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ABSTRACT

Compositional generalization (the ability to respond correctly to novel arrange-
ments of familiar components) is thought to be a cornerstone of intelligent be-
havior. However, a theory of how and why models generalize compositionally
across diverse tasks remains lacking. To make progress on this topic, we consider
compositional generalization for kernel models with fixed, potentially nonlinear
representations and a trained linear readout. We prove that they are limited to
conjunction-wise additive compositional computations, and identify compositional-
ity failure modes that arise from the data distribution and the model structure. For
models in the representation learning (or “rich”) regime, we show that networks
can generalize on an important non-additive task (transitive equivalence) and give a
mechanistic account for why. Finally, we validate our theory empirically, showing
that it captures the behavior of a convolutional network trained on a set of compo-
sitional tasks. Taken together, our theory characterizes the principles giving rise
to compositional generalization in models with fixed representations, shows how
representation learning can overcome their limitations, and provides a taxonomy of
compositional tasks that may be useful beyond the models considered here.

1 INTRODUCTION

Humans’ understanding of the world is inherently compositional: once familiar with the concepts
“pink” and “elephant,” we can immediately imagine what a pink elephant looks like. Stitching
together different concepts in this way allows humans to generalize far beyond our prior experience,
preparing us to cope with unfamiliar situations and imagine things that do not yet exist (Frankland &
Greene, 2020). The question of how to endow machine learning models with compositional abilities
is a long-standing and historically vexing problem (Fodor & Pylyshyn, 1988; Lake et al., 2017;
Battaglia et al., 2018; Lake & Baroni, 2018; Hupkes et al., 2020; Keysers et al., 2020). Recent
breakthroughs (especially in language and computer vision) have led to massive improvements in
models’ compositional capacities, but in some cases, these models still fail spectacularly (Srivastava
et al., 2023; Lewis et al., 2023; West, 2023; Ma et al., 2023; Chen et al., 2023). More generally,
understanding the complex relationship between training data, model structure, and compositional
generalization is still an unsolved problem, and it is often difficult to predict when networks will fail.

To make progress on this question, researchers often evaluate model performance on challenging
benchmarks of compositional generalization (Johnson et al., 2017; Bahdanau et al., 2019; Ruis
et al., 2020; Hupkes et al., 2020) or formally characterize model behavior on specific compositional
tasks, clarifying the mechanisms giving rise to successful or unsuccessful generalization (Abbe et al.,
2023; Jarvis et al., 2023; Lippl et al., 2024). However, it is unclear what the ability of a model to
generalize compositionally on a specific task tells us about its compositional abilities in general, as
the relationship among compositional tasks remains unclear.
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The primary goal of this paper is to gain insight into how a model’s representation and learning
mechanism impact its compositional generalization capabilities. To this end, we leverage the lazy/rich
dichotomy characterizing the two learning regimes of deep neural networks (Jacot et al., 2018; Chizat
et al., 2019). In the lazy (or kernel) regime, neural networks behave like a kernel model with a fixed
representation, for which we can formally relate representations and generalization capabilities. This
allows us to derive key failure modes of compositional generalization. In the rich regime, neural
networks learn data-dependent representations, which we show can overcome the compositional
limitations imposed by the lazy regime.

Our specific contributions are as follows:

• We formulate a general task space for compositional generalization and characterize the
full range of compositional motifs implemented by kernel models (“conjunction-wise
additivity”).

• This allows us to categorize tasks according to whether kernel models can solve them, which
we show is a fundamental distinction not captured by existing criteria.

• For tasks solvable by kernel models, we highlight two failure modes (“memorization leak”
and “shortcut distortion”) and showcase their impact on two important compositional tasks.

• We then show how rich networks can overcome the limitations of conjunction-wise additivity.
• Finally, we validate our theory empirically by successfully capturing the behavior of deep

neural networks.

Because our theory applies to a broad range of different tasks, our insights do not just clarify model
behavior on specific compositional tasks but also shed light on their compositional abilities more
generally. We see this work as a step toward building a more comprehensive theory of compositional
generalization, allowing us to better predict and optimize the out-of-distribution behavior of models.

2 RELATED WORK

Compositionality and modularity. Compositionality is an important theme across human and
machine reasoning problems, including visual reasoning (Lake et al., 2015; Johnson et al., 2017;
Marino et al., 2019), language production (Hupkes et al., 2020), image generation (Okawa et al.,
2023), and robotics (Zhou et al., 2022). Attempts to improve compositional generalization often
leverage modular architectures, in the hopes that different modules will specialize for different
components (Andreas et al., 2017). However, end-to-end training of these architectures often does
not result in the desired modular specialization (Bahdanau et al., 2019; Mittal et al., 2022; Jarvis
et al., 2023). Indeed, the more challenging problem than discovering modules might be learning how
to use them, as even standard network architectures can develop specialized modules (Csordás et al.,
2021; Hod et al., 2022). Notably, meta-learning can help networks use different modules correctly
Schug et al. (2024). Indeed, even standard network architectures can develop specialized modules
(Lepori et al., 2023), suggesting that the more challenging problem is how to correctly use them
(Csordás et al., 2021; Hod et al., 2022). Pretraining large models on massive datasets may improve
compositional generalization (Herzig et al., 2021; Furrer et al., 2021), but whether these models
generalize successfully varies from task to task (Srivastava et al., 2023; Lewis et al., 2023; West,
2023). Our results characterize the specific modular computations arising from kernel models and
relate failures to use them correctly to the task structure and inductive bias of the learning mechanism.

