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Abstract

Entity Recognition and Relation Extraction are
essential components in extracting structured
information from text. Recent advances for
both tasks generate a structured representation
of the information in an autoregressive fashion,
a time-intensive and computationally expen-
sive approach. This raises the natural question
whether autoregressive methods are necessary
in order to achieve comparable results. In this
work, we propose ITER, a functionally more
expressive, non-autoregressive model, that uni-
fies several improvements to a recent language
modeling approach: ITER improves inference
throughput by up to 23 x, is capable of han-
dling all types of nested entities and effectively
halves the number of required parameters in
comparison. Furthermore, we achieve a SOTA
result of 84.30 F1 for the relation extraction
dataset ADE and demonstrate comparable per-
formances for both named entity recognition
with GENIA and CoNLLO3 as well as for rela-
tion extraction with CoONLL0O4 and NYT.

1 Introduction

In recent years, there has been a shift towards us-
ing autoregressive methods in many common NLP
tasks. Parallel to this development is an increasing
focus on approaching NLP tasks such as relation
extraction or (nested) named entity recognition as
structured prediction problems. Given a sequence
of text input, a given model autoregressively gen-
erates outputs that encode the structure contained
within the input, which offers flexibility since the
source and target vocabulary must not share any
commonalities.

Flattening the output structure into a single
string, preserving the information about the struc-
ture in the input and using an autoregressive
model to learn to generate this adapted target lan-
guage (Cabot and Navigli, 2021; Paolini et al.,
2021), is an implicit approach known to work well
across task boundaries (Raffel et al., 2020). In

this case, the target vocabulary typically contains
the whole source language vocabulary. However,
representing the structured output as a string intro-
duces additional complexity when modeling intra-
structure dependencies (Liu et al., 2022). More
recently, Liu et al. proposed constraining the au-
toregressive model to explicit generation of the
output structure. They define three types of basic
actions to be performed at each generation step
and use the T5 (Raffel et al., 2020) transformer to
autoregressively generate the structure induced by
said basic actions.

With this trend of using autoregressive methods
for tasks such as relation extraction come however
also several problems: As inference time scales
quadratically with the output sequence length, lan-
guage modeling approaches are prone to low in-
ference speed! especially with increasing model
parameters (Pope et al., 2022). While scaling the
model size from hundreds of millions of parame-
ters to billions of parameters yields performance
increments for Liu et al., this scaling can become
infeasible, both in terms of compute required and
the environmental impact when using those large
scale models in production.

This raises the natural question whether a non-
autoregressive process capable of generating such
an output structure can achieve similar performance
whilst addressing the aforementioned limitations of
language modeling approaches. In this paper, we
present ITER, an encoder-only transformer-based
relation extraction model that addresses the limi-
tations of state-of-the-art architectures and show
that the structured prediction problem can be ap-
proached without a language modeling objective in
mind.

To summarize, our key contributions are the fol-
lowing:

1. We present ITER, a transformer-based encoder-
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only relation extraction model that addresses
the limitations of autoregressive architectures.
Instead of employing a language modeling ob-
jective, our model generates the structured
output in three basic steps. We show that
this encoder-based approach achieves perfor-
mance competitive to language modeling ar-
chitectures whilst retaining only half of the
number of parameters and increasing the in-
ference throughput by a factor of up to 23 x.

2. We identify several drawbacks with the state-
of-the-art architecture ASP (Liu et al., 2022),
which limit the model’s expressivity for nested
structures and generalization to test data. In
our work, we address those limitations and
translate the autoregressive approach into a
three-stage process.

3. In our experiments, we observe that training
ITER on NYT, CoNLL04, ADE (RE), or GE-
NIA, CoNLLO3 (NER) results in competitive
performance across all datasets, while main-
taining a significantly smaller size compared
to SOTA models. We observe small average
improvements of 0.5 F1 points on the ADE
dataset.

4. We publish our implementation and check-
points at GITHUB.COM/ANONYMOUS.

2 Related Work

The goal of relation extraction, sometimes also re-
ferred to as end-to-end relation extraction or joint
entity and relation extraction, is to identify the
names and types of named entities, inside a given
text, as well as classify the relationships amongst
these entities. (Grishman and Sundheim, 1996;
Zhao and Grishman, 2005).

