
AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop

Jing Wang1 Yunfei Teng1 Anna Choromanska1

1Department of Electrical and Computer Engineering, New York University

Abstract

Modern deep learning (DL) architectures are
trained using variants of the SGD algorithm and
typically rely on the user to manually drop the
learning rate when the training curve saturates. In
this paper, we develop an algorithm, that we call
AutoDrop, that realizes the learning rate drop au-
tomatically and stems from the properties of the
learning dynamics of DL systems. Specifically, it
is motivated by the observation that the angular
velocity of the model parameters, i.e., the veloc-
ity of the changes of the convergence direction,
for a fixed learning rate initially increases rapidly
and then progresses towards soft saturation. At
saturation, the optimizer slows down thus the an-
gular velocity saturation is a good indicator for
dropping the learning rate. After the drop, the an-
gular velocity “resets” and follows the pattern de-
scribed above, increasing again until saturation.
AutoDrop is built on this idea and drops the learn-
ing rate whenever the angular velocity saturates.
The method is simple to implement, computation-
ally cheap, and by design avoids the short-horizon
bias problem. We show that AutoDrop achieves
favorable performance compared to many different
baseline manual and automatic learning rate sched-
ulers, and matches the SOTA performance on all
our experiments. On the theoretical front, we claim
two contributions: we formulate the learning rate
behavior based on the angular velocity and provide
general convergence theory for the learning rate
schedulers that decrease the learning rate step-wise,
rather than continuously as is commonly analyzed.

1 INTRODUCTION

As data sets grow in size and complexity, it becomes more
difficult to pull useful features from them using hand-crafted

feature extractors. For this reason, the DL frameworks
[Goodfellow et al., 2016] are now widely popular. DL frame-
works process input data using multi-layer networks and
automatically find high-quality representations of complex
data useful for a particular learning task. Today DL ap-
proaches are generally recognized as superior to all alterna-
tives for image [Krizhevsky et al., 2012, He et al., 2016],
speech [Abdel-Hamid et al., 2012], and video [Karpathy
et al., 2014] recognition, image segmentation [Chen et al.,
2016], and natural language processing [Weston et al., 2014].
Furthermore, DL is the primary AI technology at major tech
companies like Facebook, Google, Microsoft, and IBM, as
well as numerous startups, utilized for various learning tasks
such as content filtering, photo management, topic classifi-
cation, search/ads ranking, video indexing, and copyright
detection.

Setting the values and schedules of the hyperparameters
for training DL models is computationally expensive and
time-consuming, e.g., a deep model with around ten bil-
lion parameters requires roughly 500 GPUs to be trained in
around two weeks [Shoeybi et al., 2019]. Among all hyper-
parameters used when training DL models, the learning rate
schedule is one of the most important [Jin et al., 2020]. For
most SOTA DL architectures, the learning rate is dropped
several times during training at epochs chosen by the user,
i.e., the learning rate is dropped at the predefined epochs,
typically when the training loss is expected to saturate. As
modern architectures grow larger, manual hyperparameter
tuning becomes impractical. Efficient techniques enabling
automatic and online hyperparameter adjustment yield sig-
nificant resource, time, and cost savings (today the cost of
training a single SOTA DL model reaches up to hundreds
of thousands of dollars [Peng, 2019]).

The automatic learning rate schedule is an open and impor-
tant problem – having a simple and effective scheme would
be very useful, conceptually and practically. This paper ad-
dresses the challenge of developing an automatic method for
adjusting the learning rate that works in an online fashion
during network training. Our approach looks at the prob-

mailto:<jw5665@nyu.edu>?Subject=AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop
mailto:<yt1208@nyu.edu>?Subject=AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop
mailto:<ac5455@nyu.edu>?Subject=AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop

lem of automatic learning rate schedulers from a different
perspective than the prior works. Existing automatic learn-
ing rate schedulers [Donini et al., 2020, Yang et al., 2019,
Baydin et al., 2018, Franceschi et al., 2017, Retsinas et al.,
2022] are gradient-based meta-optimization methods that
treat the learning rate as a trainable parameter. They suffer
from the short-horizon problem [Wu et al., 2018b], which
arises when the optimizer becomes overly greedy and fo-
cuses solely on minimizing the loss at the current state. The
basis for our approach is rooted in a novel concept. We ask:
what are the good descriptors of the learning dynamics of
DL systems that can guide the automatic learning rate drop?
We find that the angular velocity of the model parameters,
defined in the very end of this section, is an excellent indi-
cator of the dynamics of the convergence of an optimizer
and can be easily used to trigger the learning rate drop dur-
ing network training. Our algorithm, Autodrop, drops the
learning rate whenever the angular velocity saturates. The
resulting algorithm that we obtain is extremely simple, it
can be used on the top of any DL optimizer (SGD [Bottou,
1998], momentum SGD [Polyak, 1964], ADAM [Kingma
and Ba, 2015], etc.), and enjoys an elegant theoretical frame-
work. Moreover, since AutoDrop decays the learning rate
only if the optimizer starts to oscillate around the minima, it
avoids the short-horizon bias problem that stigmatizes other
automatic learning rate techniques. We empirically demon-
strate that our method matches the training of DL models
and leads to comparable or better generalization compared
to SOTA techniques.

