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Abstract

Matrix factorization is a fundamental method in statistics and machine learning
for inferring and summarizing structure in multivariate data. Modern data sets
often come with “side information” of various forms (images, text, graphs) that
can be leveraged to improve estimation of the underlying structure. However,
existing methods that leverage side information are limited in the types of data
they can incorporate, and they assume specific parametric models. Here, we
introduce a novel method for this problem, covariate-moderated empirical Bayes
matrix factorization (cEBMF). cEBMF is a modular framework that accepts any
type of side information that is processable by a probabilistic model or a neural
network. The cEBMF framework can accommodate different assumptions and
constraints on the factors through the use of different priors, and it adapts these
priors to the data. We demonstrate the benefits of cEBMF in simulations and in
analyses of spatial transcriptomics and collaborative filtering data. A PyTorch-
based implementation of cEBMF with flexible priors is available at https://
github.com/william-denault/cebmf_torch.

1 Introduction

Matrix factorization methods, which include principal component analysis (PCA), factor analysis,
and non-negative matrix factorization (NMF) [1–3], are very widely used methods for inferring latent
structure from data, performing exploratory data analyses, and visualizing large data sets (e.g., [4–6]).
Matrix factorization methods are also instrumental in other statistical analyses such as adjusting for
unobserved confounding [7]. When factorizing a matrix, say Z, the matrix may be accompanied
by additional row or column data—“side information”—that may be able to “guide” the matrix
factorization algorithm toward a more accurate or interpretable factorization. A recent prominent
example of this in genomics research is spatial transcriptomics data [8], which is expression profiled
in many genes at many spatial locations (“pixels”) [9]. For a variety of reasons, one typically seeks
to factorize Z, the matrix of gene expression profiles. But the 2-d coordinates of the pixels also
provide important information about the biological context of the cells; for example, we might expect
nearby pixels to belong to the same cell type or tissue region. Therefore, “spatially aware” matrix
factorization methods have recently been proposed for spatial transcriptomics data [10–12].
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Figure 1: Toy simulation illustrating cEBMF for learning a matrix factorization, Z ≈ LFT . In this
example, Z is a 1,000× 200 matrix. Each of the n = 1,000 data points is assigned to one of three
clusters (orange, light blue, dark blue). Points near each other tend to be assigned to the same
cluster, except near the boundaries (A). Without the side information (the 2-d coordinates in A),
PCA, NMF and EBMF with K = 3 factors cluster some points accurately, but many other points are
not clustered accurately (B–D). By contrast, Spatial PCA [11] and our new method, cEBMF, which
both incorporate the side information into the prior, more accurately cluster the points (E, F). (For
consistency of visualization, the top 2 PCs of the L matrices from NMF, EBMF and cEBMF are
shown.) Spatial PCA assumes the data points are spatial, whereas cEBMF does make this assumption;
instead, it has a flexible prior that is adapted to the data. This learned prior is shown in G: the color
of the points shows the prior probability that row i, column k of L is nonzero (blue = low prior
probability, red = high prior probability). See Sections 3 and 4 for definitions and additional details.

In this paper, we describe a novel matrix factorization framework that allows high-dimensional row
and column data to guide the matrix factorizations without having to make specific assumptions
about how these data inform the factorization. For example, although our framework can be applied
to data that exhibit spatial properties, it does not assume or require that the data be spatial. Our
framework is also flexible in that it includes many existing approaches as special cases, including
unconstrained matrix factorization [13, 14], non-negative matrix factorization [15], semi-non-negative
matrix factorization [16], and more recent methods that incorporate side information [17]. These
features are achieved by taking an empirical Bayes approach, building on the recent empirical Bayes
matrix factorization (EBMF) framework [13, 14]. In particular, we extend the EBMF approach of
[13] with adaptive priors that are modified by the side information. We call this approach “covariate-
moderated empirical Bayes matrix factorization,” or “cEBMF” for short. See Fig. 1 for a toy example
that illustrates the key features of cEBMF.

2 Related work

The literature on matrix factorization methods that incorporate side information is quite extensive.
The different methods make different modeling assumptions, and are typically motivated by certain
types of data. Although it is not possible to review all relevant literature here, we discuss a few of the
most important or related methods.

Several variants of the topic model—which can be viewed as matrix factorizations with “sum-to-
one” constraints on L and F [18]—incorporate side information in different ways; for example,
the correlated topic model [19] and the structural topic model [20] incorporate document-level
side information into the priors on L. Collective matrix factorization (CMF) [21–23] has gained
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considerable interest, but CMF is based on ideas that are quite different from cEBMF: like cEBMF,
CMF assumes that the side information is the form of a matrix, but unlike cEBMF, CMF assumes that
the side information factorizes in a similar way to Z. Clearly, this assumption will not make sense
for some types of data. Another prominent theme in matrix factorization with side information is
incorporating group-level or categorical information, including ontological data. Among the methods
in this area are CTPF [24] and the method of [25]. Another important class of methods related
to cEBMF from the deep learning literature are variational autoencoders (VAE) [26], conditional
variational autoencoders (cVAE) [27] and neural collaborative filtering (NCF) [28]. These methods
generalize the concept of matrix factorization to nonlinear embeddings.

The method that is most closely related to cEBMF is MFAI [17] (see also [29] for related ideas).
MFAI is in fact a special case of cEBMF in which the priors on F are normal and the prior means are
informed by the covariates. Like cEBMF, MFAI allows these priors to be adapted separately for each
dimension k. However, MFAI is not nearly as general as cEBMF; it implements only a single model,
a single prior family with a specific parametric form, a specific procedure for fitting these priors
(using gradient boosted tree methods [30]), and it only accommodates row-wise side information.

Several matrix factorization methods have been developed specifically for spatial transcriptomics
data. Spatial PCA [11] models the spatial similarity among rows of L using Gaussian process prior.
(Spatial PCA is similar to GP-LVM [31]. See also [32].) An NMF version of this approach generates
“parts-based representations” guided by the spatial context of the data points [12]. More recently, IRIS
[33] regularizes the matrix factors through a penalty function that encodes the spatial information in
a graph (see also [34]).

3 Covariate-moderated empirical Bayes matrix factorization

3.1 Background: empirical Bayes matrix factorization

Empirical Bayes matrix factorization (EBMF) [13] is a flexible framework for matrix factorization: it
approximates a matrix Z ∈ Rn×p as the product of two low-rank matrices,

Z ≈ LFT , (1)
where L ∈ Rn×K , F ∈ Rp×K , and K ≥ 1. (In our applications, K ≪ n, p.) EBMF assumes a
normal model of the data,

Z = LFT +E, eij ∼ N(0, τ−1
ij ), (2)

in which N(µ, σ2) denotes the normal distribution with mean µ and variance σ2, and the residual
variances τ−1

ij may vary by row (i) or by column (j) or both. (EBMF, and by extension cEBMF,
also allows Z to contain missing values [13], which is important in many applications of matrix
factorization, including collaborative filtering; see Sec. 4.2.) EBMF assumes prior distributions for
elements of L and F, which are themselves estimated among pre-specified prior families Gℓ,k and
Gf,k, respectively:

ℓik ∼ g
(ℓ)
k , g

(ℓ)
k ∈ Gℓ,k, k = 1, . . . ,K

fjk ∼ g
(f)
k , g

(f)
k ∈ Gf,k, k = 1, . . . ,K.