First approaches to relation extraction were to de-
compose the task into named entity recognition and
relation classification, where the named entities
are identified first, while the relationships between
the found named entities are then classified in a
second, separate stage that is being learned inde-
pendently. This pipeline-based approach is known
to be prone to error propagation (Zhong and Chen,
2021; Sui et al., 2020). Because of this known limi-
tation, joint approaches modeling both tasks simul-
taneously have been introduced and have shown
promising results (Gupta et al., 2016; Wang and
Lu, 2020).

2.1 Span-based Techniques

Table-filling or span-based strategies were and
still are viable approaches to modeling relation
extraction and related tasks (Gupta et al., 2016;
Wang and Lu, 2020; Joshi et al., 2020; Tang et al.,
2022; Urchade et al., 2024). Recent examples of
this include DiffusionNER (Shen et al., 2023) and
UniRel (Tang et al., 2022). DiffusionNER emits
a time-complexity scaling linearly in the number
of entities in an input and the number of diffu-
sion steps. Computing the interaction map for
UniRel scales quadratically with the sum of the
input size and the number of relation types. This
quadratic scaling is also an issue for autoregres-
sive techniques, where the inference time is scaling
quadratically with the length of the output sequence
(Shen et al., 2023).

2.2 Autoregressive Techniques

Modeling the task as a seg2seq problem has es-
tablished itself as the state-of-the-art for relation
extraction in the last couple of years (Cabot and
Navigli, 2021; Wang et al., 2022; Paolini et al.,
2021; Liu et al., 2022; Fei et al., 2022; Lu et al.,
2022). Enabled by the Transformer (Vaswani et al.,
2017), the task is then formulated as a translation
objective: Given an example sentence, the model
translates the input into a flattened string that en-
codes the structural information contained within
the source text (Liu et al., 2022).

Both (m)REBEL (Cabot and Navigli, 2021;
Cabot et al., 2023) and TANL (Paolini et al., 2021)
translate the input sequence into a flattened out-
put string, that, in the (m)REBEL case, also no
longer resembles natural language. Paolini et al.
augment the target output with information about
entity types and relations to other named entities.
Both models are finetuned to produce a target lan-
guage specific to the task. A comparison of differ-
ent model outputs is available in Table 1. Either
model can also deal with nested entities, which
is crucial when dealing with real-world data, as
for example data from the biomedical domain is
known to often contain nested entities (Finkel and
Manning, 2009).

2.3 Limitations of Autoregressive Structured
Prediction (ASP)

ASP (Liu et al., 2022) has shown that autoregres-
sively generating a sequence of actions instead of
generating (augmented) natural language yields



Model Output

REBEL <triplet> Barack Obama <subj> Honolulu, Hawaii <ob j> place of birth

TANL
ASP

[ Barack Obama | person | place of birth = Honolulu, Hawaii ] was born in [ Honolulu, Hawaii | location ]

[* Barack Obama|] was bornin [* Honolulu, Hawaii | ]

Barack Obama was born in Honolulu, Hawaii

ITER (ours) n

Table 1: Comparison of different (autoregressive) relation extraction system outputs: REBEL (Cabot and Navigli,
2021), TANL (Paolini et al., 2021) and ASP (Liu et al., 2022). Input into all models was the sentence "Barack
Obama was born in Honolulu, Hawaii". Comparing ASP and our method, one can observe that ASP requires [*

and | ] | actions to be placed alongside the input to model the same structure of the input.

model performance benefits not only for relation
extraction, but for named entity recognition and
co-reference resolution as well. At every gen-
eration step, their model can perform three dis-
tinct types of actions, structure-building actions,
bracket-pairing and span-labeling actions. For the
structure-building actions (Eq. 1), the model can
either perform [* or| ]| actions at the current gen-
eration position or [copy the next token from the
input into the output.

A={1" 11 |espv} (1

The generation completes when all input tokens
have been copied into the output. Bracket-pairing
actions (Eq. 2) aim to connect the current position
with a previously performed [* action, resulting
in a span.

B,={m|m<nAa,= [*} 2)

Span-labeling actions allow both the labeling of
individual spans and the linking of the current
formed span to an earlier found span in the output
sequence, modeling relationships between named
entities (Eq. 3). For relation extraction, £ is instan-
tiated as the cartesian product of the named entity
and relation types: £L = Tg x Tg.

Zn={m|m<nAan=[1}xL (3

The authors of ASP employ a conditional language
model to learn to produce the optimal output struc-
ture y* € Y7 X --- X Yy where Y}, is defined as

Y, =AxB, xZ, “4)

At every time-step their model will perform the
three basic actions (ay,, by, z,,) € Y;, sourced from
their respective sets for structure-building actions
A, bracket-pairing actions B,, and span-labeling
actions Z,,.