Finally, we claim two important theoretical contributions.
Firstly, we formulate the learning rate behavior using our
proposed angular velocity model. Secondly, we develope
a general convergence proof technique applicable not only
supports AutoDrop (Theorem 5.1), but is also applicable to
any learning rate schedulers that decrease the learning rate
step-wise. Most proofs for gradient-based methods require
the learning rate to decrease continuously. Our theorems
instead support discrete learning rate drop.

This paper is organized as follows: Section 2 discusses the
related work, Section 3 builds an intuition for understanding
our algorithm based on simple examples, Section 4 shows
our algorithm, Section 5 captures the theoretical guaran-
tees, Section 6 presents experimental results, and Section 7
concludes the paper.

Definition 1.1 (Angular velocity). Define the angular ve-
locity of model parameters as:

ωi = ∠(si, si−1), where si = xi+1 − xi (1)

and xi is the parameter vector in the end of the ith itera-
tion. The operator ∠(·, ·) calculates the angle between two
vectors and is defined as:

∠(si, si−1) =
180◦

π
· arccos

(
s⊺i si−1

||si||||si−1||+ ϵ

)
, (2)

where ϵ is a small positive number preventing the division
by zero12.

2 RELATED WORK
In this section, we summarize different types of learning
rate schedulers and divide them into four main categories.
Scheduling-based methods rely on a carefully designed
learning rate schedules that are tailored to the non-convex
nature of the deep learning optimization. Cyclical learn-
ing rate (CLR) [Smith, 2017] use the cyclical learning rate
pattern to train DL models and apply a triangular learning
rate policy in each cycle (that is, first increase and then de-
crease the learning rate linearly in the cycle) to potentially
allow for a more rapid traversal of saddle point plateaus.
[Smith and Topin, 2017] extends CLR to super-convergence
policy OneCycle with only one triangular cycle. [Li and
Arora, 2019] exponentially decreases the learning rate and
achieves better performance than the constant learning rate.
[Agarwal et al., 2021] utilize Chebyshev polynomials in
constructing the Chebyshev learning rate schedule, aimed
at accelerating vanilla gradient descent. They illustrate that
addressing instability issues results in a fractal ordering of
step sizes. Another approach [Pesme et al., 2020] builds
on the top of the Convergence-Diagnostic algorithm [Pflug,
1990, Chee and Toulis, 2018] that examines the running
average of successive gradients’ inner products to develop a
stopping criterion for the optimizer. The authors expand this
idea to build an automatic learning rate adjustment mecha-
nism relying on decreasing the learning rate when a negative
inner product is detected. In [Jin et al., 2020], a Gaussian
process surrogate model is employed to link the learning
rate and expected validation loss. The approach iteratively
updates a posterior distribution of validation loss and dy-
namically searches for the optimal learning rate based on
this posterior. Careful design of an acquisition function and
forecasting model is necessary to ensure accurate prediction
of the validation loss posterior.

Another group of techniques hypergradient-based methods
[Donini et al., 2020, Yang et al., 2019, Baydin et al., 2018,
Franceschi et al., 2017] that optimize both the model param-
eters and the learning rate simultaneously. The authors of
these methods typically introduce a hypergradient that is
defined as a gradient of the validation error with respect to
the learning rate schedule. The learning rate is optimized
online via gradient descent. These techniques however are
quite sensitive to the choice of the hyperparameters. Re-
cently, [Retsinas et al., 2022] has presented a second-order
hypergradient method which removes extra hyperparam-
eters from training. However, as indicated in [Wu et al.,
2018b], all hypergradient methods are struggling to reach
SOTA performance due to the existence of short-horizon

1ϵ is omitted in the theoretical derivations.
2An interpretation of angular velocity could be found in the

Supplement (Section 8).

bias. The reason behind it is that all these methods naturally
choose the step size that only minimizes the short-term loss,
and thus the optimizer tends to ignore the flat region of an
ill-conditioned loss surface. A comprehensive discussion on
this matter is included in [Wu et al., 2018b].

