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ABSTRACT

Video generation models, as one form of world models, have emerged as one of
the most exciting frontiers in Al, promising agents the ability to imagine the future
by modeling the temporal evolution of complex scenes. In autonomous driving,
this vision gives rise to driving world models: generative simulators that imagine
ego and agent futures, enabling scalable simulation, safe testing of corner cases,
and rich synthetic data generation. Yet, despite fast-growing research activity, the
field lacks a rigorous benchmark to measure progress and guide priorities. Ex-
isting evaluations remain limited: generic video metrics overlook safety-critical
imaging factors; trajectory plausibility is rarely quantified; temporal and agent-
level consistency is neglected; and controllability with respect to ego conditioning
is ignored. Moreover, current datasets fail to cover the diversity of conditions re-
quired for real-world deployment. To address these gaps, we present DrivingGen,
the first comprehensive benchmark for generative driving world models. Driv-
ingGen combines a diverse evaluation dataset curated from both driving datasets
and internet-scale video sources, spanning varied weather, time of day, geographic
regions, and complex maneuvers, with a suite of new metrics that jointly as-
sess visual realism, trajectory plausibility, temporal coherence, and controllability.
Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models
look better but break physics, while driving-specific ones capture motion realisti-
cally but lag in visual quality. DrivingGen offers a unified evaluation framework
to foster reliable, controllable, and deployable driving world models, enabling
scalable simulation, planning, and data-driven decision-making.

1 INTRODUCTION

Driven by scalable learning techniques, generative video models have made remarkable progress in
recent years, enabling the synthesis of high-fidelity videos across diverse scenes and motions. These
models suggest a promising path toward “world models” — predictive simulators capable of imagin-
ing the future, which can support planning, simulation, and decision-making in complex, dynamic
environments. Inspired by this vision, there has been an accelerating surge in developing driving
world models: generative models specialized for predicting future driving scenarios. Given an ini-
tial scene and optional conditions (e.g., text prompts, driving actions), a driving world model predicts
both the ego-vehicle’s future movements and the evolution of surrounding agents’ trajectories. Such
models enable closed-loop simulation and synthetic data generation, reducing reliance on real-world
data and offering a promising means to explore out-of-distribution scenarios safely (Gao et al.,[2024;
Hassan et al., [2024}; [Mousakhan et al., [2025; [L1 et al., |2025d; (Wang et al.| 2025; Zhou et al., [2025)).
Driving world models are also tightly coupled with end-to-end autonomous driving systems, where
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errors in predicted future scenes and trajectories can directly lead to unsafe decisions (Shao et al.,
2023a;2024a;2023b; |Wang et al., 2023).

| Evaluation Metrics

Method / Benchmark

C . Temporal . Downstream

Distribution Quality Consistency Alignment Task

VBench (Huang et al.|2023) v v
WorldModelBench (Li et al.|[2025a) v v Instruction
WorldScore (Duan et al.|[2025) v v Traj.
Vista (Gao et al.|[2024) Visual Human eval Traj.
GEM (Hassan et al.[[2024) Visual Human eval Human eval, Agent Traj.
Doe-1 (Zheng et al.[[2024c) Visual VQA, Planning
Drivingdojo (Wang et al.[[2024e) Visual Traj.
Driverse (Li et al.{[2025d) Visual Traj.
UniFuture (Liang et al.[[2025) Visual Perception
VaViM (Bartoccionti et al.[[2025) Visual Segmentation
GAIA-2 (Russell et al.[[2025) Visual Visual, Agent
ReSim (Yang et al.[[2025) Visual Traj. Planning
ACT-Bench (Arai et al.}[2024) Instruction, Traj.
DrivingGen (Ours) Visual, Traj.  Visual, Traj.  Visual, Agent, Traj. Traj.

Table 1: Comparison of existing video benchmarks, driving world models, and driving video bench-
marks. “” indicates the missing metrics, and “v"” signifies that the evaluation is comprehensive.
“Visual”, “Agent” and “Traj.” represent evaluation of images or videos, surrounding agents and ve-
hicles’ trajectories, respectively.

While a vibrant exploration of a wide range of approaches for driving world models is underway, a
well-designed benchmark — which not only measures progress but also guides research priorities and
shapes the trajectory of the entire field — has not yet emerged. Current evaluations fail to fully capture
the unique requirements of the driving domain, and are limited in several ways. 1) Visual Fidelity
First, most benchmarks rely on distribution-level metrics such as Fréchet Video Distance (FVD) to
assess video realism, and some adopt human-preference-aligned models (e.g., vision-language mod-
els) to score visual quality or semantic consistency. However, driving imposes unique constraints
on imaging: sensor artifacts, glare, or other corruptions can have critical safety implications that
general video metrics fail to capture. 2) Trajectory Plausibility Second, the ego-motion trajectories
underlying the generated videos are crucial. High-quality video generation in driving must pro-
duce trajectories that are natural, dynamically feasible, interaction-aware, and safe—properties that
go beyond mere visual realism. 3) Temporal and Agent-Level Consistency Third, temporal consis-
tency is crucial for driving, where surrounding objects directly impact safety and decision-making.
Prior benchmarks often focus on scene-level consistency but neglect agent-level consistency, such as
abrupt appearance changes or abnormal disappearances of agents—imperfections that can severely
compromise the realism and reliability of driving simulations. 4) Motion Controllability Finally,
for ego-conditioned video generation, it is critical to assess whether the generated motion faithfully
follows the conditioning trajectory. This aspect of controllability is largely overlooked in existing
benchmarks, yet it is essential for safe planning and reliable closed-loop driving, where misalign-
ment can lead to catastrophic consequences.

Another major limitation in existing benchmarks for driving world models is the lack of diversity
along crucial dimensions essential for real-world deployment. 1) First, Weather and Time of Day
coverage is heavily skewed: datasets like nuScenes (Caesar et al.| [2020) are dominated by clear-
weather, daytime driving, leaving rare but safety-critical conditions (night, snow, fog) underrepre-
sented. 2) Second, Geographic Coverage is limited, often confined to a few cities or countries, which
restricts evaluation across varied scene appearance and with local traffic rules. 3) Third, Driving Ma-
neuvers and Interactions rarely capture the full diversity of agent behaviors and complex multi-agent
dynamics, such as pedestrians waiting at crosswalks, aggressive driver cut-ins, or dense traffic sce-
narios (Wang et al.| [2021). This lack of diversity makes it difficult to assess whether generative
models can handle the wide range of scenarios encountered in real-world driving, undermining their
reliability and safety for large-scale deployment.

To address the above gaps, this work proposes DrivingGen, a comprehensive benchmark for gener-
ative world models in the driving domain with a diverse data distribution and novel evaluation met-
rics. DrivingGen evaluates models from both a visual perspective (the realism and overall quality of
generated videos) and a robotics perspective (the physical plausibility, consistency and accuracy of
generated trajectories). Our benchmark makes the following key contributions:
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Figure 1: Overview of our DrivingGen benchmark. Video models take vision, and optional lan-
guage/action as inputs to generate videos. The generated videos are then passed into our evaluation
suite. Four comprehensive and novel sets of metrics for both videos and trajectories (distribution,
quality, temporal consistency, and trajectory alignment) are introduced to evaluate world models.

Diverse Driving Dataset. We present a new evaluation dataset that captures diverse driving condi-
tions and behaviors. Unlike prior datasets biased toward sunny, daytime urban scenes, ours includes
varied weather (rain, snow, fog, floods, sandstorms), times of day (dawn, day, night), global regions
(North America, Europe, Asia, Africa, etc.), and complex scenarios (dense traffic, sudden cut-ins,
pedestrian crossings). This diversity enables more robust and unbiased evaluation of generative
models under realistic driving distributions. Besides, considering that inference for video genera-
tion is generally time-consuming, we carefully limit the number of samples to 400 to ensure efficient
testing and iteration, achieving a balance between efficiency and meaningful evaluation.

Driving-Specific Evaluation Metrics. We introduce a novel suite of multifaceted metrics specifi-
cally designed for driving scenarios. These include distribution-level measures for both video and
trajectory outputs, quality metrics that account for human perceptual quality, driving-specific imag-
ing factors (such as illumination flicker, motion blur, etc.), temporal consistency checking at both the
scene level and individual agent level (e.g., appearance discrepancy or unnatural disappearances in
videos), and trajectory realism metrics that evaluate kinematic feasibility and alignment to intended
paths (e.g., smoothness, physical plausibility, and accuracy in following a given route). Together,
these metrics provide a comprehensive 4-dimensional evaluation along distribution realism, visual
quality, temporal coherence, and control/trajectory fidelity — covering aspects that generic metrics
or single-number scores fail to capture.

Extensive Benchmarking and Insights. We benchmark 14 generative world models on DrivingGen
spanning three categories — general video world models, physics-based world models, and driving-
specialized world models. This evaluation, the first of its kind in the driving domain, reveals impor-
tant insights and open challenges. For example, we find that certain general world models produce
visually appealing traffic scenes yet break physical consistency in vehicle motion, and some driving-
specific models excel in trajectory accuracy but lag in image fidelity. By analyzing performance
across our metrics, we reveal the strengths and failure modes of each approach, offering insights for
future research. All components of DrivingGen—dataset and evaluation code—are publicly released
to support reproducible research and advance realistic driving simulation.

2 RELATED WORKS

In this work, we focus on two primary research areas: generative world models applied to au-
tonomous driving and benchmarks for evaluating these models. Due to space constraints, we provide
a comprehensive review of the relevant literature, including recent advancements in general video
generation and specific driving-world evaluations, in Appendix [A]
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(a) Weather, time of day, and region distribution between existing datasets and ours.

(c) Representative examples in our benchmark, which covers diverse scenarios such as dense city traffic at

night, unusual weather (e.g., fog, flood, sandstorm), and complex interactions (e.g., waiting for pedestrians,
agents cutting in).

Figure 2: Dataset distribution and gallery in our benchmark (top to bottom).
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3 DRIVINGGEN BENCHMARK

The goal of DrivingGen is to establish a comprehensive benchmark to evaluate generative world
models under driving-specific constraints and criteria. To achieve this, the proposed benchmark
includes several key components: 1) a carefully collected dataset that is diverse in weather, time
of day, regions (and their driving styles), and driving maneuvers to support reasonable evaluation;
2) multifaceted metrics that not only evaluate the video quality from a general visual perspective
(e.g., appearance), but also from a driving and robotics perspective (e.g., the physical feasibility of
trajectories). To showcase the distinguishing capability of DrivingGen, we evaluate general world
models, physics-based models, and driving-specific models. An overview is given in Fig. [I] with
dataset details in Sec.[3.1land metrics in Sec.[3.2

3.1 BENCHMARK DATASET

Generative video models, as a form of world models, offer a promising way to anticipate future driv-
ing scenarios, simulate rare or safety-critical events, and ultimately support planning and decision-
making. However, real-world driving unfolds under highly variable conditions, encompassing dif-
ferent weather, lighting, regions, and complex maneuvers. Therefore, evaluating generative models
across diverse scenarios is crucial to ensure their robustness and reliability. To this end, the majority
of existing works (Gao et al., [2024} |Hassan et al., 2024; [Liang et al., |2025; |Wang et al., 2024e; |Bar-
toccioni et al. [2025; [Wang et al [2024b)) in driving world models mainly utilize nuScenes (Caesar
et al., 2020) and OpenDV (Zheng et al., [2024b) datasets for evaluation. However, the diversity of
weather, region, time of day, and driving maneuvers in these datasets is limited and highly biases the
data distribution. For example, as shown in Fig. over 80% of the nuScenes validation data and
90% of the OpenDV validation data are collected during normal sunny daytime conditions. Addi-
tionally, the data are collected from a limited number of vehicles and locations, which further limits
the comprehensiveness. Based on this observation, we curated a significantly more diverse dataset.
An overview of our dataset is presented in Fig. 2a]and Fig. 2b]

Dataset Construction. We organize our dataset into two complementary tracks, offering distinct
perspectives for evaluating driving videos.

* Open-Domain Track is designed to evaluate models’ generalization to open-domain, diverse,
unseen driving scenarios. We construct this track using Internet-sourced data spanning multiple
cities and regions worldwide, ensuring broad coverage beyond the training distribution.

* Ego-Conditioned Track complements the open-domain track. While the open-domain setting
evaluates generalization to diverse unseen scenarios, it does not verify whether the generated
trajectories follow a specified conditioning trajectory—a property that is critical for robotics and
self-driving applications. The ego-conditioned track therefore focuses on trajectory controlla-
bility, measuring how well the trajectories derived from generated videos align with the given
ego-trajectory instructions. The ego trajectory is optional for model input and only provided in
this track. To construct it, we aggregate data from five open-source driving datasets: Zod (Al-
ibeigi et al} 2023)) (Europe), DrivingDojo (Wang et al. 2024e) (China), COVLA (Arai et al.,
2025)) (Japan), nuPlan (Karnchanachari et al.,[2024) (US), and WOMD (Sun et al.| 2020) (US).

Each data sample in the dataset consists of three components: a front-view RGB image (vision), a
scene description (language), and an optional ego trajectory (action). For each scene, we employ
Qwen (Bai et al.|[2025)) to capture descriptions of the future dynamics and camera movements within
the scene. Given the time-consuming nature of video generation, we limit the number of samples
for efficient testing and iteration, while ensuring quality and diversity. The dataset includes 400
samples—200 per track—striking a balance between efficiency and meaningful evaluation.

Balanced Data Dsitribution The overall distribution of our dataset, along with a gallery of repre-
sentative video examples, is shown in Fig.[2| To ensure meaningful evaluation, we explicitly control
diversity across several dimensions:

» Weather and Time of Day. Existing benchmarks are often dominated by, if not fully composed
of, normal weather and daytime conditions. In contrast, our benchmark aims for a more bal-
anced distribution. For the open-domain track, we limit normal weather and daytime clips to
below 60% and increase the proportion of other conditions, such as snow (13.1%), fog (12.6%),
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Distribution Quality Temporal Consistency Trajectory Alignment

1. Video Consistency

2. Agent Consistency 1. Average Displacement Error (ADE)
3. Agent Disappearance Consistency 2. Dynamic Time Warping (DTW)

4. Trajectory Consistency

1. Subjective Image Quality
2. Objective Image Quality
3. Trajectory Quality

1. Fréchet Video Distance (FVD)
2. Fréchet Trajectory Distance (FTD)

Table 2: Overview of metrics utilized in DrivingGen. Definition and details are in Sec.

and night/sunset/sunrise driving (50%), to ensure a more comprehensive evaluation. Extreme
events, including sandstorms, floods, and heavy snowfall at night, are also included. A similar
strategy is applied to the ego-conditioned track, where normal weather/daytime clips make up
60% of the data, while the remainder covers diverse conditions to support trajectory controlla-
bility evaluation across different scenarios.

* Geographic Coverage. Prior benchmarks are often limited to a small number of cities or coun-
tries, restricting the diversity of driving scenarios. For the open-domain track, we collect data
from a wide range of regions worldwide, including North America (20.7%), East Asia & Pa-
cific (22.1%), Europe & Central Asia (26.6%), the Middle East & North Africa (12.1%), Latin
America & Caribbean (6.3%), South Asia (6.8%) and South-Saharan Africa (5.4%), to ensure
broad geographic coverage. For the ego-conditioned track, data are drawn from existing datasets
covering North America, Asia and Europe, providing diverse driving scenarios to evaluate ego-
trajectory alignment and controllability.

* Driving Maneuvers and Interactions. Capturing diverse driving behaviors and multi-agent inter-
actions is critical for evaluating generative world models. For the open-domain track, scenarios
include complex interactions such as waiting pedestrians at crosswalks, other agents cutting in,
and dense traffic, testing the model’s understanding of the driving world. For the ego-conditioned
track, scenarios are similarly diverse, emphasizing multi-agent interactions and challenging con-
ditions to evaluate controllability and alignment with ego-trajectory instructions.

3.2 BENCHMARK METRICS

For all video models, our DrivingGen metrics cover three key dimensions: distribution, quality,
and temporal consistency, evaluated for both videos and trajectories. We extract trajectories using
standard PnP method within a SIFT and RANSAC scheme (Lowel [2004; [Fischler & Bolles, [1981}
Kneip et al.| 2011)) and UniDepthV2 (Piccinelli et al., 2025). We provide the details of our SLAM
pipeline (Mur-Artal et al., 20155 Schonberger & Frahm, 2016; [Teed & Deng, |2022;|Qu et al., 2024)),
including guaranteeing that all videos reconstruct trajectories and a discussion to compare other
benchmarks’ trajectory reconstruction methods in Appendix [B.2] For models conditioned on ego
trajectories, we include a fourth dimension: trajectory alignment, measuring adherence to the input.
Table2]lists the metrics, grouped into four categories detailed below, each targeting a different aspect
of video fidelity.

3.2.1 DISTRIBUTION

How far is the generative distribution from the data distribution? A common practice is to measure
Fréchet Video Distance (FVD) (Unterthiner et al., | 2019) on generated videos. However, our key in-
sight is that video quality is not solely determined by visual realism—equally important, especially
for self-driving and embodied agents, is the realism of the induced ego-motion. Focusing only on vi-
sual fidelity gives an incomplete picture. Therefore, we evaluate distributional closeness across both
videos and trajectories, capturing complementary perspectives from visual perception and robotics.

For the video distribution, we utilize FVD to quantify the similarity between generated videos
and real videos. Specifically, we follow the standardized computation protocol from the original
StyleGAN-V (Skorokhodov et al. 2022)). For the trajectory distribution, we introduce a novel
metric, Fréchet Trajectory Distance (FTD), a distributional metric tailored for evaluating driving
trajectories. The key requirement is a trajectory encoder that maps trajectories into a latent space
suitable for measuring distributional distance. To this end, we draw from the motion prediction
domain—where models themselves are generative of future trajectories, and adopt the encoder of
Motion Transformer (MTR) (Shi et al., |2023)) as our encoding model. Details of FTD computation

are provided in Appendix
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3.2.2 QUALITY

How good are the generated videos and trajectories? To evaluate the fidelity of generated videos and
trajectories in driving scenarios, we propose a comprehensive quality suite covering three aspects:
perceptual video quality, domain-specific video quality, and trajectory quality.

Visual Quality. A common practice in generative video evaluation is to assess general perceptual
quality with automatic, reference-free estimators aligned with human judgments. Specifically, we
adopt CLIP-IQA+ (Wang et al.| |2022), which leverages CLIP’s vision-language representations to
predict perceptual quality scores consistent with human subjective assessments. While effective,
such subjective perceptual quality does not always align with what matters for driving, which un-
folds outdoors, involves multiple agents, and occurs under real-world constraints. To additionally
consider driving-specific imaging quality, we further adopt the Modulation Mitigation Probability
(MMP) metric from the IEEE Automotive P2020 standard (Group et al., 2018} 996, 2022). MMP
targets Pulse-Width Modulation (PWM)-induced flicker that can disrupt perception and tracking,
and reports the fraction of time windows where residual temporal luminance modulation falls below
a small threshold. Implementation details are in Appendix [B.4]

Trajectory Quality. While prior evaluations often rely on video-based scores, they typically neglect
whether the underlying motions are physically and kinematically plausible. To reduce the gap, Driv-
ingGen introduces a composite, reference-free metric to assess the kinematic plausibility and ride
comfort. Three individual submetrics are proposed and aggregated into a single score: 1) a comfort
score penalizes extremes of longitudinal jerk, lateral acceleration, and yaw-rate, yielding a score to
reward smoother, more comfortable motion; 2) a motion score that discourages under-mobility, as
some trajectories barely move and stay static due to the model’s weak ability; 3) a curvature score
summarizes how much the path turns, discouraging zig-zags and unrealistically sharp bends. To-
gether, these submetrics directly target properties that affect controllability, planning, and perceived
comfort. Calculation details appear in Appendix [B.5}

3.2.3 TEMPORAL CONSISTENCY

How temporally consistent is the generated world? We assess the temporal consistency of both
videos and trajectories. For videos, we evaluate scene-level consistency, agent-level consistency, and
explicitly emphasize abnormal agent disappearance. For trajectories, we measure the consistency of
speed and acceleration over time, independent of path shape and absolute mobility.

Video Consistency. Existing metrics directly calculate the consistency between consecutive frames
(or each frame to the first) at a fixed rate. However, it is easily hackable by generating near-static
videos. To measure temporal consistency while accounting for the actual motion in the scene, we
first pass the generated videos through an off-the-shelf optical flow model (Wang et al., 2024d) to
compute the median optical flow magnitude per frame. We then adaptively downsample: videos with
lower motion are sampled more sparsely so that the per-step displacement becomes comparable to
normal/high-speed driving. After this, the similarity of the DINOv3 (Siméoni et al., [2025) features
between consecutive frames of the downsampled videos is reported as the video consistency score.
Unlike fixed-stride metrics, our approach fairly measures temporal consistency across videos with
varying motion speeds, preventing static or near-static videos from obtaining artificially high scores.

Agent Appearance Consistency. Measuring only scene-level features can overlook small temporal
changes in individual agents, such as shifts in color, texture, or shape, while these agents are often the
key focus for driving, as they would more directly impact driving behavior and safety. To measure
the agent’s temporal consistency, we therefore detect agents in the first frame, track them across
the video, crop their bounding boxes, and compute consistency purely at the agent level. We use
YOLOvV10 (Wang et al.,[2024a) as the detector and SAM2 (Ravi et al.l 2024} Yang et al., [2024a) for
tracking. We measure DINOv3 feature similarity across consecutive frames and to the first frame.

Agent Abnormal Disappearance. In addition to appearance stability, agents in driving scenes must
persist in a physically plausible manner. Sudden, non-physical disappearances of surrounding agents
are commonly observed in generated videos, which can compromise realism and safety. DrivingGen
quantifies this by diagnosing whether an agent’s disappearance is normal (e.g., leaving the field of
view or being occluded) or abnormal. We consider three key frames for each disappearing agent:
the first and the last frames where the agent is visible, and the first frame after it vanishes. A vision
large language model (VLM) (Bai et al.l 2025; [Shao et al., 2024bj |Liu et al., 2024} [Zong et al.,



Published as a conference paper at ICLR 2026

2024b; |Li et al., [2024; |Qu et al., |2025bjal), Cosmos-Reasonl (NVIDIA et al.,[2025), is prompted to
judge disappearance based on visual and motion continuity, and the agent’s local interactions with
surrounding agents. We report the percentage of videos with no abnormal disappearances as the
score. Implementation Details can be found in Appendix

Trajectory Consistency. Realistic driving exhibits predictable kinematics: speed varies slowly
around a cruise level and acceleration does not oscillate. To reveal this property, we compute how
stable a trajectory’s velocity and acceleration are over time. The average of the two scores is taken as
the overall trajectory consistency score. Trajectories that jitter, stop—go, or oscillate score low, while
steady cruising with gradual changes scores high. Calculation details are provided in Appendix[B.7]

3.2.4 TRAJECTORY ALIGNMENT

In addition to trajectory consistency, the alignment of the trajectories underlying the generated
videos with the conditioning (ego) trajectory is also critical, especially for trajectory-grounded video
generation. To assess this, we propose two complementary metrics.

Average Displacement Error (ADE). As a common practice, ADE measures the mean pointwise
distance between the generated and input trajectories across the prediction horizon. It emphasizes
local, step-by-step fidelity and is standard in motion prediction and planning.

Dynamic Time Warping (DTW). In addition to ADE, which compares trajectories at each time
step, we introduce a complementary metric that captures the overall contour and shape of the tra-
jectory. Specifically, DTW (Keogh & Pazzanil 2000) aligns predicted and reference trajectories via
non-linear time warping and measures their path-shape discrepancy using Euclidean point-wise cost.

4 EXPERIMENTS

Evaluation Setup. We evaluate 14 competitive generative world models on DrivingGen, spanning
three categories. 1) First, we include 7 general video world models, comprising two commercial
closed-source models, Gen-3 (Runway, 2024.06) and Kling (Kuaishou, 2024.00), and five well-
known open-source models: CogVideoX (Yang et al [2024e), Wan (Wan et al., 2025), Hunyuan-
Video (Kong et al.| [2024)), LTX-Video (HaCohen et al., 2024a), and SkyReels (Chen et al., [2025)).
2) Second, we evaluate 2 physical world models that are developed specifically for the physical
robotics domain, Cosmos-Predictl (Agarwal et al., [2025) and Cosmos-Predict2 (Cosmos, [2025)).
3) Third, we assess 5 driving-specific world models: Vista (Gao et al.| [2024), DrivingDojo (Wang
et al |2024¢e), GEM (Hassan et al.[2024), VaViM (Bartoccioni et al.,[2025), and UniFuture (Liang
et al., 2025). All models are evaluated on a prediction horizon of 100 frames. We report the time
and resource cost for our DrivingGen benchmark in Appendix

4.1 OBSERVATIONS AND CHALLENGES

Table 3] presents the results. We provide the full table of metrics in a transparent way to evaluate the
models comprehensively, and the average rank serves as a quick summary but not a definitive score.
We also show that our results align well with human judgement, by calculating the Spearman’s
correlation coefficient (see details in Appendix [B.9]) In the following, we will discuss key findings
from our results.

Closed-source models lead in visual quality and overall ranking. Across both tracks, closed-
source models consistently occupy the top positions, achieving strong perceptual scores and main-
taining stable agent behavior. They rarely exhibit abnormal object disappearance and generally
preserve scene coherence over time, demonstrating robust overall world generation capabilities.

Top open-source general world models are competitive on specific metrics. Several open-
source models approach or match the closed-source leaders on individual dimensions. For example,
CogVideoX and Wan achieve strong video distributional realism (low FVD) across both tracks, sug-
gesting that open-source models can excel in targeted aspects even if they do not lead overall.

No single model excels in both visual realism and trajectory fidelity. We observe distinct “per-
sonas”: some models achieve high visual quality but only moderate trajectory adherence and per-
agent consistency, while driving-specialized models accurately follow commanded paths with phys-
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Open-Domain Track | Distribution Quality Temporal Consistency
T P - - - Avg. Rank
Models Size | FVD FTD Sub]egtlve Ob]ecFlve Tra]ec?ory Vldgo Agept A_gept Trajectlory
Quality ~ Quality  Quality Consist Consist Missing Consist
Kling 2.1* - 6934 26.73  0.5538 0.8018 0.6438 0.8945 0.7981 0.9442  0.5377 1
Gen-3 Alpha Turbo* - 801.0 9350  0.5456 0.8378 0.6535 0.8900 0.8170 0.9495  0.4788 2
LTX-Video 13B | 648.2 3129 0.5215 0.8288 0.5562  0.8851 0.7449 0.8977  0.4517 3
Wan2.2-12V 14B | 609.0 63.86  0.5348 0.6396 0.5983  0.8883 0.7514 0.9128  0.4639 4
HunyuanVideo-12V  13B | 957.5 30.95 0.4921 0.7207 0.4613  0.8821 0.8008 0.9306  0.4157 5
SkyReels-V2-12V 14B | 876.0 5293 05134 0.7432 0.4799  0.8776 0.7329 0.9078  0.4326 7
CogVideoX SB | 621.2 236.7  0.4932 0.6802 0.3856  0.8211 0.7581 0.7661 0.2949 12
Cosmos-Predict2 14B | 524.1 8320 0.4931 0.7568 0.5990  0.8597 0.5912 0.8657  0.3997 8
Cosmos-Predictl 14B | 821.1 81.22  0.5083 0.7207 0.2723  0.8429 0.6789 0.8796  0.2631 13
Vista 2.5B| 6757 54.66  0.4340 0.8468 0.6030  0.8565 0.6357 0.8211  0.4040 6
VaViM 1.2B | 1446.6 449.2  0.4691 0.8468 03118 09159 0.7721 0.9752 0.0914 9
UniFuture 3.0B| 7743 50.66  0.4206 0.9054 0.4507  0.8799 0.5373 0.8310  0.3858 10
GEM 2.1B| 770.1 147.1 0.5168 0.8423 0.5398  0.8176 0.6099 0.7788  0.3392 11
Drivingdojo 2.3B| 8104 126.74 0.4202 0.8333 0.4511 0.8480 0.6256 0.8303  0.2739 14
Ego-Conditioned Track ‘ Distribution Quality Temporal Consistency Trajectory Alignment
L L - - - Avg. Rank
. . Subjective Objective Trajectory Video Agent Agent Trajectory
Models Size | FVD  FTD Quality  Quality  Quality Consist Consist Missing Consist ADE DTW
Kling 2.1%* - 3205 23.74 0.5468  0.7838  0.6860 0.8929 0.8186 0.9712  0.5430 29.97 2310 1
Gen-3 Alpha Turbo* 5559 2472 0.5740  0.8604  0.6770  0.8747 0.7986 0.9466  0.4800 33.39 2749 3
Wan2.2-12V 14B |194.4 29.56 0.5084  0.6982  0.6419 0.8821 0.7561 0.9034 0.4849 27.39 1901 2
LTX-Video 13B |378.1 61.09 04895  0.8604  0.5464 0.8705 0.7708 0.9020 0.4442 32.12 2505 6
HunyuanVideo-I12V 13B | 5329 21.18 0.4741 0.6847  0.5542 0.8792 0.8240 0.9415 04771 33.80 2794 7
CogVideoX 5B |307.1 166.6 048384  0.6937 04252 0.8167 0.7541 0.8981  0.3783 32.67 2413 10
SkyReels-V2-12V 14B | 4282 57.02 04764  0.6622  0.5028 0.8661 0.7208 0.875  0.4322 31.54 2594 11
Cosmos-Predict2 14B |260.5 56.26 04756  0.8198  0.6424 0.8428 0.6707 0.8986  0.4108 22.38 1490 4
Cosmos-Predict1 14B | 3452 3496 04783  0.7505  0.3761 0.8229 0.7423 0.7961  0.3343 3447 3084 13
Vista 2.5B[392.8 2733 0.4146 08198  0.6047 0.8741 0.6417 0.8676 0.4366 19.70 1216 5
UniFuture 3.0B|654.6 37.17 0.4006 = 0.9685  0.5353 0.8759 0.5525 0.8759 0.4165 20.21 1352 8
VaViM 1.2B| 1222 103.6 04910  0.8694  0.1936  0.9428 0.8290 0.9725 0.0984 41.92 3863 9
Drivingdojo 2.3B|586.5 3573 04264 08198 04131 0.8419 0.6940 0.8439 02776 25.50 2142 12
GEM 2.1B|579.9 97.70 0.4484  0.8018  0.5085 0.7886 0.6180 0.7463  0.2983  25.73 1982 14

Table 3: Evaluation results of 14 generative world models on our benchmark. Best results are
in red region, second best are in orange region, and third best are in blue region. “*” indicates
commercial closed-source models. Models fall into four categories: closed-source, open-source
general video models, physical-world models, and driving-specific models.

ically plausible motion (low ADE/DTW) yet underperform in visual fidelity, exhibiting noticeable
artifacts. Currently, no model successfully combines strong photorealism with precise, physically
consistent motion, highlighting a key frontier for driving world generation.

Trajectory alignment remains limited, revealing substantial gaps. Under ego-trajectory con-
ditioning, models exhibit significant ADE/DTW errors, indicating poor adherence to commanded
paths. This can stem from two main factors: 1) artifacts in the generated videos (e.g., texture repeti-
tion, blur, unstable geometry) that impair SLAM-based trajectory recovery, and 2) imperfect motion
generation, where the model itself fails to follow the intended trajectory. These observations high-
light that both video fidelity and trajectory modeling need further improvement.

DrivingGen exposes failure modes hidden from prior single metric. Existing benchmarks often
rely solely on distribution-level metrics such as FVD to evaluate generated driving videos. While
useful for assessing overall distribution similarity, good FVD/FTD alone does not necessarily imply
plausible driving—yvideos can appear distribution-close yet exhibit stop—go jitter, identity drift, or
non-physical disappearances. Similarly, high objective quality (e.g., low flicker) can coexist with
poor subjective quality or unstable agent behavior. By jointly reporting distribution, perceptual
quality, temporal consistency, and trajectory alignment, DrivingGen exposes these hidden failure
modes and highlights precisely where each model falls short.

