neighborhood of
distributions within a transportation budget p. Therefore, under the WDRO perspective, a natural
question arises:

Can the idea of “adaptive support expansion” in WDRO be applied to diffusion models to
enlarge the effective training support, with the goal of improving generative quality while mitigating
overfitting in limited data settings?

1.1 OUR MAIN CONTRIBUTIONS

To address the above question, we propose a “WDRO Inspired
training method for Diffusion model under Limited Data "
(WILD-Diffusion)”, a plug-and-play training framework that
leverages WDRO to dynamically expand the support of the lim-
ited data distribution, which can mitigate overfitting and enhance i
generative performance. It is worth noting that the idea of DRO ! /
has recently been introduced into diffusion models (Wang et al.| /’ NN ,/‘\\\)\
2025a); however, this work addresses a different problem about <! Nz =
diffusion models, which focuses on the training and sampling

distribution mismatch issue rather than limited data generation. Data distribution
Specifically, we apply WDRO to the diffusion problem, where the
objective can be formulated as
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Figure 2: Illustration of support

expansion in a 1D setting.

minimize sup E,[¢(0;x,1)], 2) (solid): true distribution;
PEU (Paata) Red (dotted): limited data dis-

where the uncertainty set Uy, (pqa) is defined in Eq. (1), 6 denotes tribution; Blue (dashed): dis-
the model parameters, (x, ¢) are the diffusion training inputs (data  tribution induced by WILD-
x and time point t), and ¢(0; x, t) represents the diffusion training Diffusion, which expands the
loss function, which will be formally defined in a later section SUPPort of the limited data dis-
(see Eq. (6)). The solution of the problem (2)) guarantees reliable tribution toward the true distri-
performance against data distributions that are distance p away bution and narrows the gap.
from the limited data distribution pay,. Roughly speaking, the solution of problem (2) is expected
to expand the support toward the underlying data distribution and narrow the gap (as illustrated
in Figure [2), which in turn mitigates overfitting and improves sample quality under limited data
settings.

Nevertheless, efficiently implementing this idea within diffusion training is not straightforward, as
it involves two major challenges. (C1) Because both diffusion training and the computation of the
Wasserstein distance are computationally expensive, the first difficulty is to ensure the inner max-
imization tractable while preserving overall training efficiency. (C2) Since WDRO is inherently a
min—max optimization problem with notoriously difficult convergence, another critical challenge
is to establish theoretical convergence guarantee for the WILD-Diffusion framework. To tackle
these challenges, we build on the surrogate loss idea (Blanchet & Murthy, [2019) and reformulate
problem (2 as an approximate optimization problem that is tractable in Euclidean space. This re-
formulation ensures the otherwise intractable inner maximization can be efficient computation, and
we further propose a “Bi-level Interval Update” strategy to derive a practical approximate solution.
Specifically, the strategy alternates between parameter updates on the current mixed training set
(i.e., original samples and their adversarial counterparts) and distribution interval updates through
worst-case sample generation. Furthermore, we establish convergence guarantee for the proposed
WILD-Diffusion method. Unlike prior work (Lee et al., 2022), which analyzes the convergence of
standard diffusion models, the incorporation of WDRO requires an additional technical step: we
prove an upper bound for the worst-case objective (Lemma[3.5), which is essential for achieving the
convergence of our proposed WILD-Diffusion.



Under review as a conference paper at ICLR 2026

The experiments on a variety of diffusion architectures (DDPM++, NCSN++, and ADM) and
datasets (CIFAR-10, LSUN-Church, CelebA-HQ, and FFHQ) suggest the effectiveness of our
method. With WILD-Diffusion, we can achieve more than a 10% reduction in FID using only
20% of the training data across all datasets. In addition, our method achieves state-of-the-art FID
with as few as 100 images, in both pretrained and non-pretrained settings.

2 BACKGROUND

In this section, we first review the background of diffusion-based generative models, outlining their
key formulations and training objectives. We then introduce the concept of Wasserstein distance,
which plays a central role in the formulation of our WILD-Diffusion framework. Due to space
limitations, additional related work is provided in the Appendix

2.1 DIFFUSION-BASED GENERATIVE MODELS

Suppose we are given a dataset {x;}?_;, where each data point is independently drawn from an
underlying data distribution with positive density pgau(x). We slightly abuse notation by using
a measure and its density interchangeably when the context is clear. The forward process is to
construct a process {x(¢)}._, indexed by a continuous time variable t € [0,T]. Note that the
process starts from x(0) ~ pyaa(x) and evolves to x(T') ~ pr(x), where pr typically denotes a
simple prior distribution, such as a standard Gaussian (Ho et al., 2020). According to (Song et al.,
2020), the forward diffusion process can be modeled as a stochastic differential equation (SDE):

dx = f(x, ) dt + g(t) dw, 3)

where f(-,t) : R — R9 is called the drift coefficient of x(¢), g(-) : R — R is a scalar function
known as the diffusion coefficient of x(¢), w is the standard Wiener process (a.k.a., Brownian mo-
tion), and dt represents a negative infinitesimal timestep. Importantly, for any forward diffusion
process in the form of Eq., Anderson| (1982) showed that it could be reversed by solving the
following reverse-time SDE:

dx = [f(x,t) — g(t)*Vx log ps(x)] dt + g(t) dw, 4)

where w is a standard Wiener process when time flows backwards, and the gradient of the log proba-
bility density with respect to the data, V log p;(x), is the (Stein) score (Liu et al.,[2016). Moreover,
Song et al.[(2020) proved the existence of an ordinary differential equation (ODE), namely the prob-
ability flow ODE, whose trajectories have the same marginals as the reverse-time SDE (). The
probability flow ODE is expressed as:

dx = |f(x,t) — %g(t)QVx log p:(x) | dt. (5)

Note that if the score of the marginal distributions, Vy log p;(x), is known for all ¢ € [0, T, then
the reverse diffusion process can be derived from Eq. (5)) and subsequently simulated to generate
samples from py,, (x). Specifically, a time-dependent score model sy(x, t) is trained to estimate the
score function, which yields the following training objective:

0(0,x,t) = A(t) - ||se(x,t) — Vi log p(x) |3, (6)
where A(t) : [0, 7] — R, is a positive weighting function (Yang et al., 2023b).

2.2  WASSERSTEIN DISTANCE

The Wasserstein distance, which originates from the theory of optimal transport (Peyré et al., 2019
Villani et al., 2008)), has been widely adopted in machine learning (Sinha et al., [2018}; |Kolouri et al.}
2017). Let X C R? denote the sample space. For x,x’ € X, the transportation cost c associated
with moving mass from x to x’ is defined as (Volpi et al., 2018

1
c(x,x) = §||x —x/||3. @)
As the Ly norm is the standard choice in optimal transport, we confine our analysis to this setting.
Given two probability measures P and ) supported on X, let II( P, Q) denote the set of couplings
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between P and @), i.e., measures M on X x X with marginals P and ). Then, the Wasserstein
distance between P and () is defined as

WelP.Q) = | inf  Eule(x.x). ®)

3 METHOD

In this section, we present WILD-Diffusion, a WDRO inspired framework designed to enable effec-
tive training of diffusion models in limited data settings. A highlight of WILD-Diffusion is that it
dynamically leverages WDRO to construct worst-case distributions that lie close to the limited data
distribution (in Wasserstein distance), which expands the support of the training distribution and im-
proves sample diversity, and consequently relieves the negative impact of overfitting. Moreover, our
framework is flexible and can be combined with a wide range of baseline methods. We first present
our WILD-Diffusion framework in Section 3.1} Next, we provide the convergence analysis of our
proposed approach in Section

3.1 WILD-DIFFUSION FRAMEWORK

Wasserstein Distributionally Robust Optimization (WDRO) (Kuhn et al., 2019; |[Rahimian & Mehro-
tral 2019b; Sinha et al.| 2018) formulates robust decision-making under uncertainty by optimizing
for the worst-case over all probability distributions within a Wasserstein ball. The Wasserstein ball
consists of all distributions whose distance from the limited data distribution does not exceed a given
threshold (recall p in Eq. (). In our WILD-Diffusion framework, we assume that the true data dis-
tribution lies in a Wasserstein uncertainty set , ie., Uy(Paaa) = {p + We(p, Paaa) < p}. This
formulation captures the distributional uncertainty arising from limited data, which is particularly
severe when the sample size is small because the limited data distribution poorly approximates the
true underlying distribution (see Fig.[2). Recall the optimization objective (2), the inner sup over
the Wasserstein uncertainty set enforces the model to cope with increasingly harder perturbations of
the limited data distribution. Namely, this strategy can guide the model to learn some new samples
and therefore prevents memorization and thus mitigates overfitting.

