
Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Zhangheng Li 1 Shiwei Liu 2 3 Tianlong Chen 4 Ajay Kumar Jaiswal 1 Zhenyu Zhang 1 Dilin Wang 5

Raghuraman Krishnamoorthi 5 Shiyu Chang 6 Zhangyang Wang 1

Abstract

Sparse Neural Networks (SNNs) have received
voluminous attention for mitigating the explosion
in computational costs and memory footprints
of modern deep neural networks. Most state-of-
the-art training approaches seek to find a single
high-quality sparse subnetwork with a preset spar-
sity pattern and ratio, making them inadequate
to satisfy platform and resource variability. Re-
cent approaches attempt to jointly train multiple
subnetworks (we term as “sparse co-training”)
with a fixed sparsity pattern, to allow switching
sparsity ratios subject to resource requirements.
In this work, we expand the scope of sparse co-
training to cover diverse sparsity patterns and mul-
tiple sparsity ratios at once. We introduce Sparse
Cocktail, the first sparse co-training framework
that co-trains a suite of sparsity patterns simul-
taneously, loaded with multiple sparsity ratios
which facilitate harmonious switch across various
sparsity patterns and ratios at inference depending
on the hardware availability. More specifically,
Sparse Cocktail alternatively trains subnetworks
generated from different sparsity patterns with a
gradual increase in sparsity ratios across patterns
and relies on an unified mask generation process
and the Dense Pivot Co-training to ensure the
subnetworks of different patterns orchestrate their
shared parameters without canceling each other’s
performance. Experiment results on image classi-
fication, object detection, and instance segmenta-
tion illustrate the favorable effectiveness and flex-
ibility of Sparse Cocktail, pointing to a promising
direction for sparse co-training. Code is available
at github.com/VITA-Group/SparseCocktail.

1University of Texas at Austin 2Eindhoven University of Tech-
nology 3University of Oxford 4University of North Carolina at
Chapel Hill 5Meta 6University of California, Santa Barbara. Cor-
respondence to: Zhangheng Li <zoharli@utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Deep neural networks are boosted by the ever-larger model
size (Brown et al., 2020; Ramesh et al., 2022; Du et al., 2022;
Jumper et al., 2021). Despite their impressive performance,
these gigantic models require prohibitive costs to train and
infer, pushing the model size beyond the reach of common
hardware. Sparsity serves as a leading concept to shrink
model sizes with a negligible performance drop. By pruning
a large fraction of parameters from a well-trained neural net-
work, the resulting sparse neural networks enjoy significant
computational and memory reduction at inference (Mozer &
Smolensky, 1989; Han et al., 2015; Molchanov et al., 2016).
Recently, as the financial and environmental costs of model
training grow exponentially (Strubell et al., 2019; Patter-
son et al., 2021), people start to pursue training efficiency
by inducing sparsity during the early training phase (Gale
et al., 2019; You et al., 2019; Liu et al., 2021b) or before
training (Mocanu et al., 2018; Evci et al., 2020; Lee et al.,
2018; Tanaka et al., 2020). These sparse training approaches
launch the new pursuit of end-to-end saving potential for
both training and inference stages.

While many sparse training methods aim to pinpoint a singu-
lar optimal sparse subnetwork for a specific sparsity pattern
(e.g., unstructured, semi-structured, or structured) and ratio
(i.e., the percentage of zero elements), they often fall short
in accommodating the diverse platform and resource con-
straints encountered in the real-world deployment of sparse
neural networks. Relying on post-training pruning tailored
to each hardware or constraint can be impractical, as it ne-
cessitates a unique pruning strategy for every scenario and
many resource-limited platforms cannot sustain multiple
model alternatives. In response, emerging research offers
methods that extract multiple sparse subnetworks from a
single training cycle (Chen et al., 2021; Peste et al., 2021;
Miao et al., 2021; Yang et al., 2022; Dao et al., 2022). These
resulting dense or sparse subnetworks can be swiftly toggled
per inference requirements. We refer to those methods as
sparse co-training for simplicity.

Early sparse co-training efforts (Yu et al., 2018; Yu & Huang,
2019; Yang et al., 2021) embed smaller subnetworks (with
higher channel-level sparsity) within larger ones (with lower
channel-level sparsity). This joint training with selective

1

https://github.com/VITA-Group/SparseCocktail

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

switching yields a set of channel-sparse networks at vary-
ing ratios in addition to the dense variant. AC/DC (Peste
et al., 2021) pairs and co-trains a dense network with a
pre-determined sparse subnetwork through group partition-
ing, alternating between compression and decompression.
Conversely, AST (Yang et al., 2022) utilizes the prune-and-
regrow mechanism (Liu et al., 2021c) to co-train an array
of masks of different sparsities, ensuring gradient align-
ment between them. Both AC/DC (Peste et al., 2021) and
AST (Yang et al., 2022) initially showcased their meth-
ods for unstructured sparsity before adapting them to N :M
structured sparsity. OTO (Chen et al., 2021) can prune a
trained network to any channel-level sparsity ratio in a sin-
gle attempt, eliminating the need for re-training. (Miao
et al., 2021) achieved a similar outcome but centered on
unstructured sparsity. Recently, Monarch (Dao et al., 2022)
employed a hardware-efficient parameterization of dense
weight matrices, specifically using the multiplication of
two block-diagonal matrices, generating both dense and
hardware-optimized sparse models in a single pass.

Despite advancements, current sparse co-training method-
ologies are fragmented. Most are confined to one sparsity
pattern per run, and only a handful can yield multiple spar-
sity ratios alongside the dense version. We contend that
there’s a pressing need to broaden the scope of existing
sparse co-training techniques to simultaneously encompass
a wider variety of sparsity patterns and ratios. This belief
stems from several factors. Firstly, real-world hardware
resources can fluctuate immensely based on the specifics
of an application. Secondly, sparse accelerators differ in
design, each optimized for distinct sparsity patterns, such as
unstructured sparsity (Liu et al., 2021c), group-wise (Rumi
et al., 2020), channel-wise (Li et al., 2016), and N :M spar-
sity (Nvidia, 2020). For instance, while unstructured spar-
sity shows promising acceleration on CPUs (DeepSparse,
2021; Liu et al., 2021c), its GPU support is considerably
thinner, especially when juxtaposed against structured spar-
sity. Lastly, the resource needs and provisions of an ML
system evolve over time, necessitating the ability for “in-
situ” adaptive toggling between different sparsity ratios to
meet dynamic system demands.

We hereby present Sparse Cocktail, a sparse co-training
framework that is capable of concurrently producing mul-
tiple sparse subnetworks across a spectrum of sparsity pat-
terns and ratios, in addition to the dense model. Our ap-
proach alternates between various sparsity pattern training
phases, meanwhile incrementally raising the sparsity ratio
across these phases. Underlying the multi-phase training
is a unified mask generation process that allows seamless
phase transitions without performance breakdown. This is
complemented by a dense pivot co-training strategy aug-
mented with dynamic distillation, aligning the optimization
trajectories of diverse sparse subnetworks. In the end, all

sparse subnetworks share weights from the dense network.
This culminates in a “cocktail” of dense and sparse models,
offering a highly storage-efficient ensemble. Our primary
contributions are as follows:

• We introduce Sparse Cocktail, a novel sparse co-
training approach that produces a diverse set of sub-
networks with various sparsity patterns and ratios at
once. Different from previous sparse (co-)training ap-
proaches which only focus on one, at most two, types
of sparsity patterns, Sparse Cocktail co-trains a suite
of sparsity patterns simultaneously, and each coming
at a series of sparsity ratios. One can handily choose
the desired sparsity pattern and ratio at inference based
on the target hardware and resource availability.

• Sparse Cocktail alternatively trains subnetworks gen-
erated from different sparsity patterns , meanwhile
gradually increasing the sparsity ratios for all. We use
a unified mask generation method and a dense pivot co-
training scheme with dynamic distillation to ensure the
subnetworks of different patterns and ratios orchestrate
their shared parameters so that they will not cancel
each other’s performance. Within each sparsity pattern,
we additionally perform selective weight interpolation
of multiple subnetworks across different sparsity ratios,
to strengthen performance further.

