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Abstract

Entity Recognition and Relation Extraction are001
essential components in extracting structured002
information from text. Recent advances for003
both tasks generate a structured representation004
of the information in an autoregressive fashion,005
a time-intensive and computationally expen-006
sive approach. This raises the natural question007
whether autoregressive methods are necessary008
in order to achieve comparable results. In this009
work, we propose ITER, a functionally more010
expressive, non-autoregressive model, that uni-011
fies several improvements to a recent language012
modeling approach: ITER improves inference013
throughput by up to 23×, is capable of han-014
dling all types of nested entities and effectively015
halves the number of required parameters in016
comparison. Furthermore, we achieve a SOTA017
result of 84.30 F1 for the relation extraction018
dataset ADE and demonstrate comparable per-019
formances for both named entity recognition020
with GENIA and CoNLL03 as well as for rela-021
tion extraction with CoNLL04 and NYT.022

1 Introduction023

In recent years, there has been a shift towards us-024

ing autoregressive methods in many common NLP025

tasks. Parallel to this development is an increasing026

focus on approaching NLP tasks such as relation027

extraction or (nested) named entity recognition as028

structured prediction problems. Given a sequence029

of text input, a given model autoregressively gen-030

erates outputs that encode the structure contained031

within the input, which offers flexibility since the032

source and target vocabulary must not share any033

commonalities.034

Flattening the output structure into a single035

string, preserving the information about the struc-036

ture in the input and using an autoregressive037

model to learn to generate this adapted target lan-038

guage (Cabot and Navigli, 2021; Paolini et al.,039

2021), is an implicit approach known to work well040

across task boundaries (Raffel et al., 2020). In041

this case, the target vocabulary typically contains 042

the whole source language vocabulary. However, 043

representing the structured output as a string intro- 044

duces additional complexity when modeling intra- 045

structure dependencies (Liu et al., 2022). More 046

recently, Liu et al. proposed constraining the au- 047

toregressive model to explicit generation of the 048

output structure. They define three types of basic 049

actions to be performed at each generation step 050

and use the T5 (Raffel et al., 2020) transformer to 051

autoregressively generate the structure induced by 052

said basic actions. 053

With this trend of using autoregressive methods 054

for tasks such as relation extraction come however 055

also several problems: As inference time scales 056

quadratically with the output sequence length, lan- 057

guage modeling approaches are prone to low in- 058

ference speed1 especially with increasing model 059

parameters (Pope et al., 2022). While scaling the 060

model size from hundreds of millions of parame- 061

ters to billions of parameters yields performance 062

increments for Liu et al., this scaling can become 063

infeasible, both in terms of compute required and 064

the environmental impact when using those large 065

scale models in production. 066

This raises the natural question whether a non- 067

autoregressive process capable of generating such 068

an output structure can achieve similar performance 069

whilst addressing the aforementioned limitations of 070

language modeling approaches. In this paper, we 071

present ITER, an encoder-only transformer-based 072

relation extraction model that addresses the limi- 073

tations of state-of-the-art architectures and show 074

that the structured prediction problem can be ap- 075

proached without a language modeling objective in 076

mind. 077

To summarize, our key contributions are the fol- 078

lowing: 079

1. We present ITER, a transformer-based encoder- 080

1In terms of samples/second
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only relation extraction model that addresses081

