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ABSTRACT

Embodied agents operate in a structured world, often solving tasks with spatial,
temporal, and permutation symmetries. Most algorithms for planning and model-
based reinforcement learning (MBRL) do not take this rich geometric structure
into account, leading to sample inefficiency and poor generalization. We introduce
the Equivariant Diffuser for Generating Interactions (EDGI), an algorithm for
MBRL and planning that is equivariant with respect to the product of the spatial
symmetry group SE(3), the discrete-time translation group Z, and the object
permutation group S,,. EDGI follows the Diffuser framework (Janner et al., 2022)
in treating both learning a world model and planning in it as a conditional generative
modeling problem, training a diffusion model on an offline trajectory dataset. We
introduce a new SE(3) x Z x S,,-equivariant diffusion model that supports multiple
representations. We integrate this model in a planning loop, where conditioning
and classifier-based guidance allow us to softly break the symmetry for specific
tasks as needed. On navigation and object manipulation tasks, EDGI improves

sample efficiency and generalization.

1 INTRODUCTION

Our world is awash with symmetries. The
laws of physics are the same everywhere
in space and time—they are symmetric un-
der translations and rotations of spatial co-
ordinates as well as under time shifts.! In
addition, whenever multiple identical or
equivalent objects are labeled with num-
bers, the system is symmetric with respect
to a permutation of the labels. Embodied
agents are exposed to this structure, and
many common robotic tasks exhibit spa-
tial, temporal, or permutation symmetries.
The gaits of a quadruped are independent
of whether it is moving East or North, and
a robotic gripper would interact with multi-
ple identical objects independently of their
labeling. However, most reinforcement
learning (RL) and planning algorithms do
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Figure 1: Schematic of EDGI in a navigation task,
where the agent (red square) plans the next actions (red
dots) to reach the goal (green star) without touching ob-
stacles (grey circles). Top: planning as conditional sam-
pling from a diffusion model. Bottom: effect of a group
action. Equivariance requires the diagram to commute.

*Equal contribution, order determined through a game of table tennis
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IThis is true in the approximately flat spacetime on Earth, as long as all velocities are much smaller than the
speed of light. A machine learning researcher who finds herself close to a black hole may disagree.



Reincarnating Reinforcement Learning Workshop at ICLR 2023

not take this rich structure into account. While they have achieved remarkable success on well-defined
problems after sufficient training, they are often sample-inefficient (Holland et al., 2018) and lack
robustness to changes in the environment.

To improve the sample efficiency and robustness of RL algorithms, we believe it is paramount
to develop them with an awareness of their symmetries. Such algorithms should satisfy two key
desiderata. First, policy and world models should be equivariant with respect to the relevant symmetry
group. Often, for embodied agents this will be a subgroup of the product group of the spatial symmetry
group SE(3), the group of discrete time shifts Z, and one or multiple object permutation groups
S.. Second, it should be possible to softly break (parts of) the symmetry group to solve concrete
tasks. For example, a robotic gripper might be tasked with moving an object to a specific point in
space, which breaks the symmetry group SE(3). First works on equivariant RL have demonstrated
the potential benefits of this approach (van der Pol et al., 2020; Walters et al., 2020; Mondal et al.,
2021; Muglich et al., 2022; Wang and Walters, 2022; Wang et al., 2022; Cetin et al., 2022; Rezaei-
Shoshtari et al., 2022; Deac et al., 2023). However, these works generally only consider small finite
symmetry groups such as C,, and do not usually allow for soft symmetry breaking at test time.

In this paper, we introduce the Equivariant Diffuser for Generating Interactions (EDGI), an equivari-
ant algorithm for model-based reinforcement learning and planning. EDGI consists of a base compo-
nent that is equivariant with respect to the full product group SE(3) x Z x S,, and supports the multi-
ple different representations of this group we expect to encounter in embodied environments. More-
over, EDGI allows for a flexible soft breaking of the symmetry at test time depending on the task.

Our work builds on the Diffuser method by Janner et al. (2022), who approach both the learning of a
dynamics model and planning within it as a generative modeling problem. The key idea in Diffuser is
to train a diffusion model on an offline dataset of state-action trajectories. To plan with this model, one
samples from it conditionally on the current state, using classifier guidance to maximize the reward.