• Our new framework, besides essentially generalizing
and “encapsulating” previous sparse co-training meth-
ods, achieves great parameter efficiency and compara-
ble Pareto-optimal trade-off individually achieved by
those methods too. For example, for co-training at dif-
ferent sparsity ratios, Sparse Cocktail is on par with or
even outperforms strong baselines such as AST (Yang
et al., 2022) and MutualNet (Yang et al., 2021). In
contrast with methods that only co-train a dense/sparse
network pair, Sparse Cocktail also achieves competi-
tive performance.

2. Related Work
2.1. Overview of Sparse Training
Dense-to-Sparse Training. Dense-to-sparse training be-
gins with a dense model and progressively sparsifies it
throughout the training process. Gradual magnitude prun-
ing (GMP)(Zhu & Gupta, 2017; Gale et al., 2019) incre-
mentally sparsifies the neural network to achieve the target
sparsity over the training duration. Techniques leveraging
ℓ0 and ℓ1 regularization to penalize parameters diverging
from zero have also been effective in yielding compact yet
performant sparse neural networks (Louizos et al., 2018;
Wen et al., 2016). During training, trainable masks can be
learned (Srinivas et al., 2017; Liu et al., 2020; Savarese
et al., 2019; Xiao et al., 2019) and, intriguingly, even at

2

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

initialization (Ramanujan et al., 2020; Chijiwa et al., 2021;
Huang et al., 2022) to produce the desired SNNs.

The lottery ticket hypothesis (LTH)(Frankle & Carbin, 2018)
can be broadly classified under dense-to-sparse training.
LTH employs Iterative Magnitude Pruning (IMP)(Han et al.,
2015) combined with weight rewinding to accurately iden-
tify high-quality sparse subnetworks (often referred to as
winning tickets). When trained in isolation, these subnet-
works can match the performance of the dense neural net-
work. Techniques such as Lottery Pools (Yin et al., 2022)
have further shown that most LTH solutions (i.e., converged
subnetworks) reside within the same local basin. Conse-
quently, they can be selectively interpolated to enhance
LTH’s performance. (Chen et al., 2022) introduced two
post-training operations: weight refilling and weight re-
grouping. These effectively transition the benefits of un-
structured sparsity to GPU-compatible sparsity patterns.

Sparse-to-Sparse Training. Sparse-to-sparse training, in
contrast, begins with and maintains a sparse neural network
throughout training, aiming for potential end-to-end efficien-
cies during both training and inference. Dynamic Sparse
Training (DST) (Mocanu et al., 2018; Liu et al., 2021c) has
emerged as a promising strategy to derive high-performing
sparse networks without the need for any dense pre-training
or fine-tuning phases. Most DST techniques employ a prune-
and-regrow operation(Mocanu et al., 2018) to enhance the
efficacy of sparse masks. SNFS (Dettmers & Zettlemoyer,
2019) and RigL (Evci et al., 2020) notably augment the
performance of DST by utilizing gradient data to cultivate
weights. ITOP (Liu et al., 2021d) underscores the essential
role of parameter exploration in sparse training, emphasiz-
ing that the performance of sparse training is intrinsically
tied to the total number of parameters it engages with during
training. Top-KAST (Jayakumar et al., 2020) exclusively
updates a minor fraction of gradients during backpropaga-
tion, bypassing the need to compute dense gradients. A
review of existing sparsity patterns is in Appendix B.

2.2. Sparse Co-Training: More Than One Sparsity
Patterns or Ratios at Once

Existing sparse co-training methods can be divided into two
paradigms: (i) co-training dense and sparse networks, and
(ii) co-training multiple sparse networks from scratch.

The first paradigm encompasses methods such as S-Net (Yu
et al., 2018), US-Net (Yu & Huang, 2019), and Mutual-
Net (Yang et al., 2021). In these methods, smaller sub-
networks are nested within larger ones and are co-trained
through selective switching or random sampling. Partial-
SGD (Mohtashami et al., 2022) employs a mix of parameter
perturbation and gradient masking to co-train a full-rank
dense model alongside a low-rank sparse model. In contrast,
AC/DC (Peste et al., 2021) co-trains a dense network and

its subnetwork with a predefined sparsity, utilizing group
partitioning and alternating compression/decompression.

The second paradigm, which involves co-training multiple
sparse networks from scratch, features methods such as
AST (Yang et al., 2022). AST employs a prune-and-regrow
mechanism, enabling the co-training of several sparse sub-
networks with gradient alignment between consecutive mini-
batches. Monarch (Dao et al., 2022) deploys dense matrix
approximation with permutable block-diagonal sparse ma-
trices, obtaining both dense and numerous sparse models
simultaneously. Cosub (Touvron et al., 2022) suggests train-
ing two random subsets of all network layers with mutual
distillations in each mini-batch, yielding depth-wise sparse
models and a more potent dense model.

However, several issues prevail in current sparse co-training
methods: (1) the limited number of co-trainable subnet-
works due to simplistic alternative or joint training, and (2)
their focus on a single sparsity pattern during one training
pass. These issues render them unsuitable for generating
more sparse subnetworks that can cater to the requirements
of diverse hardware platforms.

Besides the aforementioned, we would like to mention some
other loosely related research areas in Appendix A.

3. Methodology
3.1. Preliminaries and Notations
Notations. Let D and S denote the dense and sparse net-
works, respectively. Operations commonly referenced in
pruning literature, namely pruning, weight rewinding, and
re-training, are represented by P , R, and T , which we’ll
elaborate on subsequently. To differentiate between itera-
tions of pruning and re-training, D and S can be subscripted
with k = 1, 2, ..., N . Various sparsity patterns are symbol-
ized as Su, Sc, and Snm, standing for unstructured sparsity,
channel-wise sparsity, and N :M sparsity, respectively. With
m representing the binary masks of each sparse network
and ⊙ signifying the unstructured product operation, the
sparse neural network at the kth iteration can be expressed
as Sk = Dk ⊙mk.

Iterative Magnitude Pruning. Iterative magnitude
pruning (IMP) (Han et al., 2015) iteratively prunes a
dense network D0 using a ratio p (e.g., 20%), yielding a
sequence of nested masks with progressively increasing
sparsity ratios. After each pruning step, retraining
the sparse subnetwork is typically essential to restore
performance. IMP received renewed attention through
the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin,
2018). LTH reveals that sparse subnetworks derived
from IMP can achieve the performance of the dense
network when trained independently with their original
initializations. The power of LTH was further enhanced

3

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

...
...

...
...

...
...

...
...

...

Dense
Weights

Unstructured Sparse
Pattern Su

Channel Sparse Pattern Sc

N:M Sparse Pattern Snm

Unified Mask
Generation

Unstructured
masks

N:M
masks

Dense Weights

...

...
Interpolation

Co-training
Iteration 1

Channel-
wise masks

...
...

Unified Mask
Generation

Unified Mask
Generation

Unified Mask
Generation...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Co-training
Iteration 2

Co-training
Iteration 3

Co-training
Iteration n

Figure 1. The flow diagram of Sparse Cocktail. Before each co-training iteration, we first perform iterative pruning with weight rewinding
and the Unified Mask Generation technique. This produces a set of sparse subnetworks with various sparsity patterns, gradually
increasing in sparsity ratios. During each co-training iteration, we use Dense Pivot Co-training to train subnetworks with different
sparsity patterns alternatively, using a dense network as a pivot. Once all co-training steps are complete, we introduce Greedy Subnetwork
Interpolation to boost the performance of the subnetworks. The final output of Sparse Cocktail is formed by a set of dense neural networks,
each accompanied by multiple sparse masks with various patterns.

by weight and learning rate rewinding (Frankle et al.,
2020; Renda et al., 2020). Formally, subnetworks
produced by IMP through rewinding can be defined as
Sk|Sk = Tk(R(Pk(Sk − 1))), S0 = D0, k = 1, 2, ..., N .
In this work, we extend our iterative pruning scope to
craft not just one specific mask type but multiple sparsity
patterns concurrently. Thus, it yields four distinct network
series: Dk, S

u
k , S

c
k, S

nm
k for k = 0, 1, ..., N . These

represent the dense network and the sparse networks with
unstructured sparsity, channel-wise sparsity, and N :M
sparsity, respectively.

