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Abstract

Practitioners frequently observe that pruning improves model generalization. A
long-standing hypothesis based on bias-variance trade-off attributes this general-
ization improvement to model size reduction. However, recent studies on over-
parameterization characterize a new model size regime, in which larger models
achieve better generalization. Pruning models in this over-parameterized regime
leads to a contradiction – while theory predicts that reducing model size harms
generalization, pruning to a range of sparsities nonetheless improves it. Motivated
by this contradiction, we re-examine pruning’s effect on generalization empirically.
We show that size reduction cannot fully account for the generalization-improving
effect of standard pruning algorithms. Instead, we find that pruning leads to better
training at specific sparsities, improving the training loss over the dense model. We
find that pruning also leads to additional regularization at other sparsities, reducing
the accuracy degradation due to noisy examples over the dense model. Pruning
extends model training time and reduces model size. These two factors improve
training and add regularization respectively. We empirically demonstrate that both
factors are essential to fully explaining pruning’s impact on generalization.

1 Introduction

Neural network pruning techniques remove unnecessary weights to reduce the memory and computa-
tional requirements of a model. Practitioners can remove a large fraction (often 80-90%) of weights
without harming generalization, measured by test error [31, 19, 13]. While recent pruning research
[19, 13, 53, 7, 30, 44, 11, 67, 4, 34, 65, 54, 35, 37, 57, 55, 9, 68, 60] focuses on reducing model
footprint, improving generalization has been a core design objective for earlier work on pruning
[31, 22]; recent pruning literature also frequently notes that it improves generalization [19, 13].

How does pruning affect generalization? An enduring hypothesis claims that pruning may benefit
generalization by reducing model size, defined as the number of weights in a model.1 We refer
to this as the size-reduction hypothesis. However, algorithms for pruning neural networks and our
understanding of the impact of model size on generalization have changed.

First, pruning algorithms have grown increasingly complex. Learning rate rewinding [53], a state-
of-the-art algorithm prunes weights iteratively. An iteration consists of weight removal, where the

†Correspondence to: tianjin@csail.mit.edu, mcarbin@csail.mit.edu, gkdz@google.com .
1This hypothesis traces back to seminal work in pruning, such as Optimal Brain Surgeon [22]: “without

such weight elimination, overfitting problems and thus poor generalization will result.” And again in pioneering
work [19] applying pruning to deep neural network models: “we believe this accuracy improvement is due to
pruning finding the right capacity of the network and hence reducing overfitting.” Because the latter hypothesis
leaves the definition of network capacity unspecified, we examine an instantiation of it, measuring network
capacity with the number of weights in a neural network model.
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Figure 1: (a) Retraining the VGG-16 model on CIFAR-10 exactly as done in pruning, but without
removing any weights produces models with similar generalization as pruning to the shaded range
of weights remaining. We show the x-axis for pruning/augmented training below/above the plot
respectively. (b) We show the loss difference between the sparse/dense model produced by prun-
ing/standard training respectively for training examples grouped by EL2N score percentiles. Negative
value indicates that the sparse model attains better loss. Left: We find that pruning to a relatively
low sparsity may improve generalization by decreasing training loss, with a particular decrease on
influential examples. Right: We find that pruning to a relatively high sparsity may also improve
generalization by increasing training loss, also with a particular increase on influential examples.

algorithm removes a subset of remaining weights, followed by retraining, where the algorithm contin-
ues to train the model, replaying the original learning rate schedule. Across iterations, this retraining
scheme effectively adopts a cyclic learning rate schedule [58], which may benefit generalization.

Second, emerging empirical and theoretical findings challenge our understanding of generalization
for deep neural network models with an ever-increasing number of weights [48, 12, 46, 69]. In
particular, the size-reduction hypothesis builds on the classical generalization theory on bias-variance
trade-off, which predicts that reducing model size improves the generalization of an overfitted model
[23]. However, recent work [5, 47] reveals that beyond this classical bias-variance trade-off regime
lies an over-parameterized regime where models are large enough to achieve near-zero training error.
In this regime, bigger models often achieve better generalization [5, 47, 29, 27, 59]. Practitioners
routinely apply modern pruning algorithms to models in this over-parameterized regime. While our
renewed understanding of generalization predicts that reducing the size of an over-parameterized
model should harm generalization, pruning to a range of sparsities nevertheless improves it. The
size-reduction hypothesis is therefore inconsistent with our empirical observation about pruning.

A new direction. We first confirm that the size-reduction hypothesis does not fully explain pruning’s
effect on generalization. Figure 1a compares the generalization of a family of sparse models of
different sizes generated by a state-of-the-art pruning algorithm [53], and the generalization of a
family of models generated by the same algorithm, except modified to no longer remove weights.
This algorithm, which we refer to as the augmented training algorithm, differs from standard training
in two ways: (1) the number of training epochs is larger; (2) the learning rate schedule is cyclic.

The results show that for any sparse VGG-16 model generated by the pruning algorithm with more
than 1% of its original weights, its generalization is indistinguishable from that of the model generated
by the augmented training algorithm that does not remove weights but trains the model for the same
number of epochs and with the same learning rate schedule as the pruning algorithm.2 For a range of
sparsities, pruning’s effect on generalization remains unchanged in the absence of weight removal,
illustrating that the size-reduction hypothesis cannot fully explain pruning’s effect on generalization.

Our approach. We instead develop an explanation for pruning’s impact on generalization through
an analysis of its effect on each training example’s loss – the difference in the example’s training loss
between the sparse model produced by pruning and the dense model produced by standard training.

2In Appendix C we show this phenomenon for 4 additional benchmarks, and other pruning algorithms.
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We then interpret pruning’s effect on each example in relation to the example’s influence on general-
ization. In particular, an example’s influence on generalization is the absolute change to generalization
due to leaving this example out, which Paul et al. [51] propose to approximate with the L2 distance
between the predicted probabilities and one-hot labels early in training, called the EL2N (Error L2
Norm) score. Paul et al. [51] show that an example with a high EL2N score may cause a large weight
update, thereby substantially changing the predictions and loss of other examples. We thus refer to
high EL2N examples as influential examples. Our analysis shows the following results.

Better training. We prune a VGG-16 model on the CIFAR-10 dataset to the optimal sparsity, the
sparsity with the best validation error. At this sparsity, we find that the pruned model achieves better
training loss than the dense model. In the left plot in Figure 1b, we present the change in training
loss due to pruning for the training examples grouped by their EL2N score percentiles. We observe
that influential examples show the greatest training loss improvement. Pruning may therefore lead to
better training, improving the training loss of the sparse model over the dense model, particularly on
examples with a large influence on generalization.

Additional regularization. We prune the same VGG-16 model on CIFAR-10 dataset with the
pruning algorithm configured to produce the sparsest model that still improves generalization over
the dense model. At this sparsity, we find that the pruned model achieves worse training loss than the
dense model. In the right plot in Figure 1b, we present the change in training loss due to pruning
for the training examples grouped by their EL2N score percentiles. The results show that pruning
may also improve generalization while increasing the training loss of the sparse model over the dense
model, particularly on examples with a large influence on generalization.

While it is perhaps counter-intuitive that increasing training loss, particularly on the most influential
examples may improve generalization, examining these pruning-affected examples leads us to
hypothesize that it is due to an observation that Paul et al. [51] made: in image classification datasets,
a small fraction of influential training examples have ambiguous or erroneous labels, training on
which impairs generalization. Therefore, it is instead better for the model to not fit them.

We examine this hypothesis by introducing random label noise into the training dataset. We find that
on such datasets, pruning may improve generalization by increasing the training loss on the noisy
examples, while still preserving the training loss of examples from the original training dataset. The
result is an overall generalization improvement for the sparse model. Notably, reducing model width
has a similar effect on training loss and generalization, suggesting a reduced number of weights in
the model as the underlying cause for generalization improvement in the presence of noisy examples.
We refer to the effect of removing weights as additional regularization, which reduces the accuracy
degradation due to noisy examples over the original dense model.

Implications. It has been a long-standing hypothesis that pruning improves generalization by
reducing the number of weights (via the Minimum Description Length principle [18] or Vap-
nik–Chervonenkis theory [63]). Our empirical observations suggest that the theory and practice
of pruning should instead focus on the two effects of modern pruning algorithms: better training
and additional regularization, both of which are indispensable to explaining pruning’s benefits to
generalization fully. Our results also suggest that quantifying pruning’s heterogenous effect across
training examples is key to understanding pruning’s influence on generalization.

Contributions. We present the following contributions:

1. We find that pruning may lead to better training, improving the training loss, as well as the
generalization over the dense model at optimal sparsity.

2. We find that pruning may also lead to additional regularization, reducing the accuracy degradation
due to noisy examples, and improving the generalization over the dense model at optimal sparsity.

3. We demonstrate that our deconstruction of pruning’s effect into training and regularization cannot
be further simplified — alternative explanations such as extended training time and reduced
model size only partially explain the effects of pruning on generalization.
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2 Preliminaries

We study Iterative Magnitude Pruning (IMP) with learning-rate rewinding [53]. This algorithm
consists of four steps: (1) Train a neural network to completion. (2) Remove a specified fraction of
the smallest-magnitude remaining weights. (3) Reset the learning rate to its value in an earlier epoch
t and (4) Repeat steps 1-3 iteratively until the model reaches the desired overall sparsity.

Terminology. Dense models refer to models without any removed weights. Sparse models refer to
models with removed weights as a result of pruning. The optimally sparse model is the model pruned
to the sparsity at which it achieves the best validation error. The optimal sparsity is the sparsity of the
optimally sparse model. Generalization refers to the classification error on the test set.

Experimental methodology. We use standard architectures: LeNet [32], VGG-16 [56], ResNet-
20, ResNet-32 and ResNet-50 [24], and train on benchmarks (MNIST, CIFAR-10, CIFAR-100,
ImageNet) using standard hyperparameter settings and standard cross-entropy loss function [13,
14, 66]. Following Frankle and Carbin [13], Frankle et al. [14], we set the t in IMP to t = 0 for
MNIST-LeNet benchmark and t = 10 for the others. Appendix B shows further details.

We report all results by running the same experiment 3 times with distinct random seeds. We conclude
that any real-valued results of two experiments differ if and only if the mean difference between
three independent runs of respective experiments is at least one standard deviation away from zero,
otherwise we say that the results match. We use PyTorch [50] on TPUs with OpenLTH library [13].

Limitations. Our work is empirical in nature. Though we validate each of our claims with extensive
experimental results on benchmarks with different architectures and datasets, we recognize that our
claims may still not generalize due to the empirical nature of our study.

3 Generalization Improvement from Better Training

Not all training examples have the same effect on training and generalization [62, 51, 8, 21, 25]. In
this section, we measure pruning’s effect on each training example by examining the difference in its
training loss between the dense model produced by standard training and the sparse model produced
by pruning. Our results show that pruning most significantly affects training examples that are most
influential to model generalization.

Method. Paul et al. [51] propose to estimate an example’s influence on model generalization with
the EL2N (Error L2 Norm) score – the L2 distance between the predicted probability and the one-
hot label of the example early in training. Details for computing the EL2N score is available in
Appendix B.3. They show that an example with a high EL2N score may cause a large weight update,
thereby substantially changing the predictions and loss of other examples. Paul et al. [51] rely on
this relationship between EL2N score and generalization to remove examples with little influence
on generalization from the dataset to accelerate training without affecting model generalization. We
similarly use the EL2N score to assess the impact of pruning on generalization.

To measure the difference in training loss on examples due to pruning, we partition the training
set into M subgroups, each with a different range of EL2N score percentiles. We then compute
the average training loss difference on examples in each subgroup. We compute this difference by
subtracting the training loss of the dense model produced by standard training from that of the sparse
model produced by pruning. A negative value indicates that the sparse model has better training loss
than the dense model. We pick M = 20 because it is the largest value of M that enables us to clearly
present the per-subgroup training loss difference.

We measure training loss at two sparsities of interest: the sparsity that achieves the best generalization,
and the highest sparsity that still attains better generalization than the dense model. In Appendix L,
we present pruning’s effect on subgroup training loss at a wider range of sparsities.

Results. Figure 2a presents pruning’s effect on subgroup training loss. Our results show that at the
sparsity that achieves the best generalization, for all subgroups, the average training loss of the pruned
model either matches or improves over the dense model, indicating better training.

Figure 2a also shows that pruning’s effect on training example subgroups is nonuniform. Pruning
most significantly affects the most influential examples – the ones with the highest range of EL2N
scores. Specifically, the average magnitude of pruning’s effect on examples with the top 20% EL2N
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(a) At sparsity achieving the best generalization
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(b) At highest sparsity with generalization exceeding that of the dense counterpart

Figure 2: Difference between the average training loss of the dense model produced by standard
training and the sparse model produced by pruning on example subgroups with distinct EL2N
percentile range. Negative values indicate that the sparse model has better loss than the dense model.

scores is 3.5-71x that on examples with the bottom 80% EL2N scores. Pruning to the said sparsity
thus improves generalization while improving the training loss of example subgroups nonuniformly,
with an emphasis on influential examples. In Appendix D, we validate the effect of pruning-improved
examples on generalization: excluding 20% of pruning-improved examples hurts generalization more
than excluding a random subset of the same size.

Conclusion. On standard datasets, pruning to the sparsity that achieves the best generalization leads
to better training – the training loss of most example subgroups improves over the dense model. The
subgroup with the most influence on generalization sees the largest training loss improvement.

4 Generalization Improvement from Additional Regularization

Pruning to the highest sparsity that improves generalization (Figure 2b) displays a similar effect
as pruning to the sparsity that attains the best generalization (Figure 2a) – generalization improves
with an overall improved training loss over the dense model, except for CIFAR-10, where pruning
improves generalization while worsening training loss on most subgroups of examples. Specifically,
for ResNet20 on CIFAR-10 at 83.22% sparsity (Figure 2b, second from left) and VGG-16 on CIFAR-
10 at 99.08% sparsity (Figure 2b, third from left), the training loss of the sparse model is worse
than the dense model. While pruning always increases training loss when it removes a large enough
fraction of weights, the accompanied generalization improvement does not always occur in general.

The second and third plots of Figure 2b show that the loss increase is especially pronounced on
particular subgroups of influential examples. Examining these pruning-affected training examples in
Appendix K.1 leads us to hypothesize that the generalization improvement is due to an observation
Paul et al. [51] made: although influential examples are predominately beneficial for generalization,
there exist a small fraction of noisy examples, such as ones with ambiguous or erroneous labels, that
exert a significant influence on generalization, albeit in a harmful way.3

To precisely characterize pruning’s effect on noisy examples, we inject random label noise into the
training dataset. Doing so enables a comparison of pruning’s effect on noisy data and original data.

Method. We inject p% random label noise by selecting p% examples uniformly at random and
changing the label of each example to one of the other labels in the dataset sampled uniformly at
random. We refer to the data that is not affected as original data. We sample and fix the random
labels before each independent run of an experiment.

3We present leave-subgroup-out retraining experiments for these examples in Appendix K.
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Figure 3: Pruning improves generalization over the dense model in the presence of random label
noise. We show the generalization of the sparse models as a function of the % weights remaining.
Horizontal dashed lines indicate the baseline generalization of the dense models. We mark the optimal
sparsity with a star. Legends show the fraction of the training examples with random label noise.

We report the following results for models trained on datasets with and without random label noise:
(1) pruning’s impact on generalization versus sparsity (Figure 3); (2) pruning’s impact on training
loss for the original data and random label data versus sparsity (Figure 4);4 (3) pruning’s impact on
training loss for subgroups of examples, each with a different range of EL2N scores (Figure 5).

Generalization results. Figure 3 shows that, in the presence of random label noise, the generalization
of the optimally sparse models is better than that of the dense models on 11 out of 13 benchmarks
and matches that of the dense models on the rest of the benchmarks. Our results provide evidence
that pruning to the optimal sparsity improves generalization in the presence of random label noise.

The extent of pruning’s generalization improvement at the optimal sparsity grows as the portion of
label noise increases. For example, for VGG-16 on CIFAR-10 benchmark, pruning to the optimal
sparsity improves generalization by 5.2%, 16.1% and 34.6% on 15%, 30% and 60% label noise.
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Figure 4: Pruning to the optimal sparsity increases training loss over the dense model in the presence
of random label noise. Noisy examples see a particular large loss increase. We show the training loss
on the original and noisy data with dashed and solid lines respectively, as functions of % weights
remaining. We mark the optimal sparsity with a star. Legends show the random label noise level.

Original versus noisy data. Figure 4 shows that pruning initially reduces the average training loss
on noisy examples: for instance, the training loss on noisy examples is slightly lower for the sparse
ResNet20 models on CIFAR-10 with many weights remaining (i.e., more than 10% ) than for the
dense model. Since noisy examples are influential examples [51], these results indicate better training,
which improves model training loss with a particular emphasis on influential examples.

As the fraction of weights remaining drops further, the loss of the sparse model on noisy data grows.
For instance, the training loss on noisy examples increases for the sparse ResNet20 models on
CIFAR-10 with few weights remaining (i.e., less than 10%). Moreover, the gap between the average
training loss of the sparse model on original versus noisy examples widens beyond the dense model,
indicating that pruning leads to additional regularization. In particular, for a range of sparsities where
generalization improves over the dense model, the sparse model fits original examples significantly
better than those with randomized labels. Taking the dense VGG-16 model trained on the CIFAR-10
dataset with 15% – 60% random label noise as an example, we observe that this model incurs 0.03
– 0.13 higher training loss on the partition with injected random label noise than on the partition
without. Pruning to the optimal sparsity widens this training loss gap to 1.38 – 2.97. Furthermore,
the gap between the average training loss of the sparse models on original versus noisy examples
eventually diminishes as the sparsity increases even further.

4Numerical results available in Table 11 in Appendix M
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Figure 5: In the presence of random label noise, pruning to the optimal sparsity often increases
training loss (except for ResNet50) over the dense model, especially to highly influential examples.
For example subgroups with distinct EL2N percentile ranges, we show the difference in average
training loss between dense and optimally sparse models. Legend indicates label noise level. We
do not show LeNet with 5% noise because the dense model achieves the best generalization. For
ResNet20 and ResNet32 with 60% noise, the training loss for high EL2N examples are already very
high for dense models to begin with, leaving little room for their loss to increase further by pruning.

Difference in loss by subgroups. Figure 5 shows the difference between the training loss of the
dense and optimally sparse model on subgroups of examples with different EL2N scores, but this
time in the presence of random label noise. The results show that pruning to the optimal sparsity
often increases the loss of influential examples, contrary to what Figure 2 shows when training on
original data only where pruning decreases the training loss of influential examples.

As random label examples are influential and harm generalization [51], increasing the training loss on
influential examples may therefore improve generalization. In Appendix E, we validate that excluding
examples misclassified by the optimally sparse models improves generalization similar to pruning.

Conclusion. We study pruning’s effects on training and regularization by connecting them to noisy
examples. By introducing random label noise, we show the two effects of pruning more clearly. At
relatively low sparsities, we observe better training because the training loss of sparse models is
lower than the dense model, especially on influential examples highly influential to generalization.
As sparsity increases, regularization effects dominate, because the sparse models see a larger gap
between training loss on the noisy versus original data than the dense model. We note that across all
sparsities, pruning has a highly nonuniform effect across example subgroups with different influences
on generalization (EL2N scores) on both standard datasets and datasets with random label noise.

Crucially, the effect of pruning at the optimal sparsity – be it better training or additional regularization
– depends on the noise levels in the dataset. On datasets with few noisy examples, Figure 2 shows that
at the optimal sparsity, better training is the key to good generalization, because training loss reduces.
On datasets with injected random label noise, Figure 5 shows that the optimal sparsity is the one at
which pruning-induced regularization effects increase noisy data loss.

5 Isolating the Effects of Extending Training Time and Reducing Model Size

We identified two effects of pruning on generalization: better training and additional regularization.
They intersect with two components of the pruning algorithm: extended training time and model size
reduction, respectively. In this section, we study these two effects in isolation by extending dense
model training time and reducing the dense model size by scaling down its width.5. We confirm that
both effects of pruning are necessary to fully explain pruning’s impact on generalization. Thus our
deconstruction of pruning’s effect in terms of training and regularization cannot be further simplified.

5.1 Extended Training Time

What happens to generalization if the weight removal part is removed from pruning, and only the
retraining part remains? To answer, we train dense models exactly as done in the pruning algorithm,
for the same number of gradient steps and learning rate schedule, but without removing weights.

5To isolate other effects of pruning, we also evaluate the contribution of design choices of pruning algorithms,
such as the heuristic selecting which weights to prune, to generalization via ablation studies in Appendix J
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Method. We study the effect of training dense models for extra gradient steps on generalization,
without removing any weights. When training the dense models, we use the same learning rate
schedule as pruning, replaying the original learning rate schedule designed for the dense model
multiple times, effectively adopting a cyclic learning rate schedule. We refer to this training algorithm
as extended dense training. We report and compare the generalization of models that pruning and
extended dense training algorithm produce.
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Figure 6: Extended training time does not explain the full extent of pruning’s benefits to generalization.
We show the test errors of the dense and sparse models with circle and square markers respectively as
a function of the training epochs. Legends show random label noise level.

Results. Figure 6 shows test errors of models that extended dense training and pruning produce as
a function of training epochs.6 The two algorithms produce models with similar generalization on
standard datasets without random label noise, where pruning improves training at optimal sparsity, as
shown in Section 3. Indeed, in Appendix L, we show that longer training time similarly leads to better
training. However, on benchmarks with random label noise, extended dense training underperforms
pruning on 9 out of the 13 benchmarks. On LeNet, ResNet20, VGG-16, ResNet32 and ResNet50
benchmarks with noise, extended dense training achieves test errors that are worse than pruning by 0
(matching) to 2.6%, 0.4 to 14.5%, 3.6 to 34.2%, 0 (matching) to 4.8% and -0.3%, respectively.

Conclusion. On standard datasets without random label noise, the extended dense training algorithm
produces models with generalization that matches or exceeds the optimally sparse model. However,
with random label noise, the extended dense training algorithm can no longer produce models that
match the generalization of the optimally sparse model.

5.2 Size Reduction

What happens to generalization if the retraining part is removed from pruning, and only the weight
removal part remains? We compare pruning with width down-scaling – applying standard training to
dense models with reduced widths. The latter removes weights without the need for retraining.

At optimal sparsity, we show that size reduction is not necessary to replicate pruning’s generalization
improvements with dense models in Figure 1a from Section 1; in this section, we show that size
reduction is also not sufficient to replicate pruning’s generalization improvement with dense models.

Method. We reduce the model size by down-scaling the width of a dense model: we train a sequence
of dense models using the standard number of training epochs, where the next model in the sequence
has 80% of the width of the model preceding it. This width scaling ratio mimics our sparsity schedule,
where the pruned model always has 80% of the remaining weights in the previous iteration. We then
compare the generalization of models that pruning and width down-scaling produce.

Results. Figure 7 presents the test errors of models that pruning and width down-scaling produce,
using square and circle markers respectively. Width down-scaling under-performs pruning on 4 out of
5 benchmarks on datasets without random label noise. When training with random label noise, width
down-scaling has notable regularization effects and significantly improves generalization, similar to
pruning. In Appendix I, we show that the regularization effects of both algorithms manifest similarly
across example subgroups, suggesting that pruning’s regularization effect is a consequence of model
size reduction in general. However, despite this improvement, a gap remains between the minimum
test error of models that pruning and width down-scaling produce achieve: pruning does better on
LeNet, ResNet20, VGG-16, ResNet32 and ResNet50 benchmarks by -4 (pruning does worse) to
0.4%, 0% (matching), 1.5 to 1.8%, 0 (matching) to 2.1%, and 0.36% in test error, respectively.

6Numerical results available in Table 5 in Appendix M.
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Figure 7: Size reduction does not explain the full extent of pruning’s benefits to generalization. We
show the test errors of the dense/sparse models with round/square markers respectively as a function
of the weights remaining. Legends show label noise level. Appendix F includes detailed views.

Conclusion. On standard datasets with random label noise, width down-scaling produces models
with similar generalization (no worse by more than 2.1%) as the optimally sparse models. However,
without random label noise, width down-scaling under-performs pruning.

5.3 Conclusion

By removing the weight removal part from pruning in Section 5.1, we show the importance of pruning-
induced additional regularization for achieving good generalization in the presence of label noise
more clearly than Section 4. Similarly, by removing the retraining part from pruning in Section 5.2,
we show the importance of pruning-induced better training for achieving good generalization using
the original dataset without random label noise more clearly than Section 3.

We confirm that both effects of pruning are required to fully account for its impact on generalization.
Our deconstruction of pruning’s effect in terms of training and regularization is therefore minimal.

6 Related Work

Pruning has an extended history: early work starting from the 1980s found that pruning enhances
model interpretability and generalization [45, 31, 22]. More recently, the advent of deep neural
network models motivated the adoption of pruning to reduce the storage and computational demand
of deep models [19, 20, 30, 40, 7, 44, 11, 67, 4, 34, 65, 54, 35, 37, 57, 55, 9, 68, 60]. In this section,
we describe several branches of pruning research pertinent to our work.

Pruning algorithm design. Recent pruning research often focuses on improving pruning algorithm
design. An extended line of research studied the heuristics that determine which weights to remove
[44, 11, 33] – the simplest heuristic is to remove weights with the smallest magnitude. For example,
Molchanov et al. [43], Louizos et al. [42] proposed to learn which weights to prune as part of the
optimization process. Another line of research concerned the structure of the weights to remove to
achieve computational speedup without significantly hurting model generalization. For example, Li
et al. [36], Liu et al. [41] proposed to prune weights in groups or to prune neurons, convolutional
filters and channels. Our work does not produce a new pruning algorithm design. Rather, we study
the existing pruning algorithms to understand their effect on model generalization.

Pruning’s effect on generalization. There are many reported instances in which pruning benefits
model generalization [31, 19, 13]. This effect has sparked interest in examining pruning as a technique
to gain additional generalization benefits beyond common regularization techniques. Weight decay is
a typical regularization technique that encourages model weights to have a small L2 norm as part of
the training objective. Giles and Omlin [16] demonstrated that pruning can improve the generalization
of recurrent neural network models better than weight decay. Thimm and Fiesler [61], Augasta and
Kathirvalavakumar [1] compared the effect on the generalization of several contemporary pruning
techniques. Bartoldson et al. [3] discovered a positive correlation between pruning instability, defined
as the drop in test accuracy immediately following weights removal, and model generalization. The
authors found that higher pruning-induced instability leads to increased flatness of minima, which
in turn improves generalization. Our work differs from prior work as we study pruning’s effects on
generalization through a novel perspective, examining pruning’s impact on training examples.
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Pruning’s effect beyond generalization. Our work contributes to a growing line of work [25, 38]
investigating pruning’s effect on examples beyond test error. Hooker et al. [25] discovered that model
compression can have a disproportionately large impact on predicting the under-represented long-tail
of the data distribution. Liebenwein et al. [38] studied the performance of pruning using metrics
such as out-of-distribution generalization and resilience to noise, and found that pruning may not
preserve these alternative performance metrics even when it preserves test accuracy. To the best of
our knowledge, our work is the first to examine pruning’s impact on examples in the training set.

7 Closing Discussion

Importance of training improvement. Our work sheds light on an overlooked and underestimated
effect of pruning that boosts generalization – training improvement. Seminal work on pruning
[22, 19] focuses on its regularization effect and attributes pruning’s beneficial influence on general-
ization to regularization that comes with model size reduction. Instead, our work discovers that, on
standard image classification benchmarks, the state-of-the-art pruning algorithm attains the optimal
generalization consistently by improving model training.

How does model size reduction impact generalization? The relationship between model complexity
and generalization has long been a subject of immense interest [52, 23, 5, 47]. Informally, model
complexity refers to the model’s ability to fit a wide variety of functions [17]. For example, model size
[5] and the norm of model weights [49] both provide meaningful measures of model complexity for the
study of generalization. Classical theories (e.g., on VC dimension [64] and Rademacher complexity
[2]) show that reducing model complexity decreases the likelihood for the learning algorithm to
produce trained models with a large gap between training and test loss, and may therefore improve
generalization. We instead focus on learning dynamics of training example subgroups and show that
reducing model size improves generalization by mitigating the accuracy degradation due to noisy
examples. Therefore, our work contributes a complementary perspective to the understanding of the
relationship between model complexity and generalization.

Societal impact. Our work examines pruning’s effect on generalization. While we measure general-
ization using test error, Hooker et al. [25] show that test error may be an imperfect characterization
of model prediction quality due to a lack of consideration of fairness and equity. Concretely, our
work does not address the potential disproportionate impact of model pruning on label categories.
Our work must therefore be interpreted within the context of the community’s current and future
understanding of pruning’s potential contribution to systemic bias, especially against minority groups
that may be underrepresented in existing training datasets.

Implication for fairness. A growing line of work concerns the adverse impact of pruning on
model fairness [25, 26, 6, 39] – they show that pruning disproportionately worsens the prediction
accuracy on a small subgroup of examples. However, our results show that their work does not
completely characterize pruning’s effects pertinent to fairness: (1) We show that only at relatively
high sparsities can pruning harm the prediction accuracy of any example subgroup, where pruning’s
regularization effects dominate. (2) We show that size reduction in general, rather than pruning in
particular, underpins the disproportionately worse accuracy of the pruned model on certain subgroups
of examples. Our results call for further assessment and discussion of pruning’s risk to model fairness.

Conclusion. We show that the long-standing size-reduction hypothesis attributing pruning’s beneficial
effect on generalization to its reduction of model size does not fully explain pruning’s impact on
generalization. Inspired by studies [62, 51] that show nonuniform effects of training examples on
generalization, we develop an analysis to study pruning’s impact on generalization by interpreting its
effect on an example’s training loss in relation to the example’s influence on generalization.

With this novel analysis, we find that, at the optimal sparsity, pruning leads to either better training or
additional regularization, which improves training loss over the dense model, and reduces the accuracy
degradation due to noisy examples over the dense model, respectively. Both effects contribute to
improving model generalization.

Our novel analysis adds to our empirical toolkit for studying the effect of a learning algorithm on
generalization through its effect on the loss of training examples. Using our novel analysis, we derive
findings that advance our empirical understanding of pruning as a learning algorithm.

10



References
[1] M. Augasta and T. Kathirvalavakumar. Pruning algorithms of neural networks — a comparative

study. Central European Journal of Computer Science, 3, 2013.

[2] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. The Journal of Machine Learning Research, 3, 2003.

[3] B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher. The generalization-stability tradeoff in
neural network pruning. In Advances in Neural Information Processing Systems, 2020.

[4] C. Baykal, L. Liebenwein, I. Gilitschenski, D. Feldman, and D. Rus. Data-dependent coresets
for compressing neural networks with applications to generalization bounds. In International
Conference on Learning Representations, 2019.

[5] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116
(32), 2019.

[6] C. Blakeney, N. Huish, Y. Yan, and Z. Zong. Simon says: Evaluating and mitigating bias in
pruned neural networks with knowledge distillation. arXiv preprint arXiv:2106.07849, 2021.

[7] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network
pruning? In Conference on Machine Learning and Systems, 2020.

[8] T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints.
In IEEE International Conference on Data Mining Workshops, 2009.

[9] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi, and X. Tu. Only
train once: A one-shot neural network training and pruning framework. In Advances in Neural
Information Processing Systems, 2021.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE conference on computer vision and pattern recognition, 2009.

[11] X. Dong, S. Chen, and S. Pan. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. In Advances in Neural Information Processing Systems, 2017.

[12] G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Conference on
Uncertainty in Artificial Intelligence, 2016.

[13] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

[14] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In Proceedings of the 37th International Conference on Machine Learning,
2020.

[15] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Pruning neural networks at initialization:
Why are we missing the mark? In International Conference on Learning Representations, 2021.

[16] C. Giles and C. Omlin. Pruning recurrent neural networks for improved generalization perfor-
mance. IEEE Transactions on Neural Networks, 5(5), 1994.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[18] P. D. Grünwald. The minimum description length principle. MIT press, 2007.

[19] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient
neural networks. In Conference on Neural Information Processing Systems, 2015.

[20] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

11



[21] M. Hardt, E. Price, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In
Conference on Neural Information Processing Systems, 2016.

[22] B. Hassibi, D. Stork, and G. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, 1993.

[23] T. Hastie, J. Friedman, and R. Tisbshirani. 2.9 Model Selection and Bias-Variance Tradeoff,
page 37–38. 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition, 2016.

[25] S. Hooker, A. C. Courville, Y. N. Dauphin, and A. Frome. What do compressed deep neural
networks forget? arXiv preprint arXiv:1911.05248, 2019.

[26] S. Hooker, N. Moorosi, G. Clark, S. Bengio, and E. Denton. Characterising bias in compressed
models. arXiv preprint arXiv:2010.03058, 2020.

[27] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu,
and z. Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. In
Conference on Neural Information Processing Systems, 2019.

[28] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Conference on Neural Information Processing Systems, 2012.

[30] V. Lebedev and V. Lempitsky. Fast convnets using group-wise brain damage. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016.

[31] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. In Conference on Neural Information
Processing Systems, 1990.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

[33] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin. Layer-adaptive sparsity for the magnitude-based
pruning. In International Conference on Learning Representations, 2021.

[34] N. Lee, T. Ajanthan, and P. Torr. Snip: Single-shot network pruning based on connection
sensitivity. In International Conference on Learning Representations, 2019.

[35] N. Lee, T. Ajanthan, S. Gould, and P. H. S. Torr. A signal propagation perspective for pruning
neural networks at initialization. In International Conference on Learning Representations,
2020.

[36] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
In International Conference on Learning Representations, 2017.

[37] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient
neural networks. In International Conference on Learning Representations, 2020.

[38] L. Liebenwein, C. Baykal, B. Carter, D. Gifford, and D. Rus. Lost in pruning: The effects
of pruning neural networks beyond test accuracy. In Conference on Machine Learning and
Systems, 2021.

[39] X. Lin, S. Kim, and J. Joo. Fairgrape: Fairness-aware gradient pruning method for face attribute
classification. In European Conference on Computer Vision, 2022.

[40] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional
networks through network slimming. In IEEE International Conference on Computer Vision,
2017.

12



[41] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2019.

[42] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l0
regularization. In International Conference on Learning Representations, 2018.

[43] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural networks.
In International Conference on Machine Learning, 2017.

[44] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. In International Conference on Learning Representations, 2017.

[45] M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. In Conference on Neural Information Processing Systems,
1988.

[46] V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization in
deep learning. In Conference on Neural Information Processing Systems, 2019.

[47] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double de-
scent: Where bigger models and more data hurt. In International Conference on Learning
Representations, 2020.

[48] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[49] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In
Conference on Learning Theory, 2015.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Conference on Neural Information Processing
Systems, 2019.

[51] M. Paul, S. Ganguli, and G. K. Dziugaite. Deep learning on a data diet: Finding important
examples early in training. In Conference on Neural Information Processing Systems, 2021.

[52] C. Rasmussen and Z. Ghahramani. Occam's razor. In Conference on Neural Information
Processing Systems, 2000.

[53] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-tuning in neural network
pruning. In International Conference on Learning Representations, 2020.

[54] T. Serra, A. Kumar, and S. Ramalingam. Lossless compression of deep neural networks. In
International Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, 2020.

[55] T. Serra, X. Yu, A. Kumar, and S. Ramalingam. Scaling up exact neural network compression
by relu stability. In Conference on Neural Information Processing Systems, 2021.

[56] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

[57] S. P. Singh and D. Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In Conference on Neural Information Processing Systems, 2020.

[58] L. N. Smith. Cyclical learning rates for training neural networks. In IEEE Winter Conference
on Applications of Computer Vision, 2017.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

13



[60] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural networks without any
data by iteratively conserving synaptic flow. In Conference on Neural Information Processing
Systems, 2020.

[61] G. Thimm and E. Fiesler. Evaluating pruning methods. In International Symposium on Artificial
Neural Networks, 1995.

[62] M. Toneva, A. Sordoni, R. T. des Combes, A. Trischler, Y. Bengio, and G. J. Gordon. An
empirical study of example forgetting during deep neural network learning. In International
Conference on Learning Representations, 2019.

[63] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

[64] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16, 1971.

[65] C. Wang, R. Grosse, S. Fidler, and G. Zhang. EigenDamage: Structured pruning in the
Kronecker-factored eigenbasis. In International Conference on Machine Learning, 2019.

[66] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2020.

[67] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, and L. S. Davis. NISP:
pruning networks using neuron importance score propagation. arXiv preprint arXiv:1711.05908,
2017.

[68] X. Yu, T. Serra, S. Ramalingam, and S. Zhe. The combinatorial brain surgeon: Pruning weights
that cancel one another in neural networks. In International Conference on Machine Learning,
2022.

[69] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64(3), 2021.

14



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Appendix B
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Section 2
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] Appendix B
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Section 2
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


	Introduction
	Preliminaries
	Generalization Improvement from Better Training
	Generalization Improvement from Additional Regularization
	Isolating the Effects of Extending Training Time and Reducing Model Size
	Extended Training Time
	Size Reduction
	Conclusion

	Related Work
	Closing Discussion
	Acknowledgement.
	Additional Experimental Details
	Models and Datasets
	Training Hyperparameters
	EL2N Score Calculation

	Size-Reduction Does Not Explain Pruning's Benefits to Generalization
	Effects of Leaving Out Pruning-Affected Examples
	Leaving Out Noisy Examples Improves Generalization
	Comparing Pruning with Width Down-scaling
	Similarities between Pruning and Width Down-scaling
	Ablation Studies
	Rewinding Weights
	Weight Selection Heuristics

	Closer Look at Examples with Training Loss Most Worsened by Pruning
	Example Images and Labels
	Empirical Analysis

	Effects of Learning Algorithms on Subgroup Training Loss
	Data for Experiments in Paper