In general, the worst-case optimization that involves the sup operator within the Wasserstein ball
is computationally challenging for two main reasons: (i) the Wasserstein ball encompasses a rich
family of probability distributions, making the inner maximization problem inherently infinite-
dimensional; and (ii) computing the Wasserstein distance itself is computationally expensive even in
approximate forms. While these challenges already arise for relatively simple models, they become
particularly severe in the context of diffusion models. To handle the inner maximization problem
in (2)), we adopt the strong duality property given in (Gao & Kleywegt, [2023| Theorem 1) and obtain
its dual formulation. Suppose X C R is the sample space. Given a fixed penalty parameter v > 0,
the worst-case loss in Eq. (2)) can be reformulated as

miniGmize{E(Q) i= sup {E, [(0; %, )] — YWe(p, Paata) } = Epu [0+ (05 %, 1)) }, (9a)
P

where ¢ (0;x,t) := sup {{(0;x',t) — ye(x',x)}, (9b)
x'eX
is the surrogate loss (Blanchet & Murthy} |2019; [Volpi et al.| |2018)) that replace the usual diffusion
loss £(6;x,t) (i.e., Eq. @)). Here, the penalty parameter + controls the degree of support expansion;
it balances fidelity to the training data and robustness to distributional shifts. Since pgay, is unknown,
the penalty problem is solved by replacing pga, With the empirical distribution p,,, where n is
the sample size.

Remark 3.1 Eq. gives the dual formulation of Eq. (), i.e., both problems share the same
optimal value. The advantage of this reformulation is that we can ignore the complicated uncertainty
set U, (Daara)- Instead, we only add a surrogate loss ¢~(0;x,t) to the Eq. , which yields a more
succinct formulation for optimizing the problem. However, the solution to Eq. is non-trivial; we
provide further details on its optimization in the following discussion.

In order to solve the duality formulation @, we can now perform stochastic gradient descent on
the surrogate loss ¢-,. Specifically, suppose that the loss £(6; x, t) satisfies the Lipschitz smoothness
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conditions (Boyd & Vandenberghe) 2004) and that the surrogate loss is strongly concave. Under
these conditions, we have
Vody(0;x,t) = Vol(0; (x*,t)) where x* = argmax {((6;x,t) — ye(x',x)}. (10)
x'eX
Computing the gradient of the surrogate loss ¢~ for a given sample x requires solving the inner
maximization problem to obtain x*. Notably, we observe that x* is similar to an adversarial per-
turbation of x under the current model 6. Following the intuition of adversarial training (Madry
et al.| 2018)), we propose a “Bi-level Interval Update” strategy for WILD-Diffusion. The difference
from adversarial training is that, while adversarial training typically generates adversarial exam-
ples within a fixed norm ball, our approach imposes a soft constraint via the penalty parameter -,
which governs distributional robustness at the support level. The strategy couples two updates. (I)
Parameter update level. The model parameters ¢ are updated at every training iteration using
the current training set. (II) Distribution (sample) update level. Every m epochs we refresh the
WDRO-induced “worst-case” samples via gradient ascent and mix them with the real data to form
the augmented training distribution. Between distribution updates, the worst-case samples are kept
fixed. Specifically, at the sample update level, for each training example we first draw an initial point
x? from the data distribution pga,. We then iteratively update it through the injection of adversarial
perturbations, which produces an adversarial variant as defined by the following update rule:
x¥ exf‘l +CVX{€(9;xf_1,t) ffyc(xf_l,xo)}, (11)

7

where ( denotes the step size and k = 1,..., K indexes the iterations. At the parameter update
level, the model parameters 6 are updated at every training step by performing stochastic gradient
descent on the loss £(0; x, t), where the training sets is a mixture of the original samples and their ad-
versarial counterparts. Algorithm ] presents the proposed WILD-Diffusion algorithm, which offers
the flexibility to incorporate a variety of baseline methods, since it operates on the data distribution
without requiring changes to the model architectures. In addition, we take Sy, epochs to train the
model on the limited dataset as a warmup stage. The warmup stage yields a stable initialization
before incorporating worst-case samples. Starting from a well-initialized state enables the model
to produce more informative gradients used in Eq. (TT). In practice, We allocate 10% of the total
training epochs to the warmup stage.

3.2 CONVERGENCE ANALYSIS

In this section, we establish the convergence guarantee for the proposed WILD-Diffusion method.
In contrast to prior work (Lee et al.,[2022)), which focuses on standard diffusion models, our analysis
must account for the additional complexity introduced by WDRO. To this end, we establish a upper
bound for the worst-case objective (Lemma [3.5), which enables the convergence proof of WILD-
Diffusion. We first make the following assumptions (i.e., Assumption [3.2]and[3.3) on the probability
density pga and the score estimate sy(x,t) (defined in Section , which will be used throughout
the analysis.

Assumption 3.2 Assume that pgu, satisfies the log-Sobolev inequality with constant C\s > 1;
10g Paara s L-Lipschitz for some L > 1; pgua has finite first and second moments.

Assumption 3.3 Suppose that sg(x,t) is Ls-Lipschitz in its first argument with Ly > 1, and the
error in score estimate £(0;x,t) is uniformly bounded by a given parameter € > 0.

Remark 3.4 Assumptions[3.2]and also adopted in|Lee et al.|(2022)), are standard assumptions
in analyses of score-based diffusion models. In particular, the Lipschitz assumption on pgq, is used
1o ensure the existence of a unique strong solution to the reverse-time SDE (Eq. d)) (Block et al.
2020} |@ksendall 2003). The detailed definition of the log-Sobolev inequality is given in Appendix|D}
Building on the above assumptions, we derive an upper bound for the optimization objective in
Eq. ), as stated in Lemma [3.3] which is a essential condition for the convergence analysis of
WILD-Diffusion.

Lemma 3.5 Under Assumption[3.3] for any fixed T > 0, the following inequality holds with proba-
bility at least 1 — e~ ", uniformly over all p > 0 and v > 0

sup B, [H(0 %, 1] < 9p + Bp, [6(0:x, )] + O( /7). (12)

PWe (D,Pdata) <P
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Algorithm 1 WILD-Diffusion

Input: Training datasets {x; *_1; Initialized model parameter 6, learning rate 1, step size ¢, num-
ber of iterations K in inner optimization, interval parameter m, total diffusion steps 7', the
number of epochs .S, and the number of warmup epochs Sy,.

Output: Final diffusion model parameter 6.

1: 0« 90
2: /* Initialize model */
3: fors=1,...,S5y do

4:  /*Take S,, epochs to train the model as the warmup */
5 fori=1,...,ndo

6: Sample ¢ ~ Uniform({1,...,T})

7: 0« 0 —nVel(0;x;,t)

8: end for

9: end for

10: fors =5, +1,...,5do
11:  if (s mod m)==0 then

12: /* Support Expansion via WDRO */

13: D+ {}

14: fori=1,...,ndo

15: x? < x;, t ~ Uniform({1,...,T})

16: fork=1,..., K do

17: xF o xBT  ovL 00 % ) — ye(xF T x0))
18: /* Distribution (sample) update via Eq. (1) */
19: end for

20: D+ DU {xK}

21: /* Save worst-case samples */

22: end for

23:  endif

24: fori=1,...,ndo

25: Sample x; ~ D, t ~ Uniform({1,...,T})

26: 0 0 —nVe{l(0;x;,t)+£(60;x,t)}

27: /* Parameter update */

28:  end for

29: end for

Here, n is the sample size, 7 is the confidence parameter, and p,, is the empirical distribution
of the samples from pg,,. We adopt the fotal variation distance Dty (-,-) to quantify conver-
gence. Given two distributions p and ¢, the total variation distance is defined as Dy (p,q) =
3 [ Ip(x) — q(x)|dx, which measures the maximum discrepancy between two distributions. Be-
fore presenting the convergence result of WILD-Diffusion, we first provide an outline of the proof.
Namely, let ¢; denote the reverse process with the estimated score. We define the bad set B; as

