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Abstract

This paper introduces FADA, a novel data001
augmentation technique that creates feature-002
aware data augmentation policies. Unlike tra-003
ditional dataset-level approaches, FADA uti-004
lizes the abstract meaning representation of005
texts to extract high-level concepts, enabling006
targeted transformations for specific features. It007
evaluates transformation effectiveness through008
cheaply computed quality metrics like label009
alignment, fluency, and grammaticality. Our010
evaluations on four benchmark datasets show011
that our learned augmentation policies attain012
strong performance against baseline techniques013
and transfer surprisingly well to new domains.014

1 Introduction015

Most existing automated data augmentation frame-016

works produce dataset-level policies that do not017

take into account all the relevant features of the018

input. However, they do generally produce easily019

interpretable policies that can support data explo-020

ration and debugging. On the other hand, there are021

approaches that learn sample-level policies specific022

to each instance (Niu and Bansal, 2019; Zhou et al.,023

2020). These require significantly more compu-024

tation and often produce policies that are uninter-025

pretable because they are implemented as neural026

networks. Fortunately, there is a middle ground027

that is both interpretable and efficient to compute.028

In this paper, we propose FADA, a novel029

Feature-Aware Data Augmentation technique that030

efficiently learns when to augment by observ-031

ing transform-feature interactions. Features, in032

the context of our approach, refer to distinctive033

high-level concepts extracted from texts, such as034

imperatives, negations, and polarity. These035

features are important because they introduce036

an additional dimension for discerning the opti-037

mal timing and context for effective augmenta-038

tion. For example, in sentiment analysis, the039

WordDeletion transform can invert meanings in040

Figure 1: A FADA policy subset, learned for the SST-2
dataset (Socher et al., 2013), determines the likelihood
of selecting specific transformations (e.g., WordDele-
tion) based on given features (e.g., negation).

texts with negations (e.g. "I do not like stand- 041

up.") without correctly updating the label. FADA 042

is designed to learn how each transform interacts 043

with various features to ensure their effectiveness 044

during the augmentation process. 045

We quantify transformation effectiveness via a 046

set of cheaply computed text quality metrics. The 047

first metric we consider is label alignment, i.e. the 048

degree to which the assigned label reflects the se- 049

mantics of the text, as measured via confident learn- 050

ing (Northcutt et al., 2022). The second is fluency, 051

which captures the flow and naturalness of a text 052

represented by an inverted perplexity score. Finally, 053

grammaticality is the degree to which the text is 054

correctly structured and is measured by the num- 055

ber of grammatical errors reported by a grammar 056

tool (languagetool, 2023). Each metric is weighted, 057

aggregated, and normalized into a probability of a 058

given transform being effective for input text con- 059

taining a corresponding feature. Figure 1 shows an 060

example policy where WordDeletion is generally 061

effective for most features except negations. 062

To guide our evaluation of FADA, we formulate 063

two research questions: 064

RQ1. How does training on FADA augmented 065
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data affect model performance?066

RQ2. How well do learned augmentation poli-067

cies transfer to new datasets and task domains?068

Overall, FADA’s feature-level policies offer in-069

terpretability and insight into the complex inter-070

actions between transforms and specific features.071

They also support targeted instance-level augmenta-072

tions, allowing for the selection of the most suitable073

transforms for each text, contingent on its unique074

features. Notably, learning such a policy is effi-075

ciently achievable within just a few hours using a076

single RTX 2060 GPU. Furthermore, these poli-077

cies exhibit a remarkable ability to transfer across078

various datasets and task domains.079

2 Approach080

FADA efficiently learns augmentation policies at081

both feature and instance levels, combining tar-082

geted transform precision with reduced computa-083

tional demands. This automated, multi-objective084

search determines the most effective augmentations085

by analyzing the effects of transform-feature inter-086

actions through heuristic text quality metrics.087

As seen in Figure 2, we begin by extracting ab-088

stract meaning representation (AMR) graphs (Ba-089

narescu et al., 2013) from each text in the training090

dataset and create a binary feature matrix to iden-091

tify features in each text. In the search phase, we092

pair transformations with features and select text in-093

stances from the dataset that contain a specific fea-094

ture. We apply a transformation to these instances095

and evaluate the changes in text quality based on096

metrics like alignment, fluency, and grammatical-097

ity. Transformations are assessed based on their098

impact on these quality metrics, with penalties ap-099

plied for any worsening of the text’s original state.100

We then compute an aggregated quality score for101

each transformation-feature pair, averaging these102

scores to update our policy matrix. This matrix,103

represented as a probability distribution, guides104

the selection of transformations for texts with spe-105

cific features. We can also derive an instance-level106

policy by combining the policy matrix with the fea-107

ture matrix, allowing for automatic, targeted text108

augmentations. We continue to sample transform-109

feature pairs until the policy converges.110

Text Transforms. A text transform is simply111

a function that intakes texts alters them in some112

way. We focus on edit-based transforms (Wei and113

Zou, 2019; Xie et al., 2020) that employ simple,114

label-invariant editing operations like word swaps,115

deletes, and typo insertion because they are widely116

Figure 2: Overview of the FADA search procedure.
In this sentiment analysis example, applying transform
ti to a data subset Dfi containing feature fi, results
in adverse impacts to average alignment, fluency, and
grammaticality. The transform-feature interaction is
aggregated into the augmentation policy with a score
of 0.1, which indicates a relatively low probability of
sampling ti for any texts containing fi.

used and cheap to compute. A detailed list of the 20 117

edit-based transforms used in this work is available 118

in Appendix C. 119

Text Features. Our approach utilizes features 120

from AMR graphs (Banarescu et al., 2013; bjascob, 121

2023) because of their ability to capture both se- 122

mantic and syntactic text properties. AMR features 123

are also sparse enough to permit sufficient differen- 124

tiation between texts, which in turn allows FADA 125

to target augmentations with greater nuance. 126

Quality Metrics. In contrast to previous ap- 127

proaches that rely on compute intensive model 128

training to approximate augmentation effectiveness, 129

we directly evaluate the impact of a transformation 130

text quality. To this end, we chose alignment, flu- 131

ency, and grammaticality to reflect the intuition that 132

classification performance is improved by intelligi- 133

ble, natural, and well-formed inputs. 134

Label alignment measures how well labels match 135
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Model / Approach SST-2 IMDB AG News Yahoo! Answers

BERT-tiny 39.9 ± 7.2 35.7 ± 4.7 31.5 ± 1.7 16.6 ± 0.2

+ EDA 37.6 ± 5.7 36.4 ± 4.1 59.8 ± 4.8 30.6 ± 2.1

+ CheckList 36.9 ± 4.1 40.6 ± 3.7 59.6 ± 0.1 29.2 ± 1.7

+ TAA 37.3 ± 9.2 40.4 ± 8.8 – –
+ Uniform20 36.6 ± 9.2 45.2 ± 13.2 57.5 ± 0.6 30.1 ± 1.7

+ FADA (Ours) 42.3 ± 6.0 50.8 ± 6.8 59.8 ± 2.8 31.1 ± 1.5

BERT-base 42.9 ± 9.4 53.7 ± 3.3 71.1 ± 5.2 56.9 ± 1.1

+ EDA 49.6 ± 8.2 53.5 ± 7.5 77.6 ± 2.8 59.6 ± 2.1

+ CheckList 45.3 ± 8.2 52.5 ± 7.5 77.6 ± 3.8 60.9 ± 1.5

+ TAA 57.4 ± 2.2 57.7 ± 4.6 – –
+ Uniform20 54.2 ± 3.4 56.9 ± 9.3 79.9 ± 0.3 61.5 ± 1.4

+ FADA (Ours) 58.1 ± 9.9 58.6 ± 5.4 77.4 ± 2.3 61.3 ± 1.2

BERT-large 46.5 ± 0.03 56.9 ± 0.02 74.6 ± 0.02 58.2 ± 0.02

+ EDA 49.1 ± 0.18 59.6 ± 0.01 75.3 ± 0.01 61.4 ± 0.01

+ CheckList 55.6 ± 0.05 59.1 ± 0.04 78.1 ± 0.00 61.7 ± 0.01

+ TAA 62.7 ± 0.07 49.1 ± 0.16 – –
+ Uniform20 61.4 ± 0.02 61.7 ± 0.02 79.0 ± 0.02 60.4 ± 0.03

+ FADA (Ours) 63.5 ± 0.02 60.0 ± 0.02 79.4 ± 0.01 61.8 ± 0.02

Table 1: Test F1-score (%) with standard deviation of different augmentation approaches in a low-resource regime.
Results are averaged across three runs. All approaches use a 3× augmentation multiplier for fair comparison.

text semantics, as measured by cleanlab’s Confi-136

dent Learning (CL) (cleanlab.ai, 2023; Northcutt137

et al., 2022). CL detects label errors by comparing138

noisy and trusted labels. It involves a surrogate139

model that assesses label confidence, identifying140

misalignments on a scale from 0 to 1. Fluency in a141

text is assessed by its naturalness and can be quanti-142

fied using a language model’s perplexity score, like143

GPT-2 (Radford et al., 2019). Lower perplexity144

scores indicate more expected, natural text, while145

higher scores suggest implausible text. Grammati-146

cality assesses a text’s adherence to grammar rules,147

focusing on syntax and word usage. We quantify148

it using language-tool (languagetool, 2023) to149

count the number of grammatical errors.150

3 Experimental Setup151

Datasets. We study four benchmark datasets: SST-152

2 (Socher et al., 2013) and IMDB (Maas et al.,153

2011) for sentiment analysis, and AG News and154

Yahoo! Answers (Zhang et al., 2016) for topic155

detection. Dataset statistics are in Appendix B.156

Following previous work (Ren et al., 2021; Wei157

and Zou, 2019; Chen et al., 2020), we focus on158

low-resource settings, using only 10 examples per159

class from each dataset, expanded by 3× for both160

baseline techniques and our FADA approach.161

Baselines. We compare FADA with four162

dataset-level augmentation policies: EDA (Wei 163

and Zou, 2019); CheckList (Ribeiro et al., 2020)1; 164

Text AutoAugment (TAA) (Ren et al., 2021)2; and 165

Uniform20, which uses the same 20 transforms as 166

FADA, but ignores text features. Details of each 167

transform are in Appendix C. 168

Text Classification Models. Our experiments 169

utilize three text classification models: BERT-large, 170

BERT-base (Devlin et al., 2019) and BERT-tiny 171

(Turc et al., 2019) as implemented in HuggingFace 172

(Wolf et al., 2020). The selection of these models 173

is motivated by their widespread use and varying 174

sizes, enabling a thorough analysis of how model 175

scale affects performance. Model and training de- 176

tails are in Appendix D. 177

4 Experimental Results 178

4.1 Generalization Performance 179

Table 1 presents the post-training performance of 180

the augmentation techniques we studied to address 181

RQ1. Across all models and datasets, FADA con- 182

sistently achieves the highest or near-highest F1 183

scores, indicating its effectiveness regardless of the 184

underlying model size. On average, FADA boosted 185

F1 performance by 11.7%, 7.7%, and 7.1% for 186

1As implemented in TextAttack (Morris et al., 2020)
2We use the authors’ pre-searched policies for SST-2 and

IMDB; constructing new policies was time prohibitive.
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for each BERT variant (tiny, base, and large), re-187

spectively. While other techniques sometimes de-188

graded performance below the no-augmentation189

baseline, FADA demonstrated its reliability by al-190

ways improving performance by as much as 17%191

for BERT-large and 28% for BERT-tiny.192

4.2 Transferability of FADA Policies193

For RQ2, we also conducted experiments to study194

whether the policies learned on one source dataset195

could be successfully applied to other datasets. As196

illustrated in Figure 3, policies learned for larger197

datasets with longer texts, such as Yahoo! An-198

swers and IMDB, were able to make significant im-199

provements when applied to datasets with shorter200

texts. These improvements even generalized across201

task domains (i.e. topic classification to sentiment202

analysis), with the most significant boost of 12.2%203

observed for SST-2 datasets augmented using the204

policies learned from Yahoo! Answers.205

Figure 3: Transferability of FADA policies learned
from a source dataset and applied to other target datasets.
The numbers denote changes in F1-scores, averaged
across all model architectures.

5 Related Work & Discussion206

Automated Data Augmentation. In recent years,207

there has been a growing interest in learning auto-208

mated data augmentation policies for NLP tasks209

(Yang et al., 2022). Such policies are a probabil-210

ity distribution over transforms according to which211

training samples are altered. Especially effective212

transforms are assigned higher probabilities and213

harmful transforms are assigned values near zero.214

In an early work, Niu and Bansal (2019) adapted215

AutoAugment (Cubuk et al., 2019) to discover ef-216

fective augmentation policies for NLP tasks like217

dialogue generation. While their approach inherits 218

the computational complexities of their predeces- 219

sor, they are among the first to introduce instance- 220

level augmentation policies conditioned on the text. 221

However, we diverge from previous work in priori- 222

tizing interpretability and computational efficiency 223

while learning effective augmentation policies. 224

Text Quality and Generalization. Several re- 225

lated works applying augmentation to machine 226

translation (Pham et al., 2021; Edunov et al., 2018) 227

have also noted that better data quality did not nec- 228

essarily lead to stronger models. Pham et al. (2021) 229

suggested that “lower-quality but more diverse data 230

often yielded stronger results.” Optimal trade-offs 231

between quality and diversity in data metrics in- 232

dicate "sweet spots" that don’t require maximum 233

scores for effective training. For instance, models 234

trained on perfect grammar might underperform on 235

grammatically inconsistent test data. This concept, 236

supported by Fast AutoAugment (Lim et al., 2019) 237

through density matching, advocates for augmenta- 238

tions that make training data more closely mirror 239

validation data. 240

To better understand the beneficial trade-off be- 241

tween data quality and diversity, we conducted a 242

supplementary analysis of the two aspects. As seen 243

in Table 2 in Appendix A, it is evident that the 244

majority of text augmentations tend to compro- 245

mise data quality. Notably, the two most effective 246

augmentation strategies, Uniform20 and our pro- 247

posed FADA approach, demonstrate substantial 248

enhancements to diversity. This finding suggests 249

that the improvements in generalization associated 250

with FADA could be attributed to its effective man- 251

agement of the quality-diversity balance. 252

6 Conclusion 253

In this research, we introduced a novel, feature- 254

aware data augmentation framework, tailored to 255

enhance text classification performance. Our ap- 256

proach is designed to optimize the interaction be- 257

tween text transforms and distinct text features, 258

guided by cheaply computed quality metrics. This 259

method maintains the interpretability of dataset- 260

level augmentation policies while facilitating be- 261

spoke instance-level transformations tailored to 262

individual training texts. Our empirical results 263

demonstrate that FADA not only consistently en- 264

hances performance but also that the learned poli- 265

cies exhibit notable effectiveness when applied to 266

unfamiliar datasets and domains. 267
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7 Limitations268

There are several limitations in this work, espe-269

cially relating to the selection of particular features,270

transforms, and quality metrics. First, we acknowl-271

edge that, like most NLP research, FADA is heav-272

ily biased towards the English language. The trans-273

forms we study generally expect English inputs, as274

do the AMR models we use to extract linguistic275

features. However, the quality metrics can be al-276

tered to support multilingual analysis by swapping277

the base model for perplexity and using a different278

language argument when initializing the grammar279

checker. Additionally, label alignment requires the280

existence of an already fine-tuned surrogate model281

which may not exist for all tasks. However, with282

the massive growth of model repositories, such as283

HuggingFace with over 120k models, it becomes284

increasingly likely that a useful surrogate exists for285

most tasks.286

Second, the quality metrics we selected repre-287

sent a relatively small cross section of available288

options. For example, we could have also explored289

the use of text diversity, coherence, factuality, in-290

formativeness, and so on. We ultimately decided291

against exploring other quality metrics to minimize292

policy construction time.293

Lastly, scoping the experiments to a low-294

resource setting potentially limits the generaliza-295

tion of our main findings. Optimistically, the diffi-296

culty of training models in a low-resource setting is297

likely to be the biggest motivation to use any kind298

of data augmentation in the first place.299
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A Augmentation’s Impact on Text Quality456

We studied the effect different augmentation ap-457

proaches have on improving or degrading the qual-458

ity of text data. For comparison purposes, we add459

a Dist-2 (Li et al., 2016) diversity metric, which460

measures the number of distinct bi-grams. For461

each baseline and dataset, we transform the texts462

and then compute alignment, fluency, grammati-463

cality impact scores. These scores are normalized464

into ratios where values greater than 1 indicate im-465

provements to that quality dimension relative to466

the original dataset and vice versa. For FADA,467

we performed a grid-search over quality weights —468

wa, wf , wg — to generate 10 different augmenta-469

tion policies (and datasets) and average the result-470

ing scores.471

Table 2 shows the relative impact each augmen-472

tation approach had our studied quality metrics473

across all datasets. With few exceptions, all aug-474

mentation frameworks tended to decrease text qual-475

ity. For alignment and fluency, EDA and CheckList476

score more highly, indicating that they better pre-477

serve the original meaning and naturalness of the478

text. This result may be explained by the fact that479

their underlying transforms are limited to making480

smaller edits less capable of injecting as much lexi-481

cal diversity into the datasets. In contrast, FADA482

and Uniform20 exhibit significant diversity-quality483

tradeoffs. These results represent a starting point484

for understanding the relationship between data485

quality and model generalization.486

Approach Align. Fluency Gram. Dist-2

Original 1 1 1 3372
EDA 1 1.02 0.83 3990
Checklist 1 0.95 0.82 3850
TAA 0.93 0.15 1.12 3996
Uniform20 0.94 0.44 0.55 5111
FADA(Ours) 0.91 0.46 0.58 5089

Table 2: Relative impact different augmentations have
on our studied text quality metrics & Dist-2 as a com-
parative diversity metric, averaged across all datasets.
Scores larger than 1 indicate that the metric had in-
creased after augmentation. This is possible, for ex-
ample, if a transform like RandomDeletion removed
a word that caused a grammar / fluency issue in the
original text.

B Benchmark Dataset Statistics 487

Table 3 shows various statistics for the datasets 488

used in our experiments. Note that for SST-2, the 489

test labels are officially hidden and scores can only 490

be attained by submitting to the GLUE (Wang et al., 491

2018) benchmark. As a workaround, we evenly 492

split the validation dataset and use the latter half 493

for testing. 494

C Studied Transform Descriptions 495

We conducted our policy search over 20 trans- 496

forms implemented in the SIBYL augmentation 497

tool (Harel-Canada et al., 2022). Table 4 shows 498

brief descriptions of each transform. 499

D Model and Training Settings 500

BERT-large (bert-large-uncased), BERT- 501

base (bert-base-uncased), and BERT-tiny 502

(prajjwal1/bert-tiny) are different sizes 503

of the same encoder-only BERT architecture. 504

BERT-large has 24 transformer layers, a hidden 505

representation size of 1024, 16 attention heads, and 506

336M parameters. BERT-base has 12 transformer 507

layers, a hidden representation size of 768, and 508

12 attention heads. Lastly, BERT-Tiny has 2 509

transformer layers, a hidden representation size 510

of 128, and an unspecified number of attention 511

heads. Smaller BERT models like BERT-Tiny 512

are intended for environments with restricted 513

computational resources, like cellular devices. 514

They can be fine-tuned in the same manner as the 515

original BERT models. 516

We used HuggingFace (Wolf et al., 2020) to fine- 517

tune our models on the training dataset. We made 518

heavy use of the best practices encoded in the de- 519

faults of their Trainer class, though with several 520

customized settings. We set the initial learning rate 521

to 0.001 with a weight decay of 0.01. The batch 522

size for training and evaluation were set to 4 and 523

16, respectively. The training process was run for a 524

maximum of 10 epochs, with evaluation performed 525

at the end of each epoch and early stopping if vali- 526

dation loss could not be improved after 5 epochs. 527

The best performing model checkpoint was saved 528

and used for evaluation on the test dataset. 529
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Dataset Source Task Subject Classes # Train # Test Avg Len

AG News (Zhang et al., 2016) Topic News Articles 4 25,000 3,800 38
Yahoo! Answers (Zhang et al., 2016) Topic QA Posts 10 1,400,000 60,000 92
SST-2 (Socher et al., 2013) Sentiment Movies Reviews 2 70,000 436 18
IMDB (Maas et al., 2011) Sentiment Movies Reviews 2 25,000 25,000 234

Table 3: Dataset statistics.

Transform Name Description Source

AddNeutralEmoji Appends a random emoji with neutral sentiment 1
RemoveNeutralEmoji Removes all emojies judged to exhibit neutral sentiment 1
ChangeHypernym Randomly replace words with less specific words (e.g. turban → headwear) 2
ChangeHyponym Randomly replace words with more specific words (e.g. fruit → apple) 2
ChangeLocation Randomly change city and country names 2
ChangeName Randomly change integers to other integers within 20% of the original 2
ChangeNumber Randomly change names with some other names 2
ChangeSynonym Randomly replaces words with approximate equivalents 2
ContractContractions Contracts expanded contractions in a sentence (if any) 2
ExpandContractions Expands contractions in a sentence (if any) 2
HomoglyphSwap Replaces English characters with visually similar homoglyphs 3
RandomCharDel Randomly deletes characters 3
RandomCharInsert Randomly inserts characters 3
RandomCharSubst Randomly substitutes characters 3
RandomCharSwap Randomly swaps two adjacent characters 3
RandomInsertion Randomly inserts a synonym of some word to a new position 3
RandomSwapQwerty Randomly swaps charcters with others adjacent on a QWERTY keyboard 3
InsertPunctuationMarks Randomly inserts various punctuation marks 4
RandomSwap Randomly swaps two adjacent words 5
WordDeletion Randomly deletes words 5

Table 4: Descriptions of all the text transforms in the FADA search space. Sources: 1. SIBYL (Harel-Canada et al.,
2022) 2. CHECKLIST (Ribeiro et al., 2020) 3. TEXTATTACK (Morris et al., 2020) 4. AEDA (Karimi et al., 2021) 5.
EDA (Wei and Zou, 2019). Note that source attributions are based on implementation details, not necessarily where
the transformation was initially proposed.
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