3.2. Overview of Sparse Cocktail

The workflow of Sparse Cocktail is depicted in Fig. 1, com-
prising three main modules:

1 Prior to Iterative Co-training: Before embarking on
each iterative co-training phase, Sparse Cocktail first ini-
tializes three subnetworks, each embodying a unique spar-
sity pattern: Su

0 , S
c
0, S

nm
0 , all stemming from a pre-trained

dense network D0 via IMP. Magnitude pruning gives rise
to the unstructured Su

k and N :M sparse Snm
k . The channel-

wise subnetworks are found by transforming Su
k and Snm

k

through the Unified Mask Generation (UMG) process, de-
tailed in subsequent sections.

2 During Iterative Co-training: Within each iterative co-
training phase, we rewind the weights, typically to around
the 5th epoch, and alternately train subnetworks of diverse
patterns. To ensure the co-training remains stable, we in-
tersperse with a one-step update of a dense neural network.
This “dense pivot” acts as a lubricant, streamlining the
sparse co-training for enhanced efficacy.

3 Post Iterative Co-training: Upon concluding the com-
prehensive iterative co-training regimen, we employ an
interpolation-driven network merging technique to further
augment the performance of the resultant (sub-)networks.

We shall clarify that the focus of Sparse Cocktail is NOT
training efficiency, but instead, the ability to generate mul-
tiple network options at once - for the goal of adaptive
deployment and efficient inference, same as prior works
(Yang et al., 2021; Peste et al., 2021; Yang et al., 2022).
We also claim that one of our major novelty is integrating
and adapting existing methods to tackle the novel sparse co-
training problem with different sparsity patterns, we discuss
our novelty further in Appendix E.

3.3. Using Iterative Pruning with Weight Rewinding for
Sparse Co-training

One challenge of training multiple diverse sparse subnet-
works resembles multi-task learning: when a single param-
eter exists in multiple subnetworks simultaneously, it can
induce conflicting gradient directions, a phenomenon ob-
served by Yang et al. (2022). The challenge is amplified as
we augment more co-trained subnetworks, especially given
the blend of sparsity patterns and ratios.

To circumvent the gradient conflicts, we embrace iterative
pruning, veering away from the one-shot gradual pruning
methods (Yang et al., 2022; Liu et al., 2021b). This strategy
ensures that subnetworks of different sparsity ratios are seg-
regated and nurtured across discrete iterations. Moreover,
with weight rewinding, we ensure these subnetworks to
originate from a unified starting point, harmonizing their
optimization trajectories and diminishing the chances of
training discord.

4

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

SubNet3SubNet2SubNet1 SubNet3SubNet2SubNet1

Mini-batch 1 2 3 4 5 6

SubNet2SubNet1

7 8

𝑆𝑘
𝑒 𝑆𝑘

𝑐 𝑆𝑘
𝑚

Dense Dense Dense Dense 𝑆𝑘
𝑒

…

…

…

Original

AST

Dense-

Pivot Co-

training

Figure 2. The comparison between AST (Yang et al., 2022) and dense pivot co-training. AST switches among subnetworks of different
sparsity levels yet within the same sparsity pattern cyclically (it does not consider multiple sparse patterns). Dense pivot co-training
inserts dense training steps between switching different sparse patterns.

However, our approach goes beyond producing multiple
sparsity ratios; it also grapples with the tandem training of
assorted sparsity patterns. Guaranteeing that these patterns
are cultivated and honed without adversely affecting each
other’s performance is crucial. In pursuit of this, we unveil
three more cornerstone techniques: Unified Mask Gen-
eration, Dense Pivot Co-training, and Sparse Network
Interpolation - those will be detailed next.

3.4. Unified Mask Generation
A key question that emerges prior to iterative co-training
is the methodological generation of masks with disparate
sparsity patterns mu

k ,m
c
k,m

nm
k in a way not adversely in-

fluencing one another. Pursuing independent generation for
each might lead to divergent optimization trajectories for
Su
k , S

c
k, S

nm
k . In response to this challenge, we introduce

the Unified Mask Generation (UMG) mechanism, designed
to jointly produce mu

k ,m
c
k,m

nm
k grounded on the criterion

of individual weight magnitudes:

For the unstructured and N :M patterns, the masks mu
k and

mnm
k are crafted by selecting individual weights based on

their magnitudes. It’s worth noting that weight magnitudes
are globally ranked for unstructured sparsity. In contrast,
for the N :M pattern, magnitudes are locally ranked across
every contiguous set of M weight elements.

The channel-wise mask mc
k presents a unique nuance: the

channels to prune cannot be pinpointed based on individ-
ual weights alone. To address this, we lean on the weight
refilling approach (Chen et al., 2022). Here, the non-pruned
weights of both unstructured and N :M patterns guide the
decision on which channels to eliminate. Explicitly, for
a channel C ∈ Ri×h×w (with i denoting the number of
input channels and h,w representing the dimensions of
weight kernels), the channel’s importance is gauged by
β||mu⊙C||1+(1−β)||mnm⊙C||1. Here, mu and mnm

are the respective unstructured and N :M masks of this
channel, with the empirical value of β set at 0.8. Conse-
quently, for each layer, a subset of channels showcasing peak
scores—based on the predetermined channel-wise sparsity
ratio—is chosen. This selection informs the composition of
the channel-wise mask mc

k.

Our analysis in Fig. 3 demonstrates that UMG substantially
reduces the optimization conflicts between different sparsity
patterns. Moreover, we argue in Appendix K that naively
using Refilling to find channel-wise mask can not achieve
comparable performance with UMG.

3.5. Dense Pivot Co-training

In (Yang et al., 2022), it was highlighted how SGD train-
ing imparts an implicit regularization of gradient alignment
across successive mini-batches (Nichol et al., 2018; Mo-
htashami et al., 2022). This characteristic proves advan-
tageous for the efficacious alternate training of multiple
subnetworks within sparse co-training. The authors hence
developed Alternate Sparse Training (AST) facilitating the
alternate training of various subnetworks that have differing
sparsity ratios. However, in our settings, which encompass
both varying sparsity ratios and patterns, we found naively
applying AST leads to degraded performance, owing to the
strong divergence between distinct sparsity patterns.

In response, we discover that the introduction of a dense
training phase as a “buffer” between two sparse subnetwork
updates can significantly attenuate this obstacle. We term
this operation the “dense pivot”. Fig. 2 contrasts AST and
our dense pivot co-training. Our primary intent is to harness
the gradient alignment effect observed in AST and guide
the gradients of disparate sparse networks. As a result, the
gradients of each subnetwork become “realigned” with those
of dense networks. Such alignment benefits from consistent
initializations, a facet ensured by weight rewinding.

Supplementing the dense pivot, we also employ “dynamic
distillation”, aiming to minimize the optimization discrep-
ancy between the dense network and its subnetworks. As-
suming L(output, target) as the loss function and designat-
ing i = 2, 4, 6, ... as the subnetwork training iterations, with
Xi representing the mini-batch input at the ith iteration and
Yi signifying the ground-truth labels for Xi, the dynamic
distillation procedure can be articulated as:

LSk
= 1

2 (L(Sk(Xi), Yi) + L(Sk(Xi),∇(Dk(Xi)))) (1)

Note that ∇(·) denotes the stop gradient operator. Due to
weight rewinding, all dense networks in {Dk} are initialized

5

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Table 1. Comparison between Sparse Cocktail and other sparse co-training methods. We test ResNet-18 on CIFAR10 and ResNet-50 on
ImageNet. Co-train Patterns mean whether the method co-trains more than one sparsity pattern (unstructured, N:M, channel-level) at
once, besides the dense one. Avg. Acc means averaged accuracy over different sparsity ratios. To ensure a fair comparison, we implement
all other methods following the original papers and test all on our pre-defined sparsity ratios. Notably, ❶ MutualNet co-trains 1 dense
network and 10 channel-wise sparse networks with identical channel-wise sparsities as Sparse Cocktail at once; ❷ AC/DC co-trains 10
dense/sparse network pairs separately; ❸ AST co-trains 2 sparsity patterns separately; ❹ Sparse Cocktail co-trains all sparsity patterns
and ratios at once.