B, = {x ‘ SUD ., (ppas) <p B [[80(%, 1) — Vi log pi (%) [|?] > EB} for some e to be chosen,
and define g; as the reverse process with the estimated score except in B;. Hence, the convergence
proof can be divided into two parts by applying the triangle inequality

Drv (gt pe) < Drv(G,pe) + Drv(gs, @)- (13)
Since (Lee et al.l [2022)) established the bound Dy (g, p:) < si < 1, with si denoting the cor-

responding error term, the main task is therefore to control the second term Drv (g, G ). This is
established in Theorem [3.6

Theorem 3.6 (Convergence of WILD-Diffusion). Suppose Assumptions [3.2] and [3.3| hold, and
Lemma applies. If we run the SDE (Eq. |4) starting from a Gaussian distribution for time

2
T = @(max { log(Cisd), Cis 10g(£%> }) with step size h = © (Cls(Cls+d)€r)§1ax{L2 L?})’ then
the final sampling distribution qq satisfies

5/2

O " (Cis+d)(L?+L3) 1+log
DTV@o,qo)so(%pﬂﬁsmwe;x,wwo(ﬂ)- - si( ( >)). (14)

m
xw"\’
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For simplicity, we denote the upper bound in Eq. by Duyp. Thus, Doy (qo, Pdata) < €i + Dup.

The complete proof is provided in Appendix [B.3] Theorem [3.6]establishes a convergence guarantee
for WILD-Diffusion under standard assumptions. Specifically, the total variation distance between
the generated distribution gg and the limited data distribution pgu, is bounded by the sum of two
terms: an estimation error term 5?(’ which arises from the approximation of the score function, and
a sampling error term Dy (qo, §o), which is due to the numerical computation of the reverse SDE.
Notably, when the robustness budget p — 0 and the sample size n — oo, the bound recovers the
result of (Lee et al., |[2022), which showed that

D1v (o, Paata) < 5i +0 (x@ . 0155/2(015 +d)(L? + L?) (1 + log (%)) 6;3) )

This suggests that our convergence guarantee can be regarded as a generalization of the result in (Lee
et al.,[2022)) to the more complicated distributionally robust setting (see Appendix for details).

4 EXPERIMENTS

In this section, we first present a hyper-parameter sensitivity analysis to investigate the key fac-
tors influencing the performance of our method, as detailed in Section 4.1} Next, we compare our
approach with state-of-the-art diffusion model baselines on widely-used benchmark datasets in Sec-
tion[4.2} In Sectiond.3] we further demonstrate that our method performs well on few-shot datasets.
It is worth noting that in generative modeling, the few-shot setting differs from the limited data
regime: the former typically involves adapting a pretrained model to a new distribution with only a
handful of samples (tens to hundreds), whereas the latter refers to training on a small dataset of only
thousands of samples without access to large-scale pretraining (Abdollahzadeh et al.,[2023)). Finally,
we conduct the ablation studies in Section [4.4]

Experimental Setting. In line with previous works (Wang et al., 2023a; [Zhao et al.| 2020} Karras
et al., |2020), we conduct experiments on standard benchmarks, where subsets of the training data
are randomly selected. For the limited data setting, we adopt CIFAR-10 (32 x 32) (Krizhevsky
et al., [2009), FFHQ (64 x 64) (Karras et al., [2019), CelebA-HQ (64 x 64) (Karras et al., 2018),
and LSUN-Church (256 x 256) (Yu et al. |2015). For the few-shot setting, we adopt the 100-
shot datasets (256 x 256)—Obama, Grumpy Cat, and Panda (Zhao et al.|[2020)—and AnimalFace
(256 x 256; cats and dogs) (Si & Zhu, 2011). We implement our method on the current start-of-
the-art diffusion framework EDM (Karras et al., [2022), which integrates DDPM++ (Song et al.,
2021b), NCSN++ (Song et al., |2021b), and ADM (Dhariwal & Nichol, [2021). DDPM++ is our
default backbone model for training low-resolution (i.e., 32x32 and 64x64) datasets, while ADM
coupling with Stable Diffusion (Rombach et al.l 2022) is our backbone model for training high-
resolution (i.e., 256x256) datasets. We evaluate image generation quality using Fréchet Inception
Distance (FID) (Heusel et al.,[2017). Following Karras et al.|(2022;[2020), FID is computed between
50k generated samples and the full set of training images. The detailed experimental settings are
provided in Appendix

4.1 SENSITIVITY OF HYPER-PARAMETER

In this section, we investigate the sensitivity of our method to key hyper-parameters. In particu-
lar, the interval parameter m (in Algorithm [)) plays a crucial role, as it can substantially influence
both generation quality and training efficiency. To assess its effect, we conduct a series of experi-
ments by varying m over {5, 10, 20, 30, 40, 50, 100} on the FFHQ dataset with 50% training data.
Figure [3] shows that increasing m reduces the total training time while degrading generative per-
formance (higher FID). This reveals a clear trade-off between efficiency and quality. Taking both
training efficiency and generative quality into account, we set m = 20 as the default choice in all
experiments.

In addition, to better interpret the influence of injected adversarial perturbations (see Eq. [IT)), we
examine our method on the FFHQ dataset with 50% of the training data across the number of steps,
step size, and penalty strength. When studying one factor, the others are fixed at their best values.
From Figure 4] several observations can be drawn: (1) Increasing the number of steps K improves
performance up to K = 5, after which the gains diminish (Figure [4p); (2) The step size n = 0.01
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achieves the best balance, while both smaller and larger values degrade performance (Figure[db); (3)
The penalty parameter + is relatively stable, with v = 1 performing best (Figure {it). In summary,
we adopt these configurations as the default in all experiments.

4.2 EXPERIMENTS ON LIMITED DATA GENERATION

In this section, we compare our method with state-of-the-art diffusion approaches on both low-
resolution (Table [T) and high-resolution (Table [5)) benchmarks. For the low-resolution setting, we
evaluate on CIFAR-10, CelebA, CelebA-HQ, and FFHQ. Specifically, the baselines include EDM-
DDPM++ (Karras et al., 2022), EDM-NCSN++ (Karras et al., 2022), EDM-ADM (Karras et al.,
2022), AT-Diff (Wang et al.l 2025a), Patch Diffusion (Wang et al. 2023a), and DeepCache (Ma
et al.,2024)). We include Patch Diffusion and DeepCache to illustrate that WILD-Diffusion serves as
a plug-and-play framework that is “orthogonal” to these methods; moreover, they can be seamlessly
combined to achieve more promising performance in practice. We incorporate our WILD-Diffusion
into these diffusion methods to assess its performance across datasets. For completeness, we
also compare with data-efficient GAN-based approaches, including BigGAN (Brock et al., [2019)),
StyleGAN-v2 (Karras et al., 2019), DiffAugment (Zhao et al.,2020)), and CR-BigGAN (Zhang et al.,
2020).

Table 1: FID results on low-resolution datasets. FID (lower is better) is computed with 50k samples.
The numerical results of the baseline methods are taken from the original papers. “-” indicates that
the result is not reported in the original paper (Zhao et al., |2020). The notation “(-A%)” indicates
percentage decreases compared to the baseline. “A% data” refers to randomly selecting “A%” of
the training data from the dataset, and “cond.” denotes the class-conditional setting. The best-
performing results are highlighted in bold.