the limitations of autoregressive architectures.082

Instead of employing a language modeling ob-083

jective, our model generates the structured084

output in three basic steps. We show that085

this encoder-based approach achieves perfor-086

mance competitive to language modeling ar-087

chitectures whilst retaining only half of the088

number of parameters and increasing the in-089

ference throughput by a factor of up to 23×.090

2. We identify several drawbacks with the state-091

of-the-art architecture ASP (Liu et al., 2022),092

which limit the model’s expressivity for nested093

structures and generalization to test data. In094

our work, we address those limitations and095

translate the autoregressive approach into a096

three-stage process.097

3. In our experiments, we observe that training098

ITER on NYT, CoNLL04, ADE (RE), or GE-099

NIA, CoNLL03 (NER) results in competitive100

performance across all datasets, while main-101

taining a significantly smaller size compared102

to SOTA models. We observe small average103

improvements of 0.5 F1 points on the ADE104

dataset.105

4. We publish our implementation and check-106

points at GITHUB.COM/ANONYMOUS.107

2 Related Work108

The goal of relation extraction, sometimes also re-109

ferred to as end-to-end relation extraction or joint110

entity and relation extraction, is to identify the111

names and types of named entities, inside a given112

text, as well as classify the relationships amongst113

these entities. (Grishman and Sundheim, 1996;114

Zhao and Grishman, 2005).115

First approaches to relation extraction were to de-116

compose the task into named entity recognition and117

relation classification, where the named entities118

are identified first, while the relationships between119

the found named entities are then classified in a120

second, separate stage that is being learned inde-121

pendently. This pipeline-based approach is known122

to be prone to error propagation (Zhong and Chen,123

2021; Sui et al., 2020). Because of this known limi-124

tation, joint approaches modeling both tasks simul-125

taneously have been introduced and have shown126

promising results (Gupta et al., 2016; Wang and127

Lu, 2020).128

2.1 Span-based Techniques 129

Table-filling or span-based strategies were and 130

still are viable approaches to modeling relation 131

extraction and related tasks (Gupta et al., 2016; 132

Wang and Lu, 2020; Joshi et al., 2020; Tang et al., 133

2022; Urchade et al., 2024). Recent examples of 134

this include DiffusionNER (Shen et al., 2023) and 135

UniRel (Tang et al., 2022). DiffusionNER emits 136

a time-complexity scaling linearly in the number 137

of entities in an input and the number of diffu- 138

sion steps. Computing the interaction map for 139

UniRel scales quadratically with the sum of the 140

input size and the number of relation types. This 141

quadratic scaling is also an issue for autoregres- 142

sive techniques, where the inference time is scaling 143

quadratically with the length of the output sequence 144

(Shen et al., 2023). 145

2.2 Autoregressive Techniques 146

Modeling the task as a seq2seq problem has es- 147

tablished itself as the state-of-the-art for relation 148

extraction in the last couple of years (Cabot and 149

Navigli, 2021; Wang et al., 2022; Paolini et al., 150

2021; Liu et al., 2022; Fei et al., 2022; Lu et al., 151

2022). Enabled by the Transformer (Vaswani et al., 152

2017), the task is then formulated as a translation 153

objective: Given an example sentence, the model 154

translates the input into a flattened string that en- 155

codes the structural information contained within 156

the source text (Liu et al., 2022). 157

Both (m)REBEL (Cabot and Navigli, 2021; 158

Cabot et al., 2023) and TANL (Paolini et al., 2021) 159

translate the input sequence into a flattened out- 160

put string, that, in the (m)REBEL case, also no 161

longer resembles natural language. Paolini et al. 162

augment the target output with information about 163

entity types and relations to other named entities. 164

Both models are finetuned to produce a target lan- 165

guage specific to the task. A comparison of differ- 166

ent model outputs is available in Table 1. Either 167

model can also deal with nested entities, which 168

is crucial when dealing with real-world data, as 169

for example data from the biomedical domain is 170

known to often contain nested entities (Finkel and 171

Manning, 2009). 172

2.3 Limitations of Autoregressive Structured 173

Prediction (ASP) 174

ASP (Liu et al., 2022) has shown that autoregres- 175

sively generating a sequence of actions instead of 176

generating (augmented) natural language yields 177
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Model Output

REBEL <triplet> Barack Obama <subj> Honolulu, Hawaii <obj> place of birth

TANL [ Barack Obama | person | place of birth = Honolulu, Hawaii ] was born in [ Honolulu, Hawaii | location ]

ASP [∗ Barack Obama ] was born in [∗ Honolulu, Hawaii ]

ITER (ours)
Barack

[
Obama

]
was born in Honolulu

[
, Hawaii

]

Table 1: Comparison of different (autoregressive) relation extraction system outputs: REBEL (Cabot and Navigli,
2021), TANL (Paolini et al., 2021) and ASP (Liu et al., 2022). Input into all models was the sentence "Barack
Obama was born in Honolulu, Hawaii". Comparing ASP and our method, one can observe that ASP requires [∗

and ] actions to be placed alongside the input to model the same structure of the input.

model performance benefits not only for relation178

extraction, but for named entity recognition and179

co-reference resolution as well. At every gen-180

eration step, their model can perform three dis-181

tinct types of actions, structure-building actions,182

bracket-pairing and span-labeling actions. For the183

structure-building actions (Eq. 1), the model can184

either perform [∗ or ] actions at the current gen-185

eration position or copy the next token from the186

input into the output.187

A = { [∗ , ] , copy } (1)188

The generation completes when all input tokens189

have been copied into the output. Bracket-pairing190

actions (Eq. 2) aim to connect the current position191

with a previously performed [∗ action, resulting192

in a span.193

Bn = {m | m < n ∧ am = [∗ } (2)194

Span-labeling actions allow both the labeling of195

individual spans and the linking of the current196

formed span to an earlier found span in the output197

sequence, modeling relationships between named198

entities (Eq. 3). For relation extraction, L is instan-199

tiated as the cartesian product of the named entity200

and relation types: L = TE ×TR.201

Zn = {m | m < n ∧ am = ] } × L (3)202

The authors of ASP employ a conditional language203

model to learn to produce the optimal output struc-204

ture y∗ ∈ Y1 × · · · × YN where Yn is defined as205

Yn = A×Bn × Zn (4)206

At every time-step their model will perform the207

three basic actions (an, bn, zn) ∈ Yn sourced from208

their respective sets for structure-building actions209

A, bracket-pairing actions Bn and span-labeling210

actions Zn.211

Said approach however is not capable of captur- 212

ing nested entities in all edge cases. At every time- 213

step, ASP can only complete one span with one 214

preceding [∗ action due to the definition of Bn, 215

hence multiple consecutive ] actions would be re- 216

quired to properly model this behaviour 2. We also 217

hypothesize that the structured prediction process 218

for ASP suffers from suboptimal training due to 219

the nature of the span-labeling actions Zn. Linking 220

the span formed at the current position to another 221

span in the sequence is constrained by the fact that 222

only links to spans that have been completed in the 223

past (i.e. earlier in the sequence) are valid. As it is 224

impossible to link to spans that will be found in the 225

future (i.e. spans that come after the span ending at 226

the current position), the authors of ASP introduce 227

a directionality parameter to counteract the asym- 228

metric property of the relations in the dataset.3 229

This prevents the two tuples (Barack Obama, 230

work_for, the american people) and (the amer- 231

ican people, work_for, Barack Obama) from 232

being indistinguishable. 233

This is important as those two examples encode 234

drastically different information. The directionality 235

parameter however effectively doubles the number 236

of relations (T′
R = TR×B), leading to fewer train- 237

ing examples per relation type, and we hypothesize 238

that this yields subpar training results. 239

Aside from those architectural issues, ASP and 240

similar seq2seq Transformer models such as TANL 241

or REBEL all suffer from the quadratically scaling 242

time-complexity of generative architectures, sig- 243

nificantly impacting their inference speed (Paolini 244

2Liu et al. noted issues in generating multiple [∗ , hence

their workaround. We think ] faces this issue as well, so we
hypothesize that this hurts their models’ performance.

3As can be seen in their official implementation:
https://github.com/lyutyuh/ASP/blob/
master/data/t5minimize_ere.py#L227
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et al., 2021). This raises the question whether elim-245

inating the requirement for a conditional language246

model from ASP can retain the same model per-247

formance whilst crucially reducing inference time,248

allowing for simpler identification of all nested en-249

tities and addressing the generalization issues.250

3 Approach251

We base our approach for ITER on the work of Liu252

et al.. In order to replace the autoregressive compo-253

nent of their approach with our inference process,254

several modifications to the structured prediction255

are necessary. We divide the process into three256

basic steps:257

(1) Firstly, identify all positions n in the input x258

where a span is beginning, i.e. the [ action259

is performed, using is_left (Eq. 8).260

(2) Following that, identify all positions m ≥ n261

in the input that pair with any of the previ-262

ously identified positions n found in step 1,263

forming named entities. Position m is con-264

strained to come after or at the same position265

as the beginning of the span. is_span (Eq. 9)266

returns a set of bracket pairings with earlier267

found [ positions, which in turn can be used268

to determine the named entities in the input.269

(3) Finally, test for relationships amongst all pairs270

of named entities found in (2) using is_link271

(Eq. 11). This function will return a vector272

that, after applying the sigmoid function, con-273

tains a probability for each relationship type274

TR. If this probability exceeds 0.5, a relation275

between the two tested named entities will be276

predicted.277

Each step can individually be computed in par-278

allel, enabling an efficient implementation of our279

model.280

The first necessary change is to transition to a281

smaller subset of the structure-building actions A:282

A = { [ , ] }283

Our model must be allowed to perform both [284

and ] actions at the same time, to not lose model285

expressiveness, otherwise it will not be able to cor-286

rectly classify single-token spans4. Therefore, the287

4Think of a single-token named entity xi = BERLIN: the
model must be able to determine the span of this entity, since
it ends at the same position it started. So ai must now be a set:
ai = { [ , ] }.