Our main contribution is a new diffusion model that is equivariant with respect to the product group
SE(3) x Z x S,, of spatial, temporal, and permutation symmetries and supports data consisting of
multiple representations. We introduce a new way of embedding multiple input representations into
a single internal representation, as well as novel temporal, object, and permutation layers that act
on the individual symmetries. When integrated into a planning algorithm, our approach allows for a
soft breaking of the symmetry group through test-time task specifications both through conditioning
and classifier guidance. We demonstrate EDGI in 3D navigation and robotic object manipulation
environments. Compared to non-equivariant baselines, we find a performance improvement in the
low-data regime as well as increased robustness to symmetry transformations of the environment.

2 BACKGROUND

Equivariant deep learning. Equivariant networks directly encode the symmetries described by
a group G in their architecture. For the purposes of this paper, we are interested in the symmetries of
3D space, which include translations and rotations and are described by the special Euclidean group
SE(3), discrete-time translations Z, and object permutations, which are defined using the symmetric
group of n elements S,.

A function f : X — ) is called G-equivariant if g - f(z) = f(g-x) forall g € G and € X. Here
X and Y are input and output spaces that carry a G action denoted by -. The function f is called
G-invariant if the group action in ) is trivial, g - y = y. We will focus on X = R”, Y = R™, and
linear group actions or representations, which are group homomorphisms p : G — GL(R¥).

For generative modeling, we seek to model G-invariant densities. As proven in (Kohler et al., 2020;
Bose and Kobyzev, 2021; Papamakarios et al., 2021), given a G-invariant prior density it is sufficient
to construct a G-equivariant map to reach the desired G-invariant target density. In Sec. 3, we design
G-equivariant diffusion architectures to model a distribution of trajectories that are known to be
symmetric with respect to the product group SE(3) X Z X S,,.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015) are latent variable models that gen-
erate data by iteratively inverting a diffusion process. This diffusion process starts from a clean data
sample x ~ ¢(x() and progressively injects noise for ¢ € [T’ steps until the distribution is pure noise.
The reverse, generative process takes a sample from a noise distribution and denoises it by progres-
sively adding back structure, until we return to a sample that resembles being drawn from the empiri-



Reincarnating Reinforcement Learning Workshop at ICLR 2023

cal data distribution p(x). In diffusion models, it is customary to choose a parameter-free diffusion
process (e. g. Gaussian noise with fixed variance). Specifically, define q(x¢|x¢—1) as the forward diffu-
sion distribution modeled as a Gaussian centered around the sample at timestep x;—1: q(2¢|zi—1) =
N (z; /1 = Bywy_1, BeI), where B; is a known variance schedule. The reverse generative process is
learnable and can be parametrized using another distribution pp (z¢_1|2¢) = N (24_1; pg (4, t), 021),
and the constraint that the terminal marginal at time T is a standard Gaussian—i.e. p(zr) = N(0, I).
The generative process can be learned by maximizing a variational lower bound on the marginal like-
lihood. In practice, instead of predicting the mean of the noisy data, it is convenient to predict the
noise level ¢; directly Ho et al. (2020). Furthermore, to perform low-temperature sampling in diffu-
sion models it is possible to leverage a pretrained classifier to guide the generation process (Dhariwal
and Nichol, 2021). To do so we can modify the diffusion score by including the gradient of the log
likelihood of the classifier €y(x,t,c) = €g(zt,t) — AoV, log p(c|z:), where A is the guidance
weight and c is the label.

Trajectory optimization with diffusion. We are interested in modeling systems that are governed by

discrete-time dynamics of a state s,+1 = f(sn,an), given the state s;, and action a;, taken at timestep

h. The goal in trajectory optimization is then to find a sequence of actions afj.;; that maximizes an

objective (reward) 7 which factorizes over per-timestep rewards r(sy,, ay, ). Formally, this corresponds
o N H

to the optimization problem aj.,; = argmaxg,,, J(S0,00:q) = argmaxXay, > n_o7(Sh,an),

where H is the planning horizon and 7 = (s, ao, . - ., Sy, ag ) denotes the trajectory.

A practical method to solve this optimization problem is to unify the problem of learning a model of
the state transition dynamics and the problem of planning with this model into a single generative
modeling problem. Janner et al. (2022) propose to train a diffusion model on offline trajectory
data consisting of state-action pairs, learning a density py(7). Planning can then be phrased as a
conditional sampling problem: finding the distribution

Po(7) o po(T)e(7), M

over trajectories 7 where ¢(7) encodes constraints on the trajectories and specifies the task for instance
as a reward function. Diffusion models allow conditioning in a way similar to inpainting in generative
image modeling, and reward maximization in analogy to classifier-based guidance.