Dataset Method 20% data 50% data 100% data
BigGAN (Brock et al.|[2019) 21.58 - 9.59
StyleGAN-v2 (Karras et al.|[2019) 23.08 - 11.07
CR-BigGAN (Zhang et al.|[2020) 20.62 - 9.06
BigGAN+DiffAugment (Zhao et al.|[2020) 14.04 - 8.70
EDM-DDPM++ (Karras et al.|[2022) 13.91 6.62 1.97
AT-Diff (Wang et al.||2025a) 13.63 6.49 -
+ WILD-Diffusion 12.14 (-12.72%)  6.02 (-9.08%)  1.93 (-2.03%)
EDM-DDPM++ (cond.) (Karras et al.|[2022) 12.33 6.03 1.79
CIFAR-10 + WILD-Diffusion (cond.) 10.89 (-11.68%) 5.37 (-10.95%) 1.71 (-4.47%)
(32 x32)  EDM-NCSN++ (Karras et al.|[2022) 13.68 6.53 2.02
+ WILD-Diffusion 12.08 (-11.70%)  5.97 (-8.58%)  1.98 (-1.98%)
Patch Diffusion (Wang et al.}|2023a) 12.53 6.42 2.47
+ WILD-Diffusion 11.78 (-5.99%)  6.07 (-5.45%)  2.38(-3.64%)
DeepCache (Ma et al.|[2024) 15.33 9.31 4.35
+ WILD-Diffusion 13.96 (-8.94%)  8.72 (-6.34%)  4.21 (-3.37%)
EDM-DDPM++ (Karras et al.|[2022) 10.02 5.21 2.60
FFHQ + WILD-Diffusion 8.57 (-14.47%)  4.68 (-10.17%) 2.53 (-2.70%)
(64 x 64)  EDM-NCSN++ (Karras et al.|[2022) 9.38 5.04 2.57
+ WILD-Diffusion 7.89 (-15.88%)  4.60 (-8.73%)  2.54 (-1.16%)
EDM-DDPM++ (Karras et al.|[2022} 11.86 6.11 3.73
CelebA-HQ  + WILD-Diffusion 10.22 (-13.83%)  5.55(-9.17%)  3.63 (-2.68%)
(64 x 64)  EDM-NCSN++ (Karras et al.|[2022) 11.63 5.81 3.70

+ WILD-Diffusion

10.07 (-13.41%)

5.36 (-7.75%)

3.65 (-1.35%)

The results for the low-resolution benchmarks are summarized in Table[I] The following two obser-
vations can be drawn: (1) with the same amount of training data (from 20% to 100%), our method
consistently outperforms the baseline model; and (2) the performance gains are larger when the
amount of training data is smaller. This phenomenon is understandable, as limited training data
makes models more susceptible to overfitting (see Figure [1]), which leads to poor generative perfor-
mance. For example, on the 20% FFHQ training set, our method yields a 15.88% improvement in
FID compared with the baseline EDM-NCSN++ method. However, as the training data increases,
the performance gain diminishes to 1.16%. We further evaluate our method on the high-resolution
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benchmark LSUN-Church, with results reported in Table [5]in Appendix [C.3] The conclusions are
consistent with those drawn from the low-resolution benchmarks.

4.3 EXPERIMENTS ON FEW-SHOT GENERATION

In practice, it is often impossible to collect a large-scale dataset for specific images of interest.
To address this few-shot image generation problem, researchers recently exploit few-shot learn-
ing (Gharoun et al.| [2024; Wang et al., 2020a)) in the setting of image generation, including LD-
Diffusion (Zhang et al., |2025), LPDM-8 (Wang et al., [2023a), FreezeD (Mo et al.| 2020), Transfer-
GAN (Wang et al., 2018b), MineGAN (Wang et al., [2020b), and DiffAugment (Zhao et al., [2020).
We compare these transfer learning approaches with our data-efficient training scheme. Note that
these diffusion-based transfer learning methods start from a pre-trained EDM-NCSN++ (Karras
et al.} 2022) model on the FFHQ dataset, while these GAN-based methods start from a pre-trained
StyleGAN-v2 (Karras et al.| |2019) model on the same dataset. Our comparison experiments are
conducted on the 100-shot datasets (Obama, Grumpy Cat, and Panda) (Zhao et al.| [2020), and
AnimalFace (160 cats and 389 dogs) (Si & Zhu, |2011). The results in Table [2| show that WILD-
Diffusion achieves consistent gains on all datasets, with or without pre-training. For example, our
method achieves the lowest FID score of 34.52 (representing an improvement of at least 7%) on the
100-shot Obama dataset when trained from scratch.

Table 2: The FID results on few-shot generation. Following the setting used in (Zhao et al., |2020),
we calculate the FID with 5k samples and the training dataset is adopted as the reference distribution.
All transfer learning methods have their pre-trainings from the FFHQ dataset. The numerical results
of the baseline methods are quoted from their papers. We highlight the best results in bold.

Methods Architecture Pre-training? 100-shot Animal-Face
Obama Grumpy Panda  Cat Dog
StyleGAN-v2 (Karras et al..72019) GAN No 80.20 48.90 3427 7171 130.19
EDM-NCSN++ (Karras et al.|[2022) Diffusion No 37.10 29.94 10.81 36.88 57.14
MineGAN (Wang et al..72020b) GAN Yes 50.63 35.54 14.84 5445 93.03
TransferGAN (Wang et al.|[2018b) GAN Yes 48.73 34.06 2320 52.61 82.38
FreezeD (Mo et al.|[2020) GAN Yes 41.87 31.22 17.95 4770 70.46
LPDM-8 (Wang et al.|[2023a) Diffusion Yes 14.27 14.56 5.13 1492 15.95
LD-Diffusion (Zhang et al.|[2025) Diffusion Yes 13.00 13.31 4.70 1277 1248
WILD-Diffusion (ours) Diffusion Yes 12.54 12.83 4.66 1293 1221
DiffAugment (Zhao et al..72020) GAN No 46.87 27.08 12.06 42.44 58.85
Patch Diffusion (Wang et al.}[2023a) Diffusion No 41.47 30.89 13.25 4371 72.17
WILD-Diffusion (ours) Diffusion No 34.52 26.33 8.96 34.21 53.18

4.4  ABLATION EXPERIMENTS

Given that our proposed method incorporates the “Wasserstein distance” (Eq.(2)), it is natural to
compare with other distributional divergences that are commonly used in distributionally robust op-
timization (DRO). To this end, we perform an ablation study by replacing the Wasserstein distance
with alternative divergences: (1) KL-divergence, (2) X2-divergence, and (3) a-divergence (see de-
tailed definition in Appendix [D). The results are summarized in Figure[TT]in Appendix [C.6 which
demonstrate that our method achieves superior performance compared to these alternatives. Further-
more, as our method can be regarded as a novel data augment method with theoretical guarantee,
we perform the ablation experiments comparing it against representative augmentation techniques,
including Mixup (Zhang et al., 2018), CutMix (Yun et al., [2019), and CutOut (DeVries & Taylor,
2017). The results are presented in Table [§]in Appendix [C.6l which show that our method achieves
better performance than other methods.

5 CONCLUSION

In this paper, we introduced WILD-Diffusion, a novel diffusion training framework based on
WDRO. Our method dynamically expands the support of the training distribution, which miti-
gates overfitting and improves generation quality under limited data. We proposed an efficient
algorithm with a theoretical convergence guarantee, and extensive experiments demonstrated that
WILD-Diffusion can improve state-of-the-art diffusion models across diverse datasets and architec-
tures.

10
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A RELATED WORK

Recent advances in generative modeling have been driven by diffusion models, which have achieved
state-of-the-art performance across a wide range of applications. However, their effectiveness in
limited data settings remains a major challenge, as models often suffer from overfitting. To address
this issue, prior works have explored strategies such as data augmentation and few-shot adaptation.
In parallel, the framework of Wasserstein distributionally robust optimization (WDRO) has emerged
as a powerful tool for mitigating overfitting by optimizing against worst-case perturbations of data
distributions. In this section, we review related work along three directions: diffusion models,
generative modeling under limited data, and WDRO.