structure-building actions An performed at every 288

position n must now be a subset of A, to allow for 289

this behavior. This is reflected in the definition for 290

our structured output y∗ ∈ Y1 × · · · × YN : 291

Yn = ℘(A)× ℘(Bn) (5) 292

where ℘ is the powerset operation. Since we test 293

for relationships only in step 3, we remove the 294

span-labeling actions Zn (Eq. 3). 295

To be able to properly handle nested entities, or, 296

more specifically, two or more entities ending at 297

the same position, the bracket-pairing actions are 298

also present in Yn as a subset of all possible such 299

actions Bn. This change comes in combination 300

with two adjustments to the definition of Bn itself. 301

At position m, ITER will be allowed to pair [ 302

actions at positions n ≤ m, circumventing single- 303

token named entity issues (1, Eq. 6) and each pair- 304

ing is allowed to hold its own named entity type 305

t ∈ TE (2, Eq. 6). 306

Bn = {n | n
(1)
≤ m ∧ [ ∈ An}

(2)
×TE (6) 307

3.1 Identifying Named Entities 308

Before relationships can be determined, spans need 309

to be uniquely identified by their start and end po- 310

sitions in combination with their type of the named 311

entity in the input sequence. Before any of the 312

three following generation steps, the input x is 313

given into the encoder of the base model, T5 in our 314

case, which produces a sequence of contextualized 315

vector representations h = ⟨h1 . . . hN ⟩ for x with 316

hn ∈ Rδ where δ corresponds to the hidden dimen- 317

sion size used in the base model. All three stages 318

use gated feed-forward networks of the following 319

form: 320

FFNψ
κ (h) = ((GELU(hWa)⊗ hWi)Wo (7) 321

where Wa,Wi ∈ Rψδ×2ψδ,Wo ∈ R2ψδ×κ are lin- 322

ear projections learned during training, GELU is 323

the gaussian error linear unit function (Hendrycks 324

and Gimpel, 2016) and κ is the output dimension- 325

ality. ψ = 2 when two concatenated vectors, indi- 326

cated by hm,n, are input, otherwise ψ = 1. 327

3.1.1 Determining Starting Positions of 328

Named Entities 329

To identify said spans, the model learns to predict 330

the positions where the spans of named entities in 331

the input x are beginning. This task is modeled 332

by the function is_left (Eq. 8), which receives a 333
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sequence of hidden states h as input and the output334

is an equally sized sequence of Boolean values335

⟨b1 . . . bN ⟩ ∈ BN :336

is_left(h)n = FFNψ=1
κ=1 (hn) > 0 (8)337

At all positions where is_left(h) holds true, the338

left bracket action [ is included in the set of ac-339

tions An performed at position n.340

3.1.2 Pairing Left and Right Brackets341

After determining where spans of named entities342

start in the input x, the next step is to identify which343

positions xm (m ≥ n) following xn in the input344

form a span of named entity type t ∈ TE . Our345

model learns a projection is_span , that maps the346

input h and left bracket positions n, [ ∈ An to347

a sequence of tuples of indices and entity types348

(n, t):349

is_span : Rδ×N × BN → ℘(B1)× · · · × ℘(BN )
is_span(h,b)m = {(n, t) | FFNψ

κ (hm,n)t > 0}
(9)350

with κ = |TE |, ψ = 2,bn = ⊤. For each posi-351

tion m where the output of Bm = is_span(h)m352

is non-empty, ITER performs action ] at position353

m. Each element (n, t) ∈ Bm determines a pair-354

ing from the left bracket at position n with a right355

bracket at position m of type t, forming a named356

entity. If a left bracket from step one is left un-357

linked, no named entity will be identified. The first358

two stages are visualized in Figure 1.359

3.2 Identifying Relationships amongst Named360

Entities361

The third step now tests pairs of identified named362

entities for their relationship with each other. For363

the non-nested case, is_link projects two hidden364

states hi and hj to a vector of non-normalized log-365

its, resembling probabilities after applying the sig-366

moid function (Eq. 10).367

is_link : Rδ × Rδ → Rκ

is_link(hi, hj) = σ(FFNψ
κ (hi,j))

(10)368

where κ = |TR|, ψ = 2.369

The hidden states are obtained from the posi-370

tions i, j in the input h where there is ] ∈ Ai,j371

and pairings from xi to xo ((o, t1) ∈ Bi) and sim-372

ilarly for xj with xp. is_link outputs vectors con-373

taining probabilities for relationships between two374

entities identified in (1) and (2). During inference,375

all combinations of found entities are tested for376

relationships. The ordering of head and tail entity 377

is important, so is_link(hi, hj) ̸= is_link(hj , hi). 378

The abstraction of using just the hidden state from 379

the last position of the span no longer works when 380

dealing with nested entities, as spans are no longer 381

uniquely identified by their last position, and as 382

such the hidden state of the first position will also 383

be included for such cases: 384

is_link : Rδ × Rδ × Rδ × Rδ → Rκ

is_link(hi, ho, hj , hp) = σ(FFNψ
κ (hi,o,j,p))

