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Abstract

Registration is a fundamental task in medical imaging, and recent machine learning meth-
ods have become the state-of-the-art. However, these approaches are often not inter-
pretable, lack robustness to large misalignments, and do not incorporate symmetries of
the problem. In this work, we propose KeyMorph, an unsupervised end-to-end learning-
based image registration framework that relies on automatically detecting corresponding
keypoints. Our core insight is straightforward: matching keypoints between images can
be used to obtain the optimal transformation via a differentiable closed-form expression.
We use this observation to drive the unsupervised learning of anatomically-consistent key-
points from images. This not only leads to substantially more robust registration but
also yields better interpretability, since the keypoints reveal which parts of the image are
driving the final alignment. Moreover, KeyMorph can be designed to be equivariant un-
der image translations and/or symmetric with respect to the input image ordering. We
demonstrate the proposed framework in solving 3D affine registration of multi-modal brain
MRI scans. Remarkably, we show that this strategy leads to consistent keypoints, even
across modalities. We demonstrate registration accuracy that surpasses current state-of-
the-art methods, especially in the context of large displacements. Our code is available at
https://github.com/evanmy/keymorph
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1. Introduction

Registration is a core problem in biomedical imaging applications. Multiple images, often
encompassing a variety of contrasts, are commonly acquired (Uludağ and Roebroeck, 2014).
Classical (i.e. non-learning-based) registration methods involve an iterative optimization of
a similarity metric over a space of transformations (Oliveira and Tavares, 2014; Sotiras
et al., 2013). Recent deep learning-based strategies leverage large datasets of images to
solve registration. Given a pair of images (xf ,xm), these strategies use neural network
architectures that either output transformation parameters (e.g. affine or spline) (Lee et al.,
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Figure 1: Proposed framework. Fixed and moving 3D images are passed through the same
keypoint detection network composed of convolutional layers and a final center-
of-mass (CoM) layer that predicts keypoints useful for registration. The affine
matrix is then computed using Eq. 2 and is used to transform the moving image.

2019a; de Vos et al., 2019) or a dense deformation field (Balakrishnan et al., 2019) which
aligns them. Since the registration step is achieved via a single feed-forward pass, it is
substantially faster than iterative methods.

However, prior learning-based methods often fail when the given image pair has a large
misalignment. Existing systems typically require that image pairs are roughly aligned (Bal-
akrishnan et al., 2019; Dalca et al., 2019; de Vos et al., 2019; Qin et al., 2019), or at least in
the same orientation (Mocanu et al., 2021). In addition, today’s learning-based registration
methods lack interpretability, as they are essentially “black-box models” that output either
transformation parameters or a deformation field and provide little insight into what drives
the alignment. Finally, the machine learning models used in registration tasks generally do
not exploit the symmetries and equivariances present in the problem. For example, if one of
the images is translated by a fixed amount, this has a pre-determined effect on the optimal
registration solution, and this property is not built into any of the architectures used today
for image registration.

Contribution. We propose KeyMorph, an unsupervised end-to-end deep-learning-
based framework that aims to address all aforementioned issues. Our main insight is that
matched keypoints can be used to derive the optimal transformation in closed-form. This
keypoint-based formulation is robust against misalignments as the closed-form solution does
not depend on the initial position of the keypoints. Additionally, the model is interpretable
since the keypoints that drive the alignment can be visualized. Finally, we also show how to
incorporate symmetries into the model design. For example, the architecture we describe
in this paper is translation equivariant and leverages a recently-proposed center-of-mass
layer (Ma et al., 2020; Sofka et al., 2017). Rather than treating matched keypoint detection
as a supervised learning problem requiring human-annotated keypoints, we propose to use
an end-to-end unsupervised strategy tailored toward registration. By unifying image regis-
tration and keypoint detection, we can train a model that finds matching keypoints useful
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for aligning images. We demonstrate this framework in the context of affine registration of
3D multi-modal brain MR scans.