Denoising diffusion probabilistic models (DDPM). In recent years, diffusion models (Ho et al.,
2020; |Sohl-Dickstein et al., 2015; |Karras et al., 2022; |Song et al., [2020) have emerged as a state-
of-the-art family of generative models. They work by sequentially corrupting training data with
gradually increasing levels of noise (i.e., the forward process), and then learning to reverse this
corruption to construct a generative model of the data (i.e., the reverse process). Current research
on diffusion models has primarily focused on two main formulations: denoising diffusion prob-
abilistic models (DDPM)(Ho et al.l [2020; [Nichol & Dhariwall, [2021) and score-based stochastic
differential equations (Score SDEs)(Song et al., [2020; |[Karras et al., 2022) (where score-based
generative models (SGMs) (Song & Ermon, [2019; 2020) can be viewed as their discrete coun-
terparts). Given a data point x(0) ~ pgaw, the forward process generates a sequence of ran-
dom variables {x(1),...,x(T")} with the transition kernel p(x(t) | x(¢t — 1)) for all timesetp
t € {0,1,...,T}. A common choice for the transition kernel is Gaussian kernel (Yang et al.,
2023b), i.e., p(x(t) | x(t — 1)) = N(x(t); /1 — Bix(t — 1), 5I), where 5; € (0,1) is a se-
quence of positive noise scales. Following Sohl-Dickstein et al.| (2015); Ho et al.| (2020), with
setting oy := 1 — B, and &y := Hi:o as, we have p(x(t) | x(0)) = NM(x(t); vayx(0), (1 — a;)I).
Therefore, we can easily obtain a sample of x(¢) by sampling a Gaussian vector € ~ A (0,I)
and applying the transformation x(t) = \/a;x(0) + /1 — a;€. Since the noise scales & are pre-
scribed (Song et al.|, [2020), so that x(7") is almost Gaussian in distribution, i.e., x(7') ~ A (0,I).
The reverse process is a variational Markov chain and parameterized with pg(x(t — 1) | x(¢t)) =

N(x(t —1); ﬁ(x(t) + Biso(x(t),t)), 5:I). Thus, the loss takes the following form (see |Song

et al.| (2020) for dettails):
00,%,t) = MN1)B7 - ||lse(x,1) — Vi log p(x) |3 (15)
where A(t) is a positive weighting function (Yang et al., 2023b).

Generative models with limited data. Prior to the rise of diffusion models, a large body of work
studied training schemes for generative models in limited data settings, primarily in the context of
GANSs (Abdollahzadeh et al., 2023). A significant challenge in this scenario is “overfitting”(Karras
et al.l 2020; Liu et al.| 2021), where the model may memorize the training data (Li et al., 2020;
Ojha et al.,|2021)) and reproduce training examples rather than learn the real data distribution (Zhao
et al.l 2022). Moreover, under limited data regimes, generative models are more prone to mode
collapse (Tran et al) 2021), i.e., the models learn only a limited set of modes and fail to capture
other modes of the data distribution, resulting in limited diversity in generated samples (Yu et al.,
2022). Various strategies have been proposed to mitigate this phenomenon, primarily focusing on
data augmentation (Zhang et al.,[2020;|Zhao et al.,[2021; |Karras et al.| | 2020;|Chen et al.,2021; Wang
et al.} 2023b)), which increases the quantity and diversity of the training data. For example, the ADA
method (Karras et al.l 2020) applies an adaptive augmentation strategy (i.e., with augmentation
probability p < 1) in the limited data setting to prevent information leakage. Meanwhile, recent
works have also begun exploring the few shot adaptation of diffusion models (Lu et al., 2023} |[Ruiz
et al.}2023;|Zhang et al.,2025). For instance, DreamBooth (Ruiz et al.,2023) finetunes a pretrained
text-to-image model on a few images of a specific subject and introduces a special identifier token
in the prompt, enabling the finetuned model to generate diverse images that preserve the subject’s
identity. However, these works do not fully explore training diffusion models from scratch under
limited data, and they differ drastically from our proposed method.

Wasserstein distributionally robust optimization (WDRO). WDRO (Rahimian & Mehrotra,
2019a; [Wang et al., |2025b) is an effective optimization framework for learning and decision-
making under uncertainty (Wozabal, 2014; Rahimian & Mehrotra, [2022; [Kuhn et al., 2019). The
core idea of WDRO is to optimize the worst-case expected loss over a Wasserstein uncertainty set
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(also known as an ambiguity set) of plausible distributions, rather than a single empirical distribu-
tion (Rahimian & Mehrotra, 2019a). Previous approaches to distributional robustness have consid-
ered finite-dimensional parametrizations for the uncertainty set, such as constraint sets for moments,
support, or directional deviations (Chen et al., 2007} Delage & Yel 2010;|Goh & Siml 2010), as well
as non-parametric distances for probability measures, such as f-divergences (e.g., x* divergence, a-
divergence, and Kullback-Leibler divergence) (Ben-Tal et al.| 2013 |Duchi et al.| 2021; Namkoong
& Duchil 2016)) and Wasserstein distances (Blanchet et al., | 2019azb; Mohajerin Esfahani & Kuhn,
2018} /Gao & Kleywegtl 2023). WDRO has been successfully applied to numerous problems in ma-
chine learning, including (semi-)supervised learning (Blanchet & Kang]| 2020; |[Chen & Paschalidis,
2018)), adversarial training (Levine & Feizi, 2020; Najafi et al.| [2019; Sinha et al., 2018 [Staib &
Jegelkal 2017; Liu et al., |2025)), reinforcement learning (Liu et al., 2022; |Abdullah et al.,|2019)), and
transfer learning (Volpi et al., 2018} |Lee & Raginsky, [2018)). Recent work has also investigated the
incorporation of DRO into diffusion models. For instance,Wang et al.|(2025a) employ DRO to miti-
gate the distribution mismatch that arises between the training and sampling procedures. In contrast,
Our work differs substantially in both problem setting and DRO formulation: we focus on limited
data diffusion training, and we design a WDRO method (i.e., implemented via a “Bi-level Interval
Update” strategy) on the original data distribution to expand support and mitigate overfitting.

B PROOF

In this section, we provide a detailed proof of the convergence result in Section[3.2] In Section[B.T]
we establish an upper bound on the worst-case objective (2) (i.e., Lemma [3.5). In Section
we present several auxiliary lemmas that are directly used in the proof of Theorem Finally, in
Section we establish the convergence result of the WILD-Diffusion algorithm (Theorem [3.6).
In addition, we provide the convergence result from|Lee et al.|(2022)) for comparison in Section

B.1 PROOF OF LEMMA[3.3]

Lemma B.1 Under Assumption[3.3] for any fixed T > 0, the following inequality holds with proba-
bility at least 1 — e~ ", uniformly over all p > 0 and v > 0

sup B [0(0;x,1)] < vp+ Ep, [6-(0;x,8)] + 0(\/%). (16)
PWe (P, Pdata) <p

Proof The proof follows (Sinha et al) [2018). For any data distribution pg,, and p > 0, the
following duality result holds for problem (2)):

sup  Ep[l(6;x, 1)) = Inf {p + Epy, [0, (0, )]} (17)

PWe (PsPda) <p

From the above duality result , for all p > 0, data distributions pgat, and v > 0, we have

sup B, [0(0;x, )] < vp + By, [04 (05 %, 1)]. (18)
PCWc(P’Pdma)SP

Let dx denote the point mass at x. We first present the empirical result for Eq. (9a):
miniemize{ﬁn(e) = sup {E, [((0;x,t)] — YWe(p, Pn)} = Ep,, [04(0;x,1)] }, (19)
p

where p,, = % Z?:l 0x, denotes the empirical distribution of the samples x;.,,. Next, we show
that E; [¢-(0;x,t)] concentrates around its population counterpart at the standard rate (Boucheron
et al.l [2005)).

Since we assume that the loss function ¢(6; x, t) is uniformly bounded by ¢ in Assumption ie.,
|€(0;x,t)| < e. Together with the definition of the surrogate loss, we have that

—e <4(0;x,1) < ¢y (0;x,t) <sup{l(8;x,t)} <e,

and hence |¢-(0;x,t)| < e. Thus, the functional § — L, (6) satisfies the bounded differences
(Boucheron et al.|, 2005)).

Note that our bound relies on the usual covering numbers for the model class £(6;-) : 0 € ©; as a
measure of complexity (Wellner et al., 2013)), where ©; denotes the parameter space. Recall the
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definition of covering numbers: for a set V, a collection {v1,...,vn} is an e-cover of V' in norm
|| - || if for each v € V, there exists v; such that ||v — v;|| < e. Then the covering number of V' with
respect to || - || is

N(V,e, || - |]) :=inf{N € N | there exists an e-cover of V' with respect to || - || }.