(11) 385

where now ψ = 4. This final step is visualized in 386

Figure 2. 387

3.3 Training 388

The model of choice for this paper is the T5 (Raf- 389

fel et al., 2020) Transformer architecture, which 390

can also be used as an encoder, albeit primarily 391

trained for autoregressive applications (Raffel et al., 392

2020). In order to circumvent error propagation 393

between the three stages of ITER, training will 394

include all three task functions simultaneously: 395

is_left , is_span and is_link . ITER receives as in- 396

put a sequence of hidden representations (hidden 397

states) h = ⟨h1, h2, . . . , hN ⟩. The sequence of 398

representations is shared across all three tasks. The 399

loss function used during training is included in 400

the Appendix, in Equations 13, 14 and 15. In a 401

nutshell, in order to minimize the training loss, the 402

model is incentivized to assign weights greater than 403

zero to the respective correct decisions in all three 404

cases, impacting the decisions taken by is_left , 405

is_span and is_link . 406

3.4 Complexity 407

In this section, we will briefly discuss the theoreti- 408

cal time complexity of our approach. Steps (1) and 409

(2) can both be parallelized across the sequence 410

dimension. As is_left only uses linear projections 411

and activation functions, its runtime is bound by 412

the length of the input sequence h, yielding a lin- 413

ear time-complexity O(N). is_span can be opti- 414

mized to only consider the closest ω left brackets, 415

and in the trivial case we set ω = 1. For nested 416

named entity datasets, ω is another hyperparam- 417

eter to be adjusted accordingly, but in the trivial 418

case, is_span can be optimized to perform exactly 419

one pass through the FFN per element of the se- 420

quence, thereby yielding a time-complexity O(N) 421

linear in the input length N . For ω > 1, we have 422

O(N ∗ ω), however ω ≪ N . Since steps (1) and 423
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INPUT Barack Obama was born in Honolulu , Hawaii

POSITION 1 2 3 4 5 6 7 8

(1) is_left(h) = b ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓w� y

y

y
(2) is_span(h,b) = Bn {(1,PER)}

{ (6,LOC),
(8,STATE)

}ww� y y
An ⊆ A [ ←[ ] [ ←[ ]

[←[ ]

Figure 1: Visualization of stages one (is_left) and two (is_span) of the model. is_left yields three positions where
spans are beginning: 1,6 and 8 (Stage 1). is_span then creates pairings of types person between position 2 and 1,
location between position 8 and 6 and state for position 8, a 1-token span (indicated by [←[ ] ).

FUNCTION HEAD ENTITY TAIL ENTITY OUTPUT

is_link(h1, h2, h6, h8)
Barack Obama

(1, 2)
Honolulu, Hawaii

(6, 8) (
live_in
0.05 ,

born_in
0.98 ,

work_in
0.01 )

is_link(h1, h2, h8, h8)
Barack Obama

(1, 2)
Hawaii
(8, 8) (

live_in
0.17 ,

born_in
0.45 ,

work_in
0.02 )

...
...

...

is_link(h6, h8, h8, h8)
Honolulu, Hawaii

(6, 8)
Hawaii
(8, 8) (

live_in
0.03 ,

born_in
0.07 ,

work_in
0.1 )

Figure 2: Visualization of the third stage of the model. The output is already sigmoid-normalized. For illustration
purposes, there are three relation types: TR = ⟨live_in, born_in,work_in⟩. The named entity "Barack Obama"
stands in relationship "born_in" with "Honolulu, Hawaii", as 0.98 > 0.5, which is the criterion defined for this
model.

(2) are performed sequentially, combining those424

remains bound by the sequence length N . Test-425

ing for relationships in step (3) requires testing all426

combinations of entities found and thus yields a427

quadratic runtime, but not in the sequence length,428

but in the number of entities E withE ≪ N . Using429

ITER thus gives a complexity of O(N +E2)) with430

E being number of entities.431

4 Experimental Results432

In this section, we give an overview over the433

datasets used in our experiments (Section 4.1) and434

we conclude with our interpretation of the results435

from said experiments (Section 4.2). Details about436

the hyperparameter search we performed can be437

found in the Appendix (Section D)438

4.1 Data439

To experimentally verify that our model can440

achieve performances on par or even higher than441

the baseline from ASP, we used 5 datasets from442

two different domains and tasks: CoNLL03 (Sang 443

and Meulder, 2003, NER) (NER), CoNLL04 (Roth 444

and Yih, 2004, RE) and NYT (Riedel et al., 2010, 445

RE) were all annotated from news articles while 446

ADE (Gurulingappa et al., 2012, RE) and GE- 447

NIA (Kim et al., 2003, NER) contain training exam- 448

ples with biomedical context. Of those five datasets, 449

three contain nested entities (NYT, ADE and GE- 450

NIA), something that ASP cannot properly model, 451

as shown in Section 2.3, which was another factor 452

for our selection. This portfolio of datasets allows 453

us to verify our claims across a wide range of ap- 454

plications and different levels of data complexity. 455

An overview regarding the datasets can be obtained 456

in Table 8. Following Li et al.; Eberts and Ulges 457

and Cabot and Navigli, we evaluate our model in 458

a strict setting: A predicted relation between two 459

entities is only considered correct, if both the span 460

and type of the entity match the gold standard. We 461

report micro F1 scores, unless stated otherwise. 462
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Transformer ASP ITER Speedup
base model examples/s examples/s over ASP

T5 (small) 44.459 1040.55 ×23.41
T5 (large) 27.177 605.398 ×22.28
T5 (3b) 29.427 334.843 ×11.38

Table 2: Comparing the inference throughput (as sam-
ples per second) of ITER versus the autoregressive ap-
proach ASP (Liu et al., 2022) on the test set of CoNLL04.
Computations were run on a single NVIDIA H100 GPU,
a batch size of 64 combined with 10 epochs of training
beforehand. Speedups of up to ×23.41 (×18.6 on avg.)
are achieved when using ITER instead of ASP.