Said approach however is not capable of captur-
ing nested entities in all edge cases. At every time-
step, ASP can only complete one span with one
preceding [* action due to the definition of B,
hence multiple consecutive | ] actions would be re-
quired to properly model this behaviour 2. We also
hypothesize that the structured prediction process
for ASP suffers from suboptimal training due to
the nature of the span-labeling actions Z,,. Linking
the span formed at the current position to another
span in the sequence is constrained by the fact that
only links to spans that have been completed in the
past (i.e. earlier in the sequence) are valid. As it is
impossible to link to spans that will be found in the
future (i.e. spans that come after the span ending at
the current position), the authors of ASP introduce
a directionality parameter to counteract the asym-
metric property of the relations in the dataset.

This prevents the two tuples (Barack Obama,
work_for, the american people) and (the amer-
ican people, work_for, Barack Obama) from
being indistinguishable.

This is important as those two examples encode
drastically different information. The directionality
parameter however effectively doubles the number
of relations (T’R = Tr xB), leading to fewer train-
ing examples per relation type, and we hypothesize
that this yields subpar training results.

Aside from those architectural issues, ASP and
similar seq2seq Transformer models such as TANL
or REBEL all suffer from the quadratically scaling
time-complexity of generative architectures, sig-
nificantly impacting their inference speed (Paolini

?Liu et al. noted issues in generating multiple [* , hence

their workaround. We think | ] faces this issue as well, so we
hypothesize that this hurts their models’ performance.

3As can be seen in their official implementation:
https://github.com/lyutyuh/ASP/blob/
master/data/tbminimize_ere.py#L227


https://github.com/lyutyuh/ASP/blob/master/data/t5minimize_ere.py#L227
https://github.com/lyutyuh/ASP/blob/master/data/t5minimize_ere.py#L227

et al., 2021). This raises the question whether elim-
inating the requirement for a conditional language
model from ASP can retain the same model per-
formance whilst crucially reducing inference time,
allowing for simpler identification of all nested en-
tities and addressing the generalization issues.

3 Approach

We base our approach for ITER on the work of Liu
et al.. In order to replace the autoregressive compo-
nent of their approach with our inference process,
several modifications to the structured prediction
are necessary. We divide the process into three
basic steps:

(1) Firstly, identify all positions n in the input x
where a span is beginning, i.e. the n action
is performed, using is_left (Eq. 8).

(2) Following that, identify all positions m > n
in the input that pair with any of the previ-
ously identified positions n found in step 1,
forming named entities. Position m is con-
strained to come after or at the same position
as the beginning of the span. is_span (Eq. 9)
returns a set of bracket pairings with earlier
found n positions, which in turn can be used
to determine the named entities in the input.

(3) Finally, test for relationships amongst all pairs
of named entities found in (2) using #s_[link
(Eq. 11). This function will return a vector
that, after applying the sigmoid function, con-
tains a probability for each relationship type
T r. If this probability exceeds 0.5, a relation
between the two tested named entities will be
predicted.

Each step can individually be computed in par-
allel, enabling an efficient implementation of our
model.

The first necessary change is to transition to a
smaller subset of the structure-building actions A:

A={l.

Our model must be allowed to perform both n
and n actions at the same time, to not lose model
expressiveness, otherwise it will not be able to cor-
rectly classify single-token spans*. Therefore, the

“Think of a single-token named entity ; = BERLIN: the

model must be able to determine the span of this entity, since
it ends at the same position it started. So a; must now be a set:

a = {i -

structure-building actions A,, performed at every
position n must now be a subset of A, to allow for
this behavior. This is reflected in the definition for
our structured output y* € Yy x -+ X Yy

Yn = p(A) X p(Bn) Q)

where p is the powerset operation. Since we test
for relationships only in step 3, we remove the
span-labeling actions Z,, (Eq. 3).

To be able to properly handle nested entities, or,
more specifically, two or more entities ending at
the same position, the bracket-pairing actions are
also present in ), as a subset of all possible such
actions B,,. This change comes in combination
with two adjustments to the definition of B,, itself.

At position m, ITER will be allowed to pair n
actions at positions n < m, circumventing single-
token named entity issues (1, Eq. 6) and each pair-
ing is allowed to hold its own named entity type
t e Tg (2, Eq. 6).