3 EQUIVARIANT DIFFUSER FOR GENERATING INTERACTIONS (EDGI)

We now describe our EDGI method. We begin by discussing the symmetry group SE(3) x Z x S,
and common representations in robotic problems. In Sec. 3.2 we introduce our key novelty, an
SE(3) x Z x Sy-equivariant diffusion model for state-action trajectories 7. Finally, we show how a
diffusion model trained on offline trajectory data can be used for planning in Sec. 3.3.

3.1 SYMMETRY AND REPRESENTATIONS

Symmetry group. We consider the symmetry group SE(3) x Z X S,,, which is a product of three
distinct groups: 1. the group of spatial translations and rotations SE(3), 2. the discrete time translation
symmetry Z, and 3. the permutation group over n objects S,,. It is important to note, however, that this
symmetry group may be softly broken in an environment. For instance, the direction of gravity usually
breaks the spatial symmetry group SE(3) to the smaller group SE(2), and distinguishable objects in
a scene may break permutation invariance. We follow the philosophy of modeling invariance with
respect to the larger group and including any symmetry-breaking effects as inputs to the networks.

We require that spatial positions are always expressed relative to a reference point, for example, the
robot base or center of mass. This guarantees equivariance with respect to spatial translations: to
achieve SE(3) equivariance, we only need to design an SO(3)-equivariant architecture.

Data representations. We consider 3D environments that contain an embodied agent as well as n
other objects. We parameterize their degrees of freedom with two SO(3) representations, namely the
scalar representation pg and the vector representation p;. Any SE(3) pose can be transformed to these
two representations, see Appendix A for details. We assume that all trajectories transform under the
regular representation of the time translation group Z (similar to how images transform under spatial
translations). Under S,,, object properties permute, while robot properties or global properties of the
state remain invariant. Each feature is thus either in the trivial or the standard representation of S,,.
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Figure 2: Architecture of our SE(3) x Z x S,,-equivariant denoising network. Input trajectories (top
left), which consist of features in different representations of the symmetry group, are first transformed
into a single internal representation (green block). The data are then processed with equivariant
blocks (blue), which consist of convolutional layers along the time dimension, attention over objects,
normalization layers, and geometric layers, which mix scalar and vector components of the internal
representations. These blocks are combined into a U-net architecture. For simplicity, we leave out
many details, including residual connections, downsampling, and upsampling layers; see Appendix A.

Overall, we thus expect that data in environments experienced by our embodied agent to be categorized
into four representations of the symmetry group SE(3) x Z x S,,: scalar object properties, vector
object properties, scalar robotic degrees of freedom (or other global properties of the system), and
vector robotic degrees of freedom (again including other global properties of the system).

3.2 EQUIVARIANT DIFFUSION MODEL

Our main contribution is a novel SE(3) x Z x S, -equivariant diffusion model which leads to an in-
variant distribution over trajectories. Specifically, given an invariant base density with respect to our
chosen symmetry group—a Gaussian satisfies this property for SE(3) x Z x S,,—and an equivariant
denoising model with respect to the same group we arrive at a diffusion model that is SE(3) x Z x S,-
invariant (Kohler et al., 2020; Papamakarios et al., 2021). Under mild assumptions, such an equiv-
ariant map that pushes forward the base density always exists (Bose and Kobyzev, 2021).

We design a novel equivariant architecture for the denoising model f. Implemented as a neural
network, it maps noisy input trajectories 7 and a diffusion time step ¢ to an estimate € of the noise
vector that generated the input. Our architecture does this in three steps. First, the input trajectory
consisting of various representations is transformed into an internal representation of the symmetry
group. Second, in this representation the data are processed with an equivariant network. Finally, the
outputs are transformed from the internal representation into the original data representations present
in the trajectory. We illustrate the architecture of our EDGI model in Fig. 2.

Step 1: Representation mixer. The input noisy trajectory consists of features in different represen-
tations of the symmetry group (see above). While it is possible to mirror these input representations
for the hidden states of the neural network, the design of equivariant architectures is substantially
simplified if all inputs and outputs transform under a single representation. Hence, we decouple
the data representation from the representation used internally for the computation—in a similar
fashion to graph neural networks that decouple the data and computation graphs.