(3)

The flexibility of EBMF comes from the wide range of possible prior families (including non-
parametric families) [35]. Different choices of prior family correspond to different existing matrix
factorization methods. For example, if all families Gℓ,k and Gf,k are the family of zero-mean normal
priors, then LFT is similar to a truncated singular value decomposition (SVD) [36, 37]. When the
prior families are all point-normal (mixture of a point mass at zero and a zero-centered normal), one
obtains empirical Bayes versions of sparse SVD or sparse factor analysis [38–40]. The prior families
can also constrain L and F; for example, families that only contain distributions with non-negative
support result in empirical Bayes versions of NMF. In summary, EBMF (2–3) is a highly flexible
modeling framework for matrix factorization that includes important previous methods as special
cases, but also many new combinations (e.g., [41]).

3.2 The cEBMF modeling framework

In covariate-moderated EBMF (cEBMF), we assume that we have some “side information” (covari-
ates) for rows and/or columns of Z [42, 43]. Let xi denote the available information for the ith row
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of Z, and let yj denote the available information for the jth column of Z. In principle, xi and yj

can be any information processable by a neural net (text, graph, image, other structured data), but
for simplicity we assume that this information is stored as a matrix. Therefore, let X ∈ Rn×nx be
a matrix containing information on the rows of Z, with xi corresponding to the ith row of X (e.g.,
xi might contain the 2-d coordinate of cell i). Similarly, let Y ∈ Rp×ny contain information on
the columns of Z, with yj corresponding to the jth row of Y. In cEBMF, we incorporate this side
information into the model through parameterized priors,

ℓik ∼ g
(ℓ)
k (xi), g

(ℓ)
k (xi) ∈ Gℓ,k, k = 1, . . . ,K

fjk ∼ g
(f)
k (yj), g

(f)
k (yi) ∈ Gf,k, k = 1, . . . ,K,

(4)

where g
(ℓ)
k (xi) is a probability distribution within the family Gℓ,k, parameterized by xi, and g

(f)
k (yj)

is a probability distribution within the family Gf,k parameterized by yi.

A key limitation of many existing approaches is that they integrate the side information using
restrictive parametric models that may or may not be appropriate for the particular application.
Another limitation is that the priors chosen for these methods may make strong or perhaps unrealistic
assumptions about the structure underlying the data; for example, Gaussian process priors, which have
been used in matrix factorization (e.g., [11, 31, 44]), typically assume that the factors vary smoothly
in space, which makes it difficult to capture sharp changes at boundaries [45]. Existing methods also
typically rely on hyperparameters that need to be tuned or selected (e.g., using cross-validation).

To address these issues, we propose cEBMF, a method that:

1. Can leverage a large variety of models (e.g., multinomial regression, multilayer perceptron,
graphical neural nets, convolutional neural nets) to integrate the side information into the prior.

2. Can use families of priors that are flexible in form and thus do not make strong assumptions.
3. Allows automatic selection of the hyperparameters in (4) via an empirical Bayes approach.

More formally, we fit a prior for each column k of L, which maps each vector of covariates xi to a
given element g(ℓ)k (xi) ∈ Gℓ,k, and similarly for each column k of F. In Sec. 3.3, we describe a simple
yet general algorithm that simultaneously learns the factors L,F and the priors g(ℓ)k (xi), g

(f)
k (yj). A

PyTorch-based [46] implementation of cEBMF with several different parameterized prior families is
available at https://github.com/william-denault/cebmf_torch.

3.2.1 An illustration: cEBMF with side information on factor sparsity

Here we illustrate the implementation of the cEBMF framework using a simple yet broadly applicable
prior family. This prior family assumes that the covariates X,Y only inform the pattern of sparsity—
that is, the placement of zeros—in L and F. This type of prior is of particular interest for matrix
factorization because matrix factorizations are typically invariant to rescaling, and therefore priors that
inform the magnitudes of ℓik and fjk are difficult to design. (By “invariant to rescaling,” we mean that
the likelihood or objective does not change if we replace LFT by L̃F̃T , where L̃ = LD, F̃ = FD−1,
and D is an invertible diagonal matrix.) We define this prior family as

Gss := {g : g(u) = (1− π(x,θ))δ0(u) + π(x,θ)g1(u;ω)}, (5)

in which δ0(u) denotes the point-mass at zero, g1(u;ω) denotes the density of some probability
distribution g1(ω) on u ∈ R, and x ∈ Rm denotes the covariate. For example, when g1 is the normal
distribution and ω specifies the mean and variance, (5) is a family of parameterized “spike-and-slab”
priors [47], and cEBMF with Gℓ,k = Gss,Gf,k = Gss implements a version of sparse factor analysis
[38–40] in which the sparsity of the factors is informed by the covariates. (Note that the “ss” in Gss is
short for “spike-and-slab.”) Alternatively, if g1 is a distribution with support only on non-negative
numbers, such as an exponential distribution, then cEBMF implements a version of sparse NMF. The
free parameters are θ, which control the weight on the “spike”, δ0, and ω, which control the shape of
the “slab”, g1. One simple parameterization of π(x,θ) uses a logistic regression model,

π(x,θ) = ϕ
(
θ0 +

∑m
t=1 xtθt

)
, (6)

where ϕ(x) := 1/(1+e−x) denotes the sigmoid function, and θ ∈ Rm+1. Most of the parameterized
prior families used in this paper and in the cEBMF software are variants or elaborations on Gss.
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3.3 The cEBMF learning algorithm

A key feature of the cEBMF modeling framework is that the algorithm for fitting the priors and
estimating the factorization is simple to describe and often straightforward to implement. In brief, the
cEBMF learning algorithm reduces a complex model-fitting task to a series of simpler subproblems.
Each of these subproblems involves fitting a covariate-moderated variant of an empirical Bayes
normal means (EBNM) model [35]. This also has the advantage of making the cEBMF framework
and software modular so that a method that solves a covariate-moderated EBNM problem can be
“plugged in” to the generic cEBMF algorithm.

3.3.1 Background: empirical Bayes normal means

Given observations β̂i ∈ R with known standard deviations si > 0, i = 1, . . . , n, the normal means
model [48–50] is

β̂i
ind.∼ N(βi, s

2
i ), (7)

in which the “true” means βi ∈ R are unknown. It is further assumed that the unknown means are

βi
i.i.d.∼ g ∈ G, (8)

where G is some pre-specified family of probability distributions.

The empirical Bayes (EB) approach to fitting the normal means model (7–8) exploits the fact that the
noisy observations β̂i contain information not only about the underlying means βi but also how the
means are collectively distributed. EB “borrows information” across the observations to estimate g;
typically this is done by maximizing the marginal log-likelihood of (7–8). The unknown means βi

are typically estimated by their posterior means (given the estimate of g).

To adapt the EBNM model (7–8) to cEBMF, we allow the prior for the ith unknown mean to depend
on additional data di and parameters θ,

βi
ind.∼ g(di,θ) ∈ G, (9)

so that each combination of θ and di maps to an element of G. We refer to this as “covariate-moderated
EBNM” (cEBNM). Solving the cEBNM problem therefore involves two key computations:

1. Estimate the model parameters. Compute

θ̂ := argmax
θ∈Rm

L(θ), (10)

where L(θ) denotes the marginal likelihood,

L(θ) := p(β̂ | s,θ,D) =

n∏
i=1

∫
N(β̂i;βi, s

2
i ) g(βi;di,θ) dβi, (11)

in which β̂ = (β̂1, . . . , β̂n), s = (s1, . . . , sn), D is a matrix storing d1, . . . ,dn, N(β̂i;βi, s
2
i )

denotes the density of N(βi, s
2
i ) at β̂i, and g(βi;di,θ) denotes the density of g(di,θ) at βi.

2. Compute posterior summaries. Compute summaries from the posterior distributions given the
estimated prior,

p(βi | β̂i, si, θ̂,D) =
N(β̂i;βi, s

2
i ) g(βi;di, θ̂)∫

N(β̂i; t, s2i ) g(t;di, θ̂) dt
. (12)

For many classical prior families, such as the spike-and-slab family in Sec. 3.2.1, the integrals in
(11) and (12) can be computed analytically. More generally, standard numerical techniques such as
Gauss-Hermite quadrature may provide reasonably fast and accurate solutions for prior families that
do not result in closed-form integrals since the integrals in (11) and (12) are one-dimensional. As a
result, θ̂ can often be obtained efficiently using off-the-shelf optimization algorithms even when the
chosen priors do not result in analytical integrals.

In summary, solving the cEBNM problem consists of finding a mapping from the known quantities
(β̂, s,D) to a tuple (θ̂, q̂), where each (di, θ̂) maps to an element g(di, θ̂) ∈ G, and q̂ is the posterior
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distribution of the unknown means, q̂(β) :=
∏n

i=1 p(βi | β̂i, si, θ̂,D). To facilitate the description
of the cEBMF algorithm below, we denote this mapping as

cEBNM(β̂, s,D,G) = (θ̂, q̂). (13)

Note that in practice the full posterior q̂(β) is not needed; the first and second posterior moments are
sufficient (see Sec. 3.3.2). Any prior family is admissible under the cEBMF framework so long as the
mapping (13) is computable (either numerically or analytically).

3.3.2 Algorithm

Given a method for solving the cEBNM problem (Sec. 3.3.1), the cEBMF model can be fitted
using a simple coordinate ascent algorithm. In brief, the cEBMF algorithm maximizes an objective
function—the evidence lower bound (ELBO) [51] under a variational approximation with conditional
independence assumptions on L and F (see the Appendix)—by iterating over the following updates
for each factor k = 1, . . . ,K until some stopping criterion is met:

1. Disregard the kth factor in R̄, the n× p matrix expected residuals, R̄k = R̄+ ℓ̄kf̄
T
k .

2. For each i = 1, . . . , n, compute the least-squares estimates of ℓik, denoted ℓ̂ik, and the
standard deviations sℓik of these estimates,

ℓ̂ik = (sℓik)
2
∑p

j=1 τij r̄
k
ij f̄jk (14)

sℓik = (
∑p

j=1 τij f̄
2
jk)

−1/2, (15)

where f̄jk and f̄2
jk denote, respectively, the first and second posterior moments of fjk.

3. Update g
(ℓ)
k ∈ Gℓ,k by solving (10), in which we make the following substitutions in (10):

β̂i ← ℓ̂ik, si ← sℓik, i = 1, . . . , n,D← X,G ← Gℓ,k.

4. Making the same substitutions in (12), update the posterior means ℓ̄k = (ℓ̄1k, . . . , ℓ̄nk)
T

and posterior second moments ℓ̄2k = (ℓ̄21k, . . . , ℓ̄
2
nk)

T .

5. Perform updates similar to those in Steps 2–4 to update f̄k, f̄2
k and g

(f)
k ∈ Gf,k.

6. Update the matrix of expected residuals, R̄ = R̄k − ℓ̄kf̄
T
k .

These steps are iterated until some stopping criterion is met. The algorithm must be initialized with
initial estimates of L̄, F̄. The expected residuals are then initialized as R̄ = Z− L̄F̄T . Note that to
simplify presentation we have omitted some details such as how to update the residual variances τ−1

ij .
These and other details are provided in the Appendix.

4 Experiments

4.1 Simulations

To assess the benefits of cEBMF, we compared cEBMF with other matrix factorization methods in
simulated data sets. We compared with several methods that do not use side information, including
EBMF (flashier R package [13, 35]), penalized matrix decomposition (“PMD”; PMA R package
[39]), and a variational autoencoder (VAE) [26] implemented in PyTorch [46]. We also compared
with other methods that use side information, including MFAI (mfair R package [17]), Spatial PCA
[11], conditional VAE (cVAE) [27], and neural collaborative filtering (NCF) [28]. cVAE and NCF
were also implemented in PyTorch. Note that Spatial PCA accepts only a specific type of side
information, the 2-d coordinates of the data points, so was not included in all the simulations.

We compared the methods in four simulation scenarios designed to capture a range of settings
where one might perform a matrix factorization analysis, with or without side information: (1) a
“sparsity-driven covariate” setting in which the covariates only informed the sparsity pattern of L and
F; (2) an “uninformative covariate” setting in which the covariates provided no information about the
true matrix factorization; (3) a “tiled-clustering” setting in which L depended on the 2-d location of
the data points; and (4) a “shifted tiled-clustering” setting in which the cEBMF priors were unable
recover the true data generating process. The latter scenario was used to assess cEBMF under model
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misspecification. We simulated 100 data sets in each setting, and we assessed the ability of each
method to recover the true matrix factorization as measured by root mean squared error (RMSE)
between the true matrix factorization LFT and estimated matrix factorization L̂F̂T . More detailed
descriptions of the simulations and the methods compared are given in the Appendix.
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Figure 2: Performance of the different matrix factorization meth-
ods in the simulated data sets. Each boxplot summarizes the
root mean squared errors (RMSEs) across 100 simulations in that
scenario. (Lower RMSEs are better.) See Figures 5–8 in the
Appendix for additional results from the simulations. Note Fig. 1
shows results from one of the tiled-clustering simulations in detail.