Method Co-train
Patterns

Sparsity
Pattern

Avg. Acc(%) Sub-net
#ResNet 18 + CIFAR10 ResNet-50 + ImageNet

MutualNet ✗
Dense 92.36 75.94 1

Channel 90.23 72.04 10

AC/DC ✗
Dense 92.58 76.44 10

Unstruct 92.03 75.80 10

AST ✗
Unstruct 92.08 73.15 10

N :M 92.11 76.02 4

Sparse
Cocktail ✓

Dense 92.48 76.32 1

Unstruct 92.09 73.23 10

Channel 90.02 72.22 10

N :M 91.83 75.19 3

identically and thus will be optimized towards similar direc-
tions although they are trained in different iterative pruning
stages. Through Dense Pivot Co-training, the subnetworks
{Su

k , S
c
k, S

nm
k } of different sparsity patterns are also forced

to align their gradients w.r.t. Dk. This leads to each weight
parameter being optimized in similar directions across dif-
ferent sparsity ratios and patterns, which contributes to the
successful parameter sharing of Sparse Cocktail.

3.6. Sparse Network Interpolation

Network merging is an emerging technique that fuses mul-
tiple neural networks into a stronger one (Nagarajan &
Kolter, 2019; Frankle et al., 2020; Neyshabur et al., 2020;
Von Oswald et al., 2020; Wortsman et al., 2022; Yin et al.,
2022). Sparse Cocktail takes an evolving-and-merging ap-
proach: it employs an interpolation-based merging tech-
nique, fusing networks across different sparsity ratios and
patterns, enhancing performance. This interpolation pro-
cess is: Dbest = αkDbest + (1 − αk)Dk, k = 2, ..., N ,
wherein αk ∈ [0, 1] represents the interpolation factor, and
Dbest is the preeminent interpolated network, initialized
with D1. The determination of αk is grounded in a hold-out
validation set, which we term as ValAcc. Following the in-
terpolation, we refine the batch normalization statistics with
a subsequent data pass, a process we denote as BnUpdate.

Inspired by (Wortsman et al., 2022), our method employs
a meticulous, greedy strategy to discern the optimal co-
efficiency within the range [0.05, 0.1, 0.2, ..., 0.9, 0.95,

1] for two subnetworks. Only subnetworks that do not
diminish accuracy on the held-out set are considered for
interpolation, otherwise abandoned. Post-interpolation, we
implement magnitude pruning to restore the desired sparsity.
The nuances of our interpolation method are detailed in
Algorithm 1 in the Appendix.

4. Experiments
Dataset, Architectures, and Evaluations. We conduct
experiments on CIFAR10 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009). The architectures used are
ResNet-18 for CIFAR10 and ResNet-50 for ImageNet (He
et al., 2016). We keep the same sparsity ratios for different
methods, which lead to the same inference time efficiency
for each subnetwork. We evaluate the test set accuracies
and parameter efficiency of the individual subnetworks, the
dense networks, the total parameter number, and the subnet-
work number in each shared network of each method.

Sparse Cocktail Configurations. For Sparse Cocktail, we
record the hyperparameter setting in Table 5 in the Appendix.
Additionally, we use different iterative pruning rates for the
3 sparsity patterns: for unstructured sparsity, the weight
pruning rate pe is set to 0.2 following (Frankle & Carbin,
2018); for channel-wise sparsity, the channel pruning rate
pc is set to 0.1 to keep a similar parameter number as un-
structured sparsity; for N :M sparsity, we focus on three
practically accelerable sparsity ratios——1:2, 2:4 and 4:8
as in (Hubara et al., 2021). We generate these three N :M

6

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Table 2. The performance of individual subnetworks of different
sparse co-training methods. We report 4 out of 10 evenly dis-
tributed sparsity ratios for both unstructured and channel-wise
sparsities.

Sparsity Ratio

Unstruct 0.20 0.49 0.74 0.87

Channel 0.10 0.27 0.47 0.61Dataset Method

N :M 1:1 1:2 2:4 4:8

MutualNet Channel 92.36 91.81 89.77 87.41

AC/DC Unstruct 92.45 92.26 91.87 91.73

Unstruct 92.34 92.24 92.05 91.73
AST

N :M 92.56 92.23 92.45 92.38

Unstruct 92.45 92.44 92.03 91.67

Channel 92.34 91.89 90.40 87.31

C
IF

A
R

10

Sparse
Cocktail

N :M 92.48 92.03 91.93 91.45

MutualNet Channel 75.25 73.59 71.92 68.57

AC/DC Unstruct 76.36 76.25 76.03 74.92

Unstruct 76.67 74.32 73.45 71.26
AST

N :M 76.41 76.07 75.98 75.61

Unstruct 76.36 74.42 73.15 71.03

Channel 75.22 73.79 72.52 69.45

Im
ag

eN
et

Sparse
Cocktail

N :M 76.32 75.23 74.96 74.23

masks during P2,P5 and P8, respectively and keep them
unchanged elsewhere. Note that with UMG, the distribution
of channel-wise masks will be decided by the magnitude
sums of the remaining weights from both unstructured and
N :M sparsity. Under this setting, the default version of
Sparse Cocktail produces 24 networks at once, consisting
of 1 dense network, 10 unstructured, 10 channel-wise and 3
N :M subnetworks.

Baselines and Configurations. We compare Sparse
Cocktail with three SOTA sparse co-training methods:
AST (Yang et al., 2022), AC/DC (Peste et al., 2021) and Mu-
tualNet (Yang et al., 2021). Note that MutualNet uniquely
includes data-level co-training by varying input image reso-
lution; we identically followed it when using MutualNet, but
did not implement the same idea in Sparse Cocktail since
we want to ensure fair comparison with all other methods
(without data-level co-training). The comparison of network
number with shared parameters, total subnetwork number,
and total parameter number of different methods is presented
in Table 3. Since we enforce identical sparsity distributions
for all sparse co-training methods within each sparsity pat-
tern, the FLOPs of Sparse Cocktail within each sparsity
pattern remain nearly identical with other baseline meth-
ods. We thus omit FLOPs evaluation in our experiments.
More details about the implementations and hyperparameter
settings are provided in Appendix B.

Table 3. The number of networks with shared parameters, total
subnetwork number (including dense) and total parameter number
of each method. Avg. Sub-net # is obtained by dividing the
network number with the sub-net number and reflects the average
subnetwork capacity of each shared network, which reflects param-
eter efficiency for sparse co-training. Binary masks are ignored in
our comparison.

Method Param
#

Network
#

Sub-net
#

Avg. Sub
-net #

MutualNet 1x 1 11 11

AC/DC 10x 10 20 2

AST 1.94x 2 14 7

Sparse Cocktail 1x 1 24 24

Table 4. The object detection and instance segmentation results on
MS COCO dataset.

Method
Object Detection Instance Segmentation

BoxAP MaskAP

ResNet50 VGG-16 ResNet50 VGG-16

Baseline 32.1 33.8 32.5 31.3
MutualNet 31.3 30.7 30.1 29.4

Sparse Cocktail 31.0 32.3 30.9 30.3

4.1. Main Results

We collect the main experiment results in Table 1, which
shows the average accuracy of different sparsity ratios for
each sparsity pattern, as well as the subnetwork number for
each sparsity pattern. We further compare some individual
sparsity ratio networks of different methods in Table 2.

Comparisons with Other Co-Training Methods. Be-
ing the most inclusive method that trains more sparse pat-
terns or ratios than competitor methods, Sparse Cocktail
achieves comparable or even better performance compared
to the SOTA sparse co-training methods that only focus
on one sparsity pattern per model. Specifically, ❶ when
compared with AST, the current SOTA sparse-to-sparse
co-training method, Sparse Cocktail achieves comparable
accuracy when just comparing single sparsity pattern perfor-
mance, while additionally uniting 3 sparsity patterns in one
network including the channel-wise sparsity; ❷ when com-
pared to AD/DC, Sparse Cocktail still achieves the perfor-
mance on par on individual sparse patterns and ratios, while
also avoiding AC/DC’s need of co-training 10 dense/sparse
network pairs; ❸ when compared to MutualNet which is the
SOTA method on channel-wise co-training, Sparse Cocktail
wins across all sparsity ratios, e.g., over 1% accuracy gain
at high sparsity ratios, meanwhile providing more sparsity
patterns at once. Overall, Sparse Cocktail effectively gener-
alizes and “encapsulates” these sparse co-training methods.