Additive compositions and conjunctions. Constraining a network to be additive (or implement
another specific compositional function) can be a sufficient condition for compositional generalization
(Lachapelle et al., 2023; Wiedemer et al., 2023). Our results reveal that kernel models are constrained
to a conjunction-wise additive computation — this may be related to prior findings that language
models encode many semantic concepts in an additive manner (Mikolov et al., 2013; Naito et al.,
2021). Conjunctive codes (representations specific to a particular combination of features), on
the other hand, have a long history in neuroscience (Alvarado & Rudy, 1992; Baker et al., 2002),
and are theoretically linked to forming highly specific, episodic memories. Our results suggest
that a mixture of conjunctive and compositionally additive codes may naturally arise from basic
learning mechanisms. The resulting failure modes are related to prior work on shortcut learning and
memorization (Hermann et al., 2023; Maini et al., 2023).
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Kernel and rich regime. Prior work has revealed two key strategies by which deep neural networks
learn (Chizat et al., 2019; Woodworth et al., 2020). In the kernel (or “lazy”) regime (which can be
induced with large initial weights or wide networks), the networks’ learning is well approximated
by gradient descent on a model with a fixed representation (Jacot et al., 2018). In the rich regime
(brought forth, for example, by small initial weights, small width, or loss functions like cross-entropy),
the networks learn structured (i.e. abstract and sparse) representations over the course of learning
(Savarese et al., 2019; Chizat & Bach, 2020; Lyu & Li, 2020; Saxe et al., 2022). Notably, the rich
regime gives rise to better generalization and more human-like behavior in neural networks (Fort
et al., 2020; Vyas et al., 2022; Flesch et al., 2022).

Kernel trick and norm minimization. When using gradient descent (or similar learning algo-
rithms) to train the readout weights of a model, it has long been known that this model depends on
its representation r(x) only through its induced kernel K(x, x′) = ⟨r(x), r(x′)⟩ (Schölkopf, 2000).
Specifically, when trained on a dataset {(xi, yi)}ni=1, their function can be written in its “dual form”:

f(x) =
∑n

i=1 aiK(x, xi). (1)

Further, gradient descent selects among the models consistent with the training data that with the
smallest ℓ2-norm on the readout weights (“norm minimization”) (Soudry et al., 2018; Gunasekar
et al., 2018). This is also true of neural networks in the lazy regime. We here leverage the constraints
apparent from this dual form to characterize the set of possible compositional computations in kernel
models and further analyze the specific kernels induced by different network architectures to predict
generalization under norm minimization. This has been a broadly popular method in theoretical
machine learning and neuroscience (see e.g. Canatar et al., 2021; 2023) and has also been applied to
compositional tasks specifically (Lippl et al., 2024; Abbe et al., 2023).

Comparison with prior theoretical work. Lippl et al. (2024) analyze how kernel models generalize
on a specific compositional task, transitive inference. Further, Abbe et al. (2023) analyze how kernel
models generalize on tasks with binary components in the limit of infinite components. In contrast,
this work analyzes tasks with more general compositional structure, derives exact constraints for
finite numbers of components, and highlights failure modes that arise specifically for finite numbers
of components. Finally, Jarvis et al. (2023) analyze how deep linear networks generalize on a family
of tasks with a specific input-output relation. In contrast, in Section 4, we characterize constraints on
the generalization behavior of kernel models on tasks with arbitrary input-output relations.

3 METHODS

3.1 A GENERAL COMPOSITIONAL TASK SPACE

We assume that each task input I has a fixed number of distinct components: I = (Ic)
C
c=1, where

each Ic is drawn from some set of possible component values Ic. We consider a set of n training
pairs D(train) = {(I(i), y(i))}ni=1, y(i) ∈ R, analyzing generalization on the remaining m test set pairs
D(test) = {(I(i), y(i))}n+m

i=n+1. This captures a broad range of compositional tasks, for example:

Addition. This task consists of two components (I1, I2) with unobserved assigned values v1(I1) and
v2(I2). The target is the sum of those values: y = v1(I1) + v2(I2). If each item has been seen in
combination with at least one other item, a model with an additive structure could generalize to novel
combinations of items. We consider nine input elements [−4], [−3], . . . , [4], with associated values
−4,−3, . . . , 4 and consider four different training and test splits (Fig. 1a): (i) an extrapolation task
(train only on pairs with at least one [0]), (ii) an asymmetric extrapolation task (train only on pairs
including one [−4]), (iii) an interpolation task (training set contains all trials with a [−4] or [4]), and
(iv) a dispersed task (each item occurs in exactly two randomly sampled training pairs).

Transitive equivalence. Given an unobserved (and arbitrary) equivalence relation, the task is to
determine whether two presented items (I1, I2) are equivalent. The model should generalize to novel
item pairs using transitivity (A = B and B = C imply A = C) (Fig. 1b).

Context-dependent decision-making (CDM). This task has three input components (co, feat1, feat2).
The context (co) has two possible values specifying whether feat1 or feat2 determine the response.
Both features have six possible values which are split up in two categories (Fig. 1c). If the model
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Figure 1: Compositional tasks. a, Different training sets for symbolic addition. The grid represents
nine components with associated values −4,−3, . . . , 4 and each tile represents a data point in the
training set. b, Transitive equivalence. c, Context-dependent decision-making: in context 1, feat. 1
determines the output; in context 2, feat. 2 determines the output. d, For the test set, different subsets
of the bottom right orthant are held-out in both contexts (for CDM-3, the entire orthant is held-out;
for CDM-1/2, different subsets are held-out). e, Invariance and partial exposure. Translucent tiles
indicate the generalization set.

has learned this context dependence, it should be able to generalize to novel combinations of items.
We evaluate on the orthant of item combinations for which feat1 indicates Cat. 2 and feat2 indicates
Cat. 1 (Fig. 1d). In the most extreme generalization test (CDM-3), we leave out the entire orthant, in
easier versions we leave out conjunctions of two or one of those features (CDM-2 and CDM-1).

Invariance. The model sees two items (I1, I2) and its response should only depend on I2. In
the training set, I1 has a constant value, which is changed in the test set (Fig. 1e). Compositional
generalization is possible if the model ignores features that have not varied.

Partial exposure. Invariance, with an added training trial showing a new value for I1 (Dasgupta
et al., 2022). This gives I1 a spurious correlation with the target that may distort generalization.

3.2 MODELS

We consider three types of models. First, we consider kernel models optimized with norm mini-
mization. We either explicitly specify their kernel K(x, x′) or consider a fixed representation r(x)
which arises within a neural network receiving as input a concatenation of onehot vectors indicating
the identity of each component. K (resp. r) is fixed, whereas the linear readout is learned. Second,
we train ReLU neural networks with a single hidden layer through backpropagation, using initial
weight distributions with different variances to put them into the lazy or rich regime (Chizat et al.,
2019). Finally, we consider a convolutional neural network with four convolutional layers and two
fully connected layers.