2. Related Works

Classical Image Registration Methods. Pairwise iterative, optimization-based ap-
proaches have been extensively studied in medical image registration (Hill et al., 2001;
Oliveira and Tavares, 2014). These methods employ a variety of similarity functions, types
of deformation, transformation constraints or regularization strategies, and optimization
techniques. Intensity-based similarity criteria are most often used, such as mean-squared
error (MSE) or normalized cross correlation for registering images of the same modal-
ity (Avants et al., 2009, 2008; Hermosillo et al., 2002). For registering image pairs from
different modalities, statistical measures like mutual information or contrast-invariant fea-
tures like MIND are popular (Heinrich et al., 2012; Hermosillo et al., 2002; Hoffmann et al.,
2020; Mattes et al., 2003; Viola and Wells III, 1997).

Another registration paradigm first detects features or keypoints in the images, and
then establishes their correspondence (Myronenko and Song, 2010). This approach often
involves handcrafted features (Tuytelaars and Mikolajczyk, 2008), features extracted from
curvature of contours (Rosenfeld and Thurston, 1971), image intensity (Förstner and Gülch,
1987; Harris et al., 1988), color information (Montesinos et al., 1998; Van de Weijer et al.,
2005), or segmented regions (Matas et al., 2004; Wachinger et al., 2018). Features can be
also obtained so that they are invariant to viewpoints (Bay et al., 2006; Brown et al., 2005;
Lowe, 2004; Toews et al., 2013). These algorithms then optimize similarity functions based
on these features over the space of transformations (Chui and Rangarajan, 2003; Hill et al.,
2001). This strategy is sensitive to the quality of the keypoints and often suffer in the
presence of substantial contrast and/or color variation (Verdie et al., 2015).

Learning-based Methods. In learning-based image registration, supervision can be
provided through ground-truth transformations, either synthesized or computed by clas-
sical methods (Cao et al., 2018; Dosovitskiy et al., 2015; Eppenhof and Pluim, 2018; Lee
et al., 2019b; Uzunova et al., 2017; Yang et al., 2017). Unsupervised strategies use loss
functions similar to those employed in classical methods (Balakrishnan et al., 2019; Dalca
et al., 2019; de Vos et al., 2019; Fan et al., 2018; Krebs et al., 2019; Qin et al., 2019; Wu
et al., 2015). Weakly supervised models employ (additional) landmarks or labels to guide
training (Balakrishnan et al., 2019; Fan et al., 2019; Hu et al., 2018a,b).

Recent learning-based methods compute image features or keypoints (Ma et al., 2021)
that can be used for image recognition, retrieval, or registration. Learning the keypoints
can be done with supervision (Verdie et al., 2015; Yi et al., 2016), self-supervision (DeTone
et al., 2018) or without supervision (Barroso-Laguna et al., 2019; Lenc and Vedaldi, 2016;
Ono et al., 2018). The goals and problems that the cited computer vision papers tackle are
different from ours. In contrast, our focus is on robust image registration via corresponding
keypoints; these prior works aim explicitly to obtain keypoints that are repeatable under
different viewpoints and/or image acquisition conditions. Nevertheless, we build on previous
ideas and introduce a framework that output matched keypoints in 3D space regardless of
the initial position of the image.
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3. Proposed Method

Let xm and xf be moving (source) and fixed (target) volumes, which may vary in modality
and orientation.1 In this paper, we focus on 3D affine transformations, where the goal is to
find the optimal affine transformation matrix A∗ ∈ R3×4 such that the moved (registered)
image xr = xm◦A∗ matches the fixed image xf , where ◦ denotes the spatial transformation
of an image. To efficiently compute A∗, we employ corresponding keypoints from xm and xf .
The matching keypoints are computed using a convolutional neural network, and A∗ is
estimated using a non-learnable computation layer.

3.1. Keypoint Detector Network

To compute K matching keypoints, we use a single neural network gϕ with parameters ϕ
to produce pm = gϕ(xm) and pf = gϕ(xf ), where pm and pf are matrices of shape d×K
(i.e. each column is a corresponding keypoint pair of d dimensions).

In our implementation, the backbone architecture of the keypoint detector consists of
convolutional layers, followed by instance normalization (Ulyanov et al., 2016), ReLU acti-
vation, and 2x downsampling via strided convolution, as shown in Fig. 1. The output from
the backbone is followed by a center-of-mass (CoM) layer (Ma et al., 2020; Sofka et al.,
2017), which computes the center-of-mass for each of the K activation maps. This special-
ized layer is (approximately) translation equivariant and enables precise localization. We
provide more details and compare CoM to fully connected layers in Appendix B.

