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Abstract

In this paper, we introduce the Curse of Depth, a concept that highlights, explains,
and addresses the recent observation in modern Large Language Models (LLMs)
where nearly half of the layers are less effective than expected. We first confirm
the wide existence of this phenomenon across the most popular families of LLMs
such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and
empirically, identifies that the underlying reason for the ineffectiveness of deep
layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN).
While Pre-LN stabilizes the training of Transformer LLMs, its output variance
exponentially grows with the model depth, which undesirably causes the deriva-
tive of the deep Transformer blocks to be an identity matrix, and therefore barely
contributes to the training. To resolve this training pitfall, we propose LayerNorm
Scaling (LNS), which scales the variance of output of the layer normalization
inversely by the square root of its depth. This simple modification mitigates the
output variance explosion of deeper Transformer layers, improving their contribu-
tion. Across a wide range of model sizes (130M to 7B), our experiments show that
LNS consistently outperforms previous normalization and scaling techniques in
enhancing LLM pre-training performance. Moreover, this improvement seamlessly
carries over to supervised fine-tuning. All these gains can be attributed to the fact
that LayerNorm Scaling enables deeper layers to contribute more effectively during
training. Our code is available at LayerNorm-Scalingl

1 Introduction

Recent studies reveal that the deeper layers (Transformer blocks) in modern LLMs tend to be less
effective than the earlier ones [54, (16} 32, 26]]. On the one hand, this interesting observation provides
an effective indicator for LLM compression. For instance, we can compress deeper layers significantly
more [54, 29, [14] to achieve high compression ratios. Even more aggressively, entire deep layers can
be pruned completely without compromising performance [33}39].

On the other hand, having many layers ineffective is undesirable as modern LLMs are extremely
resource-intensive to train, often requiring thousands of GPUs trained for multiple months, let alone
the labor used for data curation and administration [1} 44]. Ideally, we want all layers in a model to
be well-trained, with sufficient diversity in features from layer to layer, to maximize the utility of
resources [26]. The existence of ill-trained layers suggests that there must be something off with
current LLM paradigms. Addressing such limitations is a pressing need for the community to avoid
the waste of valuable resources, as new versions of LL.Ms are usually trained with their previous
computing paradigm which results in ineffective layers.

To seek the immediate attention of the community, we re-introduce the concept of the Curse of Depth
(CoD) to systematically present the phenomenon of ineffective deep layers in various LLM families,

*Equal contribution.
TCorresponding author: shiwei.liuGmaths.ox.ac.uk

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/lmsdss/LayerNorm-Scaling

m—Layer0 e Layer 1 Layer2 Layer 3 Layer 4 Layer s Layer 6 Layer 7 Layer 8 LayerQ mm Layer 10 = Layer 11

Pre-LN Pre-LN + Scaled Initialization LayerNorm Scaling

SN G 3
8 &% 3 &
[
N S
o &

N

o

~
&

._‘

13

m
2
Average Variance (Var)

Average Variance (Var)
Average Variance (Var)

~
&
«

_ J

0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Update Step Update Step Update Step

o
o

Figure 1: Layerwise output variance. This figure compares the output variance across various layers
for different setups: (1) Pre-LN; (2) Pre-LN with Scaled Initialization [38}135]]; and (3) LayerNorm
Scaling. The experiments are conducted on the LLaM-130M model trained for 10,000 steps. The
proposed LayerNorm Scaling effectively controls the variance across layers.

to identify the underlying reason behind it, and to rectify it by proposing LayerNorm Scaling. We
first state the Curse of Depth below.

The Curse of Depth. The Curse of Depth refers to the observed phenomenon where deeper layers in
modern LLMs contribute significantly less (but not nothing) to learning and representation compared
to earlier layers. These deeper layers often exhibit remarkable robustness to pruning and perturbations,
implying they fail to perform meaningful transformations. This behavior prevents these layers from
effectively contributing to training and representation learning, resulting in resource inefficiency.

Empirical Evidence of CoD. To demonstrate that CoD is a common phenomenon across promi-
nent LLM families, we perform layer pruning experiments on Qwen3, LLaMA?2, and DeepSeek.
Specifically, we prune one layer at a time, without any fine-tuning, and directly evaluate the resulting
pruned models on the MMLU benchmark [[17], as shown in Figure@ Key findings: (1) Most models,
including the latest Qwen3, exhibit surprising resilience to the removal of deeper layers; (2) The
number of layers that can be removed without causing significant performance drop increases with
model size; (3) Representations in deeper layers are significantly more similar to each other than
those in earlier layers.

Identifying the Root Cause of CoD. We theoretically and empirically identify the root cause of CoD
as the use of Pre-Layer Normalization (Pre-LN) [3} 18], which normalizes layer inputs before applying
the main computations, such as attention or feedforward operations, rather than after. Specifically,
while stabilizing training, we observe that the output variance of Pre-LN accumulates significantly
with layer depth (see Appendix [E), causing the derivatives of deep Pre-LN layers to approach an
identity matrix. This behavior prevents these layers from introducing meaningful transformations,
leading to diminished representation learning.

Mitigating CoD through LayerNorm Scaling. We propose LayerNorm Scaling (LNS), which scales
the output of Layer Normalization by the square root of the depth % LayerNorm Scaling effectively
scales down the output variance across layers of Pre-LN. LNS consistently delivers better pre-training
performance than Pre-LN with various model sizes from 130M to 7B. Unlike previous LayerNorm
variants [26} 28], LayerNorm Scaling is simple to implement, requires no hyperparameter tuning,
and introduces no additional parameters during training Furthermore, we show that the model pre-
trained with LayerNorm Scaling achieves better performance on downstream tasks in self-supervised
fine-tuning, all thanks to the more diverse feature representations learned in deep layers.

2 Empirical Evidence of the Curse of Depth

To empirically analyze the impact of layer normalization on the Curse of Depth in LLMs, we conduct
a series of evaluations inspired by Li et al. [26], to compare Pre-LN and Post-LN models.

2.1 Experimental Setup

Methodology: We evaluate Pre-LN and Post-LN models by assessing the impact of layer pruning at
different depths. Our hypothesis is that Pre-LN models exhibit diminishing effectiveness in deeper
layers, whereas Post-LN models have less effective early layers.

3We found that combining LNS with Scaled Initialization diminishes the effectiveness of LNS. Therefore,
we recommend removing the latter when applying LNS.
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Figure 2: Top: Performance drop after removing a single layer without fine-tuning. Bottom:
Angular distance from the initial layer ¢ (x-axis) and its subsequent n" layer (y-axis). The results
demonstrate that in Pre-LN LLMs, deeper layers produce highly similar representations to their
adjacent layers, and their removal results in minimal performance degradation. In contrast, Post-LN
models show the opposite trend: deep layers contribute more substantially to model performance. See
Appendix[Qfor controlled experiments, where we train custom LLMs from scratch to isolate Layer
Normalization as the sole varying factor.

Models: To verify this, we empirically quantify the contribution of individual layers to overall model
performance across a diverse set of LLMs, including Qwen3 [42], LLaMA?2 [44], DeepSeek [6l],
and BERT-Large [10]. These models were chosen to ensure architectural and application diversity.
BERT-Large represents a Post-LN model, whereas the rest are Pre-LN-based. This selection enables
a comprehensive evaluation of the effects of layer normalization across varying architectures and
model scales.

Evaluation Metric: To empirically assess the impact of deeper layers in LLMs, we adopt two
metrics, Performance Drop and Angular Distance, inspired by Gromov et al. [16]], Li et al. [26].

Performance Drop AP quantifies the importance of each layer by measuring the performance
change after its removal. A smaller AP indicates that the pruned layer contributes less to the
model’s overall performance. For BERT-Large, we evaluate using the SQuAD v1.1 dataset [36]], while
for other models, we use MMLU [17]], a standard benchmark for multi-task language understanding.

Angular Distance d(z*, 2t™) quantifies the directional change between the input representations at
layer ¢ and layer ¢ 4+ n on a neutral pre-training dataset. Formally, given a token T, let mfip and méTJ“”
denote its input to layers ¢ and ¢ + n, respectively. The angular distance is defined as:

1 L A+n
d(z', ) = = arccos % , e
i [ ll2llzp™ |2
where || - ||2 denotes the L?-norm. To reduce variance, we report the average distance over 256K

tokens sampled from the C4 dataset. Smaller values of d(z*, 2°*™) indicate higher similarity between
the two representations, suggesting limited transformation. Such layers can be considered redundant,
as their removal minimally impacts the model’s internal representations. Ideally, each layer should
introduce meaningful representational shifts to fully leverage the model’s capacity [53}116].

Experimental Results: (1) Pruning deep layers in Pre-LN LLMs leads to negligible, and sometimes
even positive, changes in performance, as shown in Figure 2} Top. Specifically, Figure 2] (b)—(d)
reveals that a wide range of deeper layers—particularly beyond the 18th—can be pruned with minimal
impact on performance. This indicates that deep layers in Pre-LN architectures contribute little to the
model’s overall effectiveness. In contrast, Figure 2] (a) shows that pruning deep layers in BERT-Large
(a Post-LN model) leads to a substantial drop in accuracy, while pruning early layers has a relatively
minor effect. (2) Pre-LN models exhibit decreasing angular distance in deeper layers, indicating
highly similar representations, as shown in Figure 2} Bottom. For instance, the angular distance in
DeepSeek-7B falls below 0.2 after the 18th layer. Qwen3-8B demonstrates a higher similarity, with
nearly half of its layers exhibiting distances below 0.2 from their preceding layers. In LLaMA2-
13B, the angular distance approaches zero across the final one-third of the network. These similar




representations align with the pruning results in Figures 2] (b)—(d), where pruning later layers has
little effect, while pruning early layers significantly degrades performance.

3 Analysis of the Curse of Depth

Preliminaries. This paper primarily focuses on Pre-LN Transformer [3,[8]. Let 2, € R be the input
vector at the ¢-th layer of Transformer, where d denotes the feature dimension of each layer. For
simplicity, we assume all layers to have the same dimension d. The layer output y is calculated as
follows:

y = we41 = ) + FFN(LN(z7)), 2
x) = x4 + Attn(LN(xy)), 3)
where LN denotes the layer normalization function. In addition, the feed-forward network (FFN) and
the multi-head self-attention (Attn) sub-layers are defined as follows:
FFN(%) = WQ.F(Wl.T),
Attn(z) = Wo(concat(head; (z), ..., head,(x))),
Waoir) " (Wi X
( Qzaj) ( Ki )) (WV1X)T7
V dhead
where F is an activation function, concat concatenates input vectors, softmax applies the softmax
function, and W, € Rd““Xd, Wy e Rdx{im‘, WQi S Rd]‘eadXd, Wi € RdheadXd, Wy € Rnead Xd,

and Wo € R4 gre parameter matrices, and dppn and djeaq are the internal dimensions of FFN and
multi-head self-attention sub-layers, respectively. X € R?**, where s is the input sequence length.

“

head; () = softmax (

The derivatives of Pre-Ln Transformers are:

OPre-LN(z) s 9f(LN(z)) OLN(z)
Oz =0 OLN(z) or

&)

where f here represents either the multi-head attention function or the FFN function. If the term
%N(%)) maLf”) becomes too small, the Pre-LN layer %‘f(w) behaves like an identity map. Our

main objective is to prevent identity map behavior for very deep Transformer networks. The first step
in this process is to compute the variance o> , of vector z.

3.1 Pre-LN Transformers

Assumption 1. Let x; and x), denote the input and intermediate vectors of the (-th layer. Moreover,
let W, denote the model parameter matrix at the {-th layer. We assume that, for all layers, zy, x),
and Wy follow normal and independent distributions with mean p = 0.

Lemma 1. Ler Ji, and o? , denote the variances of xy and x4, respectively. These two variances
A .
exhibit the same overall growth trend, which is:

2 2 o 1
amzam@(ﬂ (1+m)), ©6)

k=1

where the growth of o2 , is sub-exponential, as shown by the following bounds:

O(L) < 02, < O(exp(L)). 7

Here, the notation © means: if f(z) € ©(g(x)), then there exist constants C1,Cs such that
Cilg(z)| < |f(x)| < Calg(x)] as © — oc. The lower bound ©(L) < o2, indicates that o2, grows
at least linearly, while the upper bound 02, < ©(exp(L)) implies that its growth does not exceed an
exponential function of L.

Based on Assumption[IT]and the work of [41], we obtain the following:



Theorem 1 For a Pre-LN Transformer with L layers, using Equations @) and (), the partial
derivative 2 8 can be written as:

ayL_L71 Oy, 0x}
o~ L oy " am, ) ®

The Euclidean norm of o= s given by:

3yL
&vl

- 1 1
H (1+A+2B>, ©)
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where A and B are constants for the Transformer network. Then the upper bound for this norm is
given as follows: when o2 , 8rows exponentially, (i.e., at its upper bound), we have:

H dyr

0z1 ||y (19)

2
oy, ~ exp(l

where the gradient norm converges to a constant M. Conversely, when o2 , grows linearly (i.e., at its
lower bound), we have

dyL
81’1

2
oy, ~ 1,

<e(L), (11

2
which means that the gradient norm grows linearly in L.

The detailed description of A and B, as well as the complete proof, are provided in Appendix
From Theorem|[I] we observe that when the variance grows exponentially, as the number of layers

L — oo, the norm H Jyr

is bounded above by a fixed constant M. This result implies that even

an infinitely deep Transformer remains stable, and by the Weierstrass Theorem, the network is
guaranteed to converge. Consequently, this implies that for very large L, deeper layers behave nearly
as an identity map from x, to y,, thereby limiting the model’s expressivity and hindering its ability
to learn meaningful transformations. This outcome is undesirable, therefore, we would instead prefer

the variance to increase more gradually—e.g., linearly—so that ’ QuL

exhibits linear growth. This
2

observation highlights the necessity of appropriate variance control mechanisms, such as scaling
strategies, to prevent excessive identity mappings and enhance network depth utilization.

4 LayerNorm Scaling (LNS)

To mitigate the abovementioned issue, we propose LayerNorm Scaling, a simple yet effective
normalization strategy. The core idea of LayerNorm Scaling is to control the exponential growth of
output variance in Pre-LN by scaling the normalized outputs according to layer depth. Specifically,
we apply a scaling factor inversely proportional to the square root of the layer index to scale down
the output of LN layers, enhancing the contribution of deeper Transformer layers during training.
LayerNorm Scaling is illustrated in the left part of Figure 3]

Formally, for a Transformer model with L layers, the output of Layer Normalization in each layer £
is scaled by a factor of %. Let h(® denote the input to Layer Normalization at layer ¢. The modified

output is computed as:
1
h® = LayerNorm(h¥)) x —, (12)
y (b)) 7i

where ¢ € {1,2,..., L}. This scaling prevents excessive variance growth with depth, addressing
a key limitation of Pre-LN. Unlike Mix-LN, which stabilizes gradients in deeper layers but suffers
from training instability caused by Post-LN [34] |47], LayerNorm Scaling preserves the stability
advantages of Pre-LN while enhancing the contribution of deeper layers to representation learning.
Applying LayerNorm Scaling leads to a notable reduction of layerwise output variance as shown in
Figure|[T] resulting in a lower training loss. Moreover, compared with previous LayerNorm variants
[26, 28], LayerNorm Scaling is hyperparameter-free, easy to implement, and does not introduce
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Figure 3: Left: Schematic diagrams of (a) Pre-LN and (b) LayerNorm Scaling. LayerNorm Scaling
applies a scaling factor inversely proportional to the square root of the layer index ¢, preventing
excessive variance growth. Right: Language modeling loss of scaling up parameter count up to 7B.
All models are trained for 20B tokens using OLMo [[15]].

additional learnable parameters, making it computationally efficient and readily applicable to existing
Transformer architectures. Our theoretical analysis in Appendix [B]shows that LNS slows down the
variance growth from exponential to at most quadratic with depth, enabling more effective learning
of deep layers.

5 Experiments
5.1 LLM Pre-training

To evaluate the effectiveness of LayerNorm Scaling, we follow the experimental setup of Li et al.
[26], using the identical model configurations and training conditions to compare LNS with widely
used normalization techniques, including Post-LN [34], DeepNorm [47]], and Pre-LN [8]. In line with
Lialin et al. [27] and Zhao et al. [58]], we conduct experiments using LLaMA-based architectures
with model sizes of 130M, 250M, 350M, and 1B parameters.

Table 1: Perplexity (]) comparison of various layer normalization methods.
LLaMA-130M LLaMA-250M LLaMA-350M LLaMA-1B

Training Tokens 2.2B 3.9B 6.0B 8.9B
Post-LN [2] 26.95 1409.79 1368.33 1390.75
DeepNorm [47] 27.17 22.77 1362.59 1409.08
Mix-LN [26] 26.07 21.39 1363.21 1414.78
Pre-LN [3] 26.73 21.92 19.58 17.02
Pre-LN + LayerNorm Scaling 25.76 20.35 18.20 15.71

The architecture incorporates RMSNorm [37] and SwiGLU activations [56], which are applied
consistently across all model sizes and normalization methods. For optimization, we use the Adam
optimizer [22]] and adopt size-specific learning rates: 1 x 10~3 for models up to 350M parameters,
and 5 x 10~* for the 1B parameter model. All models share the same architecture, hyperparameters,
and training schedule, with the only difference being the choice of normalization method. Unlike
Mix-LN [26], which introduces an additional hyperparameter o manually set to 0.25, LayerNorm
Scaling requires no extra hyperparameters, making it simpler to implement. Table [1| shows that
LayerNorm Scaling consistently outperforms other normalization methods across different model
sizes. While DeepNorm performs comparably to Pre-LN on smaller models, it struggles with larger
architectures like LLaMA-1B, showing signs of instability and divergence in loss values. Similarly,
Mix-LN outperforms Pre-LN in smaller models but faces convergence issues with LLaMA-350M,
indicating its sensitivity to architecture design and hyperparameter tuning due to the introduction of
Post-LN. Notably, Mix-LN was originally evaluated on LLaMA-1B with 50K steps [26]], while our
setting extends training to 100K steps, where Mix-LN fails to converge, highlighting its instability in
large-scale settings caused by the usage of Post-LN.

In contrast, LayerNorm Scaling solves the Curse of Depth without compromising the training
stability. LayerNorm Scaling achieves the lowest perplexity across all tested model sizes, showing
stable performance improvements over existing methods. For instance, on LLaMA-130M and



Table 2: Fine-tuning performance (1) of LLaMA with various layer normalizations.

Method MMLU BoolQ ARC-e PIQA Hellaswag OBQA Winogrande Average
LLaMA-250M
Post-LN [2] 22.95 37.83 2694 5272 26.17 11.60 49.56 32.54
DeepNorm [47] 23.60 37.86  36.62  61.10 25.69 15.00 49.57 35.63
Mix-LN [26] 26.53 56.12  41.68  66.34 30.16 18.00 50.56 41.34
Pre-LN [3] 24.93 3835  40.15  63.55 26.34 16.20 49.01 36.93
Pre-LN + LayerNorm Scaling ~ 27.08 58.17 4524  67.38 32.81 18.80 52.49 43.14
LLaMA-1B
Post-LN [2] 22.95 37.82 2508 49.51 25.04 13.80 49.57 31.96
DeepNorm [47] 23.35 37.83  27.06 5294 26.19 11.80 49.49 32.67
Mix-LN [26] 23.19 37.83 2508  49.51 25.04 11.80 49.57 31.72
Pre-LN [3] 26.54 62.20 4570  67.79 30.96 17.40 50.51 43.01
Pre-LN + LayerNorm Scaling ~ 28.69 61.80  48.85  67.92 33.94 18.60 54.30 44.87

LLaMA-1B, LayerNorm Scaling reduces perplexity by 0.97 and 1.31, respectively, compared to
Pre-LN. Notably, LayerNorm Scaling maintains stable training dynamics for LLaMA-1B, a model
size where Mix-LN fails to converge. These findings demonstrate that LayerNorm Scaling provides
a robust and computationally efficient normalization strategy, enhancing large-scale training of
language models without additional implementation complexity.

5.2 Supervised Fine-tuning

To verify whether the gains in pre-training can be translated to the stage of post-training, we perform
SFT with the models obtained from Section@]on the Commonsensel70K dataset [[18] across eight
downstream tasks. We adopt the same fine-tuning configurations as used in Li et al. [26]. The results,
presented in Table 2] demonstrate that LayerNorm Scaling consistently surpasses other normalization
techniques in all evaluated datasets. For the LLaMA-250M model, LayerNorm Scaling improves
average performance by 1.80% and achieves a 3.56% gain on ARC-e compared to Mix-LN. Similar
trends are observed with the LLaMA-1B model, where LayerNorm Scaling outperforms Pre-LN,
Post-LN, Mix-LN, and DeepNorm on seven out of eight tasks, with an average gain of 1.86% over
the best baseline. These results confirm that LayerNorm Scaling enhances generalization on diverse
downstream tasks by improving the representation quality of deep layers.

5.3 Scaling Up Training
5.3.1 OLMo

Model Size Scaling. To further assess the scalability and robustness of LNS, we conduct additional
experiments using the OLMo repository [15]], scaling training across model sizes of 60M, 150M,
300M, 1B, and 7B parameters. All models are trained on a fixed 20B-token budget to ensure
comparability. These experiments are designed to evaluate whether the performance gains observed
with LNS in smaller-scale settings extend to more challenging and state-of-the-art LLM training
regimes. As shown in Figure 3] LNS consistently and substantially outperforms the standard Pre-LN
baseline across all model sizes. Remarkably, for the 7B model, LNS reduces the final loss from
2.69 to 2.50. These results underscore the scalability of LNS and its effectiveness in large-scale
pre-training scenarios.

Loss Curve. Figure [d shows the training loss curves of 7B models trained with Pre-LN and LNS.
While LayerNorm Scaling exhibits slightly slower convergence at the early stages of training, it
consistently outperforms Pre-LN as training progresses, ultimately achieving a substantial loss gap.
We attribute this to the uncontrolled accumulation of output variance in Pre-LN, which amplifies with
depth and training steps, ultimately impairing the effective learning of deeper layers. In contrast,
LNS mitigates this issue by scaling down the output variance in proportion to depth, thereby enabling
more stable and effective training across all layers during training.

Beating OLMo’s Scaled Initialization. OLMo adopts the scaled initialization proposed in Zhang
et al. [37]] and used by Mehta et al. [31]], which scales input projections by 1/v/dmodel, and output
projections by 1/4/2 - diodel - I at every layer. This method is designed to enhance training stability
and to scale down variance at initialization. To evaluate the effectiveness of LNS, we compare it
against this state-of-the-art initialization by training OLMo-1B on 20B tokens. As shown in Table



Comparison of Training Loss Curves for OLMo-7B
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Figure 4: Training loss of OLMo-7B with Pre-LN and LNS.

LNS achieves consistently lower training loss, indicating that it may offer a more effective alternative
for large-scale LLM training.

Table 3: Comparison with OLMo’s Scaled Initialization.

Method Model # Tokens  Training Loss  Perplexity
OLMo’s Scaled Initialization =~ OLMo-1B 20B 2.96 19.30
LayerNorm Scaling OLMo-1B 20B 2.85 17.28

53.2 Qwen2.5

We further evaluate the generalizability of LNS by applying it to a state-of-the-art architecture,
Qwen2.5-0.5B [52]]. We train the model for 6B tokens and compare LNS against the standard Pre-LN
setup. Consistent with previous findings, Table [d|illustrates that LNS yields a notable reduction in
perplexity—from 20.62 to 19.57—highlighting its effectiveness even on strong, modern architectures.

Table 4: Perplexity (PPL |) comparison under scaled-up pre-training. For LLaMA-1B and 7B,
training is scheduled for 100B tokens but is terminated early to report results. Qwen-2.5 is trained
with a fixed budget of 6B tokens.

Model # Params  # Tokens Pre-LN (PPL) LNS (PPL)
Qwen2.5-0.5B 0.5B 6B 20.62 19.57

The consistent benefits observed across increased model scales, larger training datasets, and diverse
architectures suggest that LNS is a promising technique for enhancing the training of contemporary
large language models, ensuring that deeper layers contribute more effectively to learning.

5.4 LNS Effectively Scales Down Output Variance

As LNS is proposed to reduce output variance, we empirically validate this claim during the pre-
training of LLMs. We compare the layerwise output variance of three configurations: (1) the standard
Pre-LN [2], (2) Pre-LN with Scaled Initialization [38, [35]], which scales the initialization of the
feedforward layers’” weights Wy and W5 by \/%, where L is the total number of Transformer layers,
and (3) Pre-LN with LNS. The average output variance across layers is shown in Figure[T] For both
vanilla Pre-LN and Scaled Initialization, the output variance in shallow layers (blue) remains relatively
stable throughout training, while variance in deeper layers (red) grows substantially after 2K iterations,
reaching up to 175 in the final layer. Since Scaled Initialization only operates at initialization, it is
insufficient to constrain output variance during training. In contrast, LNS consistently suppresses the
growth of output variance in deeper layers, capping it at approximately 25.

5.5 LNS Enhances the Effectiveness of Deep Layers

Furthermore, to assess whether LNS enhances the effectiveness of deeper layers by promoting more
diverse feature representations, we analyze the layerwise performance drop and the angular distance
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between representations of subsequent layers is shown. LayerNorm Scaling enables deep layers to
make a meaningful contribution to the model.

of LNS, as shown in Figure[5] Compared to Pre-LN, the performance degradation in LayerNorm
Scaling is more uniformly distributed across layers, indicating a more balanced contribution from
each layer. Notably, pruning the deeper layers of LNS results in a more significant accuracy drop,
suggesting these layers play a more critical role in task performance. Additionally, features learned
under LNS exhibit greater distinction: most layers show a substantial angular distance, exceeding 0.6,
from their adjacent layers, indicating more diverse representations. In sharp contrast, the layerwise
angular distance in Pre-LN remains significantly lower and progressively decreases with depth,
suggesting reduced feature diversity. We provide studies CoD in Vision Transformers and Vision
Language Models in Appendix [G|and Appendix [F respectively.

6 Ablation Study

Comparing Against Other Scaling Methods. We first compare LNS with previous scaling ap-
proaches, including (1) Scaled Initialization [38} 135]], which scales the initialization of Wy and W5
by the overall depth 1/ V2L; (2) Depth-Scaled Initialization [57] scales the initialization of weight
matrices by the current depth 1/ V/21; (3) SkipInit [9] introduces a learnable parameter after FFN/ALt
layers, initialized as 1/v/L; (4) LayerScale [43] applies per-channel weighting using a diagonal
matrix, diag(A1, . . ., Aq), where each weight J; is initialized to a small value (e.g., \; = ¢€). Table
presents the results of LLaMA-130M and LLaMA-250M.

First, we observe that methods involving learnable parameters, such as LayerScale and Skiplnit,
consistently degrade performance in LLMs. Among initialization-based techniques, a larger scaling
factor proves beneficial: Scaled Initialization yields lower perplexity compared to Depth-Scaled
Initialization. Notably, LNS achieves the best overall performance, underscoring the advantage of
applying scaling dynamically during training. Interestingly, combining LNS with Scaled Initializa-
tion results in worse performance than using LNS alone, highlighting the importance of removing
conflicting initialization strategies prior to adopting LNS.

Table 5: Comparing LNS against other scaling methods. Perplexity (] ) is reported.
LLaMA-130M LLaMA-250M

Training Tokens 2.2B 3.9B
Pre-LN 26.73 21.92
+ LayerScale [43] 27.93 2345
+ Skiplnit [9] 27.41 22.29
+ Depth-Scaled Initialization [S7] 26.95 21.50
+ Scaled Initialization [38] 26.04 20.98
+ LayerNorm Scaling 25.76 20.35
+ LayerNorm Scaling + Scaled Initialization 25.80 20.79

Comparison with Other Layer Normalization. In addition, we conducted comparisons using
LLaMA-130M to evaluate LayerNorm Scaling against recently proposed normalization methods,
including Admin [28]], Sandwich-LN [11], Group-LN [50} 30]], and Mix-LN [26]. Table |§| shows
that Admin and Group-LN degrade performance. Sandwich-LN slightly outperforms Pre-LN. Both
Mix-LN and LayerNorm Scaling improve over Pre-LN by good margins. However, Mix-LN fails
to reduce perplexity under 26, falling short of LayerNorm Scaling and suffers from instability in
large-scale scenarios as shown in Table/T}

Effect of Positions of LNS. The results in Table[/|show that inserting the scaling factor at different
points can have a considerable influence on the model’s performance. Placing it after the residual
connection (“After Residual”) leads to a perplexity of 1358.11, which indicates training divergence.



Table 6: Comparison against other normalization methods on LLaMA-130M. All methods use the
identical configurations. Perplexity ({) is reported.

Pre-LN Admin Group-LN Sandwich-LN Mix-LN LayerNorm Scaling
26.73 2791 28.01 26.51 26.07 25.76

In contrast, LNS incorporates the scaling factor after LN achieving the best perplexity of 25.76,
surpassing both the baseline Pre-LN setting (26.73) and other placements. This suggests that
modifying the LayerNorm to include the scaling factor can enhance training stability and final
performance for this model configuration.

Table 7: Comparison against different scaling factor position on LLaMA-130M.

Pre-LN \ Before LN After Attn/FFN  After Residual LNS Only After Attn LNS Only After FFN \ Ours (After LN)
2673 | 2697 26.53 1358.11 26.89 26.43 \ 25.76

7 Related Work

Ineffectiveness of Deeper Layers in Transformers. The ineffectiveness of deep layers in LLMs has
been previously reported. Yin et al. [54] found that deeper layers of LLMs can tolerate significantly
higher levels of pruning compared to shallower layers, achieving high sparsity. Similarly, Gromov
et al. [[16]] and Men et al. [32] demonstrated that removing early layers causes a dramatic decline in
model performance, whereas removing deep layers does not. Lad et al. [23] showed that the middle
and deep layers of GPT-2 and Pythia exhibit remarkable robustness to perturbations such as layer
swapping and layer dropping. Recently, Li et al. [25] highlighted that early layers contain more
outliers and are therefore more critical for fine-tuning. While these studies effectively highlight the
limitations of deep layers in LLMs, they stop short of identifying the root cause of this issue or
proposing viable solutions to address it.

Layer Normalization in Language Models. LN [2] was initially applied after the residual connection
in the original Transformer [45]], which is known as Post-LN. Later on, Pre-LN [3| 18, 134] dominated
LLMs, due to its compelling performance and stability [[7, 144} 21} 16]]. Prior works have studied the
effect of Pre-LN and Post-LN. Xiong et al. [51]] proves that Post-LN tends to have larger gradients near
the output layer, which necessitates smaller learning rates to stabilize training, whereas Pre-LN scales
down gradients with the depth of the model, working better for deep Transformers. Wang et al. [4§]]
empirically confirmed that Pre-LN facilitates stacking more layers and Post-LN suffers from gradient
vanishing. The idea of connecting multiple layers was proposed in previous works [5,[12} 48]. Admin
introduces additional parameters to control residual dependencies, stabilizing Post-LN. DeepNorm
[47] enables stacking 1000-layer Transformers by upscaling the residual connection before applying
LN. Additionally, Ding et al. [[11] proposed Sandwich LayerNorm, normalizing both the input and
output of each transformer sub-layer. Takase et al. [40] introduced B2T to bypass all LN except
the final one in each layer. Li et al. [26]] recently combines Post-LN and Pre-LN to enhance the
middle layers. Zhu et al. [60] introduces Dynamic Tanh (DyT) as a normalization-free alternative in
Transformers, delivering comparable performance. Zhuo et al. [61] proposes HybridNorm, a hybrid
normalization scheme combining QKV normalization with Post-Norm FFN to stabilize training in
deep transformers. De and Smith [9] also states that normalized residual blocks in deep networks
are close to the identity function and proposes Skiplnit to remove normalization by introducing a
learnable scalar multiplier on the residual branch initialized to 1/ VL. Our experiments suggest that
Skiplnit’s learnable parameter does not improve performance and sometimes harms training.

8 Conclusion

In this paper, we re-introduce the concept of the Curse of Depth in LLMs, highlighting an urgent
yet often overlooked phenomenon: nearly half of the deep layers in modern LLMs are less effective
than expected. We discover the root cause of this phenomenon is Pre-LN which is widely used in
almost all modern LLMs. To tackle this issue, we introduce LayerNorm Scaling. By scaling the
output variance inversely with the layer depth, LayerNorm Scaling ensures that all layers, including
deeper ones, contribute meaningfully to training. Our experiments show that this simple modification
improves performance, reduces resource usage, and stabilizes training across various model sizes.
LayerNorm Scaling is easy to implement, hyperparameter-free, and provides a robust solution to
enhance the efficiency and effectiveness of LLMs.
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A Proofs of the Theorems of curse of depth

A.1 Proof of Lemmal[ll

Proof. Given Equation (IZ]) from [41], we have:
y = xep1 =z + FEN(LN(27)),

13
zy = z¢ + Attn(LN(z¢)). (13)
Based on our Assumption let Var(Attn(LN(z())) = 03, Then we can write:
Var(z}) = Var(zy) + Var(Attn(LN(z¢))) + Cov(Attn(LN(z¢)), Var(z¢)) (14)
= 03:[ + Jittn + P10z * OAm,
where p; is the correlation factor. Similarly, let Var(FFN(LN(z}))) = oy Then we have:
2 _ N2, 2

Owerr = 0(336) + 0ppN T+ P2 * Oy, - OFFN, (15)

where ps is the correlation factor. Thus, the relationship between Var(z¢1) and Var(x) becomes:

2 2 2 2
Ua;/z+1 = Ou + O Attn + OFFN + P10z, * OAttn + P2 - Uw; * OFFN- (16)

A.1.1 Variance of the Attention

The scaled dot-product attention mechanism is defined as:

T
Attn(Q, K, V) = softmax (C\?/]C% ) V. (17)

The softmax function outputs a probability distribution over the keys. Let the softmax output be
T
A = softmax (QL), where A is a matrix with each row summing to 1. The final attention output

Vi
is obtained by multiplying the softmax output A with the value matrix V:
Attn(Q, K, V) = AV. (18)
Lemma 2 ([24]). Let {X;}Y | be independent and identically distributed random variables with mean
m and variance 0> < co. Define the softmax weights p; = %, andlet p= (p1,...,pN).

j=1
Then, as N — oo, with high probability, the softmax vector p concentrates around the uniform
distribution on N elements. In particular,

lim E

N—o00

N 1 2
> (pi - N) 1 =0, (19)

=1

which implies that the softmax output becomes asymptotically indistinguishable, in expectation, from
the uniform distribution.

According to the above lemma, to simplify the analysis, we make the following additional assumptions:
The softmax output A is approximately uniform, meaning each element of A is roughly 1/n, where
n is the number of keys/values. Given this assumption, the variance of the attention is:

1 1
Var(Attn(Q, K,V)) ~ Var(AV) = - Z dpeaa Var(V;) = . noy - dyead = dhead 0y = ooy d.
i=1
(20)
where IV is the universal weight matrix defined as before.
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A.1.2 Variance of the Feed-Forward Network

The feed-forward network (FFN) in transformers typically consists of two linear transformations with
a ReLU activation in between. The FFN can be written as:

FFN(Q’J) =Ws- ReLU(W1 - T+ b1> + bs. 20
where W7 and W5 are weight matrices, and b; and b, are bias vectors.

Using the result obtained by Wang et al. [47], we get:

2 2 2 4
OFFN ~ O, " O, = Ow- (22)

In conclusion:

2 _ 2 2
UIZ_UJW—’_O-W—"_/)Q'U:W'O’W

2

wﬂ :Ep
9 1
4
For simplicity, we set the numerator part to 1. Substitute o,; = 0, \/ 1 + + p2 - . into
Equation (I6) we get:
UiHl :azz +a‘2,v +U€Vd2—|—p1 (O, - OW + P2 Oy -O“Q/Vd
4 72 2 3
oy d oy do
=03, + oy +owd + p1 0w, - Ow + p2- 0, - opd + p22UW +2 S e
Ty
1
2
=0, 01+ —).
O-CE({ ( O-xg )

From the result we can generally infer that the variance accumulates layer by layer. The variance

with regard to 0, :
-1
1
2 9 ( I1 ( ) ) . (25)
k=1 T

We can also obtain a similar result for Ui, .
£

We observe that for any o2 . = 1, the sequence is increasing, meaning each term in the product is
bounded. Consequently, the entire product is bounded above by:

02, < o2 H(H,/ ):agl(u 0_1 )Hzexp@(L). (26)

Taking the natural logarithm of both sides:

log(oZ,) = log ( 1:[ ( 1 / )) Zlog (1 + \/T> +log(o2))
[— - — + log(oy, ).
k—l( Tiox T ) °

Exponentiating both sides to find the lower bound for o2 ,» We obtain:

0—1 1 1
2 2
Ju>amexp<g ( pon —202 ))
k=1 T Tk
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This provides a tighter lower bound for afw compared to the upper bound of Equation (Z6). Since we
know the upper bound of variance grows exponentially, the lower bound must be sub-exponential.
Therefore, for 02, = ¢, we must have:

O

Therefore, the increasing lower bound for o2, must grow faster than a linear function. So, the increase
of variance is sub-exponential. A large increase in such bound will lead to gradient spikes, which can
connect to previous studies in Huang et al. [[19] 20]].

A.2 Proof of Theorem/I]

In this proof, we will divide the argument into two parts: first, the calculation of the Lemma 3] and
second, the analysis of 67”

Lemma 3. Foran L-layered Pre-LN Transformer, g% using Equations @) and () is given by:

dyL, __L_l dye Ox
w1 () @

The upper bound for the norm of gﬂ is:

Jo=. -

2

2 - ((1+012(\/gi\/m)2>

x (1+2dh (\/§+2+\}§> ;’j(a?d dnoad + (HW)))

3331

(29)

Here, h denotes the number of heads, s is the sequence length, and d, dppn, and dpeaq are the
dimension of the embedding, FFN layer and multi-head attention layer, respectively. The standard
deviation of Wg, Wi, Wy, and Wrpy at layer £ is o based on Assumption

A.2.1 Proof of Lemma[3

Proof. Our derivation follows results in [41]], specifically Equation (7), which provides an upper
bound on the norm of g—% as:

3yz 8%5
ame o0xy )

2

81/2
83?1

(30)

Thus, we can estimate the upper bound of the gradient norm of %‘i by analyzing the spectral norms
of the Jacobian matrices for the FFN layer and the self-attention layer, namely,

/

0
FFN: yf Attention: e 3D
dzy ||, Ty ||
We now derive an upper bound of || ay" ||2 as follows:
dye OFFN(LN(zy)) || || OLN(27) 32
oxy ||, ~ OLN(z}) S Z 7 | P

Let 01, and 0,2, be the standard deviations of ng and WE, respectively. From Assumption m the
spectral norms of W} and W7 are given by their standard deviations and dimensions [46], so we

have:
|Willa ~ o1(Vd + \/dppx). (33)
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For simplicity, we assume that d, and dppy are equal, thus,

OFFN(LN(z})) 11772 2
—— 2 = ||[W, W2 < d+ v/d)°. 34
aLN(CC/Z) ) || Ve ”2 = 0102(\/>+ ff ) (34)
Finally, we have the following bound:
2 2 2
3yf <14 Owl, 0wz, (Vd + Vdrrx) . o?(Vd + V/drrN) . (35)
8%5 2 O’xé Ua:;
Following a similar procedure for the FFN, we rewrite || || in Equation as:
oz’ OAttn(LN(x)) OLN(x) (36)
Ox OLN(z) 5 ox |y

Let Z(-) = concat(head;(-),...,head,(-)) and JZ denote the Jacobian of the Z(-). We can now
express the spectral norm of the Jacobian matrix of attntion as:

aLN(CL'g) aLN(l'g)
From [46], we know that:
1
17712 < h( (ﬁ+2 = \/g> Biyena + 7t (Vi + V/dheaa ) ). (38)

Here h is the number of heads, s is the sequence length, and the standard deviation of Wg, Wi, and
Wv iso.

= W27 |- (37)
2

= HW@OZ(LN(W))

By combining the inequalities (33), and (36), and assuming that all o values are the same for
simplicity. we obtain:

9 et 2(Vd + Vdven)?
Joril, = I (0 =505 -
x(1+2dh \/§+2+\}§>52(an dhead+(1+\/m))).
Te
O

A.2.2 Analysis of the Upper Bound

As discussed in [41], o should be sufficiently small, and the standard deviation, Oy OF Oy, should
satisfy the condition 0% < 0, to maintain the lazy training scheme. Thus, we obtain the following
bound for the product over ¢ from 1 to L:

To find the bound for ay"

0z, and o, Based on Equation (23), o, is only one layer ahead of 04, and this layer does not
significantly affect the overall performance of deep Transformer networks. Furthermore, based on
Lemmam, we assume that 0, = 0,

with respect to ¢, we simplify the given inequality by approximating
2

Equation can be expressed in a traditional product form [49]] for o, :

dyr -
Haxl 1;[ (1+ At Gwz B) @0
where
o? 1
=— 4+ 2dh +24+ — ) 02 (dv/dhead + 1 + /dhead /d , 41
(Vd + Vdrrx)? (\/E \/§>0 ( head " d/) @1
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and

1
B = 2dh (\/§+ 2+ \[) o dy/dyead, (42)
S

where A and B are independent of ¢,,, and under our assumption, are treated as constants.

From classical infinite series analysis, it is known that as o, grows at a faster rate, the upper bound of
the product decreases. The proof is omitted here for brevity. For the upper bound on the convergence
rate of o2, we assume o, = exp(¢) without loss of generality. Under this condition, we can derive
the following result:

Taking the natural logarithm of the product:
L-1 L—1
A B A B
log<H (1+6k+62k)> :Zlog(l—i—elc-i-e%).
k=1 k=1
Using the Taylor series expansion for log(1 + ), and applying this to our sum, we get:
> A B\ &(A B 1(A B\ 1/4 BY
2 loe(1+ Gt ) =2 \artam slata) talata) )
k=1 k=1

By evaluating the sums for each order of terms, we find that the result is a constant. Carrying this out
for each term, we obtain:

lo Lﬁl 14448 A, B 1 A’ 4o A B B
& ek = g2k e—1 e2—-1 2\e2—-1 e3—1 et—1)"°

k=1

Thus, the product is approximately:
oyrL, B 1 A? A-B B?

A
< - = 2 =M 43
‘81‘12_6){10(6—1_'—62—1 2(62—1+ 63—1+64—1>) ’ “43)

where M is a constant.

For the lower bound on the convergence rate of o2 ,» We assume aif = { without loss of generality.

Under this condition, we derive the following result. Taking the logarithm of the product, applying
the Taylor series expansion for log(1 + ), and applying this to our sum:

Shog (1444 B oy (A4 B (AL BN 1A By

08 ke ) T ke o\ kT 3\&E e :
For the first-order terms:

/A B 1 <1
Z(,{*ew):AZkJFBZekQ-

k=1 k=1 k=1

The series >, % is the harmonic series, which diverges. However, we approximate it using the
Euler-Mascheroni constant «y and the fact recognize that the harmonic series grows logarithmically:

~logn+v (for large n).

=

oo
k=1

The other series such as > _p- % converge because e*
-t e

’ grows very rapidly.
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. . . . 2
For higher-order terms, they converge to constant, involving the series >~ k% converges to %, s0
they contribute a constant. Exponentiating both sides, we get:

H <1 + % + ei) ~ exp (A(logn + ) + const) .

Oyr
Oz

Thus, the growth rate of the upper bound for ‘

is:
2

H Our (L). (44)

B Theoretical Analysis of LayerNorm Scaling

Lemma 4. After applying our scaling method, the variances of ), and x,, denoted as O’ " and o2 .

respectively, exhibit the same growth trend, which is:
-1

02, =020 (45)
=ae(I1(1+ 70))
with the following growth rate bounds:

O(L) < o2, <O(LE79)). (46)

where € is a small number with 1/2 < e < 1.

From Lemma[4] we can conclude that our scaling method effectively slows the growth of the variance
upper bound, reducing it from exponential to polynomial growth. Specifically, it limits the upper
bound to a quadratic rate instead of an exponential one. Based on Theorem ([T} after scaling, we obtain
the following:

Theorem 2. For the scaled Pre-LN Transformers the Euclidean norm of is given by:

oyr 1 1
— | < 1+ —A+-—-B 4
H 2 - 221_[1 ( * éo—ﬂw * 6209%:@ > 7 ( 7)

8961

where A and B are dependent on the scaled neural network parameters. Then the upper bound for
the norm is given as follows: when o2 , grows at (2= (i.e., at its upper bound), we obtain:

< w(1), (48)
2
where w denotes that if f(x) = w(g(x)), then lim,_, % = 00. Meanwhile, when o2, grows

linearly (i.e., at its lower bound), we obtain:

2
oy, ~ 4, H

2 -9 ||
’ 8$1

L

o o(L). (49)

The detailed descriptions of A and B, and ¢, along with the full proof, are provided in Appendices
andB.21

By comparing Theorem [I] (before scaling) with Theorem [2] (after scaling), we observe a substan-
tial reduction in the upper bound of variance. Specifically, it decreases from exponential growth
O(exp(L)) to at most quadratic growth ©(L?). In fact, this growth is even slower than quadratic
expansion, as it follows ©(L(2~9)) for some small ¢ > 0.

When we select a reasonable upper bound for this expansion, we find that H L

) no longer
OyL
Oxq
Consequently, fewer layers act as identity mappings compared to the original Pre-LN where nearly
all deep layers collapsed into identity transformations. Instead, the after-scaled network effectively
utilizes more layers, even as the depth approaches infinity, leading to improved expressivity and
trainability.

possesses a strict upper bound. That is, as the depth increases,

continues to grow gradually.
2

20



B.1 Proof of Lemmal]

Proof. After scaling, the equation becomes:

1
y = xp41 = 2y + FFN(—=LN(z})),

14
v (50)
2y = xp + Attn(—=LN(z)).
¢ (ﬂ (w¢))
Following the same analysis as before, we scale the Attention and FFN sub-layers, yielding:
1 1 ol o ‘2/[/ o 12;[/ o
Chem = 75 MOV = GOV = =L, Ofpn o~ =gt =t = (51)
In conclusion: )
2 2 2 ) w2
Uz; =0y +ow + P20z, \/Z =0y 6(1 + \/’O_I/> (52)
Similarly, we obtain:
1
2 2
0y, , =050(1+——). 53
41 ¢ ( \/ZO’W ) (53)

From the result we can generally infer that the variance accumulates layer by layer. The variance

with regard to 0, :
=0T (1 )

‘We can also obtain a similar result for %' .
£

Taking the natural logarithm of both sides:

-1 -1
1 1
log(aie) = log <0331 H <1+ \ ,ka2>> = Zlog (1—1— 1/ o2 ) + log(o? )
k=1 Th k=1

. : 9 (55)
o+ 1 L 2
3 (3 () ) e
To establish a lower bound for o2 , we exponentiate both sides. Setting 02 = ¢, we must have:
/1 1
2 > - - — =0 log L)) > ©(L). 56
7, > o xp@(k 2k)> (expllog L)) > O(1) (56)

Therefore, the increasing lower bound o2 , 18 greater than a linear function.

Similarly, assuming 02, = ¢(~), we have:

0—1 -1
1 1 0e/2=1
o2 = g2 <]_—|— ) ~ exp (Z) ~ exp <>
Xy x1 2—¢€/2 2—e/2 —
‘ i\ ke = kel e/2—1 (57)
<Oy < O?).

Here e is a small constant with 1/2 < e < 1. Therefore, the increasing upper bound of o2 , is slower

than the ¢ function, leading to:
0z, < O(L?)
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B.2 Proof of Theorem2]

Proof. Similarly, after applying the scaling transformation, we derive an upper bound for || 33” ||l2 as

follows:
Aye <14 OFFN(LN(z})) 1| ||9LN(zy)
oxy ||y ~ OLN(z}) 9 dzy ||,
2 (58)
=14 9e
(o4, (Vd + Vdpen)?
Similarly, rewriting Equation (3I)) after scaling, we have
oz’ OAttn(LN(z)) 1 || |[0LN(z) (59)
Ox OLN(x) N I RVZ2 P 2

By combining the bound (58), and inequality (59), and assuming all o are equal for simplicity, we
obtain:

oyr, - o?(Vd + /drrn)?
— < 1
|52e], < [I (=)
= [ (60)
1 o2 9
(1 +2dh <\f+ 2+ ﬁ) . (0 dy/dneaq + (1 + \/dhead/d) ))
Equation (60) is a traditional product form [49] for o,. After scaling, it becomes:
L-1
dyr 1 1
= < 1+—A+-—1RB 61
Haxl 2 o 11:[1 ( * €0$2 * 620:%4 >’ ( )

where A and B retain their forms from Equation (T]) and Equation (@2)) and are treated as constants.

Regarding the upper bound on the convergence rate of o2 ,» We assume o2 , =1 (=€) without loss of
generality. For large L, the product can be approximated using the properties of infinite products:

L-1 L-1
A B A B
H (1 + f2—¢€/2 + 54_€> ~ €xXp (Z <€2—5/2 + g4—e)> : (62)
1

£=1

Then, by evaluating the sum in the exponent, we obtain:

L-1
A B (271 -1 3 -1
e—Hl(H’ZZ 6/2+€€>~exp(A- g1 B3 ) (63)

Therefore, we establish the upper bound:

ayL pe/2—1 _ 1 fe=3 1
A- B =w(l 64
Hax1 (exp( €/2—1 + e—3 w(1) ©4)
where w(1) denotes a growth strictly greater than a constant as defined before. O

C Results of In-house Small-scale LLaMa-130M

Figure [ compares LLaMa-130M models differing only in Layer Normalization, clearly distinguishes
Post-LN from Pre-LN. In Post-LN models, early layers exhibit high similarity (low angular distance,
Fig. [6}-a) and their removal causes minimal performance loss (Fig.[6}d), while deeper layers become
more distinct and critical. Post-LN also shows larger gradients in deeper layers but severe vanishing
in early layers at the start of training (Fig. [6fc). Conversely, Pre-LN LLaMa-130M demonstrates
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(a) Post-LN Angular Distance (b) Pre-LN Angular Distance
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Figure 6: Results of in-house small-scale LLaMa-130M. Angular Distance (a, b): Each column
represents the angular distance from the initial layer ¢ (x-axis) and its subsequent nt" layer (y-axis).
The distance is scaled to the range [0, 1], where yellow indicates smaller distances and purple
indicates larger distances. Performance Drop (c, d): ARC-e performance drop of removing each
single layer from LLaMa-130M.

a gradual decrease in angular distance with depth, resulting in highly similar deep layers (Fig. [6
b). Removing most layers after the first in Pre-LN causes negligible performance loss (Fig. [6}d),
indicating their limited contribution. These consistent findings, observed in both open-weight and
in-house LLMs, lead to the conclusion that the widespread use of Pre-LN is the root cause of the
ineffectiveness of deep layers in LLMs.

D Training Loss Curve

We report the training loss curves of Pre-LN and LayerNorm Scaling in Figure|7} While LayerNorm
Scaling exhibits slightly slower convergence at the early stages of training, it consistently outperforms
Pre-LN as training progresses. We attribute this to the uncontrolled accumulation of output variance
in Pre-LN, which amplifies with depth and training steps, ultimately impairing the effective learning
of deeper layers. In contrast, LayerNorm Scaling mitigates this issue by scaling down the output
variance in proportion to depth, thereby enabling more stable and effective training across all layers
during training.

E Variance Growth in Pre-LN Training

To analyze the impact of Pre-LN on variance propagation, we track the variance of layer outputs
across different depths during training.

Figure §]illustrates the layer-wise variance in LLaMA-130M with Pre-LN at 1000, 3000, and 6000
epochs. Across all stages, variance remains low in shallow layers but grows exponentially in deeper
layers, confirming that this issue persists throughout training rather than being a temporary effect.
This highlights the necessity of stabilization techniques like LayerNorm Scaling to control variance
and ensure effective deep-layer learning.
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1g:omparison of Training Loss Curves on C4 Dataset for LLaMa-1B
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Figure 7: Training loss of LLaMA-1B with Pre-LN and LayerNorm Scaling.
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Figure 8: Variance growth across layers in LLaMA-130M with Pre-LN. Each subplot shows
the variance at different training stages (1000, 3000, and 6000 epochs). In all cases, the variance
follows an exponential growth pattern as depth increases, indicating that deeper layers experience
uncontrolled variance amplification regardless of training progress.

F Applicability to Vision—-Language Models (Qwen 2.5-VL)

To examine whether the Curse of Depth also manifests in vision—language models (VLMs), we
perform layer—pruning experiments on Qwen 2.5-VL-7B [4]. For both its vision encoder and
language decoder, we prune one transformer layer at a time and directly evaluate the pruned model
on the MMMU benchmark [55]. Figure 0 presents the resulting performance drops.

We observe that the language branch clearly suffers from the Curse of Depth, whereas the vision
branch remains uniformly important. This suggests that the phenomenon is more pronounced in
autoregressive language components of VLMs and may not directly transfer to vision encoders. A
detailed modality—specific theoretical account is left to future work and community discussion.

G LayerNorm Scaling in Vision Transformer

To evaluate whether LayerNorm Scaling (LNS) also benefits architectures beyond language models,
we conduct experiments on ViT-S for image classification. Since ViT-S includes LayerScale by
default—which may interfere with the effect of LNS—we remove LayerScale from all evaluated
variants to ensure a fair comparison. We then test different insertion positions of LNS. The top-1
accuracy results are summarized in Table[§] Whereas LNS in language models is typically most
effective directly after normalization, in Vision Transformers, the best position is after the attention
and MLP blocks. We next examine whether this performance gain correlates with better control of
layer-wise variance.

Figure [T0] plots the average output variance of each transformer block during training. Without
LayerScale, variance in deeper layers grows rapidly—exceeding ~ 3,000 by 30K update steps.
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Figure 9: Performance drop of layer pruning on Qwen 2.5-VL-7B. (a) Vision branch shows relatively

uniform sensitivity across layers. (b) Language branch exhibits a clear Curse of Depth: deeper layers
contribute much less than early ones.

Table 8: Top-1 accuracy (%) of ViT-S model with and without LNS.

Model Variant LNS Position = Top-1 Accuracy
ViT (with LayerScale) - 70.30
ViT (w/o LayerScale) - 67.91
ViT (w/o LayerScale)  after LayerNorm 66.43
ViT (w/o LayerScale)  after Attn/MLP 68.75

Applying LNS after Attn/MLP controls this growth to below ~ 150, confirming that LNS stabilizes
the forward signal even in vision transformers.
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Figure 10: Layer-wise output variance of ViT-S without LayerScale (left) and with LNS after
Attn/MLP (right). LNS significantly reduces the variance growth compared to the baseline.

These preliminary findings indicate that the variance-control mechanism underlying LNS generalizes
to vision transformers when the scaling is applied after Attn/MLP. We leave a more detailed theoretical
understanding of this behavior to future work and community discussion.
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H Post-LN Transformers

For Post-LN Transformers, we continue to adopt Assumption|[I] In this setting, each layer is followed

by a layer normalization (LN) step, ensuring that the variances agﬁ and O'z/ remain fixed at 1 across
g 4

Oye
Bmg

indicating stable gradient propagation.

all layers. Consequently, the norm H exhibits minimal variation from one layer to the next,
2

Since the variance is effectively controlled by LN in Post-LN Transformers, an explicit variance-
based analysis becomes less critical. Nonetheless, there remain other important aspects to investigate
in deeper Post-LN architectures, such as the evolution of feature mappings and the behavior of
covariance kernels over deep layers. These directions will be pursued in future work.

I Limitations

While this work offers a comprehensive analysis of the Curse of Depth in LLMs and proposes
LayerNorm Scaling as an effective remedy, several limitations remain:

Scope of Architectures. Our study primarily focuses on Transformer-based LLMs using Pre-LN.
Although Pre-LN dominates modern architectures, our theoretical study does not cover models em-
ploying alternative normalization strategies (e.g., Post-LN only [13], normalization-free architectures
[59]) or emerging paradigms such as mixture-of-experts or structured sparsity-based models.

Task Coverage. Most empirical evaluations, including pruning and angular distance analyses, were
conducted using general-purpose benchmarks like MMLU. While these tasks reflect broad model
capabilities, domain-specific or long-context reasoning tasks may reveal different dynamics in deep
layer contributions, which we leave for future work.

Fine-grained Representation Quality. While LNS improves angular distance and performance
sensitivity across layers, a deeper analysis of what types of information are represented or lost in
deeper layers remains unexamined. For example, whether LNS helps preserve syntactic, semantic, or
factual knowledge across depth is unclear.

J Broader Impact

The Curse of Depth phenomenon, identified and addressed in this work, has significant implications
for the design, training, and deployment of LLMs. By revealing that deeper layers in modern Pre-LN
Transformers often fail to contribute meaningfully to learning, our study prompts a reevaluation of
how model capacity is allocated and utilized. This has both practical and ethical consequences.

From a computational efficiency perspective, the insights offered by this work can lead to more
principled model pruning, layer reuse, or architecture design strategies that improve training and
inference efficiency without compromising performance. In particular, LayerNorm Scaling enables
deeper layers to be trained more effectively, maximizing the utility of each parameter and reducing
unnecessary resource expenditure. This can help democratize access to powerful models by reducing
the cost of pretraining and fine-tuning, especially for institutions or communities with limited
computational resources.

From a sustainability standpoint, addressing CoD has the potential to lower the environmental
impact of large-scale model training by mitigating wasteful computation. With LLMs increasingly
deployed in industrial-scale applications, these gains can scale into substantial reductions in energy
consumption and carbon footprint.

In terms of scientific understanding, this work contributes to the growing body of research that
seeks to interpret and improve the internal dynamics of deep neural networks. By identifying the
gradient-preserving failure modes induced by Pre-LN at depth, we provide both a diagnosis and
a remedy that could influence future research in deep optimization, normalization strategies, and
interpretability.
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We also caution that increasing the efficiency of LLM training and deployment through techniques
like LNS may further accelerate the proliferation of powerful LLMs, raising concerns around misuse,
disinformation, or labor displacement. As such, our findings should be accompanied by responsible
deployment practices and continued ethical oversight in the broader Al community.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of this paper are claimed in the abstract. Detailed
information can be found in the introduction section [Il

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a Limitation Appendix I.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide a complete set of assumptions and rigorous proofs for all theoretical
results. Detailed information can be found in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all experimental details in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide all experimental details in the experiment section. The detailed
LayerNorm Scaling codes of our method can be found in supplemental materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all experimental details in the experiment section.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the standard experimental setup, we repeat each experiment over 3
random seeds and report the mean of the results.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

30


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computing resources in experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the potential broader impacts in Appendix J.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data and models pose no such risks.
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers that produced the code package and datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Details of the datasets/code/model are provided in the supplemental materials.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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