(1) )
Bn:{nlngm/\neAn}xTE 6)

3.1 Identifying Named Entities

Before relationships can be determined, spans need
to be uniquely identified by their start and end po-
sitions in combination with their type of the named
entity in the input sequence. Before any of the
three following generation steps, the input x is
given into the encoder of the base model, TS in our
case, which produces a sequence of contextualized
vector representations h = (h; ... hy) for x with
h,, € R? where § corresponds to the hidden dimen-
sion size used in the base model. All three stages
use gated feed-forward networks of the following
form:

FFNY(h) = ((GELU(hW,) ® hW;)W, (7)

where W, W; € R¥9x2¥0 17 ¢ RZ¥IXF gre lin-
ear projections learned during training, GELU is
the gaussian error linear unit function (Hendrycks
and Gimpel, 2016) and & is the output dimension-
ality. ¢ = 2 when two concatenated vectors, indi-
cated by h,, n, are input, otherwise ¢ = 1.

3.1.1 Determining Starting Positions of
Named Entities

To identify said spans, the model learns to predict
the positions where the spans of named entities in
the input x are beginning. This task is modeled
by the function ¢s_left (Eq. 8), which receives a



sequence of hidden states h as input and the output
is an equally sized sequence of Boolean values
<b1 .. .bN> e BV:

is_left(h), = FFN"=!(h,) > 0 (8)

At all positions where is_[left(h) holds true, the
left bracket action n is included in the set of ac-
tions A,, performed at position 7.

3.1.2 Pairing Left and Right Brackets

After determining where spans of named entities
start in the input x, the next step is to identify which
positions x,, (m > n) following x, in the input
form a span of named entity type ¢t € Tg. Our
model learns a projection is_span, that maps the
input h and left bracket positions n, n € A, to
a sequence of tuples of indices and entity types

(n,t):

is_span : RN x BY — o(By1) x - -- x p(By)
is_span(h,b),, = {(n,t) | FFN;p(hmm)t > 0}

(€))

with k = |Tg|,v» = 2,b,, = T. For each posi-
tion m where the output of B, = is_span(h),,
is non-empty, ITER performs action n at position
m. Each element (n,t) € B, determines a pair-
ing from the left bracket at position n with a right
bracket at position m of type ¢, forming a named
entity. If a left bracket from step one is left un-
linked, no named entity will be identified. The first
two stages are visualized in Figure 1.

3.2 Identifying Relationships amongst Named
Entities

The third step now tests pairs of identified named
entities for their relationship with each other. For
the non-nested case, ¢s_link projects two hidden
states h; and h; to a vector of non-normalized log-
its, resembling probabilities after applying the sig-
moid function (Eq. 10).

is_link : R® x R — R"®

(10)
is_link(hi, h;) = o(FFNY (h; ;))

where k = |Tg|, ¥ = 2.

The hidden states are obtained from the posi-
tions 4, j in the input h where there is n € A
and pairings from z; to x, ((0,t1) € B;) and sim-
ilarly for x; with x;,. ¢s_link outputs vectors con-
taining probabilities for relationships between two
entities identified in (1) and (2). During inference,
all combinations of found entities are tested for

relationships. The ordering of head and tail entity
is important, so is_link(h;, h;) # is_link(h;, h;).
The abstraction of using just the hidden state from
the last position of the span no longer works when
dealing with nested entities, as spans are no longer
uniquely identified by their last position, and as
such the hidden state of the first position will also
be included for such cases:

is_link : R x R® x R? x R? — R*
is_link(hi, hoy hjy hyp) = 0 (FENY (hiojp))
(11
where now v = 4. This final step is visualized in
Figure 2.

3.3 Training

The model of choice for this paper is the TS5 (Raf-
fel et al., 2020) Transformer architecture, which
can also be used as an encoder, albeit primarily
trained for autoregressive applications (Raffel et al.,
2020). In order to circumvent error propagation
between the three stages of ITER, training will
include all three task functions simultaneously:
is_left, is_span and is_link. ITER receives as in-
put a sequence of hidden representations (hidden
states) h = (hy, ha, ..., hy). The sequence of
representations is shared across all three tasks. The
loss function used during training is included in
the Appendix, in Equations 13, 14 and 15. In a
nutshell, in order to minimize the training loss, the
model is incentivized to assign weights greater than
zero to the respective correct decisions in all three
cases, impacting the decisions taken by is_left,
1s_span and is_link.