3.2. Affine Computation Layer

Given K corresponding keypoint pairs, we can derive a differentiable closed-form expression
for an affine transformation that aligns the keypoints. Let p̃m = [pm 1]T ∈ R(d+1)×K ,
where 1 ∈ R1×K is a vector of ones and K > d. We aim to find the optimal affine
transformation

A∗ = argmin
A

∥Ap̃m − pf∥F , (1)

where ∥·∥F denotes the Frobenius norm. This leads to the closed-form solution

A∗ = A(pf ,pm) = pf p̃
T
m(p̃mp̃T

m)−1. (2)

We provide the derivation in the Appendix A.

3.3. Training

We found the following self-supervised pre-training strategy to be effective for initializing
the keypoint detector backbone. We first pick a set of initial keypoints p chosen uniformly
at random over the image coordinate grid. For a single subject, we assume that we have
access to aligned multi-modal (e.g. T1, T2, PD-weighted MRI) volumes {xi}. During

1. Although we consider 3D volumes in this work, we stress that our method is agnostic to the number of
dimensions. The terms “image” and “volume” are used interchangeably.
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pre-training, in each mini-batch, we apply random affine transformations T (drawn from a
uniform distribution over the parameter space) to xi and p, and minimize:

argmin
ϕ

∑
i

ET ∥T p− gϕ(xi ◦ T )∥22 , (3)

where E denotes expectation and T p transforms the list of coordinates in p by the affine
transformation T .

Following the pre-training strategy, we train KeyMorph on random image pairs using
the entire training dataset. We consider the typical real-world scenario of multi-parametric
MRI, where scans of potentially different contrasts (e.g. T1, T2, PD-weighted) need to be
registered. We present only within-modality image pairs to the network during training,
where a simple loss like MSE may be used. Thus, given a dataset D composed of same-
modality image pairs (xf ,xm), the overall objective is:

argmin
ϕ

E(xf ,xm)∼D ∥xm ◦ A (gϕ(xf ), gϕ(xm))− xf∥22 . (4)

During training, we apply random affine transformations to the images as an augmentation
strategy. Remarkably, we found that KeyMorph learns to detect anatomically consistent
keypoints across modalities, even though it is trained on same-modality pairs. In our
experiments, we demonstrate how this can be used to perform multi-modal registration
at test-time.

3.4. KeyMorph Variants

We use KeyMorph mse to refer to the main unsupervised variant of our model, trained with
Equation 4. In addition, we employ a supervised variant, KeyMorph dice, that exploits
segmentations during training. During pre-training of this variant, we use the center-of-
mass of segmentation labels as ground truth keypoints and do not restrict to a single
subject. During subsequent end-to-end training, we use soft-Dice, a loss function that
measures volume overlap of the moving and registered label maps (Balakrishnan et al.,
2019; Hoffmann et al., 2020; Hu et al., 2018a).

4. Experiments

4.1. Dataset

We used the IXI brain MRI dataset2 for evaluation. Each subject has T1, T2, and PD-
weighted 3D MRI scans in spatial alignment. We partitioned the 577 total subjects into
sets of 427, 50, and 100 for training, validation, and testing, respectively. We performed
standard skull stripping (Kleesiek et al., 2016) on all images.

We used a pre-trained and validated SynthSeg model (Billot et al., 2020) to automati-
cally delineate 23 regions of interest (ROIs)3. We used these segmentations for training a
subset of models, as described below. Furthermore, all performance evaluations were based
on examining the overlap of ROIs in the test images.

2. https://brain-development.org/ixi-dataset/
3. ROIs were pallidum, amygdala, caudate, cerebral cortex, hippocampus, thalamus, putamen, white mat-

ter, cerebellar cortex, ventricle, cerebral white matter, and brainstem.
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Figure 2: Registration results. The x-axis of the second column shows the average ab-
solute displacement in the moving volume after rotation, scaling, or translation.
The Dice score is averaged for all test subjects and brain anatomical regions. See
Section 4.3 for details on the naming scheme.