For our problem, let £ := ¢(0;-) : § € O denote the loss function class equipped with the L., (X)
norm, i.e.,

[l = sup [((x)[, £€L
xeX

therefore the covering number of £ is N (L, e, || - ||1..)-

By applying standard results on Rademacher complexity (Bartlett & Mendelson, [2002) and entropy
integrals (Wellner et al.,2013), we have that for any fixed 7 > 0, the following inequality holds with
probability at least 1 — e,

1
B 6103, 0) < B, [0 00+ b1y = [ \flog N2 ) de a7, 0
0 n

where b1, by > 0 are absolute constants.
Substituting Eq. into Eq. (T8):

sup B [L(05%,8)) < v+ By, [6(0:%,0)] + O(,/5).
P We (P,Pawa) <p

B.2 AUXILIARY LEMMAS

For analytical convenience, we consider the following discretization and approximation of Eq. (3),
which can be expressed as

(i+1)h
X(i+1)h = Xih — / [f(xih, T-—1t)— %g(T — )2 - sg(xin, T — zh)} dt, (D)
ih

where h denotes the step size with 7' = kh (and k is the number of steps), and time is reversed
such that ¢ in the reverse process corresponds to (1" — t) in the forward process. Following Lee et al.
(2022), our proof method is to construct a “bad set”, which is formalized in lemma@} Specifically,
we define a bad set By, as the set of x; for which the worst-case error is large (see Eq. . Let g,
denote the discretized process (D)) with the estimated score, and g, denote the discretized process (D))
that also uses the estimated score except in By. The following lemma formalizes this construction
and provides the key bound needed for our analysis.

Lemma B.2 Ler (2, F,P) be a probability space and {Fy} a filtration of F. Suppose Xy, ~ py,

Zk ~ qk, and Zj, ~ i, are Fyp-adapted stochastic processes taking values in §). Assume further that
ifzi € Bf forall 1 <1i <k —1, then zi, = Zx. Under these conditions, the following results hold

k

|
-

_ _ 1/2
Drv(ar @) < > (3@ lp) +1)7 8,7, @)
1=0
k—1
_ _ 1/2
Dy (g o) < 2@ o) > + 3 (3@ Nl pe) +1) 2612, (22)
1=0

where &y, satisfies P(zy, € By) < O, for every k € N.

Note that x?(+|-) denotes the y?-divergence, and its detailed definition is provided in Section@
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Proof By the definition of the total variation distance (Section , we obtain
Drv(qr, gr) = P(z; # 2i)

(U{zzeB}> _]}”(U{ZLEB})

k—1
<> Pz € B) ZE%HB
1=0
k—1 2 1/2
< Z (Ep7 (Zz) ) (Epi ]IBi)l/Q
1=0
k—1

=5 (3@ |p) +1) 28172,

The second inequality (22)) then follows from the triangle inequality and Cauchy—Schwarz:
Drv(gk, pk) < Drv(pr, @) + Drv(k, ax)
< X2k [l pk)'? + Doy (T, gi)-
]

Notice that y? convergence bounds directly yield bounds on the total variation distance between
the real distribution pg,, and the sampling distribution ¢y (with & = 0). We therefore recall the
convergence result of |Lee et al.|(2022) as follows.

Assumption|3.2| and let s¢(x,t) : R? x [0,T] — R? be a score estimator with error bounded in L*>°
norm for each t € [0,T):

IV Inpe(x) = 86(x, 1) e = max [[VInpy (x) — sp(x,1)[| < e1.

Lemma B.3 Lee et al.| (2022, Theorem 4.3)) Let p : R® — R be a probability density satisfying

Let T = O (max {1,log(Cigd)}) and h = © <Cls(Cls+d)1nax{L2,L§})' Ife1 < ﬁ, then
30 || pana) = 50— 185 ) X300 | pawa) + O(Cise?) + O((L2 + L3)Cish). (23)

Lemma B.4 Suppose that distribution p has log-Sobolev constant at most C\s and satisfy Assump-
tion[3.2] Then for T = O(log(Cisd)),

X2(q0 ||pdata) = 0(1)

For a detailed proof plsese see (Lee et al.,|2022, Lemma E.9).

B.3 PROOF OF THEOREM[3.6]

We first define a sequence of “bad” sets B;¢ o, 1) Where the worst-case error in the score estimate is
large,

B :={xecR?: sup Exp [||s0(x, T — t) — Vlog ps(x)||’] > ep ¢, (24)
PWe (P;paa) <p

for some € to be chosen. Define t_ := h L%J for all £ > 0. We recall the discretization sampling
process and define an interpolated process as

% =x, — [f(xt_,T — 1) = Lg(T — )2 b(x,_ T — t)] at,

where

b( t) SQ(Xa t)v X ¢ By,
x,t) =
Vinp:(x), x € Bs.

21



Under review as a conference paper at ICLR 2026

Specifically, we simulate the ODE (5] using the score estimator sy whenever the point lies in the
good set at the “previous” discretization step (i.e., at time ¢_), and replace it with the true gradient
V In p, otherwise. Note that this interpolated process is introduced purely for analysis, since V In p,
is not available in practice.

Then, applying Chebyshev’s inequality (Knuth, [1997) and Lemma 3.3]to the Eq. (24), we obtain

P(B,) < vp+Es, [%(G;x,t)HO(\/g)
t .

S 3
€B

(25)

Recall Lemma [B23](Eq. (22)), we have
X2 (0 || Paaa) = eXP(—ﬁ) X2 (0 || Paaa) + O(CiseB) + O((LZ + L*)Cish). (26)

To ensure that this quantity is bounded by 5%, it suffices to require

IA

™ ™ m
*“‘x © *“‘x © N‘x ©

exp (15555 ) X* (0 | Pea)
Ciseg <
(Lg + LQd)Clsh <

Consequently, we obtain

€
2X2 (QO H pdmm)

T > 32Cs log(ii) ,

2

€
X
h < 4C\g(L2+L2d)>

2

€
X
€B S 105 °

52

To satisfy the condition in Lemma we choose h = © ( (Ot X RN }). Note that
Eq. also satisfies < 5§< since Cig > 1. Furthermore, by Lemma(Eq. ), we have

e
|
—

_ 1/2
Drv (g0, ) < (14 x*(qin || Paaea)) / P(B,;,)"/?

=0
1/2
k—1 1
) YP+Ep, [6+(0:%,6)]+0(4/ 1)
< < exp (_ﬁ> XQ(QO ||pdata)1/2 + O(U) o = \/>
i=0
1/2
) 1
, YP+Ep, (64 (0:x,)]+0(4/ 77)
- (Z exp (52 ) X ao | o) V2 + 0“”) oy
i=0
1/2
VP +Ep, [6+(05%,1)]+0 (\/%) e
< A (GTBXQ(QO || Paaa) /2 + O(k))
1/2
vo+Es,, [m(e;x,mw( l) Cra? (o | )12
S - .0 (max {k‘, 1SX fIOh Pdata })
B

By Lemma we obtain that x?(qo || paaa) = O(1) when T' = O (log(Cisd)). Thus, if T is chosen
such that

T = @(max { log(Cisd), Cis log<%) }) ,
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we have

5/2 2 2 2
(Cis+d)(L*+LZ)( 1+log s
Drv(qo,q0) < O \/VP'i‘Eﬁan(Q;X,t)] +0 (ﬁ) . = < ( X>)

Therefore, by Eq. (22), we get

D1y (40, Pasa) < X* (0 || Paaa)/* + D1y (g0, o)
< ey +Drv(qo,do)- (Using Eq. (26))

B.4 BACKGROUND THEOREMS

For reference, we include the convergence result of the reverse SDE (i.e., Eq. [ with the estimated
score from |Lee et al.|(2022), and the detailed result is presented in Lemma@]below.

Lemma B.5 (Lee et al.| (2022) Theorem 3.1) Let pya - R — R be a probability density satisfying
Assumption[3.2} and let p; be the distribution resulting from evolving the forward SDE according to
DDPM with g = 1. Suppose furthermore that V log p; is L-Lipschitz for every t > 0, and that each
so (-, t) satisfies Assumplion Then if

e=0 eTvey
(Cis + d)ClE;/Q(maux{L7 L})? max {log(Cisd), Cislog(1/€2) } 7

running starting from prior distribution for time T = @(max {log(C’lgd ), Cis log( ) }) and
<e

82

step size h = © (C,;(C,;er)(rrfax{L T })2> results in a distribution qq so that Drv (o, Pdata)
ETV.