The results are summarized in
Fig. 2. cEBMF was gener-
ally more accurate than the
other methods, particularly when
the covariates were informative;
cEBMF achieved the greatest
gains over EBMF in the tiled-
clustering setting where the co-
variates were also the most infor-
mative. Reassuringly, cEBMF
did not perform worse than
EBMF in settings with an unin-
formative covariate or a prior that
was misspecified (“shifted tiled-
clustering”). The deep learning
approaches (VAE, cVAE, NCF)
generally performed worse than
the other methods. cVAE some-
times outperformed VAE when
the side information was highly
informative, such as in the tiled-
clustering scenario, but did not
provide improvements over VAE
in the more challenging sparsity-
driven scenario. We also ran Spa-
tial PCA on the tiled-clustering
and shifted tiled-clustering data
sets where the factors were partly
driven by the 2-d locations of the
data points. Despite the fact that
Spatial PCA can exploit the side
information, it had worse accu-
racy than EBMF which did not
use the side information. This may be because Spatial PCA makes assumptions (e.g., orthogonal
factors) that were not met by our simulations. MFAI generally performed worse than EBMF and
cEBMF except in the shifted tiled-clustering setting; MFAI is a much less flexible model than cEBMF
and therefore its performance was sensitive to the appropriateness of its modeling assumptions. (All
models were misspecified in the shifted tiled-clustering setting, but perhaps MFAI was the least
misspecified.) Additional results including comparisons with other methods (PCA/SVD, Sparse SVD
[38], CMF [21]) are in the Appendix.

4.2 Collaborative filtering

To provide a quantitative assessment of the matrix factorization methods in real data, we ran the same
methods on the MovieLens 100K data [52], a standard collaborative filtering benchmark in which the
goal is to predict the unobserved elements of the matrix. Here, Z was a 1,682×943 matrix containing
integer-valued movie ratings, with rows corresponding to movies and columns corresponding to
users. Since most (93%) of the movie ratings were missing, this example highlights the ability of
these methods to handle missing data (unlike most NMF methods). The side information X was a
1,682× 19 binary matrix containing information about the movie’s genre (comedy, adventure, etc).
We held out some of the moving ratings at random, and used these held-out ratings as a test set.

We ran EBMF and cEBMF so as to produce non-negative matrix factorizations, which is common in
collaborative filtering (e.g., [21]). Therefore, in the results we labeled these methods as “EBNMF” and
“cEBNMF”. (Note that MFAI cannot produce non-negative matrix factorizations.) To enforce non-
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Figure 3: Prediction performance of different matrix factorization and deep learning methods in the
MovieLens 100K data [52]. Training proportion = X% means that X% of the movie ratings were
used in training, and the remaining (100 −X)% were used to evaluate accuracy (measured using
RMSE). The results at each training proportion are from 10 random training-test splits.

negativity in L and F, we used mixture-of-exponentials priors. For cEBNMF, the side information
was incorporated into the priors on L using a multi-layer perceptron. (See the Appendix for further
details.) Since we didn’t know the true number of factors, K was chosen adaptively in EBMF, cEBMF
and MFAI. (We set an upper limit of 7 for EBMF and cEBMF, and 12 for MFAI.)

The results are summarized in Fig. 3. Both MFAI and cEBNMF were able to use the side information
(the movie genres) to improve over EBNMF, and all three matrix factorization methods were more
accurate than the deep learning methods. We conjecture that the deep learning methods would have
performed better with more data (such as the more recently released MovieLens data sets that are
much larger). On the MovieLens 100K data, cEBNMF yielded overall the best prediction accuracy
across the different training-set splits.

4.3 Spatial transcriptomics

Although cEBMF was not specifically designed for spatial data, here we show that cEBMF also yields
compelling results from spatial transcriptomics data [8] by exploiting the side information, the spatial
locations of the data points. We illustrate this using a data set [53, 54] that has been annotated by
domain experts and has been used in several papers to benchmark methods for spatial transcriptomics
(e.g., [11, 55–57]). The data were collected from 12 slices of the human dorsolateral prefrontal cortex
(DLPFC). After data preprocessing, each slice contained about 4,000 pixels and expression measured
in about 5,000 genes (n ≈ 4000, p ≈ 5,000).1

In this application, our aim was to generate a “parts-based” representation of the data, with the hopes
that the “parts” would resolve to biologically interpretable units (e.g., cell types, tissue regions, gene
programs) [12, 58, 59]. This is a fundamentally different aim from the previous examples: in the
previous examples, the goal was to generate accurate low-dimensional representations, but we did
not ask whether the individual dimensions were accurate or interpretable. With this aim in mind, we
ran cEBMF so as to produce non-negative matrix factorizations (“cEBNMF”) using the same priors
that were used for the MovieLens data. We compared to two other non-negative matrix factorizations
that did not leverage the side information: NMF implemented in the R package NNLM [15], and
EBMF with point-exponential priors (“EBNMF”). (The point-exponential prior is a simplification of
the mixture-of-exponentials prior with a single exponential component in which the rate parameter
is also learned.). We also compared to several of the methods that were considered in the previous
experiments, including methods such as Spatial PCA and cVAE that make use of the side information,
and others that do not.

Spatial PCA deserves special mention because it was specifically designed for spatial transcriptomics
data [11]. Although Spatial PCA does not produce a parts-based decomposition, the Spatial PCA
software automatically clusters the data points after projection onto the principal components (PCs),
and this clustering can be compared to the non-negative matrix factorizations. Following [11], we

1We used the data prepared by the authors of the SpatialLIBD package [53] which were made available for
download at https://research.libd.org/spatialLIBD/.
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Figure 4: Results on slides 4 (top row) and 10 (bottom row) of the DLPFC spatial transcriptomics
data [53, 54]. For the NMF, EBMF and cEBMF results, each data point (“pixel”) i is shown
as a pie chart using the relative values of ith row of L (after performing an “LDA-style” post-
processing of L,F [12]). (Higher-resolution versions of these images are available online at https:
//github.com/william-denault/cEBMF_experiment.) Since MFAI and other methods did not
produce a non-negative matrix factorization, we clustered the low-dimensional embeddings using the
same approach that was used in Spatial PCA [11]. CMF results for these two slices and additional
results on all 12 slices are given in the Appendix.

computed the top 20 PCs, then we ran the walk-trap clustering algorithm [60] on the PCs. Additional
details of the Spatial PCA analysis and the other methods are given in the Appendix.

Figure 4 shows results on two of the slices, with additional results on all 12 slices provided in the
Appendix. The manual annotations on the left-hand side should be viewed as a useful reference point,
but not necessarily the “ground truth”. (Consider that the data-driven annotations might identify
previously unknown cellular structures.) EBNMF, cEBNMF and MFAI adapted the number of factors
K to the data (with upper limits of 50, 20 and 9, respectively). For the other methods, the number
of clusters was set to match the manual annotation. Qualitatively, some of the factors from NMF
and EBMF seem to correspond to the expert-labeled regions, but several other factors appear to be
capturing other substructures that have no obvious spatial quality. Comparatively, the cEBNMF
results in slices 4 and 9 capture the expert labeling much more closely, with most factors showing a
clear spatial quality. The clusters from Spatial PCA, MFAI and VAE also capture spatial structure and
expert labeling well, but with some notable exceptions, e.g., Spatial PCA cluster 7 in slices 4 and 9.
(The Spatial PCA software performed additional post-processing on the clusters which is why these
clusters look less “noisy” than the others.) cVAE, despite using the side information, did not seem to
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number of rows (n)

method software 103 104 105 106

EBMF flashier [13, 35] 0.8 2.5 36.9 165.1
cEBMF cebmf_torch* 5.2 35.5 416.3 3,403.6
MFAI mfair [17] 45.4 251.3 11,293.2 –
Spatial PCA SpatialPCA [11] 234.8 8,213.7 – –

Table 1: Running times of matrix factorization methods on data sets in which we varied n, the number
of rows in X and Z. The numbers in the table are the average running times (in seconds) from 10
simulated data sets. *Available at https://github.com/william-denault/cebmf_torch.

improve over VAE. The CMF results were comparatively poor (Fig. 9 in the Appendix), reflecting the
inappropriateness of the CMF assumptions in this setting. Note that the NMF methods can capture
continuous variation in expression within and across cell types or regions—as well as the expectation
that some pixels might reflect combinations of cellular structures—whereas the clustering cannot.

4.4 Scalability benchmark

cEBMF can also handle much larger data sets than the MovieLens and DLPFC data sets considered
above. (One reason we did not use larger data sets was to allow for comparison with methods that do
not scale well to large data sets.) To illustrate this, we ran EBMF and cEBMF on “tiled-clustering”
data sets (using the same priors described Sec. 4.1), in which the data sets were simulated with
different numbers of rows, n. We compared the running times with two other matrix factorization
methods that make use of the side information, MFAI and Spatial PCA (Table 1). While cEBMF
had considerably higher running times than EBMF on the same data, cEBMF completed in much
less time on average than MFAI and Spatial PCA. Further, while cEBMF was able to handle data
sets with 1 million rows, Spatial PCA struggled to analyze data sets with 100,000 or more rows due
to its high memory usage; for example, Spatial PCA needed approximately 300 GB of memory for
n = 100,000. MFAI crashed frequently in data sets with n ≥ 100,000 rows (only 2 of 10 of the runs
completed at n = 100,000). Note this benchmark was performed on a computer with 32 GB memory,
an NVIDIA GeForce RTXTM 4070 GPU and an AMD RyzenTM 9 7940HS CPU (8 cores, 16 threads).
The EBMF and cEBMF algorithms were run for at most 20 iterations. See also the Appendix where
we describe some of the computational properties of the cEBMF algorithmic framework.

5 Conclusions

We have introduced cEBMF, a general and flexible framework for matrix factorization that (i)
incorporates side information through flexible covariate-dependent priors and (ii) learns these priors
from the data using empirical Bayes ideas. Considerable effort has gone into optimizing the software
implementation building on our previous work on this topic [13, 35]. As a result, cEBMF scales
well to large data sets with, say, hundreds of thousands or millions of rows and/or columns. Our
experiments highlight the importance of using matrix factorization models that make appropriate
assumptions about the data or are sufficiently flexible to adapt to the data. In our experiments, cEBMF
performed competitively against other matrix factorization methods and deep learning approaches
that make use of the side information. Because the priors in cEBMF can take the form of virtually any
probabilistic model optimized via equations (10–11), our framework opens the door to incorporating
other types of side information, including images and graphs.

Note: R and Python code implementing the experiments is available at https://github.com/
william-denault/cEBMF_experiment, and a PyTorch-based implementation of cEBMF is avail-
able at at https://github.com/william-denault/cebmf_torch.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are supported by (i) a
qualitative comparison of cEBMF to related work and (ii) empirical assessments in a variety
of data sets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We empirically assessed the performance of cEBMF in the situation where the
prior was misspecified.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The key theoretical results are found in the Appendix. We have provided
proofs of Proposition 1 and Lemma 1, and we have clearly stated the assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed descriptions of the experiments, including the
software used. We have also provided the code that was used to generate all the results in
the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the R and Python code implementing the methods and
experiments. The data sets were either included or instructions for accessing the data sets
were given.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Many of these details are given in the Appendix. Additional implementation
details can
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We summarize some results using boxplots with the conventional definitions
for whiskers, box bounds, center line and outliers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of the computing hardware used in the scability benchmark are given
in Sec. 4.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and our work abides by it to
the best of our knowledge.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We don’t believe that our work has any obvious direct social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work did not release data or models that would be considered to have a
strong potential for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the original data sources are credited/cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the source code for our new methods, and it is accompanied with
detailed documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this work does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not were not used in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Appendices

A Derivations and additional method details

The cEBMF algorithm (Sec. 3.3.2) is a variational empirical Bayes algorithm [61–64] that is
formulated as solving the following optimization problem:

argmax
q, g, τ

ELBO(q, g, τ ), (16)

where g is shorthand for the priors g(ℓ)1 , . . . , g
(ℓ)
K , g

(f)
1 , . . . , g

(f)
K , q is a distribution on (L,F), and

ELBO(q, g, τ ) is the “Evidence Lower BOund” (ELBO) [51], a lower bound to the “evidence”,
log p(Z | g, τ ):

ELBO(q, g, τ ) := Eq[log p(Z | L,F, τ )] + Eq

[
log

{
p(L,F | X,Y)

q(L,F)

}]
. (17)

See [13, 65, 66] for other variational empirical Bayes algorithms derived in a similar way.

To achieve tractable update expressions for the model parameters, we approximate the posterior
q(L,F) so that it factorizes over all elements of L and all elements of F (sometimes called a “mean
field” approximation):

q(L,F) = qℓ(L) qf (F)

qℓ(L) =

n∏
i=1

K∏
k=1

qℓik(ℓik)

qf (F) =

p∏
j=1

K∏
k=1

qfjk(fjk).

(18)

With this factorization (or conditional independence) qconstraint on q, the right-hand part of the
ELBO can be immediately decomposed into a sum of expectations over the individual elements of L
and F, so we have

ELBO(q, g, τ ) = Eq[log(p(Z | L,F, τ )]

+

n∑
i=1

K∑
k=1

Eq

[
log

{
g
(ℓ)
k (lik;xi)

qℓik(ℓik)

}]

+

p∑
j=1

K∑
k=1

Eq

[
log

{
g
(f)
k (fjk;yj)

qfjk(fjk)

}]
, (19)

where g(ℓ)k (ℓ;xi) denotes the density of g(ℓ)k (xi) at ℓ, and g
(f)
k (f ;yj) denotes the density of g(f)k (xi)

at f .

A.1 Updating the factors

The following proposition formally connects the updates of the individual factors k = 1, . . . ,K (Step
2–4 of the algorithm in Sec. 3.3.2) to learning a covariate-moderated EBNM model (Sec. 3.3.1).

Proposition 1. Let ℓk = (ℓ1k, . . . , ℓnk)
T denote the kth column of L, let fk = (f1k, . . . , fpk)

T

denote the kth column of F, let ℓ̄k = Eq[ℓk], f̄k = Eq[fk], ℓ̄2k = Eq[ℓ
2
k] and f̄2

k = Eq[f
2
k ], and we

further define

qℓk(ℓk) :=

n∏
i=1

qℓik(ℓik) (20)

qfk (fk) :=

p∏
j=1

qfjk(fjk). (21)
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Let R̄k denote the n×p matrix of expected residuals (with elements r̄kij) that ignores the contribution
of the kth factor,

r̄kij := zij −
∑
k′ ̸=k

l̄ik′ f̄jk′ . (22)

Also define ℓ̂(Z, t,w, τ ), f̂(Z, t,w, τ ), sℓ(w, τ ) and sf (w, τ ) as vector-valued functions in which
the individual vector elements given by

ℓ̂i(Z, t,w, τ ) =

∑p
j=1 τijzijtj

[sℓi(w, τ )]2
(23)

f̂j(Z, t,w, τ ) =

∑n
i=1 τijzijti

[sfj (w, τ )]2
(24)

sℓi(w, τ ) = (
∑p

j=1 τijwj)
−1/2 (25)

sfj (w, τ ) = (
∑n

i=1 τijwi)
−1/2. (26)

Then using the definition of the ELBO in (17) and the cEBNM mapping defined in (13), we have that

argmax
qℓk, g

(ℓ)
k ∈Gℓ,k

ELBO(q, g, τ ) = cEBNM(ℓ̂(R̄k, f̄k, f̄
2
k , τ ), sℓ(f̄

2
k , τ ),X,Gℓ,k) (27)

argmax
qfk , g

(f)
k ∈Gf,k

ELBO(q, g, τ ) = cEBNM(f̂(R̄k, ℓ̄k, ℓ̄
2
k, τ ), sf (ℓ̄

2
k, τ ),Y,Gf,k). (28)

Note that this identity requires a slight change to the definition of the cEBNM mapping (13) as
returning the priors g(di, θ̂) at θ̂ rather than the parameter estimates θ̂ themselves.

Proof. Starting from (19), we expand on the parts of ELBO that involve qℓk or g(ℓ)k or both:

ELBO(q, g, τ ) = −1

2

n∑
i=1

Eq[aikl
2
ik − 2biklik] +

n∑
i=1

Eq

[
log

{
g
(ℓ)
k (ℓik;xi)

q
(ℓ)
ik (ℓik)

}]
+ const, (29)

where “const” is a placeholder for the terms in the ELBO that do not depend on the kth factor, and
we define

aik :=

p∑
j=1

τij(f̄jk)
2 (30)

bik :=

p∑
j=1

τij r̄
k
ij f̄jk. (31)

The identity (27) then follows from Lemma 1 (given below). The other identity (28) is proved
similarly.

A.2 Updating the residual variances

Focussing on the part of the ELBO depends on τ , we have

ELBO(q, g, τ ) =
1

2

n∑
i=1

p∑
j=1

(log τij − τij r̄
2
ij) + const, (32)

in which “const” is a placeholder for the other terms in the ELBO that do not involve τ , and r̄2ij is
the expected squared difference between the observation zij and the value predicted by the matrix
factorization:

r̄2ij := Eq[(zij − ẑij)
2], (33)

where

ẑij =

K∑
k=1

likfjk. (34)

23



If one makes the modeling assumption that all the residual variances are the same, i.e., τij = τ , then
from (32) the update for τ works out to

τ =
n× p∑n

i=1

∑p
j=1 r̄

2
ij

. (35)

If instead one makes the weaker modeling assumption that the residual variances are the same in each
column, i.e., τij = τj , j = 1, . . . , p, then the updates work out to

τj =
n∑n

i=1 r̄
2
ij

. (36)

Similarly, for row-specific residual variances the updates are

τi =
p∑p

j=1 r̄
2
ij

. (37)

For all these expressions, the squared differences r̄2ij are easily computed given the conditional
independence assumptions of the fully-factorized approximation (18):

r̄2ij =

(
zij −

K∑
k=1

l̄ikf̄jk

)2

+

K∑
k=1

(l̄2ik)(f̄
2
jk)−

K∑
k=1

(l̄ikf̄jk)
2, (38)

in which we have defined l̄ik := Eq[lik], f̄jk := Eq[fjk], l̄2ik := Eq[l
2
ik] and f̄2

jk := Eq[f
2
jk].

A.3 Covariate-moderated EBNM

To complete the proof of Proposition 1, it remains to show that the identity (27) is satisfied at the
objective function given by (29). (And similarly for the identity (28).) This connection is made in the
following lemma.
Lemma 1. Consider the cEBNM mapping defined in (13). An equivalent definition of this mapping
is

(θ̂, q̂) = argmaxθ, q F (θ, q; β̂, s,D), (39)
where

F (θ, q; β̂, s,D) = −1

2

n∑
i=1

Eq[aiβ
2
i − 2biβi] +

n∑
i=1

Eq

[
log

{
g(βi;di,θ)

qi(βi)

}]
, (40)

and g(β;di,θ) denotes the density of g(di,θ) at β, and we further define
q(β) =

∏n
i=1 qi(βi) (41)

ai = 1/s2i (42)

bi = β̂i/s
2
i . (43)

Proof. We begin with the ELBO for the cEBNM model (7, 9):

ELBO(θ, q; β̂, s,D) = logL(θ)−DKL(q ∥ ppost). (44)
where DKL(q ∥ p) denotes the Kullback-Leibler (K-L) divergence from a distribution p to a distri-
bution q [67], L(θ) is the marginal likelihood defined in (11), and ppost(β) is the (exact) posterior
distribution, ppost(β) :=

∏n
i=1 p(βi | β̂i, si, θ̂,D) (see eq. 12). Since DKL(q ∥ p) is always zero

or greater, and is exactly zero when p = q, we have that argmaxq ELBO(θ, g; β̂, s,D) = ppost

and maxq ELBO(θ, g; β̂, s,D) = logL(θ). Next, a basic identity of the ELBO (see for example
Appendix B of [68]) is that the ELBO can be rewritten as

mathrmELBO(θ, q; β̂, s,D) = Eq[log p(β̂ | β, s)] +
n∑

i=1

Eq

[
log

{
g(βi;di,θ)

qi(βi)

}]
. (45)

To complete the proof, we expand terms in the log-likelihood in (45):

log p(β̂ | β, s) = −1

2

n∑
i=1

(βi − β̂i)
2

s2i
+ const, (46)

where “const” is a placeholder for terms that do not involve q (or g). Plugging this identity into (45),
and with a bit of additional algebraic manipulation, we recover (40).
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Algorithm 1 cEBMF algorithm
Require: n×p data matrix, Z; covariate or “side information” matrices, X (n×nx) and Y (p×ny);
K, the number of factors; the prior families Gℓ,k and Gf,k, k = 1, . . . ,K; and initial estimates of
the first and second moments of L (n×K), F (p×K), which are denoted by L̄, F̄, L̄2, F̄2.
Compute the expected residuals, R̄ = Z− L̄F̄T .
repeat

Update the residual variances τ using (35), (36) or (37).
for k = 1, . . . ,K do

Remove the effect of the kth factor from the expected residuals, R̄k = R̄+ ℓ̄kf̄
T
k .

Perform a single-factor update for factor k (Algorithm 2).
Update the expected residuals, R̄ = R̄k − ℓ̄kf̄

T
k .

end for
until some convergence criterion is met
return L̄, F̄, τ , g

(ℓ)
1 , . . . , g

(ℓ)
K , g

(f)
1 , . . . , g

(f)
K

Algorithm 2 cEBMF single-factor update
Require: covariate or “side information” matrices, X (n × nx) and Y (p × ny); k ∈
{1, . . . ,K}, the dimension to update; the prior families Gℓ,k and Gf,k; an implementation of
cEBNM(β̂, s,D,G)→ (θ̂, q̂) (eq. 13) for prior families G = Gℓ,k and G = Gf,k; the expected
residuals, R̄k; estimates of the second moments, L̄2 (n ×K), F̄2 (p ×K); and the residuals
variances, τ .

1. β̂ ← ℓ̂(R̄k, f̄k, f̄
2
k , τ )

2. s← sℓ(f̄
2
k , τ )

3. (g
(ℓ)
k , qℓk)← cEBNM(β̂, s,X,Gℓ,k)

4. Compute posterior moments ℓ̄ik := Eq[ℓik] and ℓ̄2ik := Eq[ℓ
2
ik], i = 1, . . . , n.

5. β̂ ← f̂(R̄k, ℓ̄k, ℓ̄
2
k, τ )

6. s← sf (ℓ̄
2
k, τ )

7. (g
(f)
k , qfk )← cEBNM(β̂, s,Y,Gf,k)

8. Compute posterior moments f̄jk := Eq[fjk] and f̄2
jk := Eq[f

2
jk], j = 1, . . . , p.

9. return ℓ̄k, ℓ̄
2
k, f̄k, f̄

2
k , g

(ℓ)
k , g

(f)
k

A.4 Detailed algorithms

In summary, the cEBMF algorithm is a block co-ordinate ascent algorithm [69] for finding a local
maximum of the ELBO (17), in which the “blocks”—i.e., the subsets of parameters to be updated—
are the individual factors k = 1, . . . ,K (Sec. A.1) and the residual variances τ (Sec. A.2). This
co-ordinate ascent algorithm is described in Algorithm 1, and the single-factor update is described in
Algorithm 2. (And it is described informally in Sec. 3.3.2.) In practice, we run Algortithm 1 until the
increase in the ELBO across two successive iterations is smaller than some specified tolerance, or
until we have reached an upper bound on the number of iterations.

Two features of the empirical Bayes approach to matrix factorization discussed in [13] are worth
highlighting here. First, there is a simple stepwise procedure for obtaining good initial estimates of
L and F by introducing the factors sequentially. This was called a “greedy initialization” in [13].
Second, instead of fixing the number of factors, the EBMF approach can also select K automatically
by adapting the priors g

(ℓ)
k , g

(f)
k separately for each factor k. The idea is that factors that are not

useful for explaining variation in the data should produce priors that are concentrated near zero
(this feature of course requires that the chosen prior families Gℓ,k,Gf,k include distributions that are
concentrated near zero). Therefore, K can initially be set to a large value, and the cEBMF algorithm
will automatically determine an appropriate number of factors by “shrinking” the unneeded factors.

A.4.1 Computational complexity

Since cEBMF is a modeling and algorithmic framework, and not a specific method or algorithm, we
cannot give the exact computational complexity of Algorithm 1. However, we can provide some rules
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of thumb. Steps 1, 2, 5 and 6 in Algorithm 2 (also, Steps 1 and 2 in Sec. 3.3.2) involve preparing the
inputs for the cEBNM solver (13). Since these steps do not depend on the prior families Gℓ,k,Gf,k,
we can give their computational complexity: when Z is a “dense” (non-sparse) matrix, the time
complexity for updating a single factor k is O(np); when Z is sparse, the complexity is O(S), where
S is the number of nonzero entries in Z. (Note this requires careful implementation that avoids
directly storing R̄). Steps 3 and 7 in Algorithm 2 (or Steps 3 and 4 in Sec. 3.3.2) will depend on the
details of the cEBNM solver and the type of side information. However, when the priors on L,F are
simple and involve low-dimensional covariates, the other steps are expected to dominate, in which
case the complexity of Algorithm 1 is expected to be O(npK) or O(SK).

B Details of the experiments

B.1 Simulations

We simulated data sets from different cEBMF models. In all cases, the data were generated with
homoskedastic noise, τij = τ .

Sparsity-driven covariate simulations. This simulation was intended to illustrate the behaviour of
cEBMF when provided with simple row and column-covariates that inform only the sparsity of L
and F (and not the magnitudes of their elements). The side information was stored in 1,000× 10 and
200× 10 matrices X and Y, and the 1,000× 200 matrix Z was simulated using a simple cEBMF
model with K = 2 and with spike-and-slab priors chosen to ensure that 90% of the elements of LFT

were zero. Specifically, we used the following priors:

ℓik ∼ πikδ0 + (1− πik)N(0, 1)

fjk ∼ αjkδ0 + (1− αjk)N(0, 1)

πik := ϕ(θT
k xi)

αjk := ϕ(ωT
k yj),

(47)

in which θk and ωk were chosen to achieve 90% zeros in LFT .

Uninformative covariate simulations. To verify that cEBMF was robust to situations in which the
side information was not helpful, we considered an “uninformative covariate” setting in which the
covariates were just noise. The data sets were simulated in the same way as in the sparsity-driven
covariate simulations except that the true factors were simulated as ℓik ∼ πδ0 + (1 − π)N(0, 1),
fjk ∼ αδ0 + (1− α)N(0, 1), with π, α chosen to achieve a target sparsity of 90% zeros in LFT .

Tiled-clustering simulations. In this setting, we simulated rank-3 matrix factorizations in which
L—but not F—depended on the 2-d locations of the data points. (One of these simulations is shown
in Fig. 1.) This was accomplished as follows. First, we generated a periodic tiling of [0, 1]× [0, 1],
randomly labeling each tile 1, 2 or 3. For each data point i = 1, . . . , 1,000, we sampled its 2-d
location uniformly from [0, 1]× [0, 1], then we set ℓik = 1 if the data point fell in the tile with label
k, otherwise ℓik = 0. The 200 × 3 matrix F was simulated from a scale mixture of zero-centered
normals that did not depend on tile membership.

Shifted tiled-clustering simulations. To assess robustness to model misspecification, we simulated
data using a prior that could not be recovered by the prior family we used in cEBMF. These simulations
were the same as the tiled-clustering simulations except that we generated the ith row of L as follows:
(1, 2, 3) if data point was i in the tile with label 1; (3, 1, 2) if data point was in the tile with label 2,
and (2, 3, 1) if data point was in the tile with label 3.

B.2 Additional details on the methods compared

We first describe how the methods were run on the simulated data sets. Modifications to the methods
for the MovieLens and spatial transcriptomics data are given in the main text, with additional technical
details below. For all methods, when possible to do so, we set the rank, K, to match the rank of the
simulated matrix factorization.
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For EBMF and cEBMF, we assumed homoskedastic noise (τij = τ ), and the prior families were
chosen to align with how the data were simulated (except for the shifted-tiled clustering simulations,
which were intended to illustrate the methods’ behaviour when the priors were misspecified). For
EBMF, the prior families were all elaborations of the “spike and slab” priors (Sec. 3.2.1). For cEBMF,
the priors were of the same form as EBMF in which the mixture weights were parameterized using
either a multinomial regression (i.e., a single-layer neural network with a softmax link function) or a
multilayer perceptron.

In the sparsity-driven covariate and uninformative covariate simulations, the priors for L and F in
EBMF were all scale mixtures of normals with a fixed grid of scales [50, 70]. For cEBMF, we used
priors of the same form, except that side information was incorporated into the prior mixture weights
as follows using priors of the following form:

g(di,θ) = π0(di,θ)δ0 +

M∑
m=1

πm(di,θ)N(0, σ2
m). (48)

The mixture weights π0, . . . , πM were implemented using a standard multinomial regression model
with the softmax link function.

In the tiled-clustering and shifted tiled-clustering simulations, the true L was always non-negative.
Therefore, we chose the prior families in EBMF and cEBMF to produce semi-non-negative matrix
factorizations [16] with a non-negative L. Specifically, we assigned mixture-of-exponentials priors
to L, similar to the scale-mixture-of-normals priors, except with support for non-negative numbers
only [35]. And we assigned the scale-mixture-of-normal priors, same as above, to F. In cEBMF, side
information was incorporated into the mixture weights in the prior in a manner similar to above:

g(di,θ) = π0(di,θ)δ0 +

M∑
m=1

πm(di,θ) exp(λm), (49)

in which exp(λ) denotes the exponential distribution with scale parameter λ, and λm−1 < λm,
m = 2, . . . ,M . As before, the mixture weights π0, . . . , πM were implemented using a standard
multinomial regression model with the softmax link function.

The deep learning methods (VAE, cVAE, NCF) were all implemented in PyTorch. All the models
were trained for 50 epochs using the Adam optimizer with learning rate 0.001 and batch size 64.
VAE had three hidden layers (of width 128, 64 and 30) in both the encoder and decoder (20 hidden
dimensions). ReLU activations were used throughout. We use the ELBO from [26] to train the model.
We proceeded similarly for the cVAE, conditioning both the encoder and decoder on the available
covariate data X,Y. For cVAE, we used the training objective from [27]. NCF models Z using two
separate multilayer perceptrons for the row and column covariates [28]. The multilayer perceptrons
were implemented in a similar way to the VAE encoders and decoders; that is, three hidden layers
(of width 128, 64 and 30) with RELU activations. The penalty parameters in PMD were tuned via
cross-validation as recommended by the authors. SSVD (R package “ssvd”) was run with its default
values.

For the spatial transcriptomics data, we fit cEBMF and EBMF using gene-specific residual variances,
σ2
ij = σ2

j . We used mixture-of-exponential priors for F, and the parameterized mixture-of-exponential
priors (49) for L in which the mixture weights were learned using a multilayer perceptron instead of
a multinomial regression. The multilayer perceptions were defined as sequential models with a dense
layer with 64 units and ReLU activations. We use two subsequent dense layers, each with 64 units,
and ReLU activations using an L2 regularization coefficient of 0.001 to prevent overfitting. These
regularized layers were followed by a dropout layer (with a dropout rate of 0.5). The subsequent
layers were four dense layers each with 64 units, ReLU activations and L2 regularization coefficient
of 0.001. The final layer was a dense layer with a softmax activation. These models were trained
during each single-factor update using 300 epochs and a batch size of 1,500.

In the simulations, cEBMF was implemented in R, in which learning the parameterized priors was
performed using the Keras R interface [71] to TensorFlow [72]. For the MovieLens and spatial
transcriptomics data sets, we used the PyTorch-based implementation of cEBMF which we have
made available as a Python package on GitHub.
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C Additional results
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Figure 5: Simulation results from the “uninformative covariate” setting in which the data were
simulated under different noise levels, τ . Note that for improved visualization the RMSE is shown on
the log-scale.
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Figure 6: Simulation results from the “sparsity-driven covariate” setting in which the data were
simulated under different noise levels, τ . Note that for improved visualization the RMSE is shown on
the log-scale.
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Figure 7: Simulation results from the “tiled-clustering” setting in which the data were simulated
under different noise levels, τ . Note that for improved visualization the RMSE is shown on the
log-scale. (spaPCA = Spatial PCA)
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Figure 8: Simulation results from the “shifted tiled-clustering” setting in which the data were
simulated under different noise levels, τ . Note that for improved visualization the RMSE is shown on
the log-scale.
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Figure 9: Additional results on slides 4 (top) and 10 (bottom) of the DLPFC spatial transcriptomics
data. See Fig. 4 for additional information about these results.
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Figure 10: Selected results on slices 1 (top row) through 6 (bottom row) of the DLPFC spatial
transcriptomics data.
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Figure 11: Selected results on slices 7 (top row) through 12 (bottom row) of the DLPFC spatial
transcriptomics data.
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