3.3 COMPOSITIONAL STRUCTURE

The trial-by-trial similarity between different inputs can depend on two factors. First, they may
overlap on a specific set of components. We denote this overlap by

O(I, I ′) := {c ∈ {1, . . . , C} : Ic = I ′c} . (2)

Second, their components may have additional similarity structure. For example, certain MNIST
digits look more similar to each other. Such a representation could solve a compositional task in
a non-compositional manner. Suppose, for example, that a model, for whatever reason, represents
equivalent items in the transitive equivalence task as more similar. This would enable the model to
generalize successfully simply by responding to (A,B) and (A,C) similarly, but does not actually
depend on the compositional structure of the task. Because we are interested in compositional
generalization, we assume that model representations only reflect the inputs’ compositional structure:

Definition 3.1. A kernel K is “compositionally structured” if it only depends on its items’ overlap,
i.e. if for any set of compositional inputs I, I ′, J, J ′ ∈ I, O(I, I ′) = O(J, J ′), then K(I, I ′) =
K(J, J ′).
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Note that if r(x) arises from a random deep neural network with inputs concatenating onehot vectors
for each component, it is compositionally structured in expectation. This is because this input is
compositionally structured (as the similarity between two inputs is equal to their number of overlaps)
and the output kernel of densely connected neural networks with random weights only depends
on their input kernel (i.e. for a network ϕ, if K(x1, x

′
1) = K(x2, x

′
2), then K(ϕ(x1), ϕ(x

′
1)) =

K(ϕ(x2), ϕ(x
′
2))).

4 LAZY MODELS IMPLEMENT CONJUNCTION-WISE ADDITIVE
COMPUTATIONS

4.1 TASKS WITH TWO COMPONENTS

On tasks with two components, the dual form (Eq. 1) immediately reveals a fundamental constraint.

Proposition 4.1. If a compositionally structured kernel model f has been trained on data D(train)

from a compositional task with C = 2 components, there exist functions f1 : I1 → R, f2 : I2 → R,
and f12 : I → R s.t.

f(I) =

{
f1(I1) + f2(I2) + f12(I1, I2) if I ∈ D(train),

f1(I1) + f2(I2) else.

Proof. See Appendix A.

Intuitively, compositionally structured representations can consist of three different populations: one
coding for the first component by itself, one coding for the second component by itself, and one
coding for their unique conjunction (Fig. 2a). Linear readout learning corresponds to assigning a
value to each of those components and adding those values together (Proposition 4.1). When exposed
to novel combinations of items, the specific conjunction of items has never been seen before (i.e.
f12(I) = 0) and so the model can only rely on the additive computation (i.e. f1(I1) + f2(I2)).

Proposition 4.1 is an impossibility theorem. While many kernel models can learn arbitrary functions
(Cybenko, 1989), our result shows that their compositional generalization is constrained to summing
up values associated with each component. This directly implies that compositionally structured
kernel models cannot generalize on certain tasks. In particular, transitive equivalence requires a
non-additive (XOR-type) equality operation. As a result, while kernel models can memorize the
training data, they provably cannot generalize to the test data. Importantly, this constraint does not
depend on whether the conjunction f12(I1, I2) is used for the training set, but directly arises from the
functional constraint on the test set.

4.2 TASKS WITH MORE THAN TWO COMPONENTS

For more than two components, we have a combinatorial explosion of conjunctions to con-
tend with, as terms in the model can depend on any combination of components (e.g.
f1(I1), f12(I1, I2), f123(I1, I2, I3)). We denote each combination (e.g. 12) as S ∈ S, and let
S be the set of all combinations S ⊆ {1, . . . , C}. Each S ∈ S indexes input components (Ii)i∈S ,
which we denote IS for convenience. The model assigns a value of fS(IS) to each combination, then
sums these values (Fig. 2b).

Proposition 4.2. Consider a compositionally structured kernel model f that has been trained on a
compositional task with input space I and training set D(train). For an input I ∈ I, we define the set
of overlaps

O(I) := {S ∈ S|∃I′∈D(train) s.t. S ⊆ O(I, I ′)} .

Then, there exists a set of functions (fS)S s.t. for all I , f(I) =
∑

S∈O(I) fS(IS).

Proof. See Appendix A.
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Figure 2: Kernel models implement conjunction-
wise additive computations. a, Any composition-
ally structured representation is a mixture of a
compositional and a conjunctive representation.
Both have a distinct impact on test trial behav-
ior. b, Compositionally structured representations
have a different subpopulation for each conjunc-
tion of components and therefore implement a
conjunction-wise additive computation. Each con-
junction generalizes to test trials containing the
same conjunction. c, Conjunction-wise additivity
separates tasks into those that can be solved by
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Just like in Proposition 4.1 (a special case), be-
havior here depends on the relationship between
I and D(train): for every possible conjunction S,
the model can assign a specific value fS(IS) to
IS only if it has seen IS during training.

We call tasks that can be solved in this man-
ner “conjunction-wise additive,” as opposed
to “component-wise additive.” For example,
context-dependent decision-making can be im-
plemented with a conjunction between context
and feature (see Appendix D.2). As these con-
junctions are all observed during training, this
task is conjunction-wise additive.

4.3 A COMPOSITIONAL TASK TAXONOMY

Conjunction-wise additivity is a natural way of
carving up the space of compositional tasks:
for additive tasks we have a candidate composi-
tional mechanism and can characterize the con-
ditions on task structure and representational
geometry that yield successful generalization.
We do so in the next section. For non-additive
tasks, we know that kernel models are funda-
mentally unable to perform them successfully
and that we should look for alternative learning
models. We do so in Section 6. Our criterion
cuts across a range of other compositional task
categories (Fig. 2c, Appendix D), highlighting, for example, a fundamental difference between
applying the transitive rule to ordered relations (which are additive; Lippl et al. 2024) and equivalence
relations (which are non-additive).

5 THE IMPACT OF REPRESENTATIONAL GEOMETRY AND TASK STRUCTURE

We now investigate how generalization depends on learning mechanism, model, and task structure.

5.1 NETWORK ARCHITECTURE AND NONLINEARITIES IMPACT REPRESENTATIONAL
GEOMETRY ON COMPOSITIONAL TASKS
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Figure 3: Normalized representational similarity
between overlapping items for a, two components
and b, three components.

We determine how neural networks with random
Gaussian weights represent compositional in-
puts (presented as one-hot vectors) as a function
of their depth and nonlinearity (Appendix B).
As noted, these networks give rise to composi-
tionally structured representations. In fact, the
resulting kernel K(I, I ′) only depends on how
many components I and I ′ have in common,
rather than their specific overlap.