4.2. Test-time Performance Evaluation

We used each testing subject as a moving volume xm, paired with a different test volume
treated as fixed image xf . For all test volumes, we use the 23-label segmentation maps to
quantify alignment. We simulated different degrees of misalignment by transforming xm

using rotation, scaling, or translation. For a given transformation type, we choose 1-3 axes
randomly and apply a uniform random transformation (e.g. rotation) up to a given amount
(e.g. degree). We use the predicted transformation to resample the moved segmentation
labels on the fixed image grid, and compute the Dice score to quantify alignment quality.

We performed registration across all combinations of available modalities (registering
T1 to T1, T1 to T2, etc). All pairings and amount of transformations was kept the same
across the registration experiments.

4.3. Baselines

Advanced Normalizing Tools (ANTs) is a widely used software package for medical
image registration (Avants et al., 2009). We use the “TRSAA” affine implementation, which
consist of translation, rigid, similarity and two affine transformation steps. The volumes are
registered successively at three different resolutions: 0.25x, 0.5x and finally at full resolution.
At 0.25x and 0.5x resolution, Gaussian smoothing with σ of two and one voxels is applied,
respectively. In addition, we use the ANTs affine initializer, which conducts a grid search
over a range of rotations and translations to find a good initialization. We used mutual
information as the similarity metric, which is suitable for registering images with different
contrasts.
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Figure 3: (a) Sample keypoints learned without supervision by KeyMorph. Each row shows
a different keypoint and each column shows a different subject and/or modality.
(b) Mean registration performance for rotation, scaling and translation under
different number of keypoints.

Deep Learning for Image Registration (DLIR) is a recent learning-based method
that includes affine image registration (de Vos et al., 2019). DLIR implements a Spatial
Transformer Network (Jaderberg et al., 2015), which was originally used to improve class
prediction accuracy and has since become the backbone of many subsequent works in image
registration (de Vos et al., 2017; Lee et al., 2019a; Balakrishnan et al., 2019). For a direct
comparison, we used the same backbone architecture as KeyMorph replacing the center-of-
mass layer with a fully-connected (FC) layer which outputs 12 parameters for the 3D affine
transformation.4 In Appendix B, we also investigated a KeyMorph implementation with
the same FC layer as DLIR.

We find that DLIR often cannot register image pairs with large misalignments. We
alleviate this by using more aggressive augmentation during training, where the images are
randomly transformed. We consider two different amounts of rotation for the training of
DLIR: maximum ±35◦ or ±180◦. We use the same loss function and training scheme as we
used for KeyMorph. We trained separate DLIR models for each modality as it produces
better results than training DLIR across modalities with mutual information. We also
trained supervised modality-specific and multi-modal DLIR models using a soft-Dice loss
computed on the aligned segmentation maps (Lee et al., 2019b).

Altogether, we implement six different DLIR variants. The naming scheme follows
the convention <mod>DLIR <loss><degree>, where <mod> denotes whether the model was
trained on a single (uni) or multiple (multi) modalities, <loss> denotes the training loss
function, and <degree> denotes the maximum angle of rotation for augmentation.

5. Results

Fig. 2, Table A.2 and Appendix F summarize the results. We find that all DLIR models
suffer substantially as the rotation angle increases. Training with aggressive augmentation
increases performance for test pairs with large misalignments, but reduces the accuracy for
those with smaller misalignments. Using supervision (uniDLIR dice) leads to improved

4. We used instance Norms for multiDLIR and Batch Norms for uniDLIR, which we found to work well in
practice.
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accuracy. For unimodal registration, the DLIR model that was trained with all modalities
(multiDLIR dice) did not produce better accuracy than a model that was trained with
each modality separately. ANTs yields excellent results when the initial misalignment is
small (e.g., less than 45 degrees rotation). However, the accuracy drops substantially when
the misalignment exceeds this range.

In contrast to these models, KeyMorph variants performed well across all types of trans-
formations and ranges, with only marginal drops in accuracy in large misalignments. In
the case where we have access to ROIs during training, we find that KeyMorph trained
with Dice outperforms all models in nearly all the tasks. However, the unsupervised variant
trained with MSE still yields excellent accuracy across all settings and is only minimally
suboptimal compared to its supervised counterpart. We provide qualitative results in Ap-
pendix D, and compare the computational time across different models in Appendix C.
Overall, the KeyMorph variants substantially outperform other learning-based baselines,
and KeyMorph performs comparably or often substantially better (at large misalignments)
than state-of-the-art ANTs registration, while requiring substantially less runtime.