Internal representation. We define a single internal representation that for each trajectory time step



Reincarnating Reinforcement Learning Workshop at ICLR 2023

t € [H], each object o € [n], each channel ¢ € [n.] consists of an> SO(3) scalar s, and an SO(3)
VECLOT Ugoe. We WIIte Wioe = (Stoc, Vioc) € RE. Under spatial rotations g € SO(3), these features
thus transform as the direct sum of the scalar and vector representations pg & p1:

_ Stoc / _ pO(g)Stoc
Wtoe = (Utoc) — Wioe = (Pl(f])%oa) . (2)

These internal features transform in the regular representation under time shift and in the standard
representation under permutations P as wype — Weore = o Poro Wioc. There are thus no global (not
object-specific) properties in our internal representations.

Transforming input representations into internal representations. The first layer in our network
transforms the input 7, which consists of features in different representations of SE(3) x Z x S,
into the internal representation. On the one hand, we pair up SO(3) scalars and SO(3) vectors into
po @ p; features. On the other hand, we get rid of global features — those unassigned to one of the n
objects in the scene — by including them in the representation of each of the n objects.

Concretely, for each object o € [n], each trajectory step t € [H], and each channel ¢ = [n.], we
define the input in the internal representation as woe € R* as follows:

S WL Stoer S W3 sipe
nn — C gcc + c ch . (3)
o <Zc’ Wocc/vtoc/ Zc/ Wocc’vtw(:’

) . . biect bject lobal
The matrices W1-2:3:4 are learnable and of dimension 7 X n. X ne ¥, nx ne x ng 2 nxne xng o,

lobal . bject - . :
orn x n. x n§", respectively. Here ng”* is the number of SO(3) scalar quantities associated

with each object in the trajectory, n9¥* is the number of SO(3) vector quantities associated with

each object, n&°* is the number of scalar quantities associated with the robot or global properties

of the system, and n%l"bal is the number of vectors of that nature. The number of input channels n,
is a hyperparameter. We initialize the matrices W* such that Eq. (3) corresponds to a concatenation

of all object-specific and global features along the channel axis at the beginning of training.

Step 2: SE(3) x Z x S,-equivariant U-net. We then process the data with a SO(3) x Z x S,,-
equivariant denoising network. Its key components are three alternating types of layers. Each type
acts on the representation dimension of one of the three symmetry groups while leaving the other two
invariant—i. e. they do not mix internal representation types of the other two layers:

» Temporal layers: Time-translation-equivariant convolutions along the temporal direction
(i. e. along trajectory steps), organized in a U-Net architecture.

* Object layers: Permutation-equivariant self-attention layers over the object dimension.
* Geometric layers: SO(3)-equivariant interaction between the scalar and vector features.

In addition, we use residual connections, a new type of normalization layer that does not break
equivariance, and context blocks that process conditioning information and embed it in the internal
representation (see Appendix A for more details). These layers are combined into an equivariant
block consisting of one instance of each layer, and the equivariant blocks are arranged in a U-net, as
depicted in Fig. 2. Between the levels of the U-net, we downsample (upsample) along the trajectory
time dimension by factors of two, increasing (decreasing) the number of channels correspondingly.

Temporal layers. Temporal layers consist of 1D convolutions along the trajectory time dimension. To
preserve SO(3) equivariance, these convolutions do not add any bias and there is no mixing of features
associated with different objects nor the four geometric features of the internal SO(3) representation.

Permutation layers. Permutation layers enable features associated with different objects to interact
via an equivariant multi-head self-attention layer. Here, there is no mixing between features associated
with different time steps, nor between the four geometric features of the internal SO(3) representation.
This is SO(3)-equivariant, as the attention weights compute invariant SO(3) norms.

Geometric layers. Geometric layers enable mixing between the scalar and vector quantities that
are combined in the internal representation but do not mix between different objects or across the

?Pairing up just one scalar and one vector is a design choice; for systems in which scalar or vectorial
quantities play a larger role, it may be beneficial to use multiple copies of either representation here.
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time dimension. We construct an expressive equivariant map between scalar and vector inputs and
outputs following Villar et al. (2021): We first separate the inputs into SO(3) scalar and vector com-
ponents, Wioe = (Stoc, Vioc) . . We then construct a complete set of SO(3) invariants by combining
the scalars and pairwise inner products between the vectors, St, = {Stoc}e U {Vtoc * Vtoe’ fe,er- These
are then used as inputs to two MLPs ¢ and ¢, and finally we get output scalars and vectors, w},, =
(0(Sto)es 2o Y(Sto)ee Vioer ). Villar et al. (2021) show that this approach can approximate any equiv-
ariant map between SO(3) scalars and vectors under mild assumptions. In its original form, however,
it can become prohibitively expensive, as the number of SO(3) invariants Sy, scales quadratically
with the number of channels. Thus, we first linearly map the input vectors into a smaller number of
vectors, apply this transformation, and increase the number of channels again with another linear map.

Step 3: Representation unmixer. The equivariant network outputs internal representations wy,,. that
are transformed back to data representations using linear maps, in analogy to Eq. (3). Global proper-
ties, e. g. robotic degrees of freedom, are aggregated from the object-specific internal representations
by taking the mean, minimum, and maximum across the objects. These three aggregates are then
concatenated along the channel dimension. We find it beneficial to apply an additional geometric
layer to these aggregated global features before separating them into the original representations.

Training. We train EDGI by optimizing for a simplified variational lower bound (Ho et al., 2020)
on offline trajectories without any reward information.

3.3 PLANNING WITH EQUIVARIANT DIFFUSION

Planning as diffusion. A diffusion model trained on offline trajectory data jointly learns a world
model and a policy. Following Janner et al. (2022), we use it to solve planning problems by choosing
a sequence of actions to maximize the expected task rewards.

To do this, we use three features of diffusion models. The first is the ability to sample from them
by drawing noisy trajectory data from the base distribution and iteratively denoising them with the
learned network yielding trajectories similar to those in the training set. For such sampled trajectories
to be useful for planning, they need to begin in the current state of the environment. We achieve this
by conditioning the sampling process such that the initial state of the generated trajectories matches
the current state, in analogy to inpainting. Finally, we can guide this sampling procedure toward
solving concrete tasks specified at test time using classifier-based guidance where a regression model
is trained offline to map trajectories to task rewards.

Symmetry breaking. By construction, our equivariant diffusion model learns a SE(3) X Z X S,,-
invariant density over trajectories. Unconditional samples will reflect this symmetry property—it will
be equally likely to sample a trajectory and its rotated or permuted counterpart. However, concrete
tasks will often break this invariance, for instance by requiring that a robot or object is brought into
a particular location. Our EDGI approach allows us to elegantly break the symmetry at test time
for concrete tasks. Such a soft symmetry breaking can happen through conditioning, for instance
by specifying the initial or final state of the sampled trajectories, or through a non-invariant reward
model used for guidance during sampling.

4 EXPERIMENTS

We demonstrate the effectiveness of incorporating symmetries as a powerful inductive bias in the
Diffuser algorithm with experiments in two environments. The first environment is a 3D navigation
task, in which an agent needs to navigate a number of obstacles to reach a goal state. Rewards are
awarded based on the distance to the goal at each step, with penalties for collisions with obstacles.
The position of the obstacles and the goal state are different in each episode and part of the obser-
vation. For simplicity, the actions directly control the acceleration of the agent and we use identical
spherical obstacles. Please see Fig. 1 for a schematic representation of this task and Appendix B
for more details and the reward structure for this task.

In our remaining experiments, the agent controls a simulated Kuka robotic arm interacting with four
blocks on a table. Following Janner et al. (2022), we consider three different tasks: an unconditional
block stacking task, a conditional block stacking task where the stacking order is specified, and
a rearrangement problem, in which the stacking order has to be changed in a particular way. For
both environments, we generate an offline trajectory dataset of roughly 10° (navigation) or 10°
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Standard setting SO(3) generalization
Environment BCQ CQL Diffuser EDGI (ours) Diffuser EDGI (ours)
Navigation - - 94943, 95.1.3.4 5.644.4 83.3.55
Unconditional 0.0 244 61.3.-~ 62.042 1 393125 59.9., 4
Conditional 0.0 0.0 523:35 45.844.3 177453 37.9.:55¢
Rearrangement 0.0 0.0 54.04:35 53.0+35 20.342.7 48.8.35
Average 0.0 81 5859419 53.6-20 25.841.4 48.9.5 4

Table 1: Performance on navigation tasks and block stacking problems with a Kuka robot. We report
normalized cumulative rewards, showing the mean and standard errors over 100 episodes. Results
consistent with the best results within the errors are bold. BCQ and CQL results are taken from Janner
et al. (2022); for Diffuser, we show our reproduction using their codebase. Left: Models trained
on the standard datasets. Right: SO(3) generalization experiments, with training data restricted to
specific spatial orientations such that the agent encounters previously unseen states at test time.

(manipulation) trajectories. We describe the setup in detail in Appendix C.