5 CONCLUSION

This work introduces DrivingGen, a comprehensive benchmark designed to evaluate generative
world models for autonomous driving. DrivingGen integrates a diverse dataset spanning varied
weather, time of day, global regions, and complex driving maneuvers with a multifaceted metric
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suite that jointly measures visual realism, trajectory plausibility, temporal coherence, and control-
lability. By benchmarking a broad spectrum of state-of-the-art models, DrivingGen reveals critical
trade-offs among visual fidelity, physical consistency, and controllability, providing clear insights
into the strengths and limitations of current approaches. The benchmark establishes a unified and
reproducible framework that can guide the development of reliable and deployment-ready driving
world models, fostering progress toward safe and scalable simulation, planning, and decision mak-
ing in autonomous driving.

6 FUTURE WORK AND LIMITATIONS

As DrivingGen is the first comprehensive benchmark for generative world models in autonomous
driving, several intriguing ideas can be explored further in follow-up work.

Expanding More Meaningful Data. Currently, we collect 400 data samples (from the web and
aggregated from existing driving datasets) to balance efficiency and practicality, because generating
and evaluating videos is resource-intensive. With this limited number, we may not fully cover the
long tail of driving scenarios. In future expansions, scaling up the dataset is an exciting future
direction. As generative models become faster and datasets become more readily available, scaling
up to thousands of clips is feasible and will further improve long-tail coverage.

Interactive and Closed-Loop Simulation. Ensuring reliable closed-loop performance (e.g., for safe
planning) is crucial for Autonomous Driving, and DrivingGen is a step toward that by first bench-
marking open-loop predictive quality and realism. In the current work, all considered generative
video world models are designed for open-loop video generation and no standardized closed-loop
world generation framework exists yet. Performing a fair, unified closed-loop benchmark is infeasi-
ble at this stage. An exciting future direction is to consider closed-loop evaluation for driving world
models (e.g., integrating generative models into an interactive simulator like CARLA or combining
with closed-loop dataset simulation like Navsim).

Downstream Tasks Metrics and Enriching data modality. DrivingGen focuses on metrics that
directly measure video realism, physical consistency, and controllability in the generated footage it-
self. One complementary direction is to incorporate metrics from downstream tasks in Autonomous
Driving (e.g., how well an autonomous driving stack performs using synthetic videos). However,
it may require collecting synchronized multi-camera footage and Map knowledge for a fair and
meaningful benchmark. Our current dataset is limited to a single front-view camera feed, which
poses challenges for more structural driving generation. A possible future direction is expanding
the benchmark to multi-view video and sensor data (LiDAR, HD Map, etc.) to construct a more
structured driving world generation and novel metrics (e.g., view consistency) can be proposed.

Evaluation of Scene Controllability and State Transformation. Evaluating controllability over
scene content (e.g., controlling other agents, road layout in the scene) would be highly useful for
autonomous applications. We did not include such metrics in our benchmark because implementing
a unified evaluation for different models with scene-level control faces challenges both in model
support and dataset complexity. Due to these challenges, we believe it is a great topic for driving
world generation which controls scene content and map layout and assessing whether state transfor-
mations of the world model are reasonable. One could imagine controlling the presence or behavior
of a pedestrian or the configuration of lanes, and checking if the model can follow those constraints.

Counterfactual Reasoning Evaluation. In our current benchmark, we did not explicitly evaluate
counterfactual reasoning. The main reason is that DrivingGen focuses on real driving videos. We
are limited to evaluating the scenarios that actually happened. One novel future direction would be
counterfactual reasoning evaluation. One can introduce hypothetical events or modifications (like
an astronaut on a horse crossing the road, or a car jumping off the ground to overtake other agents,
and other unrealistic edge cases) and propose new metrics to check whether the model follows this
counterfactual generation.

Overall Score. We provide the full table of metrics transparently to evaluate the models, and the
average rank serves as a quick summary but not a definitive score. Exploration of a composite,
single-index score is an interesting topic, which requires normalized distribution and alignment
metrics (e.g., FVD and ADE).
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A RELATED WORKS

A.1 GENERATIVE WORLD MODELS AND THEIR APPLICATION IN DRIVING

Driven by advances in image generative modeling (Kingma & Welling| 2013} |Goodfellow et al.
2014} [Esser et all,[2021} [Ho et all 2020; [Peebles & Xiel [2023} [Zong et al, 2024a; He et al., 2025),

the landscape of large-scale video models has evolved significantly, particularly in diffusion-based
frameworks. Closed-source models [2024; [2024.06}, [LumaLabs| [2024.06;

Runway, [2024.06} [2023} [Capcut, 2024} MiniMax, [2024.09; [Tongyil, [2024.09}, [PikaLabs
2024.10;[Shao et al., 2024c), mainly developed by major technology companies, aim at high-quality,

professional video generation with extensive resources invested. Sora (Brooks et al., [2024), intro-
duced by OpenAl, marked a significant leap in Video Generation. Open-source models (Rombach|
et al, 2022} [Ho & Salimans|, [2022; [HaCohen et al., 2024b; [Kong et al.| 2024}, [Wan et al., 2025
Yang et al.| 2024e; |Agarwal et al.} , typically based on stable diffusion (Rombach et al., 2022
and flow matching (Li et al., 2025b), are quickly expanding and making real contributions to video
generation as well. Wan (Wan et al., [2025), an open-source model, is widely used for video genera-
tion and has achieved SOTA results on many benchmarks. Recent years have also seen remarkable
progress in both multimodal understanding and generation models (Li et al.} 2025¢; [Zhang et al.

2025).

Besides general video generation, driving-focused generative models use sensor data such as lidar
point clouds (Zheng et al.} 20244} [Yang et al,2024d) or images (Gao et al/,[2024;[Hassan et al.| 2024}
[Hu et al., 2023; [Wang et al., |2024c:f}; [Yang et al.| [2024b}; [Zhao et al., |2025). Since this work em-
phasizes video generation, we focus on image-based methods. Early approaches before Vista
2024) rely on multi-view RGB inputs and high-definition maps or 3D boxes, limiting gen-
eralization to new datasets and open-domain videos. Vista-based methods (Hassan et al., 2024}

et al.| [2025d; Mousakhan et al., 2025) simplify inputs to a single front-view image with optional ego
trajectories, improving scalability to YouTube videos and enabling broader open-domain evaluation.

A.2 BENCHMARKS FOR EVALUATING GENERATIVE WORLD MODELS

The rapid progress of open- and closed-source video generation has driven the creation of many
benchmarks (Huang et al, 2023} [2024; [Bansal et al., 2024 [Ning et al, 2023} [Liao et al 2024}
let all,[2024;Wang et al., g)), such as VBench, which evaluates models with multifaceted metrics
based on human-collected prompts. Recently, evaluations have expanded to open, dynamic, and
complex world-simulation scenarios (Yue et al, 2025}, [Duan et al., 2025}, [Li et al.l 2025d; [Qin et al.}
2024; [Kwon et al.| 2025). WorldScore (Duan et al.,[2025) measures generated videos using explicit
camera trajectory layouts. However, a comprehensive driving-world benchmark is still lacking due
to limited test sample diversity, heterogeneous input modalities, and the absence of driving-specific
metrics. Recent works (Gao et al., 2024} [Hassan et al.},[2024) mainly adopt Frechet Video Distance
(FVD) and Average Displacement Error (ADE) for trajectory alignment, while GEM
2024])) adds human video evaluations that are subjective and hard to scale. The closest effort, ACT-
Bench (Arai et al.| 2024), focuses solely on trajectory alignment and overlooks key aspects such as
video and trajectory distribution, quality, and temporal consistency.
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Figure 3: The statistics of our ego-condition track.

Figure 4: The gallery of our ego-condition track.

B APPENDIX

B.1 GALLERY OF THE EGO-CONDITIONED TRACK

We present the distribution and gallery of our ego-conditioned track in Fig.3]and Fig.[d] We curated
data from five open-sourced driving datasets to diversify the distribution of weather, time of day, and
locations (with various driving styles). The videos and ego-trajectories provided in these datasets
are used as the target distribution for calculating metrics such as FVD and FTD.

B.2 DETAILS OF OUR SLAM PIPELINE AND COMPARIISION WITH OTHERS

Dealing with Unsuccessful Trajectory Reconstruction. Not every generated video will yield a
successful SLAM reconstruction, especially if the video has tremendous artifacts or very low tex-
ture. Simply discarding those cases would bias the evaluation, because typically it’s the worst videos
(the most unrealistic ones) that cause SLAM to fail. Dropping them would artificially inflate those
poor-performing models’ scores. We tackled this issue explicitly to ensure no video is left unevalu-
ated. Our approach was to build a custom SLAM+depth estimation pipeline that is robust to failures.
We ensure a trajectory is obtained for every video by applying a failure-recovery strategy: if at any
frame the SLAM algorithm cannot estimate the next camera pose (e.g., fails in feature matching,
solving PnP, etc.), we take the last known pose and extrapolate it forward. Specifically, we propa-
gate the last pose with a constant velocity model. To avoid giving an unrealistic advantage, we add
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Pipeline Successrate T  ADE |
GEM: DROID-SLAM + Depth-Anything v2 17/20 14.61
DrivinDojo: COLMAP + scale to GT 16/20 14.99
Ours w/o failure handling 17720 15.18
Ours w/ failure handling 20/20 16.84

Table 4: Comparison of different SLAM pipelines on 20 nuPlan videos generated with Vista. “Suc-
cess rate” counts how many videos yield a valid reconstruction; ADE is the mean trajectory error
over successfully reconstructed runs.

small random perturbations to the pose orientation during this extrapolation. This injects a bit of un-
certainty to mimic the fact that the current estimation is noisy, preventing the extrapolated path from
appearing “too perfect” in our metrics. We chose not to simply freeze the camera (no movement)
upon failure, because a completely static continuation could skew certain trajectory metrics. By
using this continuous-and-jitter method, we obtain a complete trajectory from start to end for every
video, no matter how poor its quality. This allows all videos to count toward the trajectory-based
metrics, holding models accountable for cases where a naive SLAM would have given up.

Comparison with Other SLAM Pipelines. We evaluated our reconstruction pipeline against those
used in recent driving world-model systems. Concretely, we compare the successful reconstruction
rate and trajectory accuracy (ADE) on 20 nuPlan videos generated with Vista from our early ex-
periments. A run is counted as successful if the SLAM system returns a valid camera trajectory
without numerical failure. The results are summarized in Table 4 Compared to the GEM pipeline
(DROID-SLAM (Teed & Dengl [2022) + Depth-Anything v2 (Yang et al., 2024c)) and the Drivin-
Dojo pipeline (COLMAP (Schonberger et al.| | 2016; [Schonberger & Frahm)| 2016)) with scale aligned
to ground truth), our basic version (Ours w/o failure handling) achieves a similar successful recon-
struction rate (17/20 vs. 17/20 and 16/20) and a comparable ADE (15.18 vs. 14.61 and 14.99). When
we enable our failure-handling strategy (Ours w/ failure handling), the successful rate increases to
20/20, while the ADE remains in the same ballpark (16.84). This trade-off is important for Driv-
ingGen: the benchmark needs robust reconstruction on all videos rather than dropping harder cases
and evaluating on a subset of “easy” videos. Overall, our SLAM pipeline is more robust than existing
pipelines by handling reconstruction failure explicitly.

B.3 FRECHET TRAJECTORY DISTANCE (FTD)

Idea. FTD applies the FID-style Gaussian Fréchet distance to trajectory embeddings, replacing
image/video features with a driving-domain encoder.

Representation model and input. We use MTR’s agent _polyline_encoder ¢(-) (Shiet al,
2023). Crucially, MTR consumes a fixed temporal horizon H.

Window embeddings & trajectory pooling. We slice the trajectory into windows to fit into the
MTR encoder. Each window is encoded as f = ¢(window) € R?. A trajectory’s embedding is
the mean over its window embeddings, which stabilizes statistics and removes dependence on the
number of windows.

gen

Distributional distance. For generated embeddings X = {f(7f*")}"_, and reference embeddings

Y = {f(r}*)} 72, with empirical means/covariances fiy /v, ¥ x,y, define

FTD(X,Y) = lfox — oy |13 + TI“(EX + 3y — 2(2;/232%2)1/2)

We add eI (e=10"°) before the matrix square root and symmetrize products by (A+AT)/2 if
needed. Optional Ledoit—Wolf shrinkage can be used when n or m < d.

Practical recipe (defaults).

* Encoder: MTR agent _polyline_encoder.

* Horizon & slicing: H=10 steps; stride s=H (non-overlapping); same slicing for gener-
ated and reference.
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* Normalization: agent-centric translation/rotation per window; MTR schema constants
(¢, w,h) = (4.5,2.0,1.8) m; type=vehicle; validity=1.

» Aggregation: mean over a trajectory’s window embeddings; FTD on the two sets of
trajectory-level embeddings.

B.4 OBIJECTIVE IMAGE QUALITY

Motivation and background. Pulse-width modulation (PWM) in vehicle lighting and roadside
luminaires induces temporal luminance modulation that, when sampled by rolling-shutter cameras,
can alias into low-frequency flicker and degrade detection and tracking. The IEEE Automotive
P2020 standard formalizes Modulation Mitigation Probability (MMP) to quantify whether such
modulation is sufficiently suppressed during operation (Group et al.l 2018; 996, |2022). We im-
plement MMP on the frame-mean luminance to provide a robust and efficient evaluation signal.

Definition. Given frames {I;}7 ; at sampling rate fps, form the luminance sequence L; =

mean(gray(I;)) and its periodogram P(f) = |F{L}(f)|? (real FFT). Let the dominant non-DC
peak be

" ~

If f* < 0.2 Hz, set MMP = 1.
Computation. With the band B(f*) = {f : |f — f*| < Af}, define the band-power ratio

 Sjenyn PU)

,\f* , e=10"%.
Zf P(f)+e

A

The metric is

| MMP = 1[4 <] | {0,1}.

Defaults. Af = band_hz = 0.5Hz, 7 = thr = 0.05, fps = 10. The procedure uses a single
FFT per clip with complexity O(T logT).

B.5 TRAJECTORY QUALITY

Motivation. Video-only scores can miss whether motions are plausible and comfortable. We de-
fine a trajectory quality that aggregates three kinematic submetrics—comfort, motion, and curva-
ture—via a weighted geometric mean (equal weights by default). Each submetric lies in [0, 1] with
larger being better; we report per-trajectory scores and dataset means, skipping NaNs.

Preliminaries. A trajectory 7={(z,y:)}7_,. Velocities, accelerations, and jerks use centered fi-
nite differences. Heading comes from velocity, and yaw rate uses wrapped heading differences.
Path length is the cumulative step distance. A trajectory is marked moving if any speed exceeds
Ustatic:0~1 m/s.

Comfort (Scome). We score comfort from three per-meter peaks: longitudinal jerk, lateral accel-
eration, and yaw rate. Trajectories that are non-moving (speed < Uspic) Or too short (< 1m)
are set to NaN. Each peak is then mapped to a [0, 1] component score with an inverse transform
Sq = 1/(1 + g/s4) (higher is better), where s, are scale factors (default 1.0). The final comfort
score is the geometric mean of the three components.

Motion (Sspeea). We penalize under-mobility using a trajectory’s mean speed. A monotone log map-
ping compresses high speeds and scales by vyax=Fk vrer (defaults: ve=6.0 m/s, k=2.5) to obtain
Sspeed € [0, 1]. Never-moving trajectories receive 0.

Curvature (Scyv). Discrete curvature is formed from first/second derivatives of (x¢,y:). We then
compute an RMS curvature s,,s, then map

1

Scurv = m

€ (0,1].

Non-moving trajectories return NaN.
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Component Example Approx. Time
. . Wan2.2-14B Days
Video Generation Vista About One Day
Trajectory Reconstruction SLAM + Depth model Hours
. . FVD Hours
Distribution Metrics FTD Minutes
Subjective Image Quality Hours
Quality Metrics Objective Image Quality Minutes
Trajectory Quality Minutes
Video Consistency Hours
Consistency Metrics Agent Consistency More Hours
y Agent Disappearance Consistency Hours
Trajectory Consistency Minutes
. . . ADE Minutes
Trajectory Alignment Metrics DTW Minutes

All Metrics (Total) All Above Metric Groups 1-2 Days on a Single GPU

Table 5: Approximate runtime of different components in DrivingGen on 400 videos with 100
frames each, evaluated on a single modern GPU. Times are coarse estimates and may vary with
hardware.

B.6 AGENT ABNORMAL DISAPPEARANCE

Motivation. Agents should not vanish without a plausible cause (e.g., occlusion or leaving the
view). We detect such cases directly from video with a minimal vision—language check.

Method. For each agent that disappears, we prepare three frames: (1) the first frame where the
agent is visible, (2) the last frame where it is visible (both with the agent box drawn in green), and
(3) the first frame after it disappears (no box). We ask a VLM to classify the disappearance with the
following prompt:

Given three frames around the moment a green-boxed object
disappears, classify the disappearance as Natural (e.g.,
occlusion or leaving the field of view) or Unnatural (abrupt
or non-physical). Base your decision on visual and motion
continuity and interactions with nearby objects. Output one
word: Natural or Unnatural.

Scoring. A tracklet is abnormal if the VLM outputs Unnatural; otherwise it is not abnormal. A
video is clean only if all evaluated tracklets are not abnormal. The final score is the percentage of
clean videos (higher is better).

B.7 TRAJECTORY CONSISTENCY

Definition. From positions sampled at step At, form the speed series v; and the acceleration series
a; by finite differences. Measure each signal’s dispersion relative to its typical level using a simple
ratio, then squash with an exponential:

std(v) st g (CRy), Se = exp(—R.).

- mean(v)’ ~“  mean(|al)’
The trajectory consistency score is the average
Scons = % (Sv + Sa) € (07 1]7

where higher indicates smoother, more realistic kinematics.
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Figure 5: Human Validation of Our benchmark. Our metrics closely match human preferences.
Trajectory-related metrics are less accurate in comparison to humans, likely due to noisy monocular
SLAM and metric-depth recovery from generated videos with artifacts.

B.8 TIME AND RESOURCE FOR DRIVINGGEN

In our experiments, the bottleneck is primarily the video generation itself: many of the state-of-the-
art generative models we benchmark are slow and memory hungry (e.g., Wan2.2-14B takes about
20-30 minutes to generate one 100-frame video on a single GPU with at least 40 GB memory). In
contrast, the evaluation suite is comparatively manageable. The approximate wall-clock time for
each metric group on 400 videos is summarized in Table[5] On a single modern GPU, running all
metrics for 400 videos with 100 frames takes roughly 1-2 days.

Within this budget, the main cost on the evaluation side comes from image quality and video con-
sistency metrics, which require running heavy visual backbones over every frame. The most time-
consuming metrics would be agent consistency and disappearance consistency, which run models for
each agent in the first frame of the video. Trajectory measures (FTD, quality, consistency and align-
ment) are much cheaper (minutes), since they operate on compact embeddings or low-dimensional
trajectories. These numbers are indicative and may vary with hardware and implementation, but
they show that: (i) video generation dominates the overall runtime, and (ii) among the metrics, the
image, video and agent quality and consistency components are the main contributors, while the rest
of the metrics are comparatively fast.

B.9 HUMAN ALIGNMENT OF DRIVINGGEN

We employ a similar method in VBench to determine whether each category aligns with human
preferences. Given the human labels, we calculate the win ratio of each model. During pairwise
comparisons, if a model’s video is selected as better, then the model scores 1 and the other model
scores (. If there is a tie, then both models score 0.5. For each model, the win ratio is calculated as
the total score divided by the total number of pairwise comparisons in which it participated.

For fast and reasonable evaluation, we select three categories: distribution, quality and consistency.
We evaluate with both videos and trajectories and use the primary metric in each category. Metrics
are FVD and FTD, Subjective image quality and trajectory quality, video consistency and trajectory
consistency. The results are shown in Fig. [3}
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