5.1. Keypoint Analysis

Number of Keypoints. We trained four unsupervised KeyMorph model variants with
16, 32, 64, and 128 keypoints, respectively. Fig. 3b illustrates that increasing the number
of keypoints leads to improved Dice scores (and lower variability), up to 64 keypoints.
However, we find that further increasing the keypoints can lead to a drop in performance
(at 128 keypoints). We hypothesize that it is harder to find a relatively large number of
anatomical landmarks that are consistent across individuals.

Keypoint Visualization. In contrast to existing models that compute the transforma-
tion parameters using a “black-box” neural network, we can investigate the keypoints that
KeyMorph learns to drive the alignment. Fig. 3a illustrates a set of representative keypoint
examples for a learned unsupervised KeyMorph model. We find that the final learned key-
points correspond to the same anatomical region in different subjects and modalities. In
appendix G, we provide a quantitative study on keypoint consistency across the scans of
each subject, and in Appendix H we show an expanded version of Fig. 3a.

6. Conclusion

We introduce KeyMorph, a robust deep learning-based affine registration framework that
employs unsupervised keypoint extraction. Our key insight is that matched keypoints yield
a closed-form solution for affine registration, even in the case of large misalignments, and
this in turn can be used to drive unsupervised keypoint detection. We showed that state-
of-the-art optimization and learning-based methods for image registration struggle to reg-
ister image pairs that have large misalignment. In contrast to many “black-box” machine
learning-based registration methods, KeyMorph also offers the ability to investigate what
drives the registration by visualizing the keypoints. We envision that KeyMorph can be
used in a variety of applications that exhibit large misalignments, and can be extended to
compute non-linear deformations.
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Appendix A. Derivation of Closed-form Expression

Let pf ∈ Rd×K and p̃m = [pm 1]T ∈ R(d+1)×K , where 1 ∈ R1×K is a vector of ones and K >
d. We wish to find the optimal affine transformation A ∈ Rd×(d+1) which minimizes:

L = ∥Ap̃m − pf∥F ,

where ∥·∥F denotes the Frobenius norm. Taking the derivative with respect to A and setting
the result to zero, we obtain:

∂L
∂A

= (Ap̃m − pf )p̃
T
m = 0

=⇒ Ap̃mp̃T
m = pf p̃

T
m

=⇒ A = pf p̃
T
m(p̃mp̃T

m)−1.

Appendix B. Center-of-Mass Layer vs Fully Connected Layer

The backbone of our architecture is composed of CNN layers and a center-of-mass (CoM)
layer at the end of the network (Ma et al., 2020; Sofka et al., 2017). The CoM layer
computes the center-of-mass of the activation map for each channel of the CNN output
(i.e., the weighted average between the voxel values and the grid coordinates). These
center-of-masses are then used as keypoints in KeyMorph. CoM layer is shift-equivariant as
compared to the fully connected (FC) layer. As a comparison, we compared the performance
of using a CoM layer and FC layer, which is commonly used in registration (de Vos et al.,
2019; Jaderberg et al., 2015; de Vos et al., 2017; Lee et al., 2019a). In Fig. A.1, the model
using FC layers follows the same architecture as DLIR model that was used in the baseline.
However, instead of outputting 12 affine parameters, it outputs 64 keypoints. We repeated
the experiments found in Section 4. We can see that regardless of the type of layer used
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Figure A.1: Performance comparison between KeyMorph models that uses center-of-mass
(CoM) and fully connected (FC) layers to predict keypoints. The suffix mse

and dice represent the unsupervised and supervised version of KeyMorph,
respectively.

to compute the keypoints, KeyMorph provide robustness to large deformation. Models
that uses CoM have comparable performance at low deformation compared to models that
uses FC layers. However, CoM models provide the best performance at higher degrees of
misalignment.