Algorithms. We train our EDGI on the offline dataset and use conditional sampling to plan the next
actions. For the conditional and rearrangement tasks in the Kuka environment, we also use classifier
guidance following Janner et al. (2022). As our main baseline, we compare our results to the (non-
equivariant) Diffuser model (Janner et al., 2022). We also compare two model-based RL baselines
reported by (Janner et al., 2022), BCQ (Fujimoto et al., 2019) and CQL (Kumar et al., 2020).

Task performance. We report the results on both navigation and object tasks in Tab. 1. For each
environment, we evaluate 100 episodes and report the average reward and standard error for each
method. In the navigation task, the baseline diffuser fails to solve the problem, even after substan-
tially increasing the model’s capacity compared to the hyperparemeters used in Janner et al. (2022).
EDGTI achieves a substantially better performance. On the Kuka environment, we find that EDGI
achieves rewards comparable with the original Diffuser model within the error bars and both methods
clearly outperform the BCQ and CQL baselines.

Sample efficiency. Next, we study the sample efficiency by training EDGI and Diffuser models on
small subsets of the training data. The results in Fig. 3 show that our EDGI model achieves reason-
able rewards in both environments even when training with only on 0.1% of the training data, while
the baseline Diffuser struggles in this setting. This provides evidence for the benefits of the inductive
bias of equivariant models and matches similar observations in other works for using symmetries
in an RL context (van der Pol et al., 2020; Walters et al., 2020; Mondal et al., 2021; Rezaei-Shoshtari
et al., 2022; Deac et al., 2023).

Group generalization. Finally, we demonstrate that equivariance improves generalization across the
SO(3) symmetry group. On both environments, we train EDGI and Diffuser models on restricted
offline datasets in which all trajectories are oriented in a particular way. In particular, in the navigation
environment, we only use training data that navigates towards a goal location with x = 0. In the
robotic manipulation tasks, we only use training trajectories where the red block is in a position
with x = 0 at the beginning of the episode. We test all agents on the original environment, where
they encounter goal positions and block configurations unseen during training. We show results for
these experiments in Tab. 1. The original Diffuser performs substantially worse, showing its limited
capabilities to generalize to the new setting. In contrast, the performance of EDGI is robust to this
domain shift, confirming that equivariance helps in generalizing across the symmetry group.

5 RELATED WORK

Our work builds on two foundational lines of research: framing planning as a generative modeling
problem and equivariant deep learning. The closest work to ours is the original Diffuser paper (Jan-
ner et al., 2022) which we used as a baseline. Concurrent to our work, Diffuser was extended by
Ajay et al. (2022) who used a separate inverse dynamics model and classifier-free guidance. The key
novelty of our work is that we make this approach aware of the symmetry structure of planning prob-
lems through a new SE(3) x Z x S,,-equivariant denoising network yielding an invariant distribution
over trajectories while allowing for soft symmetry breaking as dictated by the task.
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Figure 3: Average reward as a function of training dataset size for EDGI and Diffuser. Left: navigation
environment. Right: Kuka object maniplation, averaged over the three tasks.

Equivariant deep learning. Baking in symmetries into deep learning architectures was first studied
in the work of (Cohen and Welling, 2016a) for geometric transformations, and the DeepSet architec-
ture for permutations (Zaheer et al., 2017). Followup work to group convolutional networks focused
on both spherical geometry (Cohen et al., 2018) and building kernels using irreducible group repre-
sentations (Cohen and Welling, 2016b; Weiler and Cesa, 2019; Cesa et al., 2021). For symmetries of
the 3D space—i. e. subgroups of E(3)—a dominant paradigm is to use the message passing frame-
work (Gilmer et al., 2017) along with geometric quantities like positions, velocities, and relative
angles (Satorras et al., 2021; Schiitt et al., 2021; Batatia et al., 2022).

Equivariance in RL. The role of symmetries has also been explored in reinforcement learning
problems with a body of work focusing on symmetries of the joint state-action space of an MDP
(van der Pol et al., 2020; Walters et al., 2020; Mondal et al., 2021; Muglich et al., 2022; Wang
and Walters, 2022; Wang et al., 2022; Cetin et al., 2022; Rezaei-Shoshtari et al., 2022). More
recently, model-based approaches—Ilike our proposed EDGI—have also benefited from increased
data efficiency through the use of symmetries of the environment (Deac et al., 2023).

Equivariant generative models. Early efforts in learning invariant densities using generative models
utilized the continuous normalizing flow (CNF) framework. A variety of works imbued symmetries
by designing equivariant vector fields (Kohler et al., 2020; Rezende and Mohamed, 2015; Bose and
Kobyzev, 2021). As flow-based models enjoy exact density estimation, their application is a natural
fit for applications in theoretical physics (Boyda et al., 2020; Kanwar et al., 2020) and modeling
equivariant densities on manifolds (Katsman et al., 2021). Other promising approaches to CNFs
include equivariant score matching (De Bortoli et al., 2022) and diffusion models (Hoogeboom et al.,
2022; Xu et al., 2022; Igashov et al., 2022). Our proposed EDGI model extends the latter category to
the product group SE(3) x Z x S,, and increases flexibility with respect to the data representations.

6 DISCUSSION

Embodied agents often solve tasks that are structured through the spatial, temporal, or permutation
symmetries of our 3D world. Taking this structure into account in the design of planning algorithms
can improve sample efficiency and generalization—notorious weaknesses of RL algorithms.

We introduced EDGI, an equivariant planning algorithm that operates as conditional sampling in a
generative model. The main innovation is a new diffusion model that is equivariant with respect to the
symmetry group SE(3) x Z x S, of spatial, temporal, and object permutation symmetries. Beyond
this concrete architecture, our work presents a general blueprint for the construction of networks
that are equivariant with respect to a product group and support multiple representations in the data.
Integrating this equivariant diffusion model into a planning algorithm allows us to model an invariant
base density, but still solve non-invariant tasks through task-specific soft symmetry breaking. We
demonstrated the performance, sample efficiency, and robustness of EDGI on object manipulation
and navigation tasks.

While our work shows encouraging results, training and planning are currently expensive. Progress
on this issue can come both from more efficient layers in the architecture of the denoising model as
well as from switching to recent continuous-time diffusion methods with accelerated sampling.
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A ARCHITECTURE DETAILS

On a high level, EDGI follows Diffuser (Janner et al., 2022). In the following, we will describe the
key difference: our SE(3) x Z X S,,-equivariant architecture for the diffusion model.

Overall architecture. We illustrate the architecture in Fig. 2. After converting the input data in our
internal representation (see Sec. 3.2), the data is processed with an equivariant U-net with four levels.
At each level, we process the hidden state with two residual standard blocks, before downsampling
(in the downward pass) or upsampling (in the upward pass).

Residual standard block. The main processing unit of our architecture processes the current hidden
state with an equivariant block consisting of a temporal layer, an object layer, a normalization layer,
and a geometric layer. In parallel, the context information (an embedding of diffusion time and a
conditioning mask) is processed with a context block. The hidden state is added to the output of the
context block and processes with another equivariant block. Finally, we process the data with a linear
attention layer over time. This whole pipeline consists of an equivariant block, a context block, and
another equivariant block is residual (the inputs are added to the outputs).

Temporal layers. Temporal layers consist of one-dimensional convolutions without bias along the
time dimension. We use a kernel size of 5.

Object layers. Object layers consist of multi-head self-attention over the object dimension. We use
four heads. Keys, queries, and values are constructed as bias-free linear transformations of the inputs
to a 32-channel vector. Given inputs wy,., the permutation layer computes

_ E K _ E Q _ § \%
Ko = ch/wtoc 5 Qtoc = ch’ Wioe, Vioe = ch/ Wtoc 5
c’ c’ c’
/ E : .
Wy, X softmax, (Qtoc . Kto/c)vto’cv
O/

with learnable weight matrices W:V:@,

Normalization layers. We use a simple equivariant normalization layer that for each batch element
rescales the entire tensor w;y,. to unit variance. This is essentially an equivariant version of LayerNorm.
The difference is that our normalization layer does not shift the inputs to zero means, as that would
break equivariance with respect to SO(3).

Geometric layers. In the geometric layers, the input state is split into scalar and vector components.
The vector components are linearly transformed to reduce the number of channels to 16. We
then construct all SO(3) invariants from these 16 vectors by taking pairwise inner products and
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concatenating them with the scalar inputs. This set of scalars is processed with two MLPs, each
consisting of two hidden layers and ReLU nonlinearities. The MLPs output the scalar outputs and
coefficients for a linear map between the vector inputs and the vector outputs, respectively. Finally,
there is a residual connection that adds the scalar and vector inputs to the outputs.