7

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

20 36 49 59 67 74 79 83 87 89
Sparsity (%)

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

(%
)

Dense
FullMethod
w.o. UMG
DP Co-train AST
w.o. Rewinding
w.o. Interpolation

(a) Unstructured Sparsity

10 19 27 34 41 47 52 57 61 65
Sparsity (%)

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

(b) Channel-wise Sparsity

1:1 1:2 3:4 7:8
Sparsity

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

(c) N :M Sparsity

Figure 3. The ablation study of Sparse Cocktail. (a), (b), and (c) contain unstructured, channel-wise, and N :M performance curves of
individual sparse networks under different ablation settings. W/o UMG means replacing UMG with vanilla mask generation, mainly by
replacing the refilling-based channel-wise mask generation with channel-weight-based mask generation. Dense Pivot Co-training→AST
refers to replacing Dense Pivot Co-training with AST solution as proposed by (Yang et al., 2022). W/o interpolation means removing
the network interpolation step and using the final for testing. W/o rewinding denotes that we immediately resume the training without
rewinding the weights after pruning. Note from (c) that Sparse Cocktail only produces 3 N :M masks.

Comparisons Across Architectures and Datasets. In our
main context, we conduct our experiments using ResNet-
50 and image classification tasks. Now we validate that
Sparse Cocktail remains effective in different architectures
and tasks. Specifically, we showcase the performance of
Sparse Cocktail on two network backbones——ResNet-50
and VGG-16 and on two tasks——object detection and
instance segmentation on the MS COCO benchmark.

We follow Table 1 for sparsity choices, i.e. for Sparse Cock-
tail we co-train 24 subnetworks with its 10 channel-wise
sparsities identical to the MutualNet. We follow other ex-
periment settings as in Section 4.4 of Yang et al. (2020)
and compare the averaged performance of the 10 channel-
wise subnetworks. Note that Sparse Cocktail does not use
switchable resolutions as in Yang et al. (2020). The results
are shown in Table 4. The results on both object detection
and instance segmentation again demonstrate that Sparse
Cocktail can achieve superior performance over MultualNet
while co-trains 13 more unstructured and N:M subnetworks
simultaneously.

4.2. Ablation Study and Analysis

We conduct a comprehensive ablation study on Sparse Cock-
tail to justify the effectiveness of individual components as
proposed in the methodology. Specifically, we compare our
full method with 4 variants ① removing UMG, ② replacing
Dense Pivot Co-training with AST, ③ removing the net-
work interpolation, and ④ removing the weight-rewinding.
Moreover, we visualize the proposed interpolation process
of them. The results are presented in Fig. 3. Additionally,
we also investigate the role of our proposed interpolation
process in Appendix I.

How does each component of Sparse Cocktail con-

tribute? As we can observe from Fig. 3(a), (b), (c), ❶
when we remove weight rewinding, the performance de-
creases drastically. This is reasonable because without
weight rewinding, the dense and sparse networks at different
IMP stages do not have similar optimization processes and
thus end up with very different parameter values, which neg-
atively affects network interpolation. ❷ When we remove
network interpolation, we still observe a big performance
drop, which highlights its importance to ensemble param-
eters from different IMP stages. ❸ If we replace Dense
Pivot Co-training with the AST, there’s also a significant
performance drop, because Dense Pivot Co-training is able
to regularize the subnetworks to be optimized in similar
directions across different sparsity ratios, as we analyze in
Section 3.5. ❹ Finally, if we remove the UMG, there is still
an observable performance drop, which shows that generat-
ing masks of different sparsity patterns in a united criterion
with UMG is better for sparse co-training than generating
them with independent criteria. We can draw the conclu-
sion that weight rewinding and network interpolation are
both necessary components for Sparse Cocktail to function
normally, while UMG and Dense Pivot Co-training also
contribute remarkably to the final performance gains.

5. Conclusion
This paper proposes Sparse Cocktail for training many
resource-efficient sparse neural networks all at once. It co-
trains a diverse set of sparsity patterns, each characterized
by a range of sparsity ratios. Sparse Cocktail demonstrates
competitive performance, even compared to prior single-
pattern sparse co-training methods, thus generalizing and
“encapsulating” those previous methods. We leave the work
of exploring additional sparsity patterns to the future.

8

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Impact Statement
This paper aims to advance the field of efficient deep net-
work training and inference. While our work has various
potential societal implications, we do not feel any specific
consequences require particular emphasis at this time.

Acknowledgements
Z. Wang is in part supported by a Meta Reality Labs Re-
search Gift Award and the NSF AI Institute for Foundations
of Machine Learning (IFML).

References
Bartoldson, B., Morcos, A., Barbu, A., and Erlebacher, G.

The generalization-stability tradeoff in neural network
pruning. Advances in Neural Information Processing
Systems, 33:20852–20864, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Chen, C.-F., Oh, J., Fan, Q., and Pistoia, M. Sc-conv: Sparse-
complementary convolution for efficient model utilization
on cnns. In 2018 IEEE International Symposium on
Multimedia (ISM), pp. 97–100. IEEE, 2018.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z.,
Liang, L., Shi, Y., Yi, S., and Tu, X. Only train once: A
one-shot neural network training and pruning framework.
Advances in Neural Information Processing Systems, 34:
19637–19651, 2021.

Chen, T., Chen, X., Ma, X., Wang, Y., and Wang, Z. Coars-
ening the granularity: Towards structurally sparse lottery
tickets. arXiv preprint arXiv:2202.04736, 2022.

Chijiwa, D., Yamaguchi, S., Ida, Y., Umakoshi, K., and
Inoue, T. Pruning randomly initialized neural net-
works with iterative randomization. arXiv preprint
arXiv:2106.09269, 2021.

Dao, T., Chen, B., Sohoni, N. S., Desai, A., Poli, M., Gro-
gan, J., Liu, A., Rao, A., Rudra, A., and Ré, C. Monarch:
Expressive structured matrices for efficient and accurate
training. In International Conference on Machine Learn-
ing, pp. 4690–4721. PMLR, 2022.

DeepSparse. NeuralMagic DeepSparse Inference
Engine, 2021. URL https://github.com/
neuralmagic/deepsparse.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing, pp. 5547–5569. PMLR, 2022.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943–
2952. PMLR, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp. 3259–
3269. PMLR, 2020.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gale, T., Zaharia, M., Young, C., and Elsen, E. Sparse gpu
kernels for deep learning. In SC20: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14. IEEE, 2020.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-
ating very deep neural networks. In Proceedings of the
IEEE international conference on computer vision, pp.
1389–1397, 2017.

9

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Huang, T., Chen, T., Fang, M., Menkovski, V., Zhao, J., Yin,
L., Pei, Y., Mocanu, D. C., Wang, Z., Pechenizkiy, M.,
and Liu, S. You can have better graph neural networks
by not training weights at all: Finding untrained GNNs
tickets. In The First Learning on Graphs Conference,
2022. URL https://openreview.net/forum?
id=dF6aEW3_62O.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J., and
Soudry, D. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems, 34:
21099–21111, 2021.

Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., and Elsen,
E. Top-kast: Top-k always sparse training. Advances
in Neural Information Processing Systems, 33:20744–
20754, 2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurtic, E., Frantar, E., and Alistarh, D. Ziplm: Hardware-
aware structured pruning of language models. arXiv
preprint arXiv:2302.04089, 2023.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit,
N., and Alistarh, D. Inducing and exploiting activation
sparsity for fast inference on deep neural networks. 2020.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Li, Y., Gu, S., Mayer, C., Gool, L. V., and Timofte, R.
Group sparsity: The hinge between filter pruning and
decomposition for network compression. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8018–8027, 2020.

Liu, J., Xu, Z., Shi, R., Cheung, R. C., and So, H. K. Dy-
namic sparse training: Find efficient sparse network from

scratch with trainable masked layers. arXiv preprint
arXiv:2005.06870, 2020.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H., Wang,
X., Chen, Y., Yang, W., Liao, Q., and Zhang, W. Group
fisher pruning for practical network compression. In
International Conference on Machine Learning, pp. 7021–
7032. PMLR, 2021a.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou,
H., Shen, L., Pechenizkiy, M., Wang, Z., and Mocanu,
D. C. Sparse training via boosting pruning plasticity
with neuroregeneration. Advances in Neural Information
Processing Systems, 34:9908–9922, 2021b.

Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., and
Pechenizkiy, M. Sparse evolutionary deep learning with
over one million artificial neurons on commodity hard-
ware. Neural Computing and Applications, 33(7):2589–
2604, 2021c.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do we
actually need dense over-parameterization? in-time over-
parameterization in sparse training. In Proceedings of the
39th International Conference on Machine Learning, pp.
6989–7000. PMLR, 2021d.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning sparse
neural networks through l 0 regularization. International
Conference on Learning Representations, 2018.

Ma, X., Guo, F.-M., Niu, W., Lin, X., Tang, J., Ma, K.,
Ren, B., and Wang, Y. Pconv: The missing but desirable
sparsity in dnn weight pruning for real-time execution on
mobile devices. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 5117–5124,
2020.

Miao, L., Luo, X., Chen, T., Chen, W., Liu, D., and Wang,
Z. Learning pruning-friendly networks via frank-wolfe:
One-shot, any-sparsity, and no retraining. In International
Conference on Learning Representations, 2021.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9
(1):1–12, 2018.

Mohtashami, A., Jaggi, M., and Stich, S. Masked training of
neural networks with partial gradients. In International
Conference on Artificial Intelligence and Statistics, pp.
5876–5890. PMLR, 2022.

10

https://openreview.net/forum?id=dF6aEW3_62O
https://openreview.net/forum?id=dF6aEW3_62O

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. arXiv preprint arXiv:1611.06440,
2016.

Mozer, M. C. and Smolensky, P. Using relevance to reduce
network size automatically. Connection Science, 1(1):
3–16, 1989.

Nagarajan, V. and Kolter, J. Z. Uniform convergence may
be unable to explain generalization in deep learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Neyshabur, B., Sedghi, H., and Zhang, C. What is being
transferred in transfer learning? Advances in neural
information processing systems, 33:512–523, 2020.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Nvidia. Nvidia a100 tensor core gpu architec-
ture. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-
whitepaper.pdf, 2020.

Oyedotun, O., Aouada, D., and Ottersten, B. Structured
compression of deep neural networks with debiased elas-
tic group lasso. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp.
2277–2286, 2020.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-
M., Rothchild, D., So, D., Texier, M., and Dean, J. Car-
bon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. Ac/dc:
Alternating compressed/decompressed training of deep
neural networks. Advances in Neural Information Pro-
cessing Systems, 34:8557–8570, 2021.

Pool, J. and Yu, C. Channel permutations for n: m sparsity.
Advances in Neural Information Processing Systems, 34:
13316–13327, 2021.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
11893–11902, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. arXiv preprint
arXiv:2003.02389, 2020.

Rumi, M. A., Ma, X., Wang, Y., and Jiang, P. Accelerating
sparse cnn inference on gpus with performance-aware
weight pruning. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation
Techniques, pp. 267–278, 2020.

Savarese, P., Silva, H., and Maire, M. Winning the
lottery with continuous sparsification. arXiv preprint
arXiv:1912.04427, 2019.

Srinivas, S., Subramanya, A., and Venkatesh Babu, R. Train-
ing sparse neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 138–145, 2017.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in nlp. arXiv
preprint, 2019.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in Neural Information
Processing Systems, 33:6377–6389, 2020.

Touvron, H., Cord, M., Oquab, M., Bojanowski, P., Verbeek,
J., and Jégou, H. Co-training 2̂l submodels for visual
recognition. arXiv preprint arXiv:2212.04884, 2022.

Von Oswald, J., Kobayashi, S., Sacramento, J., Meulemans,
A., Henning, C., and Grewe, B. F. Neural networks with
late-phase weights. arXiv preprint arXiv:2007.12927,
2020.

Wang, Y., Sun, F., Li, D., and Yao, A. Resolution switch-
able networks for runtime efficient image recognition. In
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XV 16, pp. 533–549. Springer, 2020.

Wang, Z. Sparsert: Accelerating unstructured sparsity on
gpus for deep learning inference. In Proceedings of the
ACM international conference on parallel architectures
and compilation techniques, pp. 31–42, 2020.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, pp. 2074–2082,
2016.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.

11

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

In International Conference on Machine Learning, pp.
23965–23998. PMLR, 2022.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune: Auto-
matic network pruning by regularizing auxiliary parame-
ters. Advances in neural information processing systems,
32, 2019.

Yang, L., Meng, J., Seo, J.-s., and Fan, D. Get more at
once: Alternating sparse training with gradient correction.
In Advances in Neural Information Processing Systems,
2022.

Yang, T., Zhu, S., Chen, C., Yan, S., Zhang, M., and Willis,
A. Mutualnet: Adaptive convnet via mutual learning
from network width and resolution. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pp. 299–315.
Springer, 2020.

Yang, T., Zhu, S., Mendieta, M., Wang, P., Balakrishnan,
R., Lee, M., Han, T., Shah, M., and Chen, C. Mutual-
net: Adaptive convnet via mutual learning from different
model configurations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):811–827, 2021.

Yin, L., Liu, S., Meng, F., Huang, T., Menkovski, V., and
Pechenizkiy, M. Lottery pools: Winning more by inter-
polating tickets without increasing training or inference
cost. arXiv preprint arXiv:2208.10842, 2022.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Baraniuk,
R. G., Wang, Z., and Lin, Y. Drawing early-bird tickets:
Towards more efficient training of deep networks. arXiv
preprint arXiv:1909.11957, 2019.

Yu, J. and Huang, T. S. Universally slimmable networks
and improved training techniques. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 1803–1811, 2019.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. arXiv preprint arXiv:1812.08928, 2018.

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.-J., Tan,
M., Huang, T., Song, X., Pang, R., and Le, Q. Bignas:
Scaling up neural architecture search with big single-
stage models. In European Conference on Computer
Vision, pp. 702–717. Springer, 2020.

Zhang, J.-F., Lee, C.-E., Liu, C., Shao, Y. S., Keckler, S. W.,
and Zhang, Z. Snap: An efficient sparse neural acceler-
ation processor for unstructured sparse deep neural net-
work inference. IEEE Journal of Solid-State Circuits, 56
(2):636–647, 2020.

Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K.,
Sun, W., and Li, H. Learning n: m fine-grained struc-
tured sparse neural networks from scratch. arXiv preprint
arXiv:2102.04010, 2021.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

12

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

A. Loosely Related Work to Sparse Co-training
We identify four areas that are loosely related to this paper: (i) training a pruning-friendly network for one-shot pruning
without re-training (Chen et al., 2021; Miao et al., 2021), (ii) neural architecture search (NAS)-based pruning that produces
a multitude of subnetworks with shared parameters, albeit at a significantly higher training cost, such as OFA (Cai et al.,
2019) and BigNAS (Yu et al., 2020), (iii) leveraging dedicated structured pruning and distillation for iterative pruning of
networks without re-training (Kurtic et al., 2023), and (iv) input resolution-switchable networks, such as RS-Net (Wang
et al., 2020) and again, MutualNet (Yang et al., 2021).

B. Existing Sparsity Patterns for Network Pruning
Unstructured sparsity is a technique for pruning individual weights globally but is not typically efficient on hardware. Recent
developments, such as CPU-level accelerable (Kurtz et al., 2020; Liu et al., 2021c; DeepSparse, 2021) and GPU-level
accelerable (Gale et al., 2020) unstructured sparsities, have been proposed to address this issue. Structured sparsity, on the
other hand, is more hardware-friendly but may come at the cost of network performance. The channel-wise sparsity (Liu
et al., 2017; He et al., 2017; Bartoldson et al., 2020; Rumi et al., 2020; Liu et al., 2021a) is a typical example of structured
sparsity that eliminates entire channels from each layer and directly produces a slimmer network. Other examples include
group-wise sparsity (Li et al., 2020; Oyedotun et al., 2020; Chen et al., 2022) that extracts sparse masks by enforcing entire
rows or columns of the weight matrices to be zero, fine-grained structured sparsity (also called as N :M sparsity) (Zhou et al.,
2021; Pool & Yu, 2021; Hubara et al., 2021) that requires N non-zero elements among M consecutive weight parameters
and can be accelerated by recent NVIDIA Ampere architecture. Other hybrid sparsity patterns, such as SIMD-friendly
vector-wise sparsity (Zhou et al., 2021), pattern-based structural sparsity (Ma et al., 2020) and half-regular sparsity (Chen
et al., 2018) have also been proposed to take advantage of both unstructured and structured sparsities.