Appendix C. Computation Time

DLIR models and KeyMorph took about 3.5 days to train. Table A.1 summarizes runtime at
test time of all methods. On a modern CPU, the ANTs baseline, which does not have GPU
support, requires more than 60 seconds, whereas KeyMorph requires roughly 2.7 seconds
per subject at test time (about 0.2 sec on GPU). Comparing ANTs and KeyMorph (CPU)
and KeyMorph (GPU), this represent more than 20x and 300x speed-up, respectively.

Appendix D. Qualitative Results

We present some qualitative results of KeyMorph trained without supervision. Moving
and fixed subjects were picked randomly from the test set. We introduced random affine
transformation with±180 degrees of rotation,±20% of scaling, and±20 voxels of translation
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Figure A.2: Sample registration results obtained with KeyMorph trained with no supervi-
sion (KeyMorph mse). Each row shows a different moving and fixed image pair.
Red is the fixed image and green is resampled (moved) image.

to the moving image. Fig. A.2 presents the registration result of the moved brains in the
third column. We overlayed the aligned image (green) to the fixed/target brain (red).

Appendix E. Quantitative of Results

This section provides more details on the quantitative results for Fig. 2 from the main
paper. We randomly picked a different fixed volume xf on the test set for each moving
subject. We introduce a random amount of misalignment to xm. The misalignment include
random affine transformation with ±180 degrees of rotation, ±20% of scaling, and ±20
voxels of translation. Each of the 3 axes of xm had 50% chance of being deformed with a

Model CPU Time (s) GPU Time (s)

ANTs 66.95±1.56 -
DLIR 1.49±0.09 0.02±0.001
KeyMorph 2.68±0.44 0.21±0.012

Table A.1: Average computation time across different models during testing
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T Model
Dice Score

T1→T1 T2→T1 PD→T1 T1→T2 T2→T2 PD→T2 T1→PD T2→PD PD→PD
ro
ta
ti
on

uniDLIR mse180 26.8±14.84 - - - 26.86±15.01 - - - 29.36±17.01
uniDLIR mse35 51.33±7.95 - - - 53.88±7.2 - - - 53.57±6.35
uniDLIR dice180 38.64±14.65 - - - 28.59±12.62 - - - 35.24±13.98
uniDLIR dice35 52.57±7.81 - - - 53.41±9.33 - - - 54.14±8.03
multiDLIR dice180 21.68±11.06 21.78±11.42 22.0±11.46 21.32±10.6 21.88±11.48 21.99±11.37 21.22±10.67 21.78±11.5 22.09±11.62
multiDLIR dice35 49.84±8.48 48.98±8.16 49.37±8.41 49.27±8.33 49.42±8.21 49.41±8.36 49.5±8.3 49.15±8.11 50.28±8.6
ANTs 48.07±26.14 44.32±25.34 42.27±25.0 43.48±25.23 45.06±25.59 42.69±25.04 40.56±25.01 43.51±24.89 44.66±25.84
KeyMorph mse 62.24±6.56 58.75±5.98 58.8±6.59 58.62±6.07 60.79±6.28 59.38±5.88 58.83±6.01 59.37±5.68 61.79±6.21
KeyMorph dice 65.17± 5.11 61.94± 5.04 62.1± 4.82 62.54± 4.96 62.96± 5.3 61.61± 4.83 62.15± 4.87 61.35± 5.11 63.24± 5.26

sc
al
in
g

uniDLIR mse180 45.97±8.07 - - - 45.96±8.46 - - - 53.47±7.32
uniDLIR mse35 53.32±7.26 - - - 54.46±7.37 - - - 53.37±5.98
uniDLIR dice180 44.23±9.13 - - - 39.09±7.48 - - - 42.91±7.74
uniDLIR dice35 55.19±6.95 - - - 54.92±7.96 - - - 57.57±6.8
multiDLIR dice180 39.12±9.49 41.08±7.93 41.32±7.81 38.12±9.45 41.74±8.43 41.7±8.1 37.96±9.93 41.48±8.85 42.02±8.81
multiDLIR dice35 53.43±6.35 52.68±6.33 52.86±6.54 52.57±6.56 52.84±6.98 52.49±6.71 52.69±6.37 52.38±6.76 53.32±6.74
ANTs 66.29±6.19 63.4± 5.7 62.51±5.93 62.7±5.81 63.84±6.33 62.42±5.74 61.49±5.94 62.28±5.7 64.29±6.48
KeyMorph mse 63.0±6.79 59.23±6.02 59.7±6.65 59.35±6.13 61.73±6.49 60.27±6.01 59.66±6.28 60.16±5.62 62.8±6.64
KeyMorph dice 66.51± 5.24 63.25±4.86 63.35± 4.6 63.33± 4.98 64.16± 5.35 62.7± 4.55 63.37± 5.0 62.77± 4.81 64.85± 5.42