This means that for two components, this kernel
has different similarities for trials overlapping with zero (κ0), one (κ1), or two (i.e. all; κ2) compo-
nents. Below we find that the “normalized” magnitude of κ1, κ̂1 := κ1−κ0

κ2−κ0
, is particulary impactful

on behavior. The one-hot input has κ̂1 = 0.5 (indicating a fully compositional representation). As the
network becomes deeper, κ̂1 decreases, indicating a more conjunctive representation (as overlapping
trials are less similar, their conjunction is emphasized more strongly).

For tasks with three components, there are different similarities κp for trials overlapping with
p = 0, 1, 2, 3 components. We consider κ̂2 := κ2−κ0

κ3−κ0
, which describes whether the representation
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emphasizes conjunctions of two components or conjunctions of three components, and κ̂1 := κ1−κ0

κ2−κ0
,

which describes whether the representation emphasizes single components or conjunctions of two
components. Generally, both quantities decrease with increasing depth, but the nonlinearity affects
their relative trajectory.

5.2 MEMORIZATION LEAK AND SHORTCUT DISTORTION

Generally speaking, norm minimization tends to learn distributed weights. For compositional tasks, it
therefore tends to rely on many different conjunctions. This gives rise to two important failure modes:

Memorization leak. First, the model tends to use the conjunctive population even when this
is not necessary to solve the task. In a purely additive task, this necessarily distorts the model’s
additive structure (Proposition 4.1), impairing its compositional generalization. Further, the more
conjunctive the representation, the worse the distortion. We call this effect the “memorization
leak” (see Fig. 12b). To see it in action, we analytically solve model generalization for component
invariance (Appendix D.3), finding that its test margin is expressed as m = κ̂1

1−κ̂1
(see Fig. 12a). This

means that for a fully compositional representation (κ̂1 = 0.5), its training and test margins are both
one. However, as κ̂1 decreases, the model increasingly memorizes the training set, resulting in a
decreased margin on the test set (while the training set margin remains constant).

Shortcut distortion. Many compositional tasks have training set imbalances. Consider the partial
exposure task. If the model used item 1 to solve the task, it would get two out of three training
examples correct and could memorize the last data point. This is an example of a “shortcut” (Geirhos
et al., 2020), which only works on (part of the) training set and which generalizes incorrectly (see
Fig. 12c). Norm minimization ends up partially relying on this strategy as this decreases the ℓ2-norm
of the readout weights. As a result, the test margin for the partial exposure task decreases even more
strongly as a function of κ̂1: m =

2κ̂2
1

1−2κ̂2
1

(Fig. 12a; Appendix D.4).

We now consider two important additive tasks: addition and context-dependent decision-making.

5.3 SYMBOLIC ADDITION
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Figure 4: Kernel models trained on symbolic addi-
tion are affected by a memorization leak. Inferred
values for a, the extrapolation task as a function of
κ̂1 and b, the different training sets (κ̂1 = 0.4).

For symbolic addition, we solve model behav-
ior on the extrapolation task analytically (Ap-
pendix D.1). We find that the model underesti-
mates the items’ values: fc(v) = 2κ̂1v (Fig. 4a).
This is due to a memorization leak and becomes
worse for smaller κ̂1.

To investigate the impact of different training
sets on the memorization leak, we determine
the inferred values for a partially conjunctive
representation (κ0 = 0, κ1 = 0.4, κ2 = 1,
Fig. 4b; see Appendix D.1 for more detailed
simulations). We find that asymmetric extrap-
olation again yields compressed values and is
even more challenging than extrapolation. While the interpolation task is easier (as expected), the
model, perhaps surprisingly, still suffers from a memorization leak, underestimating intermediate
values. Finally, the dispersed training set yields behaviors somewhere in between the extreme cases
of asymmetric extrapolation and interpolation. In that case, the model may also infer different values
for the two components, as the training set is no longer symmetric (and the model has no notion of
shared values between the two components).

5.4 CONTEXT-DEPENDENT DECISION-MAKING

We now study context-dependent decision-making. This task represents a bigger challenge to kernel
models, as they must identify the correct context-feature conjunctions out of the many possible
conjunctions available to them. We determine whether the model generalizes correctly as a function
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of representational geometry and training set. We find that for CDM-3, successful generalization in
kernel models strongly depends on the representational geometry (Fig. 5a). For CDM-2 and CDM-1,
generalization is much less dependent on the specific representational geometry.

To unpack these behaviors in more detail, we note that there are multiple shortcuts in the training
data (Fig. 5b). In particular, context by itself can classify a substantial proportion of the training data
correctly and so can the features without any context. However, these shortcuts yield generalization
behavior that is at best at chance level.

We now compare two representations: one that is unsuccessful on CDM-3 but successful on CDM-2
(Rep. 1) and one that is successful on both task variants (Rep. 2). Looking at the models’ conjunctive
coefficients, we determine their average magnitude within different categories (see Appendix D.2 for
details) (Fig. 5c). Indeed, the two successful models both attribute the largest magnitude to the correct
conjunction between context and features. In contrast, the unsuccessful model instead relies on a
mixture of the context component and memorization, indicating that it inferred a shortcut solution.

We can explain this failure in terms of the model’s representation (i.e. Rep. 1), which represents
individual components more prominently than conjunctions of two components (at least compared to
Rep. 2). As a result, using a mixture of context (an individual component) and memorization is more
norm-efficient than a conjunction of two components. For CDM-2, the context shortcut is much less
useful (Fig. 5b) and, as a result, the model with Rep. 1 also learns to rely on the correct conjunctions.

In sum, we have here described the substantive challenges that lie in learning a conjunction-wise
additive function and illustrated the use of kernel models to understand how these challenges are
exacerbated or alleviated by different task structures and representational geometries.

6 RICH NETWORKS CAN OVERCOME THE LIMITATIONS OF
CONJUNCTION-WISE ADDITIVITY

We now discuss how other learning mechanisms can overcome the limitations of conjunction-wise
additivity. Specifically, we compare ReLU networks trained on transitive equivalence (a non-additive
task) in the lazy and rich regime (Fig. 6a). In the lazy regime, they are approximated by a kernel
model and thus do not generalize. In contrast, neural networks in the rich regime generalize correctly1

(Fig. 6a).