Hyperparameter optimization methods aim to automatically
find a good set of hyperparameters offline. They either build
explicit regression models to describe the dependence of
target algorithm performance on hyperparameter settings
[Hutter et al., 2011], or optimize hyperparameters by per-
forming random search along with using greedy sequen-
tial methods based on the expected improvement criterion
[Bergstra et al., 2011], or use bandit-based approach for
hyperparameter selection [Li et al., 2018]. These techniques
can be combined with Bayesian optimization [Falkner et al.,
2018, Zela et al., 2018]. Recently, several parallel methods
have also been proposed for hyperparameter tuning [Jader-
berg et al., 2017, Li et al., 2019, Parker-Holder et al., 2020,
Li et al., 2020] as well. The hyperparameter optimization
methods are computationally expensive in practice.

Popular adaptive learning rate optimizers adjust the learn-
ing rate for each parameter individually based on gradient
information from previous iterations. AdaGrad [Duchi et al.,
2011] proposes to update each parameter using a differ-
ent learning rate which is proportional to the inverse of
the past accumulated squared gradients of the parameter.
Thus, the parameters associated with larger accumulated
squared gradients have smaller step sizes. This method is
enabling the model to learn infrequently occurring features,
as these features might be highly informative and discrimi-
native. The major weakness of AdaGrad is that the learning
rates continually decrease during training and eventually be-
come too small for the model to learn. Later on, RMSprop
[Tieleman et al., 2012] and Adadelta [Zeiler, 2012] were
proposed to resolve the issue of diminishing learning rate in
AdaGrad. Instead of directly summarizing the past squared
gradients, both methods maintain an exponential average
of the squared gradients, which is used to scale the learn-
ing rate of each parameter. The exponential average of the
squared gradients could be considered as an approximation
to the second moment of the gradients. One step further,
ADAM [Kingma and Ba, 2015] estimates both the first and
second moments of the gradients and uses them together to
update the parameters. To summarize, adaptive learning rate
optimizers adjust the step size for each parameter indepen-
dently based on the gradient information from past iterations
in order to speed up the convergence compared to vanilla
SGD. These methods still require a universal learning rate to
adjust the overall step sizes. AutoDrop is designed to update
automatically this universal learning rate and thus could be
applied on the top of this class of optimizers.

Finaly, some works focus on novel strategies involving gra-
dient computations in order to enhance the performance of
optimizers, e.g.:, [Cohen et al., 2020, Zhang et al., 2019b,

Izmailov, P. et al., 2018]. In our method, we do not change
the computation of gradients but put forward a novel auto-
matic learning rate scheduler. Our AutoDrop can therefore
be applied on the top of some of these techniques.

3 MOTIVATING EXAMPLE

We analyze the properties of the angular velocity for a noisy
quadratic model. While simple, this model is used as a
proxy for analyzing neural network optimization [Schaul
et al., 2013, Martens and Grosse, 2015, Zhang et al., 2019b].

Definition 3.1 (Noisy Quadratic Model). We use the same
model as in [Zhang et al., 2019b]. The model is represented
by the following loss function

L(x) =
1

2
(x− c)⊺A(x− c), (3)

where c ∼ N(x∗,Σ) and both A and Σ are diagonal. With-
out loss of generality, we assume x∗ = 0.

The update formula for the gradient descent at the step t+1
is given as (α is the learning rate):

xt+1= xt − α∇L(xt) = xt − αA(xt − ct), ct ∼ N(0,Σ).

We optimize noisy quadratic model with x ∈ R200 and
A = diag(1

10 ,
2
10 , ...,

200
10) using Gradient Descent (GD),

where α = [0.06, 0.03, 0.01, 0, 001]. Figure 1 reveals the
following properties:

(P1) Angular velocity saturation: the angular velocity
curves3 have the tendency to saturate as the training
proceeds, and furthermore when the angular velocity
enters the saturation phase, the optimizer slows down
its convergence,

(P2) Angular velocity saturation levels: i) if the learning
rate is large enough such that the algorithm cannot
converge to the optimum, the angular velocity satu-
rates at a level between 90 degrees and 120 degrees;
ii) as the learning rate decreases, and the algorithm
systematically converges closer to the optimum, the
angular velocity saturates at progressively lower levels;
iii) smaller learning rate leads to a slower saturation of
the angular velocity; iv) when the learning rate is low
enough such that the algorithm can converge to the
optimum, the angular velocity saturates at 90 degrees.

These empirical properties can be theoretically justified as
shown in the next theorem. Note that we discuss the bound
for the cosine value of angular velocity in Theorem 3.2
because the mapping between the cosine value and the angle
is a bijection and the cosine value is more amