
Under review as a conference paper at ICLR 2023

IN-CONTEXT REINFORCEMENT LEARNING
WITH ALGORITHM DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Algorithm Distillation (AD), a method for distilling reinforcement
learning (RL) algorithms into neural networks by modeling their training his-
tories with a causal sequence model. Algorithm Distillation treats learning to
reinforcement learn as an across-episode sequential prediction problem. A dataset
of learning histories is generated by a source RL algorithm, and then a causal
transformer is trained by autoregressively predicting actions given their preceding
learning histories as context. Unlike sequential policy prediction architectures that
distill post-learning or expert sequences, AD is able to improve its policy entirely
in-context without updating its network parameters. We demonstrate that AD can
reinforcement learn in-context in a variety of environments with sparse rewards,
combinatorial task structure, and pixel-based observations, and find that AD learns
a more data-efficient RL algorithm than the one that generated the source data.

Private & Confidential

Task  

o0  a0  r0  o1  a1  r1  …  oT-1  aT-1  rT-1  oT  aT  rTo0  a0  r0  o1  a1  r1  …  oT-1  aT-1  rT-1  oT  aT  rTo0  a0  r0  o1  a1  r1  …  oT-1  aT-1  rT-1  oT  aT  rT

RL algorithm 
learning histories 

Causal Transformer

Predict actions using 
across-episodic contexts

Task 1  

Data Generation  

Model Training  
learning progress

Figure 1: Algorithm Distillation (AD) has two steps – (i) a dataset of learning histories is collected from
individual single-task RL algorithms solving different tasks; (ii) a causal transformer predicts actions from
these histories using across-episodic contexts. Since the RL policy improves throughout the learning histories,
by predicting actions accurately AD learns to output an improved policy relative to the one seen in its context.
AD models state-action-reward tokens, and does not condition on returns.

1 INTRODUCTION

Transformers have emerged as powerful neural network architectures for sequence modeling (Vaswani
et al., 2017). A striking property of pre-trained transformers is their ability to adapt to downstream
tasks through prompt conditioning or in-context learning. After pre-training on large offline datasets,
large transformers have been shown to generalize to downstream tasks in text completion (Brown
et al., 2020), language understanding (Devlin et al., 2018), and image generation (Yu et al., 2022).

Recent work demonstrated that transformers can also learn policies from offline data by treating offline
Reinforcement Learning (RL) as a sequential prediction problem. While Chen et al. (2021) showed
that transformers can learn single-task policies from offline RL data via imitation learning, subsequent
work showed that transformers can also extract multi-task policies in both same-domain (Lee et al.,

1



Under review as a conference paper at ICLR 2023

2022) and cross-domain settings (Reed et al., 2022). These works suggest a promising paradigm
for extracting generalist multi-task policies – first collect a large and diverse dataset of environment
interactions, then extract a policy from the data via sequential modeling. We refer to the family
of approaches that learns policies from offline RL data via imitation learning as Offline Policy
Distillation, or simply Policy Distillation1 (PD).

Despite its simplicity and scalability, a substantial drawback of PD is that the resulting policy does
not improve incrementally from additional interaction with the environment. For instance, the Multi-
Game Decision Transformer (MGDT, Lee et al., 2022) learns a return-conditioned policy that plays
many Atari games while Gato (Reed et al., 2022) learns a policy that solves tasks across diverse
environments by inferring tasks through context, but neither method can improve its policy in-context
through trial and error. MGDT adapts the transformer to new tasks by finetuning the model weights
while Gato requires prompting with an expert demonstration to adapt to a new task. In short, Policy
Distillation methods learn policies but not Reinforcement Learning algorithms.

We hypothesize that the reason Policy Distillation does not improve through trial an error is that it
trains on data that does not show learning progress. Current methods either learn policies from data
that contains no learning (e.g. by distilling fixed expert policies) or data with learning (e.g. the replay
buffer of an RL agent) but with a context size that is too small to capture policy improvement.

Our key observation is that the sequential nature of learning within RL algorithm training could,
in principle, make it possible to model the process of reinforcement learning itself as a causal
sequence prediction problem. Specifically, if a transformer’s context is long enough to include policy
improvement due to learning updates it should be able to represent not only a fixed policy but a policy
improvement operator by attending to states, actions and rewards from previous episodes. This opens
the possibility that any RL algorithm can be distilled into a sufficiently powerful sequence model
such as a transformer via imitation learning, converting it into an in-context RL algorithm.

We present Algorithm Distillation (AD), a method that learns an in-context policy improvement
operator by optimizing a causal sequence prediction loss on the learning histories of an RL algorithm.
AD has two components. First, a large multi-task dataset is generated by saving the training histories
of an RL algorithm on many individual tasks. Next, a transformer models actions causally using the
preceding learning history as its context. Since the policy improves throughout the course of training
of the source RL algorithm, AD is forced to learn the improvement operator in order to accurately
model the actions at any given point in the training history. Crucially, the transformer context size
must be sufficiently large (i.e. across-episodic) to capture improvement in the training data. The full
method is shown in Fig. 1.

We show that by imitating gradient-based RL algorithms using a causal transformer with sufficiently
large contexts, AD can reinforcement learn new tasks entirely in-context. We evaluate AD across
a number of partially observed environments that require exploration, including the pixel-based
Watermaze (Morris, 1981) from DMLab (Beattie et al., 2016). We show that AD is capable of
in-context exploration, temporal credit assignment, and generalization. We also show that AD learns
a more data-efficient algorithm than the one that generated the source data for transformer training.
To the best of our knowledge, AD is the first method to demonstrate in-context reinforcement learning
via sequential modeling of offline data with an imitation loss.

2 BACKGROUND

Partially Observable Markov Decision Processes: A Markov Decision Process (MDP) consists of
states s ∈ S , actions a ∈ A, rewards r ∈ R, a discount factor γ, and a transition probability function
p(st+1|st, at), where t is an integer denoting the timestep and (S,A) are state and action spaces. In
environments described by an MDP, at each timestep t the agent observes the state st, selects an action
at ∼ π(·|st) from its policy, and then observes the next state st+1 ∼ p(·|st, at) sampled from the
transition dynamics of the environment. In this work, we operate in the Partially Observable Markov
Decision Process (POMDP) setting where instead of states s ∈ S the agent receives observations
o ∈ O that only have partial information about the true state of the environment. Full state information

1What we refer to as Policy Distillation is similar to Rusu et al. (2016) but the policy is distilled from offline
data, not a teacher network.

2



Under review as a conference paper at ICLR 2023

may be incomplete due to missing information about the goal in the environment, which the agent
must instead infer through rewards with memory, or because the observations are pixel-based, or both.

Online and Offline Reinforcement Learning: Reinforcement Learning algorithms aim to
maximize the return, defined as the cumulative sum of rewards

∑
t γ

trt, throughout an agent’s
lifetime or episode of training. RL algorithms broadly fall into two categories: on-policy
algorithms (Williams, 1992) where the agent directly maximizes a Monte-Carlo estimate of the
total returns or off-policy (Mnih et al., 2013; 2015) where an agent learns and maximizes a value
function that approximates the total future return. Most RL algorithms maximize returns through
trial-and-error by directly interacting with the environment. However, offline RL (Levine et al., 2020)
has recently emerged as an alternate and often complementary paradigm for RL where an agent
aims to extract return maximizing policies from offline data gathered by another agent. The offline
dataset consists of (s, a, r) tuples which are often used to train an off-policy agent, though other
algorithms for extracting return maximizing policies from offline data are also possible.

Self-Attention and Transformers The self-attention (Vaswani et al., 2017) operation begins by
projecting input data X with three separate matrices onto D-dimensional vectors called queries Q,
keys K, and values V . These vectors are then passed through the attention function:

Attention(Q,K, V ) = softmax(QKT /
√
D)V. (1)

The QKT term computes an inner product between two projections of the input data X . The inner
product is then normalized and projected back to a D-dimensional vector with the scaling term V .
Transformers (Vaswani et al., 2017; Devlin et al., 2018; Brown et al., 2020) utilize self-attention as
a core part of the architecture to process sequential data such as text sequences. Transformers are
usually pre-trained with a self-supervised objective that predicts tokens within the sequential data.
Common prediction tasks include predicting randomly masked out tokens (Devlin et al., 2018) or
applying a causal mask and predicting the next token (Radford et al., 2018).

Offline Policy Distillation: We refer to the family of methods that treat offline Reinforcement
Learning as a sequential prediction problem as Offline Policy Distillation, or Policy Distillation
(PD) for brevity. Rather than learning a value function from offline data, PD extracts policies by
predicting actions in the offline data (i.e. behavior cloning) with a sequence model and either return
conditioning (Chen et al., 2021; Lee et al., 2022) or filtering out suboptimal data (Reed et al., 2022).
Initially proposed to learn single-task policies (Chen et al., 2021; Janner et al., 2021), PD was recently
extended to learn multi-task policies from diverse offline data (Lee et al., 2022; Reed et al., 2022).

In-Context Learning: In-context learning refers to the ability to infer tasks from context. For
example, large language models like GPT-3 (Brown et al., 2020) or Gopher (Rae et al., 2021) can
be directed at solving tasks such as text completion, code generation, and text summarization by
specifying the task through language as a prompt. This ability to infer the task from prompt is
often called in-context learning. We use the terms ‘in-weights learning’ and ‘in-context learning’
from prior work on sequence models (Brown et al., 2020; Chan et al., 2022) to distinguish between
gradient-based learning with parameter updates and gradient-free learning from context, respectively.

3 METHOD

Over the course of its lifetime a capable reinforcement learning (RL) agent will exhibit complex
behaviours, such as exploration, temporal credit assignment, and planning. Our key insight is that an
agent’s actions, regardless of the environment it inhabits, its internal structure, and implementation,
can be viewed as a function of its past experience, which we refer to as its history. Formally, we write:

H ∋ ht := (o0, a0, r0, . . . , ot−1, at−1, rt−1, ot, at, rt) = (o≤t, r≤t, a≤t) (2)

and we refer to a long2 history-conditioned policy as an algorithm:

P : H ∪O → ∆(A), (3)

where ∆(A) denotes the space of probability distributions over the action space A. Eqn. (3) suggests
that, similar to a policy, an algorithm can be unrolled in an environment to generate sequences of ob-
servations, rewards, and actions. For brevity, we denote the algorithm as P and environment (i.e. task)

2Long enough to span learning updates, e.g. across episodes.

3



Under review as a conference paper at ICLR 2023

as M, such that the history of learning for any given task M is generated by the algorithm PM.

(O0, A0, R0, . . . , OT , AT , RT ) ∼ PM. (4)

Here, we’re denoting random variables with uppercase Latin letters, e.g. O, A, R, and their values
with lowercase Latin letters, e.g. o, a, r. By viewing algorithms as long history-conditioned policies,
we hypothesize that any algorithm that generated a set of learning histories can be distilled into
a neural network by performing behavioral cloning over actions. Next, we present a method that,
provided agents’ lifetimes, learns a sequence model with behavioral cloning to map long histories
to distributions over actions.

3.1 ALGORITHM DISTILLATION

Suppose the agents’ lifetimes, which we also call learning histories, are generated by the source
algorithm P source for many individual tasks {Mn}Nn=1, producing the dataset D:

D :=
{(

o
(n)
0 , a

(n)
0 , r

(n)
0 , . . . , o

(n)
T , a

(n)
T , r

(n)
T

)
∼ P source

Mn

}N

n=1
. (5)

Then we distill the source algorithm’s behaviour into a sequence model that maps long histories
to probabilities over actions with a negative log likelihood (NLL) loss and refer to this process as
algorithm distillation (AD). In this work, we consider neural network models Pθ with parameters
θ which we train by minimizing the following loss function:

L(θ) := −
N∑

n=1

T−1∑
t=1

logPθ(A = a
(n)
t |h(n)

t−1, o
(n)
t ). (6)

Intuitively, a sequence model with fixed parameters that is trained with AD should amortise the source
RL algorithm P source and by doing so exhibit similarly complex behaviours, such as exploration
and temporal credit assignment. Since the RL policy improves throughout the learning history of
the source algorithm, accurate action prediction requires the sequence model to not only infer the
current policy from the preceding context but also infer the improved policy, therefore distilling
the policy improvement operator.

Algorithm 1 Algorithm Distillation

Require: Train {Mtrain} and test {Mtest} tasks, observations o ∈ O, actions a ∈ A, and rewards r ∈ R.
Require: Network parameters ϕi for i = 1, . . . , N source RL algorithms.
Require: Network parameters θ for a causal transformer Pθ that predicts actions.
Require: An empty buffer to store data D.

1: for i = 1 . . . N do ▷ Part 1: Dataset Generation
2: Sample a taskMtrain

i randomly from the train task distribution.
3: Train the source RL algorithm ϕi until it converges to the optimal policy.
4: Save the learning history h

(i)
T = (o0, a0, r0, . . . , oT , aT , rT )i to the dataset D ← D ∪ h

(i)
T .

5: end for
6: while Pθ not converged do ▷ Part 2: Algorithm Distillation
7: Randomly sample a multi-episodic subsequence h̄

(i)
j = (oj , aj , rj , . . . , oj+c, aj+c, rj+c)i of length c.

8: Autoregressively predict the actions with Pθ and compute the NLL loss in Eq. 6.
9: Backpropagate to update the transformer parameters.

10: end while
11: for k = 1 . . .Mseeds do ▷ Part 3: Autoregressive Evaluation
12: Sample a taskMtest

k randomly from the test task distribution. Initialize empty context queue C.
13: Unroll the transformer Pθ(·|C) in the environment storing sequential transitions (i.e. histories) in C.
14: Measure the return accumulated by the agent for each episode of evaluation.
15: end for

3.2 PRACTICAL IMPLEMENTATION

In practice, we implement AD as a two-step procedure. First, a dataset of learning histories is
collected by running an individual gradient-based RL algorithm on many different tasks. Next, a
sequence model with multi-episodic context is trained to predict actions from the histories. We
describe these two steps below and detail the full practical implementation in Algorithm 1.

4



Under review as a conference paper at ICLR 2023

Dataset Generation: A dataset of learning histories is collected by training N individual single-task
gradient-based RL algorithms. To prevent overfitting to any specific task during sequence model
training, a task M is sampled randomly from a task distribution for each RL run. The data generation
step is RL algorithm agnostic - any RL algorithm can be distilled. We show results distilling UCB
exploration (Lai & Robbins, 1985), an on-policy actor-critic (Mnih et al., 2016), and an off-policy
DQN (Mnih et al., 2013), in both distributed and single-stream settings. We denote the dataset of
learning histories as D in Eq. 5.

Training the Sequence Model: Once a dataset of learning histories D is collected, a sequen-
tial prediction model is trained to predict actions given the preceding histories. We utilize the
GPT (Radford et al., 2018) causal transformer model for sequential action prediction, but AD is
compatible with any sequence model including RNNs (Williams & Zipser, 1989). For instance,
we show in Appendix K that AD can also be achieved with an LSTM (Hochreiter & Schmidhuber,
1997), though less effectively than AD with causal transformers. Since causal transformer train-
ing and inference are quadratic in the sequence length, we sample across-episodic subsequences
h̄j = (oj , rj , aj . . . , oj+c, rj+c, aj+c) of length c < T from D rather than training full histories.

4 EXPERIMENTAL SETUP

4.1 ENVIRONMENTS

Figure 2: Agent view from the DM-
Lab Watermaze environment. The
task is to find a hidden platform that
elevates once found.

To investigate the in-context RL capabilities of AD and the base-
lines (see next section), we focus on environments that cannot be
solved through zero-shot generalization after pre-training. Specif-
ically, we require that each environment supports many tasks,
that the tasks cannot be inferred easily from the observation, and
that episodes are short enough to feasibly train across-episodic
causal transformers - for more details regarding environments see
Appendix A. We list the evaluation environments below:

Adversarial Bandit: a multi-armed bandit with 10 arms and 100
trials similar to the environment considered in RL2 (Duan et al.,
2016). However, during evaluation the reward is out of distribu-
tion. Reward is more likely distributed under odd arms 95% of
the time during training. At evaluation, the opposite happens -
reward appears more often under even arms 95% of the time.

Dark Room: a 2D discrete POMDP where an agent spawns in a room and must find a goal location.
The agent only knows its own (x, y) coordinates but does not know the goal location and must infer
it from the reward. The room size is 9× 9, the possible actions are one step left, right, up, down, and
no-op, the episode length is 20, and the agent resets at the center of the map. We test two environment
variants – Dark Room where the agent receives r = 1 every time the goal is reached and Dark Room
Hard, a hard exploration variant with a 17 × 17 size and sparse reward (r = 1 exactly once for
reaching the goal). When not r = 1, then r = 0.

Dark Key-to-Door: similar to Dark Room but this environment requires an agent to first find an
invisible key upon which it receives a reward of r = 1 once and then open an invisible door upon
which it receives a reward of r = 1 once again. Otherwise, the reward is r = 0. The room size is 9×9
making the task space combinatorial with 812 = 6561 possible tasks. This environment is similar to
the one considered in Chen et al. (2021) except the key and door are invisible and the reward is semi-
sparse (r = 1 for both key and the door). The agent is randomly reset. The episode length is 50 steps.

DMLab Watermaze: a partially observable 3D visual DMLab environment based on the classic
Morris Watermaze (Morris, 1981). The task is to navigate the water maze to find a randomly spawned
trap-door. The maze walls have color patterns that can be used to remember the goal location.
Observations are pixel images of size 72× 96× 3. There are 8 possible actions in total, including
going forward, backward, left, or right, rotating left or right, and rotating left or right while going
forward. The episode length is 50, and the agent resets at the center of the map. Similar to Dark
Room, the agent cannot see the location of the goal from the observations and must infer it through
the reward of r = 1 if reached and r = 0 otherwise; however, the goal space is continuous and
therefore there are an infinite number of goals.

5



Under review as a conference paper at ICLR 2023

Figure 3: Adversarial Bandit (Section 5): AD, RL2, and ED evaluated on a 10-arm bandit with 100 trials. The
source data for AD comes from learning histories from UCB (Lai & Robbins, 1985). During training, the reward
is distributed under odd arms 95% of the time and under even arms 95% of the time during evaluation. Both AD
and RL2 can in-context learn in-distribution tasks, but AD generalizes better out of distribution. Running RL2

with a transformer generally doesn’t offer an advantage over the original LSTM variant. ED performs poorly
both in and out of distribution relative to AD and RL2. Scores are normalized relative to UCB.

4.2 BASELINES

The main aim of this work is to investigate to what extent AD reinforcement learns in-context relative
to prior related work. AD is mostly closely related to Policy Distillation, where a policy is learned
with a sequential model from offline interaction data. In-context online meta-RL is also related
though not directly comparable to AD, since AD is an in-context offline meta-RL method. Still, we
consider both types of baselines to better contextualize our work. For a more detailed discussion of
these baseline choices we refer the reader to Appendix B. Our baselines include:

Expert Distillation (ED): this baseline is exactly the same as AD but the source data consists of expert
trajectories only, rather than learning histories. ED is most similar to Gato (Reed et al., 2022) except
ED models state-action-reward sequences like AD, while Gato models state-action sequences.

Source Algorithm: we compare AD to the gradient-based source RL algorithm that generates the
training data for distillation. We include running the source algorithm from scratch as a baseline to
compare the data-efficiency of in-context RL to the in-weights source algorithm.

RL2 (Duan et al., 2016): an online meta-RL algorithm where exploration and fast in-context adapta-
tion are learned jointly by maximizing a multi-episodic value function. RL2 is not directly comparable
to AD for similar reasons to why online and offline RL algorithms are not directly comparable – RL2

gets to interact with the environment during training while AD does not. We use RL2 asymptotic
performance as an approximate upper bound for AD.

4.3 EVALUATION

After pre-training, the AD transformer Pθ can reinforcement learn in-context. Evaluation is exactly
the same as with an in-weights RL algorithm except the learning happens entirely in-context without
updating the transformer network parameters. Given an MDP (or POMDP), the transformer interacts
with the environment and populates its own context (i.e. without demonstrations), where the context
is a queue containing the last c transitions. The transformer’s performance is then evaluated in terms
of its ability to maximize return. For all evaluation runs, we average results across 5 training seeds
with 20 evaluation seeds each for a total of 100 seeds. A task M is sampled uniformly from the test
task distribution and fixed for each evaluation seed. The aggregate statistics reported reflect multi-task
performance. We evaluate for 1000 and 160 episodes for the Dark and Watermaze environments
respectively and plot performance as a function of total environment steps at test-time.

5 EXPERIMENTS

The main research question of this work is whether an in-weights RL algorithm can be amortized into
an in-context one via Algorithm Distillation. The in-context RL algorithm should behave in a similar
way as the in-weights one and exhibit exploration, credit assignment, and generalization capabilities.
We begin our analysis in a clean and simple experimental setting where all three properties are
required to solve the task - the Adversarial Bandit described in Sec. 4.

6



Under review as a conference paper at ICLR 2023

0 4 8 12 16 20
Env Steps (Thousands)

0

5

10

15

Re
tu

rn

Dark Room

0 4 8 12 16 20
Env Steps (Thousands)

0.0

0.2

0.4

0.6

Re
tu

rn

Dark Room (Hard)

0 10 20 30 40 50
Env Steps (Thousands)

0.5

1.0

1.5

Re
tu

rn

Dark Key-to-Door

0 2 4 6 8
Env Steps (Thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Watermaze

0 10 20 30 40 50
Env Steps (Thousands)

0.5

1.0

1.5

Re
tu

rn

Dark Key-to-Door

AD
ED
Source
RL2 (1 billion)

Figure 4: Main results: we evaluate AD, RL2, ED, and the source algorithm on environments that require
memory and exploration. In these environments, an agent must reach a goal location that can only be inferred
through a binary reward. AD is consistently able to in-context reinforcement learn across all environments and is
more data-efficient than the A3C (“Dark” environments) (Mnih et al., 2016) or DQN (Watermaze) (Mnih et al.,
2013) source algorithm it distilled. We report the mean return ± 1 standard deviation over 5 training seeds with
20 test seeds each.

To generate the source data, we sample a set of training tasks {Mj}Nj=1, run the Upper Confidence
Bound algorithm (Lai & Robbins, 1985), and save its learning histories. We then train a transformer
to predict actions as described in Alg. 1. We evaluate AD, ED, and RL2 and normalize their scores
relative to UCB and a random policy (r − rrand.)/(rUCB − rrand.). The results are shown in
Fig. 3. We find that both AD and RL2 can reliably in-context learn tasks sampled from the training
distribution while ED cannot, though ED does do better than random guessing when evaluated
in-distribution. However, AD can also in-context learn to solve out of distribution tasks whereas
the other methods cannot. This experiment shows that AD can explore the bandit arms, can assign
credit by exploiting an arm once reached, and can generalize well out of distribution nearly as well as
UCB. We now move beyond the bandit setting and investigate similar research questions in more
challenging RL environments and present our results as answers to a series of research questions.

Does Algorithm Distillation exhibit in-context reinforcement learning? To answer this question,
we first generate source data for Algorithm Distillation. In the Dark Room and Dark Key-to-Door
environments we collect 2000 learning histories with an Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016) with 100 actors, while in DMLab Watermaze we collect 4000 learning
histories with a distributed DQN with 16 parallel actors (see Appendix E for asymptotic learning
curves of the source algorithm and Appendix M for hyperparameters). Shown in Fig. 4, AD in-context
reinforcement learns in all of the environments. In contrast, ED fails to explore and learn in-context
in most settings. We use RL2 trained for 1 billion environment steps as a proxy for the upper bound
of performance for a meta-RL method. Despite learning to reinforcement learn from offline data, AD
matches asymptotic RL2 on the Dark environments and approaches it (within 13%) on Watermaze.

Credit-assignment: In Dark Room, the agent receives r = 1 each time it visits the goal location. Even
though AD is trained to condition only on single timestep reward and not episodic return tokens, it is
still able to maximize the reward, which suggests that AD has learned to do credit assignment.

Exploration: Dark Room (Hard) tests the agents exploration capability. Since the reward is sparse
(r = 1 exactly once), most of the learning history has reward values of r = 0. Nevertheless, AD
infers the goal from previous episodes in its context which means it has learned to explore and exploit.

Generalization: Dark Key-to-Door tests in-distribution generalization with a combinatorial task space.
While the environment has a total of ∼ 6.5k tasks, less than 2k were seen during training. During
evaluation, AD both generalizes and achieves near-optimal performance on mostly unseen tasks.

0 5 10 15 20 25
Env Steps (Thousands)

0

5

10

15

Re
tu

rn

Algorithm Distillation

5% optimal
25% optimal
50% optimal
75% optimal
95% optimal

0 5 10 15 20 25
Env Steps (Thousands)

0

5

10

15

Re
tu

rn

Expert Distillation

5% optimal
25% optimal
50% optimal
75% optimal
95% optimal

Figure 5: AD and ED conditioned on partial demonstrations: We compare the performance of AD and ED
when prompted with a demonstration from the source algorithm’s training history on Dark Room (semi-dense).
While ED slightly improves and then maintains performance from the input policy, AD is able to improve it
in-context until the policy is optimal or nearly optimal.

7



Under review as a conference paper at ICLR 2023

Can Algorithm Distillation learn from pixel-based observations? DMLab Watermaze is a pixel-
based environment that is larger than the Dark environments with tasks sampled from a continuous
uniform distribution. The environment is partially observable in two ways - the goal is invisible until
the agent has reached it and the first-person view limits the agent’s field of vision. Shown in Fig. 4,
AD maximizes the episodic return with in-context RL while ED does not learn.

Can AD learn a more data-efficient RL algorithm than the one that produced the source data?
In Fig. 4, AD is significantly more data-efficient than the source algorithm. This gain is a byproduct
of distilling a multi-stream algorithm into a single-stream one. The source algorithms (A3C and
DQN) are distributed, which means they run many actors in parallel to achieve good performance.3

0 10 20 30 40 50
Env Steps (Thousands)

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

Single-stream AD

Source
AD

Figure 6: Single-stream Algorithm Distil-
lation: AD trained on the learning history
from an A3C agent with only one actor (i.e.
single-stream). By training on subsampled
learning histories (see Sec. 5), AD learns are
more data-efficient in-context RL algorithm.

A distributed RL algorithm may not be very data-efficient
in aggregate but each individual actor can be data-efficient.
Since the learning history for each actor is saved sep-
arately, AD achieves similar performance to the multi-
stream distributed RL algorithm, but is more data-efficient
as a single-stream method.

These data-efficiency gains are also evident for distilling
single-stream algorithms. In Fig 6 we show that by sub-
sampling every k-th episode (where k = 10) from a single
stream A3C learning history, AD can still learn a more
data-efficient in-context RL algorithm (for more detail,
see Appendix I). Therefore, AD can be more data-efficient
than both a multi and single-stream source RL algorithm.

While AD is more data-efficient, the source algorithm
achieves slightly higher asymptotic performance (see Ap-
pendix E). However, the source algorithm produces many
single-task agents with a unique set of weights ϕn per task
Mn, while AD produces a single generalist agent with
weights θ that are fixed across all tasks.

0 10 20 30 40 50
Env Steps (Thousands)

0.5

1.0

1.5

Re
tu

rn

Dark Key-to-Door

20 (.4 ep)
30 (.6 ep)
40 (.8 ep)
50 (1 ep)
100 (2 eps)
200 (4 eps)

Figure 7: Context size: AD in Dark Key-to-
Door with different context sizes. In-context
RL only emerges once the context size is
large enough and across-episodic.

Is it possible to accelerate AD by prompting it with
demonstrations? Although AD can reinforcement learn
without relying on demonstrations, it has the added benefit
that, unlike the source algorithm, it can be conditioned on
or prompted with external data. To answer the research
question, we sample policies from the hold-out test-set
data along different points of the source algorithm history -
from a near-random policy to a near-expert policy. We then
pre-fill the context for both AD and ED with this policy
data, and run both methods in the environment in Dark
Room and plot the results in Fig. 5. While ED maintains
the performance of the input policy, AD improves every
policy in-context until it is near-optimal. Importantly, the
more optimal the input policy the faster AD improves it
until it is optimal.

What context size is required for in-context RL to emerge? We’ve hypothesized that AD
requires sufficiently long (i.e. across-episodic) contexts to in-context reinforcement learn. We test this
hypothesis by training several AD variants with different context sizes on the Dark Room environment.
We plot the learning curves of these different variants in Fig. 7 and find that multi-episodic contexts
of 2-4 episodes are necessary to learn a near-optimal in-context RL algorithm. Initial signs of
in-context RL begin to emerge when the context size is roughly the length of an episode. The reason
for this is likely that the context is large enough to retrain across-episodic information – e.g., at the
start of a new episode, the context will be filled with transitions from most of the previous episode.

3Indeed, current state-of-the-art RL algorithms such as MuZero (Schrittwieser et al., 2019) and Muesli (Hessel
et al., 2021) rely on distributed actors.

8



Under review as a conference paper at ICLR 2023

6 RELATED WORK

Offline Policy Distillation: Most closely related to our work are the recent advances in learning
policies from offline environment interaction data with transformers, which we have been referring
to as Policy Distillation (PD). Initial PD architectures such as Decision Transformer (Chen et al.,
2021) and Trajectory Transformer (Janner et al., 2021) showed that transformers can learn single-task
policies from offline data. Subsequently the Multi-Game Decision Transformer (MGDT) (Lee et al.,
2022) and Gato (Reed et al., 2022) showed that PD architectures can also learn multi-task same
domain and cross-domain policies, respectively. Importantly, these prior methods use contexts
substantially smaller than an episode length, which is likely the reason in-context RL was not
observed in these works. Instead, they rely on alternate ways to adapt to new tasks - MGDT finetunes
the model parameters while Gato gets prompted with expert demonstrations to adapt to downstream
tasks. AD adapts in-context without finetuning and does not rely on demonstrations. Finally, a
number of recent works have explored more generalized PD architectures (Furuta et al., 2021),
prompt conditioning (Xu et al., 2022), and online gradient-based RL (Zheng et al., 2022).

Meta Reinforcement Learning: AD falls into the category of methods that learn to reinforcement
learn, also known as meta-RL. Specifically, AD is an in-context offline meta-RL method. This general
idea of learning the policy improvement process has a long history in reinforcement learning, but has
been limited to meta-learning hyper-parameters until recently (Ishii et al., 2002). In-context deep
meta-RL methods introduced by Wang et al. (2016) and Duan et al. (2016) are usually trained in the
online setting by maximizing multi-episodic value functions with memory-based architectures through
environment interactions. Another common approach to online meta-RL includes optimization-based
methods that find good network parameter initializations for meta-RL (Hochreiter et al., 2001;
Finn et al., 2017; Nichol et al., 2018) and adapt by taking additional gradient steps. Like other
in-context meta-RL approaches, AD is gradient-free - it adapts to downstream tasks without updating
its network parameters. Recent works have proposed learning to reinforcement learn from offline
datasets, or offline meta-RL, using Bayesian RL (Dorfman et al., 2021) and optimization-based
meta-RL (Mitchell et al., 2021). Given the difficulty of offline meta-RL, Pong et al. (2022) proposed
a hybrid offline-online strategy for meta-RL.

In-Context Learning with Transformers: In this work, we make the distinction between in-context
learning and incremental or in-context learning. In-context learning involves learning from a provided
prompt or demonstration while incremental in-context learning involves learning from one’s own
behavior through trial and error. While many recent works have demonstrated the former, it is much
less common to see methods that exhibit the latter. Arguably, the most impressive demonstrations of
in-context learning to date have been shown in the text completion setting (Radford et al., 2018; Chen
et al., 2020; Brown et al., 2020) through prompt conditioning. Similar methodology was recently
extended to show powerful composability properties in text-conditioned image generation (Yu et al.,
2022). Recent work showed that transformers can also learn simple algorithm classes, such as linear
regression, in-context in a small-scale setting (Garg et al., 2022). Like prior in-context learning
methods, Garg et al. (2022) required initializing the transformer prompt with expert examples. While
the aforementioned approaches were examples of in-context learning, a recent work (Chen et al.,
2022) demonstrated incremental in-context learning for hyperparameter optimization by treating
hyperparameter optimization as a sequential prediction problem with a score function.

7 CONCLUSION

We have demonstrated that Algorithm Distillation can distill an in-weights RL algorithm into an
in-context RL algorithm by modeling RL learning histories with a causal transformer and that AD can
learn more data-efficient algorithms than those that generated the source data. The main limitation
of AD is that most RL environments of interest have long episodes and modeling multi-episodic
context requires more powerful long-horizon sequential models than the ones considered in this
work. We believe this is a promising direction for future research and hope that AD inspires further
investigation into in-context reinforcement learning from the research community.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. DeepMind Lab. CoRR, abs/1612.03801, 2016.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Stephanie CY Chan, Adam Santoro, Andrew K Lampinen, Jane X Wang, Aaditya Singh, Pierre H
Richemond, Jay McClelland, and Felix Hill. Data Distributional Properties Drive Emergent
In-Context Learning in Transformers. arXiv preprint arXiv:2205.05055, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International Conference on Machine Learning, pp. 1691–
1703. PMLR, 2020.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya Kawakami,
Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, Sagi Perel, and Nando de Freitas. Towards
Learning Universal Hyperparameter Optimizers with Transformers, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline Meta Reinforcement Learning–Identifiability
Challenges and Effective Data Collection Strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
Reinforcement Learning via Slow Reinforcement Learning, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What Can Transformers Learn
In-Context? A Case Study of Simple Function Classes, 2022.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado van Hasselt. Muesli: Combining Improvements in Policy Optimiza-
tion. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 4214–4226. PMLR, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International conference on artificial neural networks, pp. 87–94. Springer, 2001.

Shin Ishii, Wako Yoshida, and Junichiro Yoshimoto. Control of exploitation–exploration meta-
parameter in reinforcement learning. Neural networks, 15(4-6):665–687, 2002.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement Learning as One Big Sequence
Modeling Problem. arXiv preprint arXiv:2106.02039, 2021.

10

http://arxiv.org/abs/1612.03801
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2106.01345
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://arxiv.org/abs/2205.13320
https://arxiv.org/abs/2205.13320
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2021/hash/248024541dbda1d3fd75fe49d1a4df4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/248024541dbda1d3fd75fe49d1a4df4d-Abstract.html
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/2111.10364
https://arxiv.org/abs/2111.10364
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
http://proceedings.mlr.press/v139/hessel21a.html
http://proceedings.mlr.press/v139/hessel21a.html
http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/2106.02039
https://arxiv.org/abs/2106.02039


Under review as a conference paper at ICLR 2023

T.L Lai and Herbert Robbins. Asymptotically Efficient Adaptive Allocation Rules. Adv. Appl. Math.,
6(1):4–22, mar 1985. ISSN 0196-8858. doi: 10.1016/0196-8858(85)90002-8.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-Game
Decision Transformers, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,
2016.

Richard G.M. Morris. Spatial localization does not require the presence of local cues. Learning and
Motivation, 12(2):239–260, 1981. doi: 10.1016/0023-9690(81)90020-5.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing
help? In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms, 2018.

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
meta-reinforcement learning with online self-supervision. In International Conference on Machine
Learning, pp. 17811–17829. PMLR, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling Language Models: Methods, Analysis & Insights from Training
Gopher, 2021.

11

https://doi.org/10.1016/0196-8858(85)90002-8
https://arxiv.org/abs/2205.15241
https://arxiv.org/abs/2205.15241
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2008.06043
https://arxiv.org/abs/2008.06043
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://www.nature.com/articles/nature14236?wm=book_wap_0005
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://app.dimensions.ai/details/publication/pub.1028012961
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/2107.03974
https://arxiv.org/abs/2107.03974
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446


Under review as a conference paper at ICLR 2023

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. A Generalist Agent, 2022.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.06295.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. CoRR,
abs/1911.08265, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, 2016. doi: 10.1109/CVPR.2016.308.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn, 2016.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Mach. Learn., 8:229–256, 1992. doi: 10.1007/BF00992696.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In International Conference on
Machine Learning, pp. 24631–24645. PMLR, 2022.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh,
Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling Autoregressive Models for
Content-Rich Text-to-Image Generation, 2022.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. arXiv preprint
arXiv:2202.05607, 2022.

12

https://arxiv.org/abs/2205.06175
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1911.08265
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1611.05763
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://leech.cybernoid.gr/files/text/publications/A%20Learning%20Algorithm%20for%20Continually%20Running%20Fully%20Recurrent%20Neural%20Networks%20-%2010.1.1.52.9724.pdf
http://leech.cybernoid.gr/files/text/publications/A%20Learning%20Algorithm%20for%20Continually%20Running%20Fully%20Recurrent%20Neural%20Networks%20-%2010.1.1.52.9724.pdf
https://arxiv.org/abs/2206.13499
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2202.05607


Under review as a conference paper at ICLR 2023

A ENVIRONMENT CONSIDERATIONS

In this work, we consider environments where zero-shot generalization is difficult, so the agent
must learn through trial and error. We also want environments where overfitting to any particular
task is difficult to ensure our method is general. A final practical consideration is that we consider
environments wher across-episodic histories can be feasibly modeled with a causal transformer.
Given these considerations, our evaluation environments need to satisfy three criteria:

1. Supports many tasks: The environments must be multi-task to ensure that our agent and the
baselines do not overfit to any single task and instead is able to in-context reinforcement
learn across many tasks within a given domain.

2. Task must be hard to infer: To ensure that the downstream tasks are hard to generalize to in
zero-shot, we use environments that require exploration. Namely, we require environments
where either the task can only be inferred from the reward and not the observation, or tasks
that are partially observable.

3. Supports multi-episodic contexts: Lastly, we impose a practical constraint - the environment
episodes must be short enough such that a normal GPT-like transformer can fit multiple
episodes in its context. Since this work introduces AD as a method, we wish to investigate it
in the cleanest possible setting using a canonical architecture. We leave investigating AD
with more complex architectures that scale to longer sequences for future work.

Prior related works (Chen et al., 2021; Lee et al., 2022; Janner et al., 2021; Reed et al., 2022)
evaluated on Atari, OpenAI gym, and as well as other environments. However, Atari and OpenAI
gym don’t satisfy at least one of the above criteria. Atari and OpenAI gym episodes are often long
and can contain thousands or more transitions per episode, so it’s technically challenging to populate
a causal transformer’s context with across-episode histories. Indeed, the prior related works only
considered within-episode context lengths. Additionally, it is often easy to infer the task from either
the observation or the dense reward alone in both Atari and OpenAI gym, which reduces the need for
exploration. For these reasons, we evaluate in environments that satisfy all three criteria instead.

B CLOSELY RELATED PRIOR METHODS

In our main results we use Expert Distillation (ED) as a baseline. Here, we discuss how the most
closely related methods differ from AD and why ED is sufficient to support the paper’s claims.

Expert Distillation (ED): ED is most similar to Gato (Reed et al., 2022), which models expert
sequences from a converged RL policy using a causal transformer. ED also trains a causal transformer
to predict actions using expert policy data. There are two key differences between ED and Gato. First,
unlike Gato which utilizes small (relative to an episode length) within-episode contexts, ED is trained
on the same across-episode contexts as AD, so the architectures used by ED and AD are the same.
The benefits of AD cannot therefore be attributed to across-episode contexts alone but also learning
progress in the offline data used to train AD. Second, ED models state-action-reward sequences while
Gato models only state-action sequences. The main difference between ED and AD is that AD is
trained on full multi-task learning histories rather than expert policy data.

Decision Transformer (DT) (Chen et al., 2021) and Multi-Game Decision Transformer (Lee et al.,
2022): DTs learn return-conditioned policies from single-task offline data collected by an RL agent.
While the training data itself (an RL agent’s replay buffer) contains learning, the context sizes
used in DT are too small to capture any learning progress or identify the task using across-episode
information. For instance, the Atari experiments use a context of length 30− 50 tokens, or 10− 17
transitions. Atari games can have hundreds or thousands of transitions in a single episode, which
means these contexts capture mostly within-episode information. Additionally, very little learning
progress happens in the underlying replay buffer data within that many transitions.

Another difference between DT and AD / ED is that DT learns a return-conditioned model whereas
AD / ED are both reward-conditioned. In our setting return-conditioning alone cannot yield an
optimal policy since the agent does not know the task until after it explores the environment and can
identify it using across-episode contexts. Since (i) DT uses small within-episodic contexts and (ii)
return-conditioning would not help in the environments considered, this baseline is similar to ED

13



Under review as a conference paper at ICLR 2023

with a small within-episode context which is strictly weaker than the long across-episode context
variant of ED we consider.

Trajectory Transformer (TTO) (Janner et al., 2021): Like AD, TTO also models state-action-reward
tokens but in addition to predicting actions it also learns a world model by predicting states and
rewards. To maximize return, TTO then uses beam search to select high-reward actions. However,
in our setting, TTO will run into the same problem as DT. To model rewards accurately it will
need longer across-episodic contexts since one environment supports many tasks. Similar to DT,
MGDT, and Gato, TTO uses smaller within-episode contexts. For this reason, TTO will fare no better
than DT, MGDT, or ED in the settings we consider. We also note that in contrast to TTO, AD is
model-free. In AD, actions are sampled from the transformer history-conditioned predictions and
return maximization emerges from modeling the learning histories of an RL algorithm.

To summarize, AD differs from prior methods mainly because its context is across-episodic and hence
large enough to capture learning progress and task information. AD could further be augmented by
learning world models like TTO or conditioning on returns like DT, but these investigations would be
well suited for future work since they are tangential to the main research question addressed in this
work – whether in-context RL can emerge by imitating the learning histories of an RL algorithm with
long across-episodic contexts.

AD is also closely related to prior work in in-context meta-RL. While both AD and in-context
meta-RL model across-episodic histories with memory-based architectures, prior in-context meta-RL
algorithms, such as RL2 (Duan et al., 2016) are trained online and rely on learning multi-episodic
value functions with TD learning while AD is trained offline and uses a supervised imitation learning
objective.

C EXPERT DISTILLATION MAIN RESULTS

We elaborate further on the main results in Fig. 4 and provide intuition regarding the behaviors of
the ED baseline. In Dark Room, Dark Room (Hard), and Watermaze, ED performance is either
flat or it degrades. The reason for this is that ED only saw expert trajectories during training, but
during evaluation it needs to first explore (i.e. perform non-expert behavior) to identify the task.
This required behavior is out-of-distribution for ED and for this reason it does not reinforcement
learning in-context. In Dark Key-to-Door the agent is reset randomly at the beginning of each episode,
whereas in all of the environments the agent’s starting position is fixed. Due to random resets, the
ED agent is sometimes reset by the first goal in Dark Key-to-Door which allows it to occasionally
identify the first goal of the task, which is why it shows slight improvement.

D MODEL SIZE

We investigate how transformer capacity affects performance in Fig. 8. While in-context RL emerges
across all model sizes investigated, we find that increasing the model depth, the model width in terms
of embedding dimension, and (to a lesser extent) the number of attention heads improves performance
on Dark Key-to-Door.

16 32 64 128 256
embedding size

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

2 4 6 8 10
number of layers

1 2 4 8
number of heads

Figure 8: Model size investigations: We investigate how increasing model capacity affects AD. While
in-context RL with AD emerges regardless of the model capacity, increasing the model depth and width helps
improve AD until it achieves near-optimal performance.

14



Under review as a conference paper at ICLR 2023

E SOURCE ALGORITHM TRAINING RUNS

0 2 4 6 8
Env Steps 1e5

0

5

10

15

Re
tu

rn
Dark Room

0.00 0.25 0.50 0.75 1.00
Env Steps 1e6

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Dark Room (Hard)

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.5

1.0

1.5

2.0

Re
tu

rn

Dark Key-to-Door

0.00 0.25 0.50 0.75 1.00
Env Steps 1e5

0.25

0.50

0.75

1.00

Re
tu

rn

Watermaze

Figure 9: Asymptotic performance of the A3C (Mnih et al., 2016) and a Q-λ variant of the DQN (Mnih et al.,
2013) RL algorithms used to produce learning histories for the Dark and Watermaze environments. These curves
show the learning histories AD is trained on. The source algorithms plotted in Fig. 4 are the same as in these plots.

F LABEL SMOOTHING ABLATION

For the harder exploration task of Dark Room (Hard), we found that adding label smoothing regular-
ization (Szegedy et al., 2016; Müller et al., 2019) improved the in-context learning ability of AD .
In Figure 10 we ablate the benefit of using label smoothing for 3 different α values as well as with
it turned off. Each curve in the figure denotes average performance over 5 training seeds. We can
see that adding label smoothing up to a point improves the in-context learning ability of Algorithm
Distillation, with performance continually increasing with the number of evaluation episodes.

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

Re
tu

rn

Label Smoothing Ablation
Dark Room (Hard)

alpha=0.0
alpha=0.1
alpha=0.2
alpha=0.3

Figure 10: AD trained with different amounts of label smoothing on Dark Room (Hard).

G RL2 NETWORK ARCHITECTURE: TRANSFORMER VS LSTM

We compared using a transformer as the architecture for RL2 instead of an LSTM. In Figure 11, we
ran both transformer and LSTM RL2 agents over the Dark Room environment. The curves shown
are the best from a sweep over learning rate and unroll length hyperparameters. The transformer
architecture is 4-layers with a model size of 256 and pre-norm layer normalization placement. While
both agents reached a similar level of final performance, all RL2 transformer models trained tended
to be more unstable with the average return not as consistent as with an LSTM architecture. Given
the poor performance of the transformer-based RL2 on the simpler Dark Room setting, our other
experimental settings used the LSTM.

15



Under review as a conference paper at ICLR 2023

0 250 500 750 1000
Training Step (1e6)

0.2

0.4

0.6

0.8

Fi
na

l E
pi

so
di

c 
Re

wa
rd

LSTM v.s. Transformer
LSTM
Transformer

Figure 11: Comparison of LSTM and Transformer architecture for RL2 agent on Dark Room. Each
curve is averaged over 5 training seeds with the shaded area representing the standard error.

H NUMBER OF TRAINING TASKS IN SOURCE DATA

0 3 6 9 12 15
Env Steps (Thousands)

0.5

1.0

1.5

2.0

Re
tu

rn

# of tasks during training 1 tasks
9 tasks
18 tasks
37 tasks
75 tasks
151 tasks
303 tasks
606 tasks
1212 tasks
2424 tasks

Figure 12: Algorithm distillation trained on different numbers of training tasks on Dark Key-to-Door
evaluated on a fixed set of test tasks for 300 episodes of evaluation.

One interesting question is how many tasks AD needs to be trained on to learn an algorithm that
generalizes to held out tasks. We trained AD on different numbers of Dark Key-to-Door training
tasks and evaluated the resulting models on the same set of test tasks. Figure 12 shows the in-
context learning plots for the resulting AD models on the set of test tasks. As a reminder, there are
812 = 6561 unique Dark Key-to-Door tasks. Models trained on 1, 9 or 18 training tasks did not show
any in-context learning on test tasks. While models trained on 37, 75 and 151 tasks did not achieve
good performance overall, they did exhibit some in-context learning over the course of 300 episodes.
The best models were trained on 1212 and 2424 tasks which corresponds to roughly 18% and 37% of
the total number of tasks in the Dark Key-to-Door domain.

