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Abstract

Modern high-scoring models of vision in the brain score competition do not stem1

from Vision Transformers. However, in this paper, we provide evidence against2

the unexpected trend of Vision Transformers (ViT) being not perceptually aligned3

with human visual representations by showing how a dual-stream Transformer, a4

CrossViT a la Chen et al. (2021), under a joint rotationally-invariant and adver-5

sarial optimization procedure yields 2nd place in the aggregate Brain-Score 20226

competition (Schrimpf et al., 2020b) averaged across all visual categories, and at7

the time of the competition held 1st place for the highest explainable variance of8

area V4. In addition, our current Transformer-based model also achieves greater9

explainable variance for areas V4, IT and Behavior than a biologically-inspired10

CNN (ResNet50) that integrates a frontal V1-like computation module (Dapello11

et al., 2020). To assess the contribution of the optimization scheme with respect12

to the CrossViT architecture, we perform several additional experiments on differ-13

ently optimized CrossViT’s regarding adversarial robustness, common corruption14

benchmarks, mid-ventral stimuli interpretation and feature inversion. Against our15

initial expectations, our family of results provides tentative support for an “All16

roads lead to Rome” argument enforced via a joint optimization rule even for non17

biologically-motivated models of vision such as Vision Transformers.18

1 Optimizing a CrossViT for the Brain-Score Competition19

In this short paper, we try to solve an interesting question that was one of the motivations of this work:20

“Are Vision Transformers good models of the human ventral stream?” Our approach to answering this21

question will rely on using the Brain-Score platform (Schrimpf et al., 2020a) and participating in22

their first yearly competition with a Transformer-based model. This platform quantifies the similarity23

via bounded [0,1] scores of responses between a computer model and a set of non-human primates.24

Here the ground truth is collected via neurophysiological recordings and/or behavioral outputs when25

primates are performing psychophysical tasks, and the scores are computed by some derivation of26

Representational Similarity Analysis (Kriegeskorte et al., 2008) when pitted against artificial neural27

network activations of modern computer vision models.28

We discuss an interesting finding, where amidst the constant debate of the biological plausibility of29

Vision Transformers – which have been deemed less biologically plausible than convolutional neural30

networks (as discussed in: URL_1 URL_2, though also see Conwell et al. (2021)) –, we find that31

when these Transformers are optimized under certain conditions, they may achieve high explainable32

variance with regards to many areas in primate vision, and surprisingly the highest score to date at33

the time of the competition for explainable variance in area V4, that still remains a mystery in visual34
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Brain-Score ρ-Hierarchy
Rank Model ID # Description Avg V1 V2 V4 IT Behavior

1 1033 Bag of Tricks (Riedel, 2022) [New SOTA] 0.515 0.568 0.360 0.481 0.514 0.652 -0.2
2 991 CrossViT-18† (Adv + Rot) [Ours] 0.488 0.493 0.342 0.514 0.531 0.562 +0.8
3 1044 Gated Recurrence (Azeglio et al., 2022) 0.463 0.509 0.303 0.482 0.467 0.554 -0.4
4 896 N/A 0.456 0.538 0.336 0.485 0.459 0.461 -0.4
5 1031 N/A 0.453 0.539 0.332 0.475 0.510 0.410 -0.2

Table 1: Ranking of all entries in the Brain-Score 2022 competition as of February 28th, 2022. Scores
in blue indicate world record (highest of all models at the time of the competition), while scores in
bold display the highest scores of competing entries. Column ρ-Hierarchy indicates the Spearman
rank correlation between per-Area Brain-Score and Depth of Visual Area (V1 → IT).

neuroscience (see Pasupathy et al. (2020) for a review). Our final model and highest scoring model35

was based on several insights:36

Adversarial-Training: Work by Santurkar et al. (2019); Engstrom et al. (2019b); Dapello et al.37

(2020), has shown that convolutional neural networks trained adversarially1 yield human perceptually-38

aligned distortions when attacked. This is an interesting finding, that perhaps extends to vision39

transformers, but has never been qualitatively tested before though recent works – including this40

one (See Figure 2) – have started to investigate in this direction (Tuli et al., 2021; Caro et al., 2020).41

Thus we projected that once we picked a specific vision transformer architecture, we would train it42

adversarially.43

Multi-Resolution: Pyramid approaches (Burt & Adelson, 1987; Simoncelli & Freeman, 1995; Heeger44

& Bergen, 1995) have been shown to correlate highly with good models of Brain-Scores (Marques45

et al., 2021). We devised that our Transformer had to incorporate this type of processing either46

implicitly or explicitly in its architecture.47

Rotation Invariance: Object identification is generally rotationally invariant (depending on the48

category; e.g. not the case for faces (Kanwisher et al., 1998)). So we implicitly trained our model to49

take in different rotated object samples via hard rotation-based data augmentation. This procedure is50

different from pioneering work of Ecker et al. (2019) which explicitly added rotation equivariance to51

a convolutional neural network.52

Localized texture-based computation: Despite the emergence of a global texture-bias in object53

recognition when training Deep Neural Networks (Geirhos et al., 2019) – object recognition is a54

compositional process (Brendel & Bethge, 2019; Deza et al., 2020). Recently, works in neuroscience55

have also suggested that local texture computation is perhaps pivotal for object recognition to either56

create an ideal basis set from which to represent objects (Long et al., 2018; Jagadeesh & Gardner,57

2022) and/or encode robust representations (Harrington & Deza, 2022).58

Table 2: Selected Layers of CrossViT-18†

Benchmark Layer

V1,V2,V4 blocks.1.blocks.1.0.norm1

IT blocks.1.blocks.1.4.norm2

Behavior blocks.2.revert_projs.1.2

After searching for several models in the com-59

puter vision literature that resemble a Transformer60

model that ticks all the boxes above, we opted for a61

CrossViT-18† (that includes multi-resolution + local62

texture-based computation) that was trained with63

rotation-based augmentations and also adversarial64

training (See Appendix A.3 for exact training de-65

tails, our best model also used p = 0.25 grayscale66

augmentation, though this contribution to model67

Brain-Score is minimal).68

Results: Our best performing model #991 achieved69

2nd place in the overall Brain-Score 2022 competition (Schrimpf et al., 2020b)) as shown in Table 1.70

At the time of submission, it holds the first place for the highest explainable variance of area V471

and the second highest score in the IT area. Our model also currently ranks 6th across all Brain-72

Score submitted models as shown on the main brain-score website (including those outside the73

competition and since the start of the platform’s conception, totaling 216). A general schematic of74

how Brain-Scores are calculated can be seen in Figure 1.75

1Adversarial training is the process in which an image in the training distribution of a network is perturbed
adversarially (e.g. via PGD); the perturbed image is re-labeled to its original non-perturbed class, and the
network is optimized via Empirical Risk Minimization (Madry et al., 2018).
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ImageNet (↑) Brain-Score (↑)
Model ID # Description Validation Accuracy (%) Avg V1 V2 V4 IT Behavior

N/A Pixels (Baseline) N/A 0.053 0.158 0.003 0.048 0.035 0.020
N/A AlexNet (Baseline) 63.3 0.424 0.508 0.353 0.443 0.447 0.370
N/A VOneResNet50-robust (SOTA) 71.7 0.492 0.531 0.391 0.471 0.522 0.545
991 CrossViT-18† (Adv + Rot) 73.53 0.488 0.493 0.342 0.514 0.531 0.562

1084 CrossViT-18† (Adv) 64.60 0.462 0.497 0.343 0.508 0.519 0.441
1095 CrossViT-18† (Rot) 79.22 0.458 0.458 0.288 0.495 0.503 0.547
1057 CrossViT-18† 83.05 0.442 0.473 0.274 0.478 0.484 0.500

Table 3: A list of different models submitted to the Brain-Score 2022 competition. Scores in bold
indicate the highest performing model per column. Scores in blue indicate world record (highest of
all models at the time of the competition). All CrossViT-18† entries in the table are ours.