1Cross-entropy eventually yields representation learning for any initial magnitude (Lyu & Li, 2020). However,
this may require much longer training than investigated here (Kumar et al., 2023).
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Figure 6: Rich neural networks can generalize on transi-
tive equivalence. a, Generalization over time in the lazy
and rich regime. b, The weights of the network in the
subspace corresponding to one underlying XOR-task. c,
Weights for the same unit are plotted against each other
and colored by whether they correspond to equivalent
items (purple) or non-equivalent items (green).

To explain why this is the case, we note
that neural networks in the rich regime are
biased to having weights with a low overall
ℓ2-norm (Lyu & Li, 2020; Chizat & Bach,
2020; but see Vardi & Shamir, 2021). In
particular, a ReLU network with one hid-
den layer is biased to learn a sparse set
of hidden features (Savarese et al., 2019;
Chizat & Bach, 2020). Transitive equiva-
lence consists in multiple sets of equality
relations (e.g. A = B and D = E) and it
is well known that ReLU networks learn
such a nonlinear (XOR-type) problem by
specializing one unit to each of the four
conjunctions (Brutzkus & Globerson 2019;
Saxe et al. 2022; Fig. 6b). Further, different
sets of these equality relations have over-
lapping items (e.g. A = B and C = B).
Because of their sparse inductive bias, ReLU networks use the same set of units for these overlapping
conjunctions (e.g. (A,B), (A,C), and (B,C)). This means that the same conjunction also general-
izes to unseen item combinations (e.g. (A,C)), which gives rise to generalization. Importantly, our
theoretical argument is corroborated by empirical simulations: we find that each hidden network unit
has the exact same weights for equivalent items (Fig. 6c).

In sum, neural networks’ known capacity for abstraction provides them with an additional composi-
tional motif. Here we have illustrated this within one example task. As a notable contrast highlighted
by our findings, transitive equivalence and transitive ordering, while involving the same rule, require
fundamentally different networks to be solved. Note that on symbolic addition and context-dependent
decision-making, rich neural networks exhibit largely additive behavior (see Appendix D). This
suggests that the kernel theory can still be useful for understanding network behavior in the rich
regime. Future work should investigate rich-regime compositional computations in more detail.

7 EXPERIMENTS IN DEEP NEURAL NETWORKS
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Figure 7: The kernel theory can explain con-
volutional networks trained on compositional
tasks with MNIST digits. a, Inferred val-
ues on symbolic addition (see Fig. 4a). b,
Rep. sim. in an intermediate layer for differ-
ent distances between the digits. c, Inferred
values on the extrapolation task for different
distances. d, Accuracy on context-dependent
decision-making (see Fig. 5). e, Accuracy on
transitive equivalence.

So far we focused on toy domains with tabular rep-
resentations and small MLPs, for their analytical
tractability. To see whether our theory can help us un-
derstand different, larger-scale neural networks with
more complex, interrelated inputs, we train convolu-
tional neural networks on a version of the considered
tasks involving concatenated MNIST digits (repre-
sented in different channels, e.g. with different col-
ors). These tasks have exactly the same structure
as the previous tasks, except that the one-hots de-
noting different numerical symbols are replaced by
images of corresponding MNIST digits. Rather than
being a single instance, each possible item is now
one MNIST category. Notably, MNIST digits are not
compositionally structured — for example, ones and
sevens are more visually similar to each other than
ones and twos. To control for the input similarity
structure, we randomly permuted the assignment of
MNIST digits to values for each (n = 10) experiment
(e.g. the image for “6” might have value 1). Further,
to compare the network behaviors to our theoretical
predictions, we fit a conjunction-wise additive func-
tion to the network output using linear regression
(“additivity analysis”; see Appendix C.2).
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First, we consider the different task variants of symbolic addition, training the network on a total of
20,000 randomly generated samples for 100 epochs and test its compositional generalization on new
handwritten digits. Remarkably, we find that the kernel theory matches network behavior almost
perfectly. First, the network’s average prediction (across the different possible permutations of the
digit categories) is well predicted by an additive structure (Fig. 10b). Further, the network’s inferred
values, across all tasks, are extremely similar to those in kernel models (Fig. 7a). This suggests
that, at least in terms of its compositional generalization, the network is well described by the kernel
theory.

To investigate the effect of increased conjunctivity, we varied the distance between the two digits
(Fig. 7b), hypothesizing that if digits are closer, their representation should be more conjunctive. To
test this, we determined the representational similarity in the network, normalizing so that two trials
with identical digit categories had a similarity of one and two trials with distinct digit categories had
a similarity of zero. We found that the similarity between overlapping digit categories was indeed
smaller for lower distances, indicating a more conjunctive representation (Fig. 7b). Further, the values
inferred on the extrapolation task are more compressed for smaller distances, confirming that more
conjunctive inputs exacerbate the memorization leak in convolutional networks as well (Fig. 7c).

Next, we considered context-dependent decision-making. Once again we replace the onehots with
different MNIST digits and train networks on a total of 30,000 samples for 100 epochs. Again,
behavior was consistent with our kernel theory’s predictions: the networks had better-than-chance
accuracy on CDM-1 and CDM-2, but not CDM-3 (Fig. 7d). Further, the additivity analysis revealed
that the networks trained on CDM-3 relied on a context-based shortcut, though they learned the
remaining training data by relying on sensory features rather than memorization (Fig. 11).

Finally, we considered transitive equivalence, training the network on 20,000 samples for 150 epochs.
We found that if the digits were presented to the network in different channels but the same location,
the network did not generalize compositionally at all. However, with increasing distance, the network
started to improve its compositional generalization (Fig. 7e). This demonstrates that a convolutional
network can benefit from non-additive compositional motifs.

8 CONCLUSION

This work is a step toward formalizing the relationship between model structure and compositional
behaviors. We first described the full range of compositional computations (“conjunction-wise
additive”) that can be implemented by kernel models, distinguishing between additive tasks, which are
solvable by kernel models, and non-additive tasks, which are not. For additive tasks, we highlighted
important failure modes impacting generalization: memorization leak and shortcut distortion. For
non-additive tasks, we showed how rich neural networks can overcome the limitations of conjunction-
wise additivity. Finally, we validated our theory by showing that it captures behavior in deep neural
networks. Future work could extend this analysis to other architectures (e.g. Transformers) and
compositional tasks involving e.g. dynamic-length inputs and outputs and pretrained representations.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the Unseen, Logic
Reasoning and Degree Curriculum. June 2023. URL https://openreview.net/forum?
id=3dqwXb1te4.

Maria C. Alvarado and Jerry W. Rudy. Some properties of configural learning: An investigation of the
transverse-patterning problem. Journal of Experimental Psychology: Animal Behavior Processes,
18(2):145–153, 1992. ISSN 1939-2184. doi: 10.1037/0097-7403.18.2.145. Place: US Publisher:
American Psychological Association.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural Module Networks, July
2017. URL http://arxiv.org/abs/1511.02799. arXiv:1511.02799 [cs].

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and
Aaron Courville. Systematic Generalization: What Is Required and Can It Be Learned?, April
2019. URL http://arxiv.org/abs/1811.12889. arXiv:1811.12889 [cs].

10

https://openreview.net/forum?id=3dqwXb1te4
https://openreview.net/forum?id=3dqwXb1te4
http://arxiv.org/abs/1511.02799
http://arxiv.org/abs/1811.12889


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Chris I Baker, Marlene Behrmann, and Carl R Olson. Impact of learning on representation of parts and
wholes in monkey inferotemporal cortex. Nature neuroscience, 5(11):1210–1216, 2002. Publisher:
Nature Publishing Group US New York.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep
learning, and graph networks, October 2018. URL http://arxiv.org/abs/1806.01261.
arXiv:1806.01261 [cs, stat].

Alon Brutzkus and Amir Globerson. Why do Larger Models Generalize Better? A Theoretical
Perspective via the XOR Problem. In Proceedings of the 36th International Conference on
Machine Learning, pp. 822–830. PMLR, May 2019. URL https://proceedings.mlr.
press/v97/brutzkus19b.html. ISSN: 2640-3498.

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-
ment explain generalization in kernel regression and infinitely wide neural networks. Nature
Communications, 12(1):2914, May 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23103-1.
URL https://www.nature.com/articles/s41467-021-23103-1. Publisher: Na-
ture Publishing Group.

Abdulkadir Canatar, Jenelle Feather, Albert Wakhloo, and SueYeon Chung. A Spectral Theory
of Neural Prediction and Alignment. November 2023. URL https://openreview.net/
forum?id=5B1ZK60jWn.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu Chen.
Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models, August
2023. URL http://arxiv.org/abs/2308.00304. arXiv:2308.00304 [cs].
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A PROOF OF PROPOSITION 4.2

Proposition 4.2. Consider a compositionally structured kernel model f that has been trained on a
compositional task with input space I and training set D(train). For an input I ∈ I, we define the set
of overlaps

O(I) := {S ∈ S|∃I′∈D(train) s.t. S ⊆ O(I, I ′)} .
Then, there exists a set of functions (fS)S s.t. for all I , f(I) =

∑
S∈O(I) fS(IS).

Proof. Because K is compositionally structured, its similarity K(I, I ′) only depends on the overlap
O(I, I ′) ⊆ {1, . . . , C}. We denote the similarity for trials overlapping in S ⊆ {1, . . . , C} by κS and
define the overlap in the training dataset as

DS(I) :=
{
I ′ ∈ D(train)|∀c∈SIc = I ′c

}
. (3)

The key idea is to decompose D(train) into these different overlaps in order to separate the sum into its
components. However, by our definition, the datasets DS(I) are not disjoint. Indeed, S ⊆ S′ implies
DS′(I) ⊆ DS(I) and in particular D∅(I) = D(train). To adjust for this, we define δS as the similarity
added by κS to the similarity between conjunctions with one component fewer, recursively defining

δ∅ = κ∅, δS = κS −
∑
S′⊊S

δS′ . (4)

We then decompose

f(I) =
∑

I′∈D(train)

aI′K(I, I ′) =
∑

S⊆{1,...,C}

δS
∑

I′∈DS(I)

aI′ . (5)

This equality obtains because for each I ′ ∈ D(train),∑
S:I′∈DS(I)

δS = δO(I,I′) +
∑

S⊊O(I,I′)

δS′ = κO(I,I′) = K(I, I ′), (6)

which is true by definition. We note that for S /∈ O(I), DS(I) = ∅. Defining

fS(I) := δS
∑

I′∈DS(I)

aI′ , (7)

proves the proposition.

Note that Proposition 4.1 follows as a special case of Proposition 4.2.

B COMPUTING THE REPRESENTATIONAL SIMILARITIES

Note that all nonlinearities we consider are dot-product kernels, which only depend on the correlation
between their inputs. For a given trial pair (I, I ′), the input representation has a correlation

|O(I, I ′)|
C

,

as exactly those onehots which are overlapping are identical. This implies, in particular, that the
similarity between network representations also only depends on the number of overlaps, |O(I, I ′)|.
We then leverage the dot-product kernels, derived in previous work (Williams, 1996; Cho & Saul,
2009; Han et al., 2022), to compute the resulting similarities.

C DETAILED METHODS

C.1 MODELS

Kernel model. We fit the kernel methods by hand-specifying the kernel and fitting either a support
vector regression or classification using scikit-learn (Pedregosa et al., 2011).
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Rich and lazy ReLU networks. All networks were trained with Pytorch and Pytorch Lightning
(Paszke et al., 2019). We consider ReLU networks with one hidden layer and H = 1000 units.
We initialize by σ

√
2/H , considering σ ∈ [10−6, 1]. In particular, when reporting results on rich

networks (without further specification), we assume σ = 10−6. When reporting results on lazy
network, we assume σ = 1.

Convolutional neural networks. We consider networks with four convolutional layers (kernel size
is five, two layers have 32 filters, two have 64 filters) and two densely connected layers (with 512 and
1024 units). Each layer is followed by a ReLU nonlinearity, and the convolutional stage is followed
by a max pooling operation. All weights are initialized with He initialization (He et al., 2015).

C.2 ADDITIVITY ANALYSIS

We analyze how well a conjunction-wise additive computation can describe network behavior.
Specifically, we consider as the set of possible features a concatenation of one-hot vectors coding
for each possible conjunction. We then remove all features that are constant at zero on the training
dataset and use linear regression to try and predict network behavior on both training and test set for
all remaining features. The resulting R2 defines the “additivity” of the network behavior (i.e. R2 = 1
indicates full conjunction-wise additivity). Furthermore, we can use the inferred values assigned to
these different conjunctions to compare kernel models, rich and lazy networks, and convolutional
networks. Note that for the convolutional networks, we first average the model predictions across all
different images instantiating a given compositional input.

D ANALYSIS OF COMPOSITIONAL TASKS

D.1 SYMBOLIC ADDITION

D.1.1 THEORY

To get intuition for this problem, we first consider the case where D(train) =
{(I1, I2)|I1 = J1 ∨ I2 = J2} for two items Jc ∈ Ic with vc(Jc) = 0. Further, we assume that
the average values are also zero, i.e.

∑
I∈Ic

vc(I) = 0 for c = 1, 2. Note that the extrapolation task
represents an instance of such a task.

In this case, the dual problem is especially easy to solve. Specifically, there are three types of training
data: y11, y1j with j > 1 and yi1 with i > 1 (we denote the J item by 1). The corresponding dual
equations are

0 = v1(I1) + v2(I1) = y11 = a11κ2 +
n∑

j=2

a1jκ1 +

m∑
i=2

ai1κ1, (8)

v2(Il) = v1(I1) + v2(Il) = y1l = a1lκ2 +

n∑
j=1,j ̸=l

a1jκ1 +

m∑
i=2

ai1κ0, (9)

v1(Ik) = v1(Ik) + v2(I1) = yk1 = ak1κ2 +

m∑
i=1,i̸=k

ai1κ1 +

n∑
j=2

a1jκ0. (10)

We now denote averages over selected dual coefficients by

b1 :=

m∑
i=2

ai1, b2 :=

n∑
j=2

a1j . (11)

We further note that
n∑

l=2

y1l =

m∑
k=2

yk1 = 0, (12)
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Figure 8: a, Training sets for addition. b, Inferred values for different training sets and kernels.

by a simple application of the assumption we made above. Rewriting (8) and summing over l (and k)
for (9) (and (10)) thus results in

0 = κ2a11 + κ1b1 + κ1b2, (13)
0 = (n− 1)κ1a11 + ((n− 1)κ1 + κ2)b1 + (m− 1)κ0b2, (14)
0 = (m− 1)κ1a11 + ((m− 1)κ1 + κ2)b2 + (n− 1)κ0b1. (15)

This implies that a11 = b1 = b2 = 0. Thus,

v2(Il) = a1l(κ2 − κ1), v1(Ik) = ak1(κ2 − κ1). (16)

For a test input, the model output is given by

f(k, l) = κ0(b1+b2+a11)+(κ1−κ0)ak1+(κ1−κ0)a1l = (κ1−κ0)ak1+(κ1−κ0)a1l =: f1(k)+f2(l).
(17)

This implies that

f1(k) =
κ1 − κ0

κ2 − κ1
v1(k), f2(l) =

κ1 − κ0

κ2 − κ1
v2(l). (18)

D.1.2 DETAILED SIMULATIONS

Fig. 8b depicts the inferred values for kernels with various values for κ̂1, both for the training sets
analyzed in Fig. 4 and two additional dispersed datasets (Fig. 8a). Lower κ̂1 consistently yields more
distorted values.

We additionally analyze ReLU networks trained in the rich and lazy regime. The rich networks are
equal in performance for extrapolation, worse for asymmetric extrapolation, and better for interpola-
tion (Fig. 9a). They are generally well explained by an additive model, except for the asymmetric
extrapolation (Fig. 9b). Fig. 9c confirms that the ReLU networks indeed change their representation in
the rich regime: at initialization, the similarity between different trials is approximately clustered by
whether those trials are distinct, overlapping, or identical. After lazy training, this remains unchanged,
whereas after rich training, the similarities look entirely different. Finally, the inferred values look
similar on extrapolation, but do not exhibit a memorization leak on interpolation (Fig. 9d). On
asymmetric extrapolation, they look qualitatively different (though note that this network is also not
additive). For the different dispersed tasks, the values inferred by the rich network largely follow the
same patterns as those inferred by the lazy network, but also deviate occasionally.

Finally, the convolutional networks generally improve their generalization with increasing distance
between the digits (Fig. 8a). All networks are extremely well explained by an additive model
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Figure 9: Behavior of rich neural networks trained on symbolic addition. a, b, Generalization (a)
and additivity (b) as a function of initialization scale. c, Similarity between distinct, identical, and
overlapping trials, before and after training in the lazy or rich regime. d, Inferred values in the lazy
and rich regime.
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Figure 10: Behavior of convolutional networks trained on symbolic addition. a, b, Generalization (a)
and additivity (b) as a function of distance. c, Inferred values for different distances.

(R2 > 0.975, Fig. 8b). Finally, the networks’ inferred values look strikingly similar to those inferred
by the kernel model (Fig. 8b) and their distortion tends to be higher for lower distances (i.e. a more
conjunctive representation).

D.2 CONTEXT-DEPENDENT DECISION-MAKING

D.2.1 GENERAL TASK DEFINITION

We generally consider inputs with three components, (co, feat1, feat2). We assume that co ∈ C1 ∪
C2, where C1 is the set of possible contexts under which feat1 is relevant and C2 is the set of
possible contexts under which feat2 is relevant. We further assume that there are decision functions
d1(feat1), d2(feat2) ∈ R. (For example, in the example in the main text, these function map three
features to the first category (i.e. y = −1) and three features to the second category (i.e. y = 1).) The
target is then given by

y(co, feat1, feat2) =
{
d1(feat1) if co ∈ C1,

d2(feat2) if co ∈ C2.
(19)
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Note that in the main text, we consider C1 = {1}, C2 = {2}, and feat1, feat2 ∈ {1, . . . , 6} where

dc(featc) =
{
1 if featc <= 3,

−1 else.
(20)

D.2.2 NOVEL STIMULUS COMPOSITIONS ARE CONJUNCTION-WISE ADDITIVE

If the test set consists in novel combinations of stimuli, this is a conjunction-wise additive computation.
Namely, suppose that for all test inputs (co, feat1, feat2), the two features have never been observed
in conjunction, but both (co, feat1) and (co, feat2) have been. (This includes the case considered
in the main text.) In this case, we can define functions f12 and f13 to implement the appropriate
mapping:

f12(co, feat1) :=
{
d1(feat1) if co ∈ C1,

0 if co ∈ C2,
f13(co, feat2) :=

{
0 if co ∈ C1,

d2(feat1) if co ∈ C2,

(21)
f(co, feat1, feat2) = f12(co, feat1) + f13(co, feat2). (22)