3.4 Complexity

In this section, we will briefly discuss the theoreti-
cal time complexity of our approach. Steps (1) and
(2) can both be parallelized across the sequence
dimension. As is_left only uses linear projections
and activation functions, its runtime is bound by
the length of the input sequence h, yielding a lin-
ear time-complexity O(N). is_span can be opti-
mized to only consider the closest w left brackets,
and in the trivial case we set w = 1. For nested
named entity datasets, w is another hyperparam-
eter to be adjusted accordingly, but in the trivial
case, 1s_span can be optimized to perform exactly
one pass through the F'F'N per element of the se-
quence, thereby yielding a time-complexity O(NN)
linear in the input length N. For w > 1, we have
O(N * w), however w < N. Since steps (1) and



INPUT Barack Obama was born in Honolulu , Hawaiil
POSITION 1 2 3 4 5 6 7 8
(1) is_left(h) =b v X X X X v X v

|

(2) is_span(h,b) = B,

I |

{(1,PER)}

{ (é?éﬁ?ﬁ) }

L]

A, CA 0 - B

o ~f

Figure 1: Visualization of stages one (is_left) and two (is_span) of the model. is_[eft yields three positions where
spans are beginning: 1,6 and 8 (Stage 1). is_span then creates pairings of types person between position 2 and 1,
location between position 8 and 6 and state for position 8, a 1-token span (indicated by [[iaEl)-

FUNCTION HEAD ENTITY TAIL ENTITY OuUTPUT
Barack Obama Honolulu, Hawaii live_in born_in work_in
is_link(hy, ha, he, hs) (1,2) (6,8) (0.05, 0.98 , 0.01 )
Barack Obama Hawaii live_in born_in work_in
iS_link(hl,hg,hg,hg) (1,2) (8,8) (0.17, 0.45 s 0.02 )
Honolulu, Hawaii Hawaii live_in born_in work_in
is_link(he, hg, hg, hs) (6,8) (8,8) (0.03, 0.07, 0.1 )

Figure 2: Visualization of the third stage of the model. The output is already sigmoid-normalized. For illustration
purposes, there are three relation types: Tg = (live_in, born_in, work_in). The named entity "Barack Obama"
stands in relationship "born_in" with "Honolulu, Hawaii", as 0.98 > 0.5, which is the criterion defined for this

model.

(2) are performed sequentially, combining those
remains bound by the sequence length N. Test-
ing for relationships in step (3) requires testing all
combinations of entities found and thus yields a
quadratic runtime, but not in the sequence length,
but in the number of entities E with £ < V. Using
ITER thus gives a complexity of O(N + E?)) with
E being number of entities.

4 Experimental Results

In this section, we give an overview over the
datasets used in our experiments (Section 4.1) and
we conclude with our interpretation of the results
from said experiments (Section 4.2). Details about
the hyperparameter search we performed can be
found in the Appendix (Section D)

4.1 Data

To experimentally verify that our model can
achieve performances on par or even higher than
the baseline from ASP, we used 5 datasets from

two different domains and tasks: CoNLLO3 (Sang
and Meulder, 2003, NER) (NER), CoNLLO04 (Roth
and Yih, 2004, RE) and NYT (Riedel et al., 2010,
RE) were all annotated from news articles while
ADE (Gurulingappa et al., 2012, RE) and GE-
NIA (Kim et al., 2003, NER) contain training exam-
ples with biomedical context. Of those five datasets,
three contain nested entities (NYT, ADE and GE-
NIA), something that ASP cannot properly model,
as shown in Section 2.3, which was another factor
for our selection. This portfolio of datasets allows
us to verify our claims across a wide range of ap-
plications and different levels of data complexity.
An overview regarding the datasets can be obtained
in Table 8. Following Li et al.; Eberts and Ulges
and Cabot and Navigli, we evaluate our model in
a strict setting: A predicted relation between two
entities is only considered correct, if both the span
and type of the entity match the gold standard. We
report micro F1 scores, unless stated otherwise.



Transformer  ASP ITER | Speedup
base model examples/s examples/s ‘ over ASP
TS (small) 44.459 1040.55 | x23.41
T5 (large) 27.177 605.398 | x22.28
TS5 (3b) 290427 334.843 | x11.38

Table 2: Comparing the inference throughput (as sam-
ples per second) of ITER versus the autoregressive ap-
proach ASP (Liu et al., 2022) on the test set of CoNLL04.
Computations were run on a single NVIDIA H100 GPU,
a batch size of 64 combined with 10 epochs of training
beforehand. Speedups of up to x23.41 (x18.6 on avg.)
are achieved when using ITER instead of ASP.

Architecture Size NERF1 REF1
(strict) (strict)
ITER + FLAN TS5 Jarge 374 M 89.770 75.175
+0.51 +0.39
ITER + BERT jarge | 340 M ~86.02  ~66.922
ASP + FLAN TS5 pase 247 M 89.4 73.8
ASP + FLAN T5 jurge 783 M 90.5 76.2
TANL 222 M 89.8 72.6
REBEL (pretrained) 406 M - 75.4
DeepStruct 10B 88.4 72.8
DeepStruct (finetuned) 10B 90.70 78.3
DiffusionNER 381M 92.78 -
TF-MTRNN - 93.6 72.1
Wang and Lu - 90.1 73.6
Luetal >770M - 75.00
Fei et al. >770M - 75.3

Table 3: Final training results for CoNLLO04, averaged
across five runs for each configuration. { Preliminary
test with other Encoder achitecture.

4.2 Results

With the encoder of the FLAN-T5-large model as a
base, ITER achieves state-of-the-art results on ADE
with on average 0.5 F1 points of improvement (Ta-
ble 5). Furthermore, it reaches good results when
compared to most generative approaches while the
number of parameters is significantly smaller (Ta-
ble 3, 9, 6). Specifically, its performance closely
aligns with that of ASP+rLANT5 base and ASP+rLaN
T5 large, both of which possess a similar parameter
count, with the latter having twice the parameters
and only being slightly better. Table 2 answers
another research question, which was to demon-
strate that a higher inference speed can be obtained
with a smaller model while reaching comparable
results. Especially compared with DeepStruct our
model performs well, considering its size and train-

ing time. DIFFUSIONNER performs exceptionally
well, and we are not able to match its performance
on the NER task, only coming close on CoNLLO3.
Again, supporting our hypothesis that encoder-only
models —like DIFFUSTONNER—can outperform
generative models like DeepStruct on structure pre-
diction tasks.

Architecture NER F1 RE F1
(strict) (strict)

ITER + FLAN TS5 Jarge 94.726 £ 0.16  90.707 £ 0.34

TANL 94.9 90.8

REBEL - 92.0

DeepStruct (multi-task) 954 93.7

UniRel - 93.7

Fei et al. - 94.2

Lu et al. - 93.54

Table 4: Final training results for NYT.

Architecture NERF1 REF1
(strict) (strict)
ITER + FLAN T5 jarge 91.907 84.300
+0.72 +1.52
TANL (multi-task) 91.2 83.8
REBEL (pretrained) - 82.2
DeepStruct (finetuned) 91.1 83.8
Wang and Lu 89.7 80.1
Yan et al. 91.3 83.2

Table 5: Final training results for ADE with 10-fold
cross-validation. F1 metrics are macro-averaged.

To further improve our understanding of ITER
and its shortcomings, we analyse ADE using confu-
sion matrices. Figure 3 shows that our model does
not struggle with the span-prediction task. The
model also learned to predict the actions n and n
at the same step where appropriate. The main chal-
lenge seems to be the named entity type Adverse-
Effekt, which is falsely predicted and missed several
times. Furthermore, when considering the confu-
sion matrices and the correlation between NER and
RE+ score for ADE, it becomes apparent that a
good NER score mostly leads to better RE+ re-
sults. Our confusion matrices show that ITER never
confuses the two entity types and when predicting
actions it also almost never confuses: n, n and
the one token case with each other, which in turn
leads to better results.



Architecture Dataset F1 (strict)
ITER + FLAN T5jarge 91.593 £ 0.39
ASP + T5pase 91.8
ASP + T5iarge 92.8
DeepStruct (multi-task) CoNLLO3 93.10
DiffusionNER 92.78
TF-MTRNN 86.80
Luetal. 92.99

Fei et al. 93.2
ITER + FLAN T5jarge 80.153 £0.25
TANL GENIA 76.4
DeepStruct (finetuned) 80.8
DiffusionNER 81.53

Table 6: Final training results for CoNLLO03 and GENIA.
For CoNLLO03, we trained ITER with a linear learning
rate schedule, instead of the SMAC3 prediction to use a
constant schedule, as the final performance did signifi-
cantly degrade using a constant schedule.

Actions - FLAN T5 (large)

PR 10K+ 82 58 5
3 {1 58 1 0
)
[}
2
= 14 35 0 2
[«1{ 6 0 2 32
& [* ] [

ITER Output

NER - FLAN T5 (large)

Adverse-Effect 55

Drug A 11

True label

No span | 84 20 0
in gold
X 3 O
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Y (% ‘\\: o\y&ﬂ’“‘
A\
ITER Output

Figure 3: Confusion matrix for actions .4 and NER on
ADE.

5 Conclusion

In this paper, we identified several key drawbacks
in a fairly recent state-of-the-art method for rela-
tion extraction, ASP, and proposed several improve-
ments to counteract those issues. We investigated
whether it is possible to translate the autoregres-
sive process into a constant-in-time-complexity ap-
proach, whilst maintaining an equal level of perfor-
mance.

We unify the aforementioned proposed improve-
ments together with a new three-stage process in
ITER, an encoder-based non-autoregressive rela-
tion extraction model. Our model achieves perfor-
mances on par with state-of-the-art methods on all
datasets and sets a new state-of-the-art on ADE of
84.3 F1, whilst being functionally more expressive
and reducing inference time significantly, when
compared to ASP. In our experiments, we highlight
the time saving benefits of encoder-based models
over autoregressive seq2seq approaches, suggest-
ing that they are just as viable in a structure predic-
tion task.

6 Future Work

While our model is currently built on top of a TS
encoder stack, it might be insightful to explore the
performance of this architecture with other pre-
trained (encoder-only) language models such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) or the Nystromformer (Xiong et al., 2021)

One area of future work might be exploring an
even larger set of datasets. Unfortunately, there
exist no benchmark suites for relation extraction,
which itself might be an area of future work. While
most datasets are open-source, there exist propri-
etary datasets, preventing the democratization of
research in NLP and in machine learning in gen-
eral. Evaluating architectures on a diverse portfolio
of datasets instead of a limited amount of selected
or hand-picked datasets should also allow to gain
more significant insights into the performance, ca-
pabilities and limitations of relation extraction sys-
tems in general.

7 Limitations

One of ITER’s limitations are named entities that
are not directly contained in the input text. This
issue can arise when combining the NER stage of
ITER with tasks such as entity linking, where the
task is then to not only identify the named entity



and its type, but also to link said entity to a knowl-
edge base entity, something particularly interesting
when using a relation extraction pipeline to create
knowledge graphs. The severity of this limitation
strongly depends on the datasets used, we focussed
on experiments with datasets where this issue can-
not surface.

Furthermore, we are not able to fully compare
ITER with ASP since we are not able to evaluate it
on ACEOQS. If it is the case that the input has not
been preprocessed, our model also requires a very
tedious preprocessing-step that requires the pro-
grammer to correctly align the input string with the
tokens that the model will be trained on. This is a
limitation of the sentencepiece (Kudo and Richard-
son, 2018) tokenizer used in our experiments, as
the tokenization process does not guarantee entity-
level boundaries being respected during tokeniza-
tion, meaning that a token spanning the characters
¢ to j might contain the beginning of a span &
(. < k < j). While generative approaches can
circumvent this problem by introducing additional
tokens into the target language text, encoder-based
approaches such as our work are limited to dealing
with this issue pre-tokenization.

Another limitation of ITER would be the
strong task-dependent design of the functions
1s_left, is_span and is_link. This prevents a few-
shot task transfer without finetuning for new rela-
tions or entity types.
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A Appendix

Definitions. The LSE operation used in the fol-
lowing equations is defined as:

N
= log Z exp (xp)
n=1

where x € R be a vector of reals.
During training, the model will learn to mini-
mize the following loss function:

LSE )4 (x) (12)

Lzs left(z)
Lirgr = Z Z is_span ('L s
i=1 j=1 zs lmk(l)

a summation of three loss values for each position
in the input sequence x.
The loss function L;s jef is defined as:

hy,

Lier(n) = LSE?_; [ 0

] —LSE?_ () (13)
j
o ax—M

where h, € R is the real-valued output of
FFNYZ}(hy) , M — .

{

equals to one if the model should perform a n
action at time-step n, effectively cancelling out one
of the terms in the above equation. Accordingly,
we define Ly;:

1 iff. [l € 4,

0 otherwise

Li(n) =LSE3_, () —LSE5_,(I)  (14)
where
~ [(LSE!_; hy )
- 0
. (LSE ;-qzl hn,m,i + Anym,i) + (1 - 6) * (_OO)
= | 0+ 4% (o) ]

n = |T g| is the number of entity types and h,, ,,, =
is_span(x,n,m) € R" is a vector containing one
logit per such entity type.

{1 iff. [l € A,

0 otherwise

s

equals one iff. the performing n is a correct action
at time-step n. We also define m = max{m | m <
n A n € A}, m < n, the largest index of the
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Dataset Learning Rate -Schedule Warmup Weight Decay | Batch Activation
T5 ITER T5 ITER T5 ITER T5 ITER -size -function
CoNLLO4 | 1le—4 4e—4 linear constant 0.2 0.01 0.070 0.133 8 GELU
with warmup  with warmup
ADE 2¢e—4  2.8e—4  constant linear 0.1 0.01 0.028 0.027 32 ReLLU
with warmup — with warmup
NYT 2.5e—4 le—4 linear linear 0.2 0 0.016 0.07 8 ReLU
with warmup
GENIA | 2.6e—4 8e—4 linear linear 02 0.1 0.045 0.056 16 ReLLU
with warmup — with warmup
CoNLLO3 | 2e—4 9.7e—5 constant  constant 0 0 0.096 0.0098 8 ReLU

Table 7: Hyperparameter search results obtained using SMAC3 (Lindauer et al., 2022). For all datasets, the
search was performed for 8 GPU hours using a single NVIDIA H100 GPU per dataset. The single best incumbent
configuration has been selected for final training on the respective datasets.

preceeding positions where n € A,,. Finally, we
define

{0 iff. (m,ti) S Bn,ti cTg
An,m,i = .
—oo otherwise

to equal zero iff. there is a bracket pairing between
the positions m and n of type t; € Tg, and a large
negative value otherwise. In order to minimize the
loss function, the model is hereby incentivized to
assign negative values to not existing interactions
between two positions m and n of a certain type
t;. Lastly, Ljs jnk 1s defined as the binary cross
entropy loss function:

ITr| .
Lis jink(n) = Z Z {,U iff. n € -An,m

0 otherwise

m =1
(15)
where
_ Hn,m,i * IOg (hn,m,i)
"= Z [(1 - emmﬂ') *log (1 —hymy)
with

hy, i = is_link(x,n,m)

and 0,, , ; = 1 iff. the spans ending at positions n
and m are in relationship 4, 0,, », ; = 0 otherwise.

B Dataset Statistics

Dataset TRAIN DEV  TEST Nested Entities
ADE 4,272 10%* 10%* v
NYT 56,196 5,000 5,000 v
CONLLO3 954 216 231 X
CONLLO04 922 231 288 X
GENIA 16,692 T 1,854 v

Table 8: Number of samples per dataset split. * No
official dataset split exists for ADE so we employ 10-
fold cross-validation with 10% of the total examples
following . 1 GENIA comes with only two files.
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C Proofs

Theorem 1. Let x € VY be a sequence of tokens
withxy = EOS. If y € V1 X... Vs is the decoded
sequence of actions, then M > N holds for all
x € VN

Proof. Let a,, be the action chosen at step m,
o m
#eopy (m) =30, 1 [az: — be the number

of tokens x,, that have been copied until generation
step m. Recall: generation completes at step m
when T yrgepy(m) — EOS A a,, = [copy (1), i.e.
the EOS token has been copied into the output.
Let #A(m) = m be the number of actions per-
formed up until a certain point m in the output
sequence y of length M. It holds that
#A(m> 2?1:1 ]lai: copy + Z:il ]laﬁé copy -
>0 >0
With that, it follows that #/copy (m) < #A(m)
(2). Using (1) we get #leepy (M) = N and with
(2)wethen get N < #A(M) =M = N <
M& M>N O

D Hyperparameter search

Before training all of our models, we perform a hy-
perparameter search for all datasets using SMAC3
(Lindauer et al., 2022). For all datasets, we search
for 8 hours, optimizing for high RE+ or NER F1,
depending on the task. The search space con-
sists of learning rates [r € [le—3,2e—5], learn-
ing rate schedules (constant or linear), warmup
ratio r € {0.0,0.05,0.1,0.2} and weight decay
rate wd € [0,0.1] for both the parameters of the
base model (TS5 in our case) and the parameters on
top that are responsible for modeling the functions
is_left, is_span and is_link, combined with batch
size bs € {8,16,32,64} and choice of activation



function act € {GELU,ReLU, tanh}. The re-
sults of the hyperparameter search can be obtained
in Table 7.

Architecture NERF1 REF1
(strict) (strict)
ITER + FLAN TS jarge T 66.82 35.03
(Ye et al., 2022) 69.9 41.6
(Sai et al., 2021) 70.53 39.41
SpERT 67.62 46.44
(Urchade et al., 2024) 69.7 38.6
(Wang et al., 2021) 68.4 36.9

Table 9: Final training results for SciERC.  Preliminary
tests.f BoundaryScorereported.
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