tr
an

sl
at
io
n

uniDLIR mse180 45.88±8.12 - - - 45.57±8.25 - - - 53.14±7.73
uniDLIR mse35 52.8±7.84 - - - 54.43±7.56 - - - 53.32±6.33
uniDLIR dice180 45.05±8.84 - - - 38.59±7.28 - - - 43.09±8.07
uniDLIR dice35 55.26±6.97 - - - 54.77±7.97 - - - 57.65±6.69
multiDLIR dice180 37.52±9.69 38.78±8.52 39.25±8.35 36.32±9.57 39.1±9.18 39.3±8.79 36.18±10.03 38.92±9.5 39.7±9.38
multiDLIR dice35 53.41±6.17 52.38±6.07 52.67±6.5 52.84±6.27 52.78±6.58 52.6±6.68 52.88±6.49 52.33±6.62 53.33±6.93
ANTs 66.34±6.37 63.45±5.7 62.49±5.9 62.79±5.81 63.94±6.46 62.44±5.73 61.5±5.97 62.34±5.72 64.3±6.62
KeyMorph mse 63.5±7.09 59.5±5.92 59.84±6.64 59.86±6.02 62.33±6.63 60.58±5.9 60.19±6.19 60.64±5.5 63.28±6.78
KeyMorph dice 66.99± 5.41 63.55± 4.82 63.75± 4.64 63.94± 4.71 64.79± 5.62 63.34± 4.55 63.83± 4.74 63.16± 4.86 65.42± 5.66

Table A.2: Mean performance of all method with their standard deviation. The average
Dice score is computed across test subject pairs, brain regions, and modalities.
The notation A → B refers to registering moving volumes of modality A to fixed
volumes of modality B. Bold numbers highlight the highest Dice score of a task
given a transformation shown in the first column T.

given transformation with at least one axis being perturbed. Since each subject in the IXI
dataset has a corresponding T1, T2 and PD-weighted MRI scan, we performed registration
across all combination of modalities (e.g. registering T1 to T1, T1 to T2, etc..). All pairings
and random transformations were kept the same across the registration experiments.

Appendix F. Landmarks Alignment

We repeated the experiment in Section 5. Instead of computing the dice score between
different regions of interest, we calculated the root mean square error (rmse) between the
center-of-masses of the delineated regions.

Appendix G. Keypoint Consistency

Keypoint consistency plays an important role for multimodal registration. In this section,
we show that KeyMorph learns consistent keypoints across different modalities in an unsu-
pervised manner. In Fig. A.4, we plotted the mean absolute error between the keypoints of
each test subject across different modalities as a function of training iteration. We observe
that as the model trains, the keypoints become more consistent across modalities. In other
words, the keypoints lie in almost the same location across modalities for a given subject,
allowing KeyMorph to perform accurate multimodal registration.
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Figure A.3: Registration results. The x-axis of the second column shows the average
absolute displacement in the moving volume after rotation, scaling, or transla-
tion. The rmse is averaged for all test subjects and center-of-masses for each
region of interest. See Section 4.3 for details on the naming scheme.
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Figure A.4: Mean absolute error between keypoint locations of test subject across different
modalities. Each training iteration represent a model update after 32 training
subjects.

Appendix H. Keypoint Visualization

In this section, we provide an extended visualization of keypoints. In the figures below,
we investigated which regions KeyMorph uses to register the volume pairs. We picked 12
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random subjects and showed 12 of the 64 learned keypoints in each row. These keypoints
were learned without supervision of any labeled regions. We can observe that the final
keypoints lie within similar region of the brain across different subjects and scans.
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Figure A.5: Keypoints for different T1 scans
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Figure A.6: Keypoints for different T2 scans
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Figure A.7: Keypoints for different PD scans
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Figure A.8: Keypoints for different multimodal scans
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