D.2.3 NOVEL RULE COMPOSITIONS ARE NOT CONJUNCTION-WISE ADDITIVE

We could also imagine an alternative generalization rule, which we call CDM (rule composition). In
that case, there are multiple components indicating the same context: C1 = {1, 2} and C2 = {3, 4}.
We then leave out certain features with certain contexts. For example, feat1, feat2 ∈ {1, . . . , 6},
with the decision function defined in Eq. 20. Suppose we had never seen feat1, feat2 ∈ {3, 6} in
conjunction with co ∈ {2, 4}. In principle, if the model understood that co = 1, 2 (and co = 3, 4
resp.) signify the same context (i.e. learned to abstract the context from the context cue), it could
generalize successfully as it had observed these features in conjunction with co = 1, 3. However, the
conjunction-wise additive mapping depends on having observed each context in conjunction with
each feature and this task is therefore non-additive.

D.2.4 COEFFICIENT GROUPS

In Fig. 5, we grouped the inferred coefficients into categories. We here explain these categories:

• Right conj.: This is the correct conjunction the model should use to solve the task, i.e.
between co = 1 and feat1 and between co = 2 and feat2.

• Wrong conj.: This is the incorrect conjunction between context and feature, i.e. between
co = 1 and feat2 and between co = 1 and feat2.

• Sensory feat.: This is any conjunction involving sensory features, i.e. feat1, feat2, and
(feat1, feat2).

• Context only: This is the component co by itself.

• Memorization: This is the full conjunction of all three components (co, feat1, feat2).

We then compute the average absolute magnitude within each of these groups in order to determine
their overall relevance to model behavior.

D.2.5 DETAILED SIMULATIONS

We find that rich networks generalize consistently on CDM-1 and CDM-2 but not CDM-3 (Fig. 11a).
They are also perfectly conjunction-wise additive (Fig. 11b) and fail due to a context shortcut
(Fig. 11c).

Generally, convolutional networks are also well explained by a conjunction-wise additive computation,
though their additivity decreases for decreasing distance on CDM-3 (Fig. 11c). We find that this
coincides with a slightly lower magnitude associated with the context coefficient (consistent with the
accuracy of the network increasing from below chance to chance level, Fig. 5d).
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D.3 INVARIANCE

We analytically compute the kernel models’ test set prediction on the invariance task. The training set
is given by {(−1,−1), (−1, 1)} and its kernel is therefore

K =

(
κ2 κ1

κ1 κ2

)
, (23)

where κ2 is the similarity between identical trials and κ1 is the similarity between overlapping trials.
Hence, the dual coefficients are given by

a = K−1

(
1
−1

)
=

1

κ2
2 − κ2

1

(
κ2 −κ1

−κ1 κ2

)(
1
−1

)
=

1

κ2
2 − κ2

1

(
κ2 + κ1

−(κ2 + κ1)

)
. (24)

The test set is given by {(1,−1), (1, 1)} and its kernel with respect to the training set is therefore

K̃ =

(
κ1 κ0

κ0 κ1

)
, (25)

where κ0 is the similarity between distinct trials. Hence the test set predictions are given by

ŷ = K̃a =
1

κ2
2 − κ2

1

(
(κ2 + κ1)(κ1 − κ0)

−(κ2 + κ1)(κ1 − κ0).

)
(26)

As the ground truth labels are y = {1,−1}, the margin m = yŷ is identical for both test set points:

m =
(κ2 + κ1)(κ1 − κ0)

κ2
2 − κ2

1

=
κ1 − κ0

κ2 − κ1
=

(κ2 − κ0)κ̂1

(κ2 − κ0)− (κ1 − κ0)
=

κ̂1

1− κ̂1
. (27)

D.4 PARTIAL EXPOSURE

For partial exposure, the training set is given by {(−1,−1), (−1, 1), (1,−1)} and its kernel is
therefore

K =

(
κ2 κ1 κ1

κ1 κ2 κ0

κ1 κ0 κ2

)
. (28)

The test set is given by {(1, 1)} and the test set kernel is therefore

K̃ = (κ0 κ1 κ1) (29)

The margin is therefore given by

m = yŷ = −ŷ = −K̃K−1

(
1
−1
1

)
. (30)

We solve this equation for the special case where κ0 = 0 and κ1 = 1 using Mathematica and find that

m =
2κ2

1

1− 2κ2
1

. (31)

D.5 OTHER MATHEMATICAL OPERATIONS

We could consider mathematical operations other than addition as well, considering unobserved
assigned values v1[I1] and v2[I2] together with some composition function C(v1[I1], v2[I2]). This
task will only be additive if the composition function is additive (e.g. if it is subtraction). If it is, e.g.
multiplication, division, or exponentiation, the task will be non-additive.

D.6 LOGICAL OPERATIONS

In this task, inputs with two components are presented. Each component Ic has an unobserved truth
value T [Ic] associated with it and the target is some logical operation over these two truth values, for
example AND: T [I1] ∧ T [I2]. After inferring the truth value of each component, the model could
generalize towards novel item combinations. As long as the logical operation is additive (e.g. AND,
OR, NEITHER, . . . ), this is an additive task. If the logical operation is non-additive (e.g. XOR), this
would be a non-additive task. Indeed, this case would correspond to the transitive equivalence task.
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D.7 TRANSITIVE ORDERING

Transitive ordering (TO) is a popular task in cognitive science (often called transitive inference,
McGonigle & Chalmers 1977). Here the subject is presented with two items I1, I2 drawn from an
unobserved hierarchy >. It should then categorize whether I1 > I2 or I2 > I1. Crucially, this task can
be solved by assigning a rank r(Ic) to each item and computing the response as f(I) = r(I1)− r(I2)
(?). It is therefore additive, in contrast to transitive equivalence. This is also the case if we assume
that there are multiple such hierarchies (e.g. a1 > . . . , a5 and b1 > . . . , b5). In this case, the model
would generalize to comparisons between these different hierarchies as well (cross-list TO).
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