Linear attention over time. To match the architecture used by Janner et al. (2022) as closely as
possible, we follow their choice of adding another residual linear attention over time at the end
of each level in the U-net. We make the linear attention mechanism equivariant by computing the
attention weights as

Context blocks. The embeddings of diffusion time and conditioning information are processed with
a Mish nonlinearity and a linear layer, like in Janner et al. (2022). Finally, we embed them in our
internal representation by zero-padding the resulting tensor.

Upsampling and downsampling. During the downsampling path, there is a final temporal layer
that implements temporal downsampling and increases the number of channels by a factor of two.
Conversely, during the upsampling path, we use a temporal layer for temporal upsampling and a
reduction of the number of channels.

B NAVIGATION EXPERIMENTS

We introduce a new navigation environment. The scene consists of a spherical agent navigating a
plane populated with a goal state and n = 10 spherical obstacles. At the beginning of every episode,
the agent position, agent velocity, obstacle positions, and goal position are initialized randomly (in a
rotation-invariant way). We simulate the environment dynamics with PyBullet (Coumans and Bai,
2016-2019).

Offline dataset. To obtain expert trajectories, we train a TD3 (Fujimoto et al., 2018) agent in the
implementation by Raffin et al. (2021) for 107 steps with default hyperparameters on this environment.
We generate 10° trajectories for our offline dataset.

State. The state contains the agent position, agent velocity, goal position, and obstacle positions.
Actions. The action space is two-dimensional and specifies a force acting on the agent.

Rewards. At each time step, the agent receives a reward equal to the negative Euclidean distance
to the goal state. In addition, a penalty of —0.1 is added to the reward if the agent touches any of
the obstacles. Finally, there is an additional control cost equal to —10? times the force acting on the
agent. We affinely normalize the rewards such that a normalized reward of O corresponds to that
achieved by a random policy and a normalized reward of 100 corresponds to the expert policy.

C KUKA EXPERIMENTS

We use the object manipulation environments and tasks from Janner et al. (2022), please see that
work for details on the environment. In our experiments, we consider three tasks: unconditional
stacking, conditional stacking, and block rearrangement. For a fair comparison, we re-implement
the Diffuser algorithm while making bug fixes in the codebase of Janner et al. (2022), which mainly
included properly resetting the environment.

C.1 STATE

We experiment with two parameterizations of the Kuka environment state. For the Diffuser baseline,
we use the original 48-dimensional parameterization from Janner et al. (2022).

For our EDGI, we need to parameterize the system in terms of SE(3) x Z x S,, representations. We,
therefore, describe the robot and block orientations with SO(3) vectors as follows. Originally, the
robot state is specified through a collection of joint angles. One of these encodes the rotation of the
base along the vertical z-axis. We choose to represent this angle as a p; vector in the zy-plane. In
addition, we add the gravity direction (the z-axis itself) as another p; vector, which is also the normal
direction of the table on which the objects rest. Combined, these vectors define the pose of the base of
the robot arm. Rotating gravity direction, and the robot and object pose by SO(3) can be interpreted
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as a passive coordinate transformation, or as an active rotation of the entire scene, including gravity.
As the laws of physics are invariant to this transformation, this is a valid symmetry of the problem.

The n objects can be translated and rotated. Their pose is thus given by a translation ¢ € R? and
rotation in r € SO(3) relative to a reference pose. The translation transforms by a global rotation
g € SO(3) as a vector via representation p;. The rotational pose transforms by left multiplication
r — gr. The SO(3) pose is not a Euclidean space, but a non-trivial manifold. Even though diffusion
on manifolds is possible De Bortoli et al. (2022); Huang et al. (2022), we simplify the problem by
embedding the pose in a Euclidean space. This is done by picking the first two columns of the pose
rotation matrix r € SO(3). These columns each transform again as a vector with representation p .
This forms an equivariant embedding ¢ : SO(3) — R2?*3, whose image is two orthogonal 3-vectors
of unit norm. Via the Gram-Schmidt procedure, we can define an equivariant map 7 : R2*3 — SO(3)
(defined almost everywhere), that is a left inverse to the embedding: 7 o ¢ = idgo(3). Combining
with the translation, the roto-translational pose of each object is thus embedded as three p; vectors.

We also tested the performance of the baseline Diffuser method on this reparameterization of the state
but found worse results.

C.2 HYPERPARAMETERS
We also follow the choices of Janner et al. (2022), except that we experiment with a linear noise

schedule as an alternative to the cosine schedule they use. For each model and each dataset, we train
the diffusion model with both noise schedules and report the better of the two results.
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