Architecture Size NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 374 M 89.770
± 0.51

75.175
± 0.39

ITER + BERT large† 340 M ~86.02 ~66.922

ASP + FLAN T5 base 247 M 89.4 73.8
ASP + FLAN T5 large 783 M 90.5 76.2
TANL 222 M 89.8 72.6
REBEL (pretrained) 406 M - 75.4
DeepStruct 10 B 88.4 72.8
DeepStruct (finetuned) 10 B 90.70 78.3

DiffusionNER 381M 92.78 -
TF-MTRNN - 93.6 72.1
Wang and Lu - 90.1 73.6
Lu et al. >770M - 75.00
Fei et al. >770M - 75.3

Table 3: Final training results for CoNLL04, averaged
across five runs for each configuration. † Preliminary
test with other Encoder achitecture.

4.2 Results463

With the encoder of the FLAN-T5-large model as a464

base, ITER achieves state-of-the-art results on ADE465

with on average 0.5 F1 points of improvement (Ta-466

ble 5). Furthermore, it reaches good results when467

compared to most generative approaches while the468

number of parameters is significantly smaller (Ta-469

ble 3, 9, 6). Specifically, its performance closely470

aligns with that of ASP+FLAN T5 base and ASP+FLAN471

T5 large, both of which possess a similar parameter472

count, with the latter having twice the parameters473

and only being slightly better. Table 2 answers474

another research question, which was to demon-475

strate that a higher inference speed can be obtained476

with a smaller model while reaching comparable477

results. Especially compared with DeepStruct our478

model performs well, considering its size and train-479

ing time. DIFFUSIONNER performs exceptionally 480

well, and we are not able to match its performance 481

on the NER task, only coming close on CoNLL03. 482

Again, supporting our hypothesis that encoder-only 483

models —like DIFFUSIONNER—can outperform 484

generative models like DeepStruct on structure pre- 485

diction tasks. 486

Architecture NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 94.726 ± 0.16 90.707 ± 0.34

TANL 94.9 90.8
REBEL - 92.0
DeepStruct (multi-task) 95.4 93.7
UniRel - 93.7
Fei et al. - 94.2
Lu et al. - 93.54

Table 4: Final training results for NYT.

Architecture NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 91.907
± 0.72

84.300
± 1.52

TANL (multi-task) 91.2 83.8
REBEL (pretrained) - 82.2
DeepStruct (finetuned) 91.1 83.8

Wang and Lu 89.7 80.1
Yan et al. 91.3 83.2

Table 5: Final training results for ADE with 10-fold
cross-validation. F1 metrics are macro-averaged.

To further improve our understanding of ITER 487

and its shortcomings, we analyse ADE using confu- 488

sion matrices. Figure 3 shows that our model does 489

not struggle with the span-prediction task. The 490

model also learned to predict the actions [ and ] 491

at the same step where appropriate. The main chal- 492

lenge seems to be the named entity type Adverse- 493

Effekt, which is falsely predicted and missed several 494

times. Furthermore, when considering the confu- 495

sion matrices and the correlation between NER and 496

RE+ score for ADE, it becomes apparent that a 497

good NER score mostly leads to better RE+ re- 498

sults. Our confusion matrices show that ITER never 499

confuses the two entity types and when predicting 500

actions it also almost never confuses: [ , ] and 501

the one token case with each other, which in turn 502

leads to better results. 503
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Architecture Dataset F1 (strict)

ITER + FLAN T5large

CoNLL03

91.593 ± 0.39
ASP + T5base 91.8
ASP + T5large 92.8
DeepStruct (multi-task) 93.10
DiffusionNER 92.78
TF-MTRNN 86.80
Lu et al. 92.99
Fei et al. 93.2

ITER + FLAN T5large

GENIA

80.153 ± 0.25
TANL 76.4
DeepStruct (finetuned) 80.8
DiffusionNER 81.53

Table 6: Final training results for CoNLL03 and GENIA.
For CoNLL03, we trained ITER with a linear learning
rate schedule, instead of the SMAC3 prediction to use a
constant schedule, as the final performance did signifi-
cantly degrade using a constant schedule.

∅ [∗ ] [← [ ]
iter Output

∅

[∗

]

[← [ ]

T
ru

e
la

b
el

10K+ 82 58 5

58 1015 1 0

35 0 1049 2

6 0 2 32

Actions - FLAN T5 (large)

Figure 3: Confusion matrix for actions A and NER on
ADE.