_|_

C MORE EXPERIMENT RESULTS

In this section, we provide additional experimental results to further validate the effectiveness of
our proposed WILD-Diffusion method. We begin with detailed implementation settings in Sec-
tion [C.1] Next, we present sensitivity analyses of key hyper-parameters in Section [C.2] followed
by supplementary results under limited data settings in Section[C.3]and few-shot generation tasks in
Sectiond.3] Furthermore, in Section[C.5] we extend our method to text-to-image generation. Finally,
in Section [C.6] we conduct ablation studies to examine the contributions of different components in
our method.

C.1 EXPERIMENTAL IMPLEMENTATION DETAILS

We developed our method on top of a widely used codebase EDM [1_-] (Karras et al.| 2022). We
implemented and trained our model with PyTorch on a 64-bit Linux machine with 8 NVIDIA A100
(80G) GPUs. As described in the experimental setting in Section 4, our method is built upon three
different models: DDPM++ (Song et al.,|2020), NCSN++ (Song et al.,[2020), and ADM (Dhariwal
& Nichol| 2021)). Specifically, we highlight the architectural differences among these three models,
as illustrated in Table[3] In addition, we provide the detailed training configurations in Table (]

C.2 EXPERIMENT RESULTS FOR SENSITIVITY OF HYPER-PARAMETER

Following the sensitivity analysis in Section .1 we present the FID and computatlon time across
different settings of the interval parameter m on 50% FFHQ datasets. As shown in Figure [3] in-
creasing m reduces the total training time but also degrades generative performance (higher FID),
revealing a clear trade-off between efficiency and quality. Considering both training efficiency and
generative quality, we set m = 20 as the default choice in all experiments.

Additionally, we also perform a sensitivity analysis on the key hyperparameters of WILD-Diffusion,
including the number of steps K, the step size 7, and the penalty parameter . As shown in Figure[d]

"https://github.com/NVlabs/edm
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Table 3: Details of the network architectures used in this paper.

Parameter DDPM++ | NCSN++ ADM
Resampling filter Box Bilinear Box
Noise embedding Positional | Fourier Positional
Skip connections in encoder - Residual -
Skip connections in decoder - - -
Residual blocks per resolution 4 4 3
Attention resolutions {16} {16} {32, 16, 8}
Attention heads 1 1 6-9-12
Attention blocks in encoder 4 4 9
Attention blocks in decoder 2 2 13

Table 4: Hyperparameters used for the training runs in Section

Datasets Duration (Mimg) | Minibatch size
CIFAR-10 200 1024
FFHQ & CelebA-HQ 200 512
LSUN-Church 200 256
100-shot-Obama/Grumpy/Panda 40 256
Animal-Face-Cat/Dog 40 256

we observe that the generation performance is sensitive to the choice of the number of steps K, the
step size 7, and the penalty parameter . Specifically, too few steps or a very small step size leads to
weak perturbations, which reduces the effectiveness of WILD-Diffusion, while overly large values
introduce instability and degrade the FID. Similarly, the penalty parameter « controls the trade-off
between perturbation strength and stability, where extreme values yield suboptimal results. Based
on this analysis, we set the default configuration as K = 5,7 = 0.01, and v = 1.

5.1

FID 1.8
5.0 —s=— Time

FID

5 10 20 30 40 50 100
Interval parameter m

Figure 3: Sensitivity to the interval parameter m. Bars show FID (lower is better); the black line
shows training time (normalized). Increasing m (less frequent WDRO updates) reduces time but
degrades FID, which reveals a trade-off between efficiency and quality.

C.3 MORE EXPERIMENT RESULTS FOR LIMITED DATA SETTING

In this section, we compare our method with state-of-the-art diffusion approaches on the high-
resolution benchmark LSUN-Church (256 x 256). Namely, the baselines include DDPM (Ho et al.|
2020), DDIM (Song et al., |2021a), DeepCache (Ma et al., [2024), and EDM-ADM (Karras et al.,
2022). The results are summarized in Table |5} and suggest that our method can outperform the
baseline models. We further include Figure 5&0 separately visualize the off-distribution samples
produced by our bi-level update. In addition, Figures[6] [7} B and 0] present generative samples from
WILD-Diffusion trained on CIFAR-10, FFHQ, CelebA-HQ, and LSUN-Church.
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Figure 4: Sensitivity analysis of WILD-Diffusion with respect to: (a) the number of steps K, (b) the
step size 7, and (c) the penalty parameter ~.

Table 5: A comparison of FID between WILD-Diffusion and other diffusion models on the LSUN-
Church (256 x 256) dataset. The best results are highlighted in bold.

Data size
Methods 20% 50% 100%
DDPM (Ho et al.|[2020 - - 7.89
DDIM (Song - - 10.58
DeepCache (Ma et al.|[2024 - 11.31

EDM-ADM (Karras et al.] 2022} 1.74 5.79 4.66

+ WILD-Diffusion 6.98 (-:9.82%) 5.13 (-11.40%) 4.47 (-4.07%)

Figure 5: Off-distribution samples generated by the bi-level update.

C.4 MORE EXPERIMENT RESULTS FOR FEW-SHOT GENERATION

In Table @ we report the FID results of WILD-Diffusion on the 100-shot, Animal-Face, CelebA-
HQ, and LSUN-Cat datasets using a GAN architecture. As described in Section [ we adopt the
pre-trained StyleGAN-v2 (Karras et al} 2019), trained on the FFHQ dataset, as the source model.
We compare our method with GAN-based approaches for limited data generation, including Dif-

fAugment (Zhao et all, 2020), ADA (Karras et al. [2020), and MAFP (Zhang et al, [2025). The

results suggest that our method can achieve the lowest FID scores across all datasets. In addition,
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Figure 6: Samples generated on CIFAR-10 (32 x 32) using different proportions of the training data
with EDM-DDPM++ (Karras et al., [2022) combined with WILD-Diffusion.
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(c) Samples generated on FFHQ (64 x 64) with 100% of the training data. FID = 2.53.

Figure 7: Samples generated on FFHQ (64 x 64) using different proportions of the training data
with EDM-DDPM++ (Karras et al., [2022) combined with WILD-Diffusion.
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(c) Samples generated on CelebA-HQ (64 x 64) with 100% of the training data. FID = 3.63.

Figure 8: Samples generated on CelebA-HQ (64 x 64) using different proportions of the training
data with EDM-DDPM++ (Karras et al.| 2022) combined with WILD-Diffusion.
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(a) Samples generated on LSUN-Church (256 x 256) with 20% of the training data. FID = 6.98.

(b) Samples generated on LSUN-Church (256 x 256) with 50% of the training data. FID = 5.13.
i ‘ . 1 . QB‘:” - 3
5 b . !“‘v"“ 1

(c) Samples generated on LSUN-Church (256 x 256) with 100% of the training data. FID = 4.47.

Figure 9: Samples generated on LSUN-Church (256 x 256) using different proportions of the training
data with EDM-ADM (Karras et al.,[2022) combined with WILD-Diffusion.
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we provide generative samples from WILD-Diffusion in both pretrained and non-pretrained settings
in Figure[10]

Table 6: The FID results on few-shot generation with GAN architecture. Following the setting used
in 2020), we calculate the FID with 5k samples and the training dataset is adopted as
the reference distribution. When FFHQ and LSUN-Cat are used as the target datasets, the number
of target domain images is 2k. The numerical results of the baseline methods are quoted from their
papers. We highlight the best results in bold.

Methods FFHQ — 100-shot FFHQ — Animal-Face CelebA-HQ  FFHQ —
Obama Grumpy Panda Cat Dog — FFHQ LSUN-Cat
DiffAugment (Zhao et al.[[2020)  46.87  27.08 1206 42.44 58.85 11.20 20.18
ADA (Karras et al. 2ozoi 4569 2662 1290 40.77 56.83 10.08 19.34
MAFP (Zhang et al. 4113 2587 1093 38.69 54.15 9.67 17.93
Ours 40.02 2497 1052 37.66 54.03 8.53 16.28

(b) Few-shot generation results of our method with pretraining.