I SINGLE-STREAM ALGORITHM DISTILLATION

We provide more details around the experimental setup for the single-stream result shown in Fig. 6.
We showed in Fig. 4 that when AD is trained on data from a subset of the actors of a distributed
source RL algorithm, the resulting model is more data efficient than the source algorithm. Here we
confirm that AD can produce a faster algorithm than the one it was trained on in the single-stream
setting. For this experiment we trained A3C on 2048 Dark Key-to-Door tasks for 2000 episodes each.
We then trained AD on the resulting data while subsampling the learning histories by a factor of 10.
More concretely, we took every 10th episode from each of the learning history, which resulted in
a 200 episode compressed learning trajectory for each task. Figure 6 compares the resulting AD
model evaluated on a set of test tasks to the performance of the source algorithm on these tasks.
The model learned by AD learns much faster than the source algorithm confirming that Algorithm
Distillation can turn a slow gradient-based algorithm into a much more data efficient in-context
learning algorithm.

16



Under review as a conference paper at ICLR 2023

J RANDOM MASK

0 5 10 15
Env Steps (Thousands)

0.5

1.0

1.5

Re
tu

rn

Dark Key-to-Door
0.1
0.3
0.5
0.7
0.9

Figure 13: Downstream performance of Algorithm Distillation with different values of random
masking during training in 9x9 1 goal gridworld.

During training, input tokens were randomly masked to avoid overfitting to training data. This
plot shows the downstreams results on a 9x9 Dark Key-to-Door domain with different values of
this random masking. Values of 0.3 − 0.5 perform the best with the value of 0.3 chosen for all
experiments.

K AD NETWORK ARCHITECTURE: TRANSFORMER VS LSTM

Here we consider the importance of the Transformer architecture to the success of algorithm dis-
tillation (AD) by comparing to AD based off of an LSTM (Hochreiter & Schmidhuber, 1997).
Specifically, the LSTM receives the concatenated embeddings of (oi, ai, ri) triplets up to the most
recent time step t− 1. The output of the LSTM is then concatenated with the current observation ot
embedding and both are then fed through a multi-layer perceptron (MLP) policy torso to produce a
distribution over the present action at. The LSTM hidden size (512), MLP depth (2), and MLP width
(256) were swept and tuned by grid search based on downstream reward attainment.

Comparing Transformer AD and LSTM AD on the Dark Key-to-Door task, we find that both agents
are capable of in-context learning, demonstrating that the success of AD is not tied to the underlying
network architecture. However, we also find that the Transformer variant consistently outperforms the
LSTM variant, which is why all other experiments in this paper employ the Transformer variant. This
finding is consistent with the recent wider success of Transformer-based architectures over recurrent
neural network (RNN)-based architectures in sequence prediction tasks.

17



Under review as a conference paper at ICLR 2023

0 50 100 150 200 250 300
Episodes

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Re
tu

rn

Dark Key-to-Door

Transformer
LSTM

Figure 14: Comparison between algorithm distillation with a Transformer and LSTM architecture on
Dark Key-to-Door. Mean ± 1 standard deviation over 5 training seeds and 20 evaluation seeds. 300
episodes corresponds to 15k environment steps.

L ALGORITHM DISTILLATION HYPERPARAMETERS

Hyperparameter Dark Room Dark Room (Hard) Dark Key-to-Door Watermaze

Embedding Dim. 64
Number of Layers 4
Number of Heads 4
Feedforward Dim. 2048
Position Encodings Absolute
Layer Norm Placement Post Norm
Dropout Rate 0.1
Attention Dropout Rate 0.5 0 0.5 0.5
Sequence Mask Prob 0.3 0.5 0.3 0.3
Label Smoothing α 0 0.2 0 0

Table 1: Algorithm Distillation Architecture Hyperparameters.

Hyperparameter Value

Batch Size 128
Optimizer Adam
β1 0.9
β2 0.99
Gradient Clip Norm Threshold 1

Learning Rate Schedule Cosine Decay
Initial Value 2e-6
Peak Value 3e-4

Table 2: Algorithm Distillation Optimization Hyperparameters.

18



Under review as a conference paper at ICLR 2023

Layer Hyperparameter Value

Conv Block

Conv
Channel 128
Kernel 5
Stride 2

BatchNorm Decay Rate 0.999
eps 1e-5

Activation - ReLU

Max Pooling Kernel 2
Stride 2

Dropout Rate 0.2

Network
Conv Blocks - 3
Final Linear Layer Units 256

Table 3: Watermaze Image Encoder Hyperparameters.

M SOURCE RL ALGORITHM HYPERPARAMETERS

M.1 DARK ENVIRONMENTS

Hyperparameter Value

Batch Size (Num. Actors) 100
λ 0.95
Agent Discount 0.99
Entropy Bonus Weight 0.01
MLP Layers 3
MLP Hidden Dim 128
Optimizer Adam
β1 0.9
β2 0.999
ϵ 1e-6
Learning Rate 1e-4

Table 4: Source A3C Algorithm Hyperparameters for Dark Environments.

M.2 DMLAB WATERMAZE

19



Under review as a conference paper at ICLR 2023

Hyperparameter Value

Batch Size 8
Rollout Length 40
Rollout Overlap 31
Number of Actors 16
Reply Buffer Capacity 1e5
Offline Data Fraction 0.7
λ 0.75
ϵ 0.01
Agent Discount 0.9
Target Update Period 50

ResNet Channels [32, 64, 64]
ResNet Kernels [3, 3, 3]
ResNet Strides [1, 1, 1]
Pool Kernels [3, 3, 3]
Pool Strides [2, 2, 2]

Optimizer Adam
β1 0.9
β2 0.999
ϵ 1e-6
Gradient Clip Norm Threshold 10
Learning Rate 1e-4

Table 5: Source DQN(Q-λ) Algorithm Hyperparameters for Watermaze.

N RL2 HYPERPARAMETERS

Hyperparameter Value

RL Algorithm A3C
Learning Rate 3e-4
Batch Size 256
Unroll Length 20
LSTM Hidden Dim. 256
LSTM Number of Layers 2
Episodes Per Trial 10

Table 6: RL2 Hyperparameters used in “Dark” Environments.

Hyperparameter Value

RL Algorithm DQN(Q-λ)
Learning Rate 1e-4
Batch Size 96
Unroll Length 40
LSTM Hidden Dim. 256
LSTM Number of Layers 1
Episodes Per Trial 30

Table 7: RL2 Hyperparameters used in the Watermaze Environment.

20



Under review as a conference paper at ICLR 2023

O ATTENTION MAPS

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

0 100 200

0

100

200 1700 1800 1900

1700

1800

1900

Figure 15: Attention maps for AD from five separate seeds. White and gray colors correspond to low
and high attention. Red and blue colors indicate that those transitions correspond to an episode restart
and a positive reward token, respectively. The left column plots attention for an AD transformer after
200 time-steps of evaluation (when the context is initially filled). The right column plots attention
after 1900 steps (38 episodes) of evaluation. Each episode has a length of 50 steps. From these
patterns, it is evident that AD attends to tokens across several episodes to predict its next action.

21