5 Conclusion 504

In this paper, we identified several key drawbacks 505

in a fairly recent state-of-the-art method for rela- 506

tion extraction, ASP, and proposed several improve- 507

ments to counteract those issues. We investigated 508

whether it is possible to translate the autoregres- 509

sive process into a constant-in-time-complexity ap- 510

proach, whilst maintaining an equal level of perfor- 511

mance. 512

We unify the aforementioned proposed improve- 513

ments together with a new three-stage process in 514

ITER, an encoder-based non-autoregressive rela- 515

tion extraction model. Our model achieves perfor- 516

mances on par with state-of-the-art methods on all 517

datasets and sets a new state-of-the-art on ADE of 518

84.3 F1, whilst being functionally more expressive 519

and reducing inference time significantly, when 520

compared to ASP. In our experiments, we highlight 521

the time saving benefits of encoder-based models 522

over autoregressive seq2seq approaches, suggest- 523

ing that they are just as viable in a structure predic- 524

tion task. 525

6 Future Work 526

While our model is currently built on top of a T5 527

encoder stack, it might be insightful to explore the 528

performance of this architecture with other pre- 529

trained (encoder-only) language models such as 530

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 531

2019) or the Nyströmformer (Xiong et al., 2021) 532

One area of future work might be exploring an 533

even larger set of datasets. Unfortunately, there 534

exist no benchmark suites for relation extraction, 535

which itself might be an area of future work. While 536

most datasets are open-source, there exist propri- 537

etary datasets, preventing the democratization of 538

research in NLP and in machine learning in gen- 539

eral. Evaluating architectures on a diverse portfolio 540

of datasets instead of a limited amount of selected 541

or hand-picked datasets should also allow to gain 542

more significant insights into the performance, ca- 543

pabilities and limitations of relation extraction sys- 544

tems in general. 545

7 Limitations 546

One of ITER’s limitations are named entities that 547

are not directly contained in the input text. This 548

issue can arise when combining the NER stage of 549

ITER with tasks such as entity linking, where the 550

task is then to not only identify the named entity 551
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and its type, but also to link said entity to a knowl-552

edge base entity, something particularly interesting553

when using a relation extraction pipeline to create554

knowledge graphs. The severity of this limitation555

strongly depends on the datasets used, we focussed556

on experiments with datasets where this issue can-557

not surface.558

Furthermore, we are not able to fully compare559

ITER with ASP since we are not able to evaluate it560

on ACE05. If it is the case that the input has not561

been preprocessed, our model also requires a very562

tedious preprocessing-step that requires the pro-563

grammer to correctly align the input string with the564

tokens that the model will be trained on. This is a565

limitation of the sentencepiece (Kudo and Richard-566

son, 2018) tokenizer used in our experiments, as567

the tokenization process does not guarantee entity-568

level boundaries being respected during tokeniza-569

tion, meaning that a token spanning the characters570

i to j might contain the beginning of a span k571

(i < k < j). While generative approaches can572

circumvent this problem by introducing additional573

tokens into the target language text, encoder-based574

approaches such as our work are limited to dealing575

with this issue pre-tokenization.576

Another limitation of ITER would be the577

strong task-dependent design of the functions578

is_left , is_span and is_link . This prevents a few-579

shot task transfer without finetuning for new rela-580

tions or entity types.581
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A Appendix 830

Definitions. The LSE operation used in the fol- 831

lowing equations is defined as: 832

LSEN
n=1(x) = log

N∑
n=1

exp (xn) (12) 833

where x ∈ RN be a vector of reals. 834

During training, the model will learn to mini- 835

mize the following loss function: 836

LITER =
N∑
i=1

3∑
j=1

 Lis_left(i)
Lis_span(i)
Lis_link (i)


j

, 837

a summation of three loss values for each position 838

in the input sequence x. 839

The loss function Lis_left is defined as: 840

Lleft(n) = LSE 2
j=1

[
hn
0

]
j

− LSE 2
j=1(Γ) (13) 841

842

Γ =

[
hn + (1− α) ∗ −M

α ∗ −M

]
843

where hn ∈ R is the real-valued output of 844

FFNψ=1
κ=1 (hn) , M →∞. 845

α =

{
1 iff. [ ∈ An
0 otherwise

846

equals to one if the model should perform a [ 847

action at time-step n, effectively cancelling out one 848

of the terms in the above equation. Accordingly, 849

we define Llr: 850

Llr(n) = LSE 2
j=1(π)− LSE 2

j=1(Π) (14) 851

where 852

π =

[
(LSE η

i=1 hn,m,i)
0

]
853

854

Π =
[
(LSE η

i=1 hn,m,i +∆n,m,i) + (1− β) ∗ (−∞)
0 + β ∗ (−∞)

]
855

η = |TE | is the number of entity types and hn,m = 856

is_span(x, n,m) ∈ Rη is a vector containing one 857

logit per such entity type. 858

β =

{
1 iff. ] ∈ An
0 otherwise

859

equals one iff. the performing ] is a correct action 860

at time-step n. We also definem = max{m | m ≤ 861

n ∧ [ ∈ Am},m ≤ n, the largest index of the 862
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Dataset Learning Rate -Schedule Warmup Weight Decay Batch Activation
T5 ITER T5 ITER T5 ITER T5 ITER -size -function

CoNLL04 1e−4 4e−4 linear
with warmup

constant
with warmup

0.2 0.01 0.070 0.133 8 GELU

ADE 2e−4 2.8e−4 constant
with warmup

linear
with warmup

0.1 0.01 0.028 0.027 32 ReLU

NYT 2.5e−4 1e−4 linear
with warmup

linear 0.2 0 0.016 0.07 8 ReLU

GENIA 2.6e−4 8e−4 linear
with warmup

linear
with warmup

0.2 0.1 0.045 0.056 16 ReLU

CoNLL03 2e−4 9.7e−5 constant constant 0 0 0.096 0.0098 8 ReLU

Table 7: Hyperparameter search results obtained using SMAC3 (Lindauer et al., 2022). For all datasets, the
search was performed for 8 GPU hours using a single NVIDIA H100 GPU per dataset. The single best incumbent
configuration has been selected for final training on the respective datasets.

preceeding positions where [ ∈ Am. Finally, we863

define864

∆n,m,i =

{
0 iff. (m, ti) ∈ Bn, ti ∈ TE

−∞ otherwise
865

to equal zero iff. there is a bracket pairing between866

the positions m and n of type ti ∈ TE , and a large867

negative value otherwise. In order to minimize the868

loss function, the model is hereby incentivized to869

assign negative values to not existing interactions870

between two positions m and n of a certain type871

ti. Lastly, Lis_link is defined as the binary cross872

entropy loss function:873

Lis_link (n) =
∑
m

|TR|∑
i=1

{
µ iff. ] ∈ An,m
0 otherwise

(15)874

where875

µ =
∑[

θn,m,i ∗ log (hn,m,i)
(1− θn,m,i) ∗ log (1− hn,m,i)

]
876

with877

hn,m,i = is_link(x, n,m)878

and θn,m,i = 1 iff. the spans ending at positions n879

and m are in relationship i, θn,m,i = 0 otherwise.880

B Dataset Statistics881

Dataset TRAIN DEV TEST Nested Entities

ADE 4,272 10%* 10%* ✓
NYT 56,196 5,000 5,000 ✓
CONLL03 954 216 231 ✗
CONLL04 922 231 288 ✗
GENIA 16,692 † 1,854 ✓

Table 8: Number of samples per dataset split. * No
official dataset split exists for ADE so we employ 10-
fold cross-validation with 10% of the total examples
following . † GENIA comes with only two files.

C Proofs 882

Theorem 1. Let x ∈ VN be a sequence of tokens 883

with xN = EOS. If y ∈ Y1×. . .YM is the decoded 884

sequence of actions, then M ≥ N holds for all 885

x ∈ VN. 886

Proof. Let am be the action chosen at step m, 887

# copy (m) =
∑m

i=1 1
[
ai= copy

] be the number 888

of tokens xn that have been copied until generation 889

step m. Recall: generation completes at step m 890

when x# copy (m) = EOS ∧ am = copy (1), i.e. 891

the EOS token has been copied into the output. 892

Let #A(m) = m be the number of actions per- 893

formed up until a certain point m in the output 894

sequence y of length M . It holds that 895

#A(m) =
∑m

i=1 1ai= copy
≥ 0

+
∑m

i=1 1ai ̸= copy
≥ 0

. 896

With that, it follows that # copy (m) ≤ #A(m) 897

(2). Using (1) we get # copy (M) = N and with 898

(2) we then get N ≤ #A(M) = M =⇒ N ≤ 899

M ⇔M ≥ N 900

D Hyperparameter search 901

Before training all of our models, we perform a hy- 902

perparameter search for all datasets using SMAC3 903

(Lindauer et al., 2022). For all datasets, we search 904

for 8 hours, optimizing for high RE+ or NER F1, 905

depending on the task. The search space con- 906

sists of learning rates lr ∈ [1e−3, 2e−5], learn- 907

ing rate schedules (constant or linear), warmup 908

ratio r ∈ {0.0, 0.05, 0.1, 0.2} and weight decay 909

rate wd ∈ [0, 0.1] for both the parameters of the 910

base model (T5 in our case) and the parameters on 911

top that are responsible for modeling the functions 912

is_left , is_span and is_link , combined with batch 913

size bs ∈ {8, 16, 32, 64} and choice of activation 914

12



function act ∈ {GELU,ReLU, tanh}. The re-915

sults of the hyperparameter search can be obtained916

in Table 7.917

Architecture NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large † 66.82 35.03

(Ye et al., 2022) 69.9 41.6
(Sai et al., 2021) 70.53 39.41
SpERT 67.62 46.44 ‡
(Urchade et al., 2024) 69.7 38.6
(Wang et al., 2021) 68.4 36.9

Table 9: Final training results for SciERC. † Preliminary
tests.‡BoundaryScorereported.
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