Figure 10: Few-shot image generation results of our method on 100-shot and Animal-Face datasets,
shown in both (a) non-pretrained and (b) pretrained settings.

C.5 EXPERIMENTAL RESULTS FOR TEXT-TO-IMAGE

In this section, we evaluate whether our method generalizes to conditional diffusion models by test-
ing WILD-Diffusion on a standard text-to-image personalization task. We adopt DreamBooth
[2023) as the baseline, where the goal is to generate images of a target concept from text
prompts using only a handful of reference images. Following the experimental setup of
, we evaluate performance using three standard metrics: PRES (lower is better), DINO simi-
larity (higher is better), and CLIP-I similarity (higher is better). We consider DreamBooth baselines
following the Imagen-based implementation, with and without the prior preservation loss (PPL),
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while keeping all other hyperparameters identical. As shown in Table[7} WILD-Diffusion improves
these metrics over DreamBooth under both settings (with and without PPL), which suggests that our
method can enhance generation quality in large-scale text-conditioned diffusion models.

Table 7: Text-to-image results on the DreamBooth dataset. We highlight the best results in bold.

Methods PRES| DINO?T CLIP-IT
DreamBooth (w/ PPL) (Ruiz et al.[[2023) 0.493 0.684 0.815
+ WILD-Diffusion (Ours) 0.478 0.696 0.823
DreamBooth (w/o PPL) (Ruiz et al.[[2023)  0.664 0.712 0.828
+ WILD-Diffusion (Ours) 0.617 0.715 0.830

C.6 EXPERIMENTAL RESULTS OF THE ABLATION STUDY

To further investigate the role of the distributional divergence, we compare our method based on the
Wasserstein distance with variants using KL-divergence, x2-divergence, and a-divergence. As illus-
trated in Figure[T1] Wasserstein distance consistently outperforms the alternatives across different
data sizes (20%, 50%, and 100%). Notably, the improvement seems most evident in the low-data
regime, indicating that the Wasserstein distance may play a role in stabilizing training under limited
data.

12
B Wasserstein distance
10 KL-divergence
1 ¥2-divergence
8 a-divergence
T 84
59
59}
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59}
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20 50
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Figure 11: Ablation study on different distributional divergences for limited data generation on the
FFHQ dataset. FID (lower is better) is reported under varying data sizes.

In addition, we compare our proposed WILD-Diffusion with commonly used augmentation tech-
niques, including Mixup (Zhang et al., 2018), CutMix (Yun et al., [2019), and CutOut (DeVries &
Taylor, 2017), based on the EDM-DDPM++ baseline (Karras et al.| [2022). For these methods, we
follow the default hyperparameters used in the original papers, which are also the standard config-
urations adopted in prior generative modeling work (Zhang et al., [2025)). Specifically, we set the
interpolation strength to o = 1 for Mixup and CutMix, and use a 16 x 16 mask size for Cutout. The
results are summarized in Table([8] which shows that WILD-Diffusion achieves the best performance
among all compared approaches.

Table 8: Ablation study on data augmentation methods for FFHQ generation with 20% training data.
Results are reported in terms of FID using 50k samples.

EDM-DDPM++ (Karras et al.;[2022)  10.02

+ WILD-Diffusion 8.57
+ Mixup (Zhang et al.,[2018)) 10.21
+ Cutmix (Yun et al., 2019) 10.43

+ Cutout (DeVries & Taylor}, 2017) 10.25

We further analyze the computational efficiency of our method by measuring the relative running
time under different data sizes (20%, 50%, and 100%). As summarized in TableE[, the training time
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of the baseline EDM-DDPM-++ (Karras et al.| 2022) is normalized to “1”. The results show that our
method maintains almost identical running times across all data sizes, with values ranging from 1.20
to 1.22. This indicates that the performance gains of WILD-Diffusion come at negligible additional
computational cost, thereby ensuring both effectiveness and efficiency.

Table 9: Training time analysis under varying data sizes (20%, 50%, and 100%). The training time
of the baseline EDM-DDPM++ (Karras et al., [2022) is normalized to “1”.

Datasize Training time

20% 1.20
50% 1.22
100% 1.21

To provide a comprehensive analysis of computational overhead, we report wall-clock time, FLOPs,
and peak GPU memory for both EDM-DDPM++ and WILD-Diffusion in Table[I0] WILD-Diffusion
increases training time by 1.21 x and FLOPs by 1.25 x, while peak GPU memory increases by only
3%. These results indicate that our method adds minimal overhead relative to standard training.

Table 10: Comparison of training cost between EDM-DDPM++ (Karras et al., 2022) and WILD-
Diffusion across wall-clock time, FLOPs, and peak GPU memory.

Methods Wall-clock time (h) FLOPs (G)  GPU memory (GB)
EDM-DDPM++ (Karras et al.}[2022) 26.4 137 16.32
WILD-Diffusion (Ours) 31.9 (1.21x) 172 (1.25x) 16.84 (1.03x)

To further understand how the computational cost scales with the hyperparameters, we additionally
examine the effects of the interval parameter m and the number of inner ascent steps /. As shown in
Figure[12} increasing m reduces FLOPs rapidly and then stabilizes, since “Bi-level Interval Update”
occur less frequently. In contrast, increasing K leads to a “near-linear” growth in FLOPs due to ad-
ditional forward—backward passes. These results highlight the controllable computational behavior
of WILD-Diffusion.
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(a) Effect of the interval parameter m on FLOPs. (b) Effect of the number of inner steps K on FLOPs.
Figure 12: Overall comparison of FLOPs under different support expansion configurations. (a)
Relationship between FLOPs and interval parameter m. (b) Relationship between FLOPs and the

number of inner steps /. The FLOPs of the baseline EDM-DDPM++ (Karras et al., [2022) is nor-
malized to “1”.
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D USEFUL FACTS
In this section, we collect some facts used throughout the paper.

Definition D.1 (f-divergence). Let f : (0,00) — R be a convex function with f(1) = 0. Let P and
Q be two probability distributions on a measurable space (X, F). If P < Q) then the f-divergence

is defined as
N dP
D/(PI@) 250 |1 (55|

where 4 dQ is a Radon-Nikodym derivative and f(0) £ f(0+). Suppose that Q(dz) = q(x)u(dz)
and P(dz) = p(z)u(dz) for some common dominating measure i, then we have

D/(PlQ) = [ ata)s (f]’f;)d

The following are common f-divergences that used in this paper:

1. Kullback-Leibler (KL) divergence: f(x) = xlogz,

D (PQ) £ [ o) logf;ggu(dx).

dP 2 dp?
(42 ] -G

2. x2-divergence: f(z) = (v — 1)?,

X*(PlIQ) = Eq

3. Total variation: f(z) = 1|z — 1],

Drv(P.Q) 2 3o || 35 ~1|| = 5 [1ap - a0

4. a-divergence (Wang et al.l[2018a): f(z) = a(a 1), a € R\ {0, 1} and hence

D(PlQ) = sz [(22)1] |

Definition D.2 (log-Sobolev inequality (Vempala & Wibisono, |2019)). Let P be a probability mea-
sure with density p. We say that p satisfies a log-Sobolev inequality with constant Cg if, for any

probability measure q,
Lalp) < 5 [ [Vios 2] ata) .

33



	Introduction
	Our Main Contributions

	Background
	Diffusion-based Generative Models
	Wasserstein Distance

	Method
	WILD-Diffusion Framework
	Convergence Analysis

	Experiments
	Sensitivity of Hyper-parameter
	Experiments on Limited Data Generation
	Experiments on Few-Shot Generation
	Ablation Experiments

	Conclusion
	Related Work
	Proof
	Proof of Lemma 3.5
	Auxiliary Lemmas
	Proof of Theorem 3.6
	Background Theorems

	More Experiment Results
	Experimental Implementation Details
	Experiment Results for Sensitivity of Hyper-parameter
	More Experiment Results for Limited Data Setting
	More Experiment Results for Few-shot Generation
	Experimental Results for Text-to-Image
	Experimental Results of the Ablation Study

	Useful facts