C. Sparse Network Interpolation for Sparse Cocktail
We show the network interpolation algorithm for Sparse Cocktail in Algorithm 1.

The network interpolation is used to create a single network with shared parameters among different subnetworks generated
by Sparse Cocktail since we have different output parameter values of subnetworks at different iterations. It will only be
performed once after the whole IMP process is finished. Our network interpolation is developed based on the interpolation
method of Lottery Pool (Yin et al., 2022), the core difference is that they only aim to produce a single sparse network with an
interpolated sparsity ratio, while we need to use the interpolation to produce multiple subnetworks with a shared parameter
set. In terms of technical details, the Lottery Pool evaluates a single network at every greedy step, while our algorithm
performs interpolation using the dense networks obtained at the end of IMP iteration, and then evaluates the performance of
every subnetworks obtained so far at i-th iteration by applying their sparse masks.

Algorithm 1 Network Interpolation for Sparse Cocktail

1: Input: Dense networks {Dk} and binary sparse masks {mu
k ,m

c
k,m

nm
k } from the IMP process of Sparse Cocktail,

candidate pool C = {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1} for interpolation factors, hold-out validation set B
2: Output: Interpolated dense network Dbest

3: Dbest ← D1

4: for k = 2 to N do
5: αk ← argmax

α∈C

∑k
j=1

∑
mu

j ,m
c
j ,m

nm
j

ValAcc
B

[(αDbest + (1− α)Dk)⊙m]

6: Dbest ← αkDbest + (1− αk)Dk

7: end for
8: BnUpdate for each subnetwork Dbest

D. Detailed rationale on why using ”unified” mask generation.
The mask generation process is called ”unified” primarily because now the selection of 3 masks is all based on individual
weight magnitudes by changing the pruning criterion of channel-wise pruning. In traditional channel-wise pruning, the
pruning criterion is usually based on the batch norm scale factor, which is different from individual weight magnitudes. If

13

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

we combine this traditional channel-wise pruning criterion with weight magnitude-based unstructured and N:M pruning,
there could be conflicts for sparse co-training with different sparsity patterns. Now in our proposed unified mask generation,
this is changed by introducing the refilling criterion, which decides which channels to prune based on the magnitude sum of
all individual weights in each channel. In this way, the sparse co-training can better orchestrate their shared parameters so
that they will not produce conflicts in pruning criteria and cancel each other’s performance.

E. Detailed Methodology Comparison of Sparse Cocktail with Related Work
In this section, we provide some further discussion about some key differences and contributions of Sparse Cocktail
compared to related work.

One of our major novelty is to expand the scope of sparse co-training to cover diverse sparsity patterns and multiple sparsity
ratios at once. This research goal stands out as novel because previous works have not addressed such a wide range of sparse
patterns and ratios. The harmony among different sparsity patterns is made possible by UMG and Dense Pivot Co-training.
By using UMG as a universal pruning criterion and producing closely aligned sparse masks, we relieve the gradient conflicts
of different sparsity patterns during training. Then by Dense Pivot Co-training that inserts a dense mini-batch step at every
alternative sparse mini-batch step, we further enforce the optimizing directions of subnetworks of different sparsity patterns
to be aligned with the same dense network. Meanwhile, the dense network at each IMP iteration has the same initialization
as in the Lottery Ticket Hypothesis, thus the optimization directions from different IMP iteration are aligned because of
the same dense network initialization. Thus, the optimization directions from different sparsity ratios and patterns are all
regularized to be aligned together. We are also the first one to apply LTH for sparse co-training to amortize the sparse
co-training pressure (we only co-trains subnetworks of a single sparsity ratio from different sparsity patterns at the same time
in each IMP iteration, while finally it produces a lot more subnetworks in total without the need to co-train them together),
while related work such as Lottery Pool only considers aiming to produce a single stronger subnetwork.

We also do not simply reuse existing methods but develop novel adaptations for the sparse co-training circumstance.
Specifically, (1) we adapt the refilling method in Chen et al. (2022) as UMG by incorporating N:M sparsity and letting
both unstructured and N:M sparsity decide which channels to refill; (2) we adapt the Yang et al. (2022) as Dense Pivot
Co-training by not just alternating mini-batches among sparse networks of the same sparsity ratio and pattern but inserting
a dense mini-batch step and combine it with IMP to achieve optimization alignments across different sparsity ratios and
patterns. (3) we adapt the network interpolation method in Yin et al. (2022) as we state in A6 below.

F. Hyperparam Setting of Sparse Cocktail
We show our hyperparameter settings of Sparse Cocktail in Table 5 for CIFAR10 dataset and Table 6 for ImageNet dataset,
respectively.

Table 5. The hyperparameter setting of Sparse Cocktail on CIFAR10 dataset.
Hyperparameter Configuration

IMP setting iterations = 10, rewind epoch = 7,
training epochs = 150

Optimizer SGD (lr = 0.1, momentum = 0.9,
weight decay = 1e− 4)

LR scheduler
CyclicCosineDecay1(init epoch
= 100, interval = 10, min lr
= 0.001, restart lr = 0.01)

Candidate Pool B {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1}
Hold-out validation set Last 5% of training set

Pruning Range All convolutional
layers except the 1st layer

Pruning Rate
0.2 for unstructured
0.1 for channel-wise
1:2, 2:4, 4:8 for N :M

14

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Table 6. The hyperparameter setting of Sparse Cocktail on ImageNet dataset.
Hyperparameter Configuration

IMP setting iterations = 10, rewind epoch = 5,
training epochs = 90

Optimizer SGD (lr = 0.1, momentum = 0.9,
weight decay = 1e− 4)

LR scheduler
CyclicCosineDecay(init epoch
= 70, interval = 10, min lr
= 0.001, restart lr = 0.01)

Candidate Pool B {0.05, 0.1, 0.2, ..., 0.9, 0.95, 1}
Hold-out validation set Last 5% of training set

Pruning Range All convolutional
layers except the 1st layer

Pruning Rate
0.2 for unstructured
0.1 for channel-wise
1:2, 2:4, 4:8 for N :M

G. Implementations and Settings of the Baseline Methods
For AST (Yang et al., 2022),we implement the gradient correction and inner-group iteration as in (Yang et al., 2022).
Following (Yang et al., 2022), and co-train 10 unstructured or 3 N :M subnetworks in one experiment, with the same number
of total training epochs as Sparse Cocktail (1500). For AC/DC (Peste et al., 2021), we co-train one unstructured subnetwork
with the dense network in one experiment with 150 training epochs per experiment. For MutualNet (Yang et al., 2021), we
also use 1500 training epochs to co-train 10 channel-wise subnetworks, and uses switachble input resolutions of 32, 28, 24,
16 for CIFAR10 and 224, 196, 160, 128 for ImageNet, repsectively. All baseline methods are trained to produce the same
sparsity ratios as the Sparse Cocktail within a single sparsity pattern. We keep all the other hyperparameters the same as
Sparse Cocktail among all baseline methods. Early stop is used to avoid overfitting for all methods.

Based on the above settings, all the methods have the same number of training iterations and batch size (regardless of which
subnetwork will be trained at each mini-batch), and thus the same training cost. We also empirically find that Sparse Cocktail
has only around 1/8 extra total wall-clock training time primarily due to 1 extra distillation step every 2 mini-batches.

H. The influence of higher sparsity on sparse co-training with different sparsity ratios
Under our hyper-parameter setting, the unstructured and structured sparsity ratios range in [0.20, 0.87] and [0.10, 0.61],
respectively. We do not use higher sparsity ratios higher than 90% primarily because the compared sparse co-training
methods all have performance degradation when the sparsity gets very high. In the two compared unstructured sparse
co-training methods, AC/DC (Peste et al., 2021) has 3.5% performance degradation (compared to vanilla dense network) at
95% sparsity and 8.5% degradation at 98% sparsity; AST (Yang et al., 2022) has less performance degradation at high
sparsity primarily likely because it doesn’t involve co-training with different sparsity ratios and only focus on single sparsity
ratio but different masks.

I. What is the role of the proposed interpolation process?
Recall that Algorithm 1 greedily chooses interpolation factors αk as k increases based on the average accuracy of all the
subnetworks currently being considered, i.e. {Sj |j = 1, 2, ..., k}. From Fig. 6, we find that our full method has a reasonable
interpolation process. Compared to the Dense Pivot Co-training→AST setting that simply averages all the networks from
different IMP stages, and the W/o rewinding setting where the interpolation is severely biased towards the parameters at
the last several IMP stages, our full method reaches a good balance between these two settings.