Behavior

"instrument"
"Object is in the center"
"Object at 90° rotation"

Recordings from Artificial Neural Networks

Recordings from Biological (Primate) 
Neural Networks

Brain-Score

V1 V2
ITV4

Figure 1: A schematic of how brain-score is cal-
culated as similarity metrics obtained from neural
responses and model activations.

Additionally, in comparison with the76

biologically-inspired model (VOneRes-77

Net50+ Adv. training), our model achieves78

greater scores in the IT, V4 and Behavioral79

benchmarks. Critically we notice that our80

best-performing model (#991) has a positive81

ρ-Hierarchy coefficient2 compared to the82

new state of the art model (#1033) and other83

remaining entries, where this coefficient is84

negative. This was an unexpected result that85

we found as most biologically-driven models86

obtain higher Brain-Scores at the initial stages87

of the visual hierarchy (V1) (Dapello et al.,88

2020), and these scores decrease as a function89

of hierarchy with generally worse Brain-Scores90

in the final stages (e.g. IT).91

We also investigated the differential effects of rotation invariance and adversarial training used on92

top of a pretrained CrossViT-18† as shown in Table 3. We observed that each step independently93

helps to improve the overall Brain-Score, quite ironically at the expense of ImageNet Validation94

accuracy (Zhang et al., 2019). Interestingly, when both methods are combined (Adversarial training95

and rotation invariance), the model outperforms the baseline behavioral score by a large margin96

(+0.062), the IT score by (+0.047), the V4 score by (+0.036), the V2 score by (+0.068), and the V197

score by (+0.020). Finally, our best model also retains a great standard accuracy at ImageNet from its98

pretrained version albeit a 10% drop, yet the performance on ImageNet Validation Accuracy of our99

model (73.53%) is still greater than a more biologically principled model such as the adversarially100

trained VOneResNet-50 (71.7%) (Dapello et al., 2020).101

2 Assessment of CrossViT-18†-based models102

As we have seen that the optimization procedure heavily influences the brain-score of each CrossViT-103

18† model, and thus its alignment to human vision (at a coarse level accepting the premise of the104

Brain-Score competition). We will now explore how different variations of such CrossViT’s change as105

a function of their training procedure, and thus their learned representations via a suite of experiments106

that are more classical in computer vision. Additional experiments with CrossViT-18†-based models107

can be seen at Appendix B.108

2.1 Adversarial Attacks109

One of our most interesting qualitative results is that the direction of the adversarial attack made110

on our highest performing model resembles a distortion class that seems to fool a human observer111

too (Figure 2). Alas, while the adversarial attack can be conceived as a type of eigendistortion as112

in Berardino et al. (2017) we find that the Brain-Score optimized Transformer models are more113

2ρ-Hierarchy coefficient: We define this as the Spearman rank correlation between the Brain-Scores of areas
[V1,V2,V4,IT] with hierarchy: [1,2,3,4]
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(a) A qualitative demonstration of the human-
machine perceptual alignment of the CrossViT-
18† via the effects of adversarial perturbations.
As the average Brain-Score increases in our sys-
tem, the distortions seem to fool a human as well.

Original

Cat Dog Insect Fish Frog

Targeted Attack

(b) An extended demonstration of our winning model
(CrossViT-18† [Adv. Training + Rot. invariance]) where
a targeted attack is done for 3 images and the resulting stim-
uli is perceptually aligned with a human judgment of the
fooled class.

Figure 2: Exploring Human-Machine Perceptual Alignment via Adversarial Attacks.

perceptually aligned to human observers when judging distorted stimuli. Similar results were114

previously found by Santurkar et al. (2019) with ResNets, though there has not been any rigorous &115

unlimited time verification of this phenomena in humans similar to the work of Elsayed et al. (2018).116

2.2 Feature Inversion117

The last assessment we provided was inspired by feature inversion models that are a window to the118

representational soul of each model (Mahendran & Vedaldi, 2015). Oftentimes, models that are119

aligned with human visual perception in terms of their inductive biases and priors will show renderings120

that are very similar to the original image even when initialized from a noise image (Feather et al.,121

2019). We use the list of stimuli from Harrington & Deza (2022) to compare how several of these122

stimuli look like when they are rendered from the penultimate layer of a pretrained and our winning123

entry CrossViT-based model. A collection of synthesized images can be seen in Figure 3.124

Even when these images are rendered starting from different noise images, Transformer-based models125

are remarkably good at recovering the structure of these images. This hints at a coherence with the126

results of Tuli et al. (2021) who have argued that Transformer-based models have a stronger shape127

bias than most CNN’s (Geirhos et al., 2019). We think this is due to their initial patch-embedding128

stage that preserves the visual organization of the image, though further investigation is necessary to129

validate this conjecture.130

D
og

Original

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2

Initial Image (Noise) Pretrained Adv.+ Rot.

C
at

Fr
og
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rt

le
B
ir
d

Standard Robust

Sample 1 Sample 2 Sample 1 Sample 2

ResNet-50CrossViT-18†

Figure 3: A summary of Feature Inversion models when applied on two different randomly samples
noise images from a subset of the stimuli used in Harrington & Deza (2022). Standard and Pretrained
models poorly invert the original stimuli leaving high spatial frequency artifacts. Adversarial training
improves image inversion models, and this is even more evident for Transformer models.
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3 Discussion131

A question from this work that motivated the writing of this paper beyond the achievement of a high132

score in the Brain-Score competition is: How does a CrossViT-18† perform so well at explaining133

variance in primate area V4 without many iterations of hyper-parameter engineering? In this paper,134

we have only scratched the surface of this question, but some clues have emerged.135

One possibility is that the cross-attention mechanism of the CrossViT-18† is a proxy for Gramian-like136

operations that encode local texture computation (vs global a la Geirhos et al. (2019)) which have137

been shown to be pivotal for object representation in humans (Long et al., 2018; Jagadeesh & Gardner,138

2022; Harrington & Deza, 2022). This initial conjecture is corroborated by our image inversion139

effects (Section 2.2) where we find that CrossViT’s preserves the structure stronger than Residual140

Networks (ResNets), while vanilla ViT’s shows strong grid-like artifacts (See Figures 12, 13 in the141

supplementary material).142

Equally relevant throughout this paper has been the critical finding of the role of the optimization143

procedure and the influence it has on achieving high Brain-Scores – even for non-biologically plausible144

architectures (Riedel, 2022). Indeed, the simple combination of adding rotation invariance as an145

implicit inductive bias through data-augmentation, and adding “worst-case scenario” (adversarial)146

images in the training regime seems to create a perceptually-aligned representation for neural147

networks (Santurkar et al., 2019).148

On the other hand, the contributions to visual neuroscience from this paper are non-obvious. Tra-149

ditionally, work in vision science has started from investigating phenomena in biological systems150

via psychophysical experiments and/or neural recordings of highly controlled stimuli in animals, to151

later verify their use or emergence when engineered in artificial perceptual systems. We are now in152

a situation where we have “by accident” stumbled upon a perceptual system that can successfully153

model (with half the full explained variance) visual processing in human area V4 – a region of which154

its functional goal still remains a mystery to neuroscientists (Vacher et al., 2020; Bashivan et al.,155

2019) –, giving us the chance to reverse engineer and dissect the contributions of the optimization156

procedure to a fixed architecture. We have done our best to pin-point a causal root to this phenomena,157

but we can only make an educated guess that a system with a cross-attention mechanism can even158

under regular training achieve high V4 Brain-Scores, and these are maximized when optimized with159

our joint adversarial training and rotation invariance procedure.160

Machine 
Perception

Human
Perception

In Distribution 
Image Set

Adversarial
Image Set

Out of Distribution 
Image Set

Figure 4: A cartoon inspired by Feather et al.
(2019, 2021) depicting how our model changes
its perceptual similarity depending on its optimiza-
tion procedure. The arrows outside the spheres
represent projections of such perceptual spaces
that are observable by the images we show each
system. While it may look like our winning model
is "nearly human" it has still a long way to go, as
the adversarial conditions have never been physio-
logically tested.

Ultimately, does this mean that Vision Trans-161

formers are good models of the Human Ventral162

Stream? We think that an answer to this ques-163

tion is a response to the nursery rhyme: "It looks164

like a duck, and walks like a duck, but it’s not165

a duck!" One may be tempted to affirm that it166

is a duck if we are only to examine the family167

of in-distribution images from ImageNet at in-168

ference; but when out of distribution stimuli are169

shown to both machine and human perceptual170

systems we will have a chance to accurately as-171

sess their degree of perceptual similarity3. We172

can tentatively expand this argument further by173

studying adversarial images for both perceptual174

systems (See also Figure 4). Future images used175

in the Brain-Score competition that will better176

assess human-machine representational similar-177

ity should use these adversarial-like images to178

test if the family of mistakes that machines make179

are similar in nature than to the ones made by hu-180

mans (See For example Golan et al. (2020)). If181

that is to be the case, then we are one step closer182

to building machines that can see like humans.183

3Consider for example, that some stimuli used in Brain-Score are a basis set of Gabor filters, which are never
encountered in nature
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A Experimental Setup372

A.1 Dataset373

We used the ImageNet 1k (Deng et al., 2009) dataset for training. ImageNet1K contains 1,000 classes374

and the number of training and validation images are 1.28 million and 50,000, respectively. We375

validate the effectiveness of our models in the different datasets proposed in the Brain-Score (Schrimpf376

et al., 2020a) competition.377

A.2 Custom Scheduler378
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Figure 5: Custom scheduler used for training the
Vision Transformer.

The proposed learning rate scheduler is based379

on Jeddi et al. (2020) and is formulated as380

LR = 0.00012 × e − 0.0004 for e = 1 and381

LR = 0.00002
2e−2 for 1 < e <= 6. As shown382

in Figure 5, we start with a small learning rate383

and then it is smoothly increased for one epoch.384

We empirically found that fine-tuning the trans-385

former for more than 1 epoch resulted in an386

under-fitting behavior of the adversarial robust-387

ness. After this first epoch, the learning rate388

is reduced very fast so that model performance389

converges to a steady state, without having too390

much time to overfit on the training data.391

A.3 Training Setup392
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Figure 6: Training robust acc. of each Vision
Transformer model (Adv + Rot). We clearly ob-
served that ViT-S/16 has over-fitted during train-
ing.

We used a pretrained CrossViT-18† (Chen et al.,393

2021) downloaded from the timm library that394

is adversarially trained via a fast gradient sign395

method (FGSM) attack and random initializa-396

tion (Wong et al., 2020). We opted for this strat-397

egy, known as "Fast Adversarial Training" as it398

allows a faster iteration in comparison with other399

common approaches (e.g. adversarial training400

with the PGD attack). In particular, all experi-401

ments used ϵ = 2/255 and step size α = 1.25ϵ402

as proposed originally in (Wong et al., 2020).403

However, in contrast to the previous method, we404

follow a 5 epoch fine-tuning approach with a cus-405

tom learning rate scheduler in order to avoid un-406

derfitting. We optimize our networks with Adap-407

tive Moment Estimation (Adam a la Kingma408

& Ba (2014)) and employed mixed precision409

for faster training. All input images were pre-410

processed with resizing to 256×256 followed by standard random cropping and horizontal mirroring.411

In the case of our best performing model (#991), we additionally incorporated a random grayscale412

transformation (p = 0.25) and a set of hard rotation transformations of (0°, 90°, 180°, 270°) –413

implicitly aiding for rotational invariance – due to the characteristics of images appearing in the414

behavioral benchmark of Rajalingham et al. (2018). All our experiments were ran locally on a415

GPU-Tesla V-100. Each adversarial training of a vision transformer took around 48 hours.416

Optionally include extra information (complete proofs, additional experiments and plots) in the417

appendix. This section will often be part of the supplemental material.418
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B Additional Assessment of CrossViT-18†-based models419

B.1 Robustness against adversarial attacks420

We also applied PGD attacks on our winning entry model (Adversarial Training + Rot. Invariance) on421

range ϵ ∈ {1/255, 2/255, 4/255, 6/255, 8/255, 10/255} and step-size = 2.5
#PGDiterations

as in the422

robustness Python library (Engstrom et al., 2019a) , in addition to three other controls: Adv. Training,423

Rotational Invariance, and a pretrained CrossViT, to evaluate how their adversarial robustness would424

change as a function of this particular distortion class. When doing this evaluation we observe in425

Figure 7 that Adversarially trained models are more robust to PGD attacks (three-step size flavors: 1426

(FGSM), 10 & 20). One may be tempted to say that this is “expected” as the adversarially trained427

networks would be more robust, but the type of adversarial attack on which they are trained is different428

(FGSM as part of FAT (Wong et al., 2020) during training; and PGD at testing). Even if FGSM can429

be interpreted as a 1 step PGD attack, it is not obvious that this type of generalization would occur.430

In fact, it is of particular interest that the Adversarially trained CrossViT-18† with “fast adversarial431

training” (FAT) shows greater robustness to PGD 1 step attacks when the epsilon value used at testing432

time is very close to the values used at training (See Figure 7a). Naturally, for PGD-based attacks433

where the step size is greater (10 and 20; Figs. 7b,7c), our winning entry model achieves greater434

robustness against all other trained CrossViT’s independent of the ϵ values.435
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(a) PGD attack - 1 step
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(b) PGD attack - 10 step
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(c) PGD attack - 20 step

Figure 7: A suite of multiple steps [1,10,20] PGD-based adversarial attacks on clones of CrossViT-18†
models that were optimized differently. Here we see that our winning entry (Adversarial training
+ Rotation Invariance) shows greater robustness (adversarial accuracy) than all other models as the
number of steps of PGD-based attacks increases only for big step sizes of 10 & 20.

B.2 Mid-Ventral Stimuli Interpretation436

In addition to the previous experiments, we wondered how well the two models: CrossViT-18†437

(PreTrained) and CrossViT-18† (Adv. Training + Rot. Invariance) could linearly separate a small438

subset of 2-class stimuli across their visual hierarchy. For this experiment, we used both the439

original and texform stimuli (100 images per class) from Harrington & Deza (2022), where the440

texform stimuli can be used to test the mechanisms of human peripheral computation (Rosenholtz441

et al., 2012; Freeman & Simoncelli, 2011) or mid-ventral human computation (Long et al., 2018;442

Jagadeesh & Gardner, 2022). Roughly speaking these texforms are very similar to their original443

counter-part, where they match in global structure (i.e. form), but are locally distorted through a444

texture-matching operation (i.e. texture) as seen in Figure 8 (Inset 0.). In this analysis, we will use a445

t-SNE projection with a fixed random seed across both models and stimuli to evaluate the qualitative446

similarity/differences of their 2D clustering patterns.447

Here we are interested in exposing our models to this distortion class because recent work has used448

these types of stimuli to show that human peripheral computation may act as a biological proxy for an449

adversarially robust processing system (Harrington & Deza, 2022), and that humans may in-fact use450

strong texture-like cues to perform object recognition (in IT) without the specific need for a strong451

structural cue (Jagadeesh & Gardner, 2022).452

We find that Pretrained CrossViT-18† models have trouble in early visual cortex read-out sections453

to cluster both classes. In fact, several images are considered “visual outliers” for both original and454

texform images. These differences are slowly resolved only for the original images as we go higher455

in depth in the Transformer model until we get to the Behavior read-out layer. This is not the case for456

the texforms, where the PreTrained CrossViT-18† can not tease apart the primate and insect classes457
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Figure 8: A comparison of how two CrossViT-18† models manage to classify original and texform
stimuli. In (0.) we see a magnification of a texform, and in (A.,B.) we see how our winning Model
Adv. + Rot. manages to create tighter vicinities across the visual stimuli, and ultimately – at the
behavioral level – can separate both original and texform stimuli, while pretrained transformers seem
to struggle with texform linear separability at the behavioral stage.

at such simulated behavioral stage. This story was to our surprise very different and more coherent458

with human visual processing for the Adv + Rot CrossViT-18† where outliers no longer exist – as459

there are none in the small dataset –, and the degree of linear separability for the original and texform460

stimuli increases to near perfect separation for both stimuli at the behavioral stage.461

B.3 Common Corruption Benchmarks462

We also looked into how adversarial training would affect the performance of the different sets of463

neural networks to common corruptions that are not adversarial. To do this, we ran our models and464

benchmarked them to the ImageNet-C dataset (Hendrycks & Dietterich, 2019).465

One would have expected Brain-Aligned models like our adversarially-trained + rotationally invariant466

CrossViT to also present strong robustness to common corruptions. To our surprise, this was not467

the case as seen in Table 5. This is a puzzling result, though there have been several bodies of468

work suggesting that adversarial robustness and common corruptions robustness are independent469

phenomena (Laugros et al., 2019), however, Kireev et al. (2021) have proved otherwise contingent on470

the l∞ radius 4 – but now see Li et al. (2022).471

Network Clean Accuracy (↑) mce (↓) Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet50-Augmix 77.53 67.1 65.5 65.1 66.4 67.7 81 63.9 65.5 71.6 70.9 66.5 57.8 60.2 76.9 59.5 68.5

CrossViT-18† (Adv + Rot) 73.53 79.5 80.7 81.6 83.2 90.2 78.7 82.4 80 77.6 74 107.9 65 100.4 74.2 57.4 58.7

CrossViT-18† (Adv) 64.60 88.8 85 85.7 86.7 96.7 88 92.1 91.3 85.8 83.6 109.3 82.2 104.9 90 70.3 80.9

CrossViT-18† (Rot) 79.22 73.1 75.4 76.7 75 75.7 85.3 72.3 79.2 68.8 70.9 64.3 54.7 67.6 78.4 75.4 76.4

CrossViT-18† 83.05 51 46.1 48.8 46.4 61.2 72.6 54.4 65 44.9 42.1 37.2 41.5 37 67.2 46.8 54.2

Table 4: A table showing the comparison of mean corruption errors (mce)’s across CrossViT models
contingent on their training regime. A ResNet50-Augmix is shown as a reference of a particularly
strong model to common corruptions. Here lower scores are indicative of better robustness to the
different distortion types of Hendrycks & Dietterich (2019).

4Also see Li et al. (2022) that shows that generally robust models (robust to adversarial + commmon
corruptions) have a preference for low-spatial frequency statistics.
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B.4 ImageNet-R472

We also looked into how adversarial training would affect the performance of generalization to473

various abstract visual renditions. To do this, we ran our models and benchmarked them on the474

ImageNet-Rendition (ImageNet-R) dataset (Hendrycks et al., 2021).475

We observe that the accuracy on ImageNet-R decreases when the CrossViT is adversarially trained.476

However, when we combine the rotation invariance and adversarial training regimes, the accuracy on477

ImageNet-R becomes competitive with its pretrained version. In addition, we also appreciate that this478

combination does not affect the IID/OOD Gap with respect to the pretrained CrossViT.479

Network ImageNet-200 (↑) ImageNet-R (↑) Gap (↓)

CrossViT-18† (Adv + Rot) 90.75 41.14 49.61
CrossViT-18† (Adv) 85.52 35.73 49.79

CrossViT-18† (Rot) 93.89 37.35 56.54

CrossViT-18† 95.64 45.7 49.94
Table 5: A table showing the comparison of the accuracy on Imagenet-R dataset across CrossViT
models contingent in their training regime.

C Comparison of CrossViT vs vanilla Transformer (ViT) Models480

In this section, we investigated what is the role of the architecture in our results. Did we arrive at481

a high-scoring Brain-Score model by virtue of the general Transformer architecture, or was there482

something particular about the CrossViT (dual stream Transformer), that in tandem with our training483

pipeline allowed for a more ventral-stream like representation? We repeated our analysis and training484

procedures with a collection of vanilla Vision Transformers (ViT) where we manipulated the patch485

size and number of layers with the conventions of Dosovitskiy et al. (2021) as shown in Figure 9.486

Here we see that the Brain-Score on V2, V4, superior processing IT, Behavior and Average increase487

independent of the type of Vision Transformer used for our suite of models (CrossViT-18†, and488

multiple ViT flavors) except for the particular case of ViT-S/16 due to over-fitting (See Figure 6) that489

heavily reflects on the behavior score. To our surprise, adversarial training in some cases helped V1490

score and in some not, potentially due to an interaction with both patch size and transformer depth491

that has not fully been understood. In addition, to our knowledge, this is also the first time that it has492

been shown that adversarial training coupled with rotational invariance homogeneously increases493

brain-scores across Transformer-like architectures, as previous work has shown that classical CNNs494

(i.e. ResNets) increase Brain-Scores with adversarial training (Dapello et al., 2020). Additionally to495

the experiments on CrossViT-18†, we also evaluate the brain-scores on vanilla Vision transformers496

that can be seen in Table 6.497

ImageNet(↑) Brain-Score(↑)
Description Validation Acc. (%) Avg V1 V2 V4 IT Behavior

ViT-S/16 81.40 0.445 0.527 0.295 0.454 0.449 0.498
ViT-S/32 75.99 0.415 0.531 0.271 0.422 0.423 0.426
ViT-B/16 84.53 0.451 0.522 0.317 0.398 0.487 0.529
ViT-B/32 80.72 0.440 0.553 0.311 0.413 0.418 0.505

ViT-S/16 (Adv + Rot) 50.44 0.443 0.506 0.332 0.470 0.496 0.409
ViT-S/32 (Adv + Rot) 55.20 0.457 0.512 0.347 0.433 0.485 0.508
ViT-B/16 (Adv + Rot) 67.25 0.486 0.536 0.332 0.470 0.496 0.598
ViT-B/32 (Adv + Rot) 53.01 0.457 0.524 0.357 0.417 0.472 0.515

Table 6: ImageNet accuracy, Brain-Scores of each brain area & Behavior benchmark evaluated on
vanilla vision transformers
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(e) Behavior Scores
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Figure 9: Similarity Brain-Score analysis on the different cortical areas of the ventral stream for
vanilla transformers (ViT) and CrossViT. For nearly all Transformer variations, Adversarial Training
with Joint Rotational Invariance increases per Area and Average Brain-Scores.

D Selection of the Best-BrainScore layers498

Best performing layers on each vision transformer were selected by a brute-force approach. We499

evaluate each layer of the vision transformer models on each brain region and behavior dataset500

and select the layer that got the best score on the public benchmarks (in order to avoid overfitting)501

proportioned by Brain-Score organization. After this step, the "Adv + Rot" & pretrained versions502

of each transformer are submitted to the competition fixing best performing layers (See Table 7 ).503

We achieved our highest score at the time of our 4th submission, which was the lowest number of504

submissions in the competition (the winner of the competition performed nearly 60 submissions). All505

our results reflect the private scores obtained by each vision transformer model.506

Model V1 V2 V4 IT Behavior

CrossViT-18† blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.4.norm2 blocks.2.revert_projs.1.2
ViT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norm1 pre_logits
ViT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norm1 pre_logits
ViT-S/32 blocks.1.mlp.act blocks.10.norm1 blocks.2.mlp.act blocks.10.norm1 pre_logits
ViT-B/16 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.8.norm1 pre_logits
ViT-B/32 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.11.norm1 pre_logits

Table 7: Layers selected for each brain region on each vision transformer.
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