1https://github.com/abhuse/cyclic-cosine-decay

15

https://github.com/abhuse/cyclic-cosine-decay

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

20 36 49 59 67 74 79 83 87 89
Sparsity (%)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Dense
AC/DC
AST
SparseCocktail

(a) Unstructured Sparsity

10 19 27 34 41 47 52 57 61 65
Sparsity (%)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Dense
MutualNet
SparseCocktail

(b) Channel-wise Sparsity

1:1 1:2 3:4 7:8
Sparsity

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Dense
AST
SparseCocktail

(c) N :M Sparsity

Figure 4. The performance comparison of individual sparse networks of different sparse co-training methods on CIFAR10 dataset.

20 36 49 59 67 74 79 83 87 89
Sparsity (%)

66
68
70
72
74
76
78
80

Ac
cu

ra
cy

 (%
)

Dense
AC/DC
AST
SparseCocktail

(a) Unstructured Sparsity

10 19 27 34 41 47 52 57 61 65
Sparsity (%)

66
68
70
72
74
76
78
80

Ac
cu

ra
cy

 (%
)

Dense
MutualNet
SparseCocktail

(b) Channel-wise Sparsity

1:1 1:2 3:4 7:8
Sparsity

66
68
70
72
74
76
78
80

Ac
cu

ra
cy

 (%
)

Dense
AST
SparseCocktail

(c) N :M Sparsity

Figure 5. The performance comparison of individual sparse networks of different sparse co-training methods on the ImageNet dataset.

J. The Performance Influence of Network Interpolation

Regarding the performance influence of network interpolation, we list the average performance before and after the
interpolation of Sparse Cocktail on image classification datasets in Table 7. The results show that there will be slight
performance degradation after interpolation, but we consider this a necessary sacrifice since we aim to produce a single
network with shared parameters of multiple subnetworks.

We empirically find that different subnetworks of the same sparsity pattern obtained by IMP with weight rewinding are
located in the same loss basin, i.e. there are no significant error barriers for interpolations similar to Figure 2 in Yin et al.
(2022), while subnetworks from different sparsity patterns have at most 3.2% error barriers on average due to the divergence
in sparse masks. We show the latter phenomenon in Fig. 7, by plotting the performance change using different interpolation
factors as in Algorithm 1. However, by finding proper interpolations the error barrier problem can be mitigated or avoided.

Table 7. The performance influence of network interpolation in Sparse Cocktail.

Dataset CIFAR10 ImageNet

Before Interp. After Interp. Before Interp. After Interp.

Dense 92.56 92.48 76.45 76.32
Unstructured 92.45 92.09 74.64 73.23
Channel-wise 90.97 90.02 74.02 72.22

N:M 92.32 91.83 76.13 75.19

16

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

1 2 3 4 5 6 7 8 9 10
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k

FullMethod
w.o. UMG
DP Co-train AST
w.o. Rewinding

Figure 6. The changes of the optimal interpolation factors αk as k increases in Algorithm 1.

Table 8. Comparison with sparse co-training using naive Refilling method on CIFAR10 and ImageNet dataset.

dataset Sparsity Pattern Dense Unstruct Channel-wise N:M

CIFAR10 Refilling 85.15 84.42 83.41 81.34

Sparse Cocktail 92.48 92.09 90.02 91.83

ImageNet Refilling 66.93 64.05 62.49 63.01

Sparse Cocktail 76.32 73.23 72.22 75.19

K. Comparison to Baseline Co-training Method Using Refilling
In this section, we argue that naively using Refilling (Chen et al., 2022) to find a structural mask, and then co-train the
unstructured and channel-wise sparsity with IMP can not achieve comparable performance with Sparse Cocktail. To validate
this, we provide additional experiment results by replacing UMG in Sparse Cocktail as naive Refilling. We compare the
results with the Sparse Cocktail results in our paper as shown in Table 8. We empirically find that the performance of naive
Refilling produces significantly worse average performance of the subnetworks than Sparse Cocktail. We believe the major
cause of performance degradation of naive Refilling is that the parameter divergence is significantly larger across different
sparsity patterns when N : M sparsity is decoupled from other two sparsity patterns during mask geenration, which prevents
a smooth network interpolation. We further argue that the naive Refilling method is not transferable to N : M sparsity,
while our approach is expandable to different kinds of sparsity patterns.

L. Computational Overhead Comparison
In this section, we compare the training and inference efficiency across different methods. (1) We first showcase the inference
FLOPs and GPU memory consumption on a Nvidia A100 GPU in Table 9 and Table 10, respectively. We observe that
given certain sparsity ratio and pattern, the FLOPs and GPU memory saving is relatively stable across differnt methods,
with less than 1% fluctuation. There are significant FLOPS and GPU memory saving on structured sparsity , for example,
at the highest structured sparsity (0.65), it can save 84% FLOPs and 70% GPU memory occupation. Note that although
unstructured sparsity is not accelerable on general hardware platforms as we tested here, there are still specialized platforms
designed to accelerate unstructured sparsity, such as SparseRT (Wang, 2020) and Snap (Zhang et al., 2020). (2) Secondly,

17

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

0 1 2 3 4 5 6 7 8 9 10

Interpolation step k
89.5

90.0

90.5

91.0

91.5

92.0

92.5

Av
g

pe
rf

 o
f s

ub
ne

tw
or

ks

Figure 7. The averaged candidate interpolation performance of all subnetworks considered at greedy step k as in Algorithm 1. At each
greedy interpolation step k, we use Dbest (that represents the shared dense network of the best average performance of subnetworks
obtained before k-th IMP iteration) and Dk to perform the interpolation, and [k, k + 1) represent the interpolated average performance of
all subnetworks obtained before k + 1-th IMP iteration, where the points of x value between [k, k + 1) represent the interpolation factor
1− αk.

we present the wall clock training time on CIFAR10 in Appendix L, we observe Sparse Cocktail has 11 ∼ 15% training
time overhead compared to other methods, we identify this overhead as the cause of one extra distillation step every two
mini-batches in Dense Pivot Co-training.

Table 9. The average inferencing FLOPs(G) of different subnetworks of ResNet50 for inferencing a single sample from ImageNet on an
Nvidia A100 GPU.

Sparsity Ratio

Unstruct 0.20 0.49 0.74 0.87

Channel 0.10 0.27 0.47 0.61Dataset Method

N :M 1:1 1:2 2:4 4:8

MutualNet Channel 3.35 2.21 1.07 0.67

AC/DC Unstruct 4.13 4.13 4.13 4.13

Unstruct 4.13 4.13 4.13 4.13
AST

N :M 4.13 2.17 2.17 2.17

Unstruct 4.13 4.13 4.13 4.13

Channel 3.35 2.21 1.08 0.67

Im
ag

eN
et

Sparse
Cocktail

N :M 4.13 2.17 2.17 2.17

18

Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once

Table 10. The average inference time GPU memory consumption (GB) of different subnetworks of ResNet50 for inferencing a single
sample from ImageNet on an Nvidia A100 GPU.

Sparsity Ratio

Unstruct 0.20 0.49 0.74 0.87

Channel 0.10 0.27 0.47 0.61Dataset Method

N :M 1:1 1:2 2:4 4:8

MutualNet Channel 0.261 0.219 0.131 0.092

AC/DC Unstruct 0.308 0.308 0.308 0.308

Unstruct 0.308 0.308 0.308 0.308
AST

N :M 0.308 0.308 0.308 0.308

Unstruct 0.308 0.308 0.308 0.308

Channel 0.260 0.219 0.129 0.092

Im
ag

eN
et

Sparse
Cocktail

N :M 0.308 0.308 0.308 0.308

Table 11. The total training time on CIFAR10 dataset on an NVIDIA A6000 GPU. We keep the total epochs and batch size the same
across different methods. The training time overhead of Sparse Cocktail is mainly due to the extra distillation step.

Method Param # Sub-net # Epochs Training Time (hr)

MutualNet 1x 11 1500 20.5
AC/DC 10x 20 150×10 21.3

AST 1.94x 14 1500 20.8
Sparse Cocktail 1x 24 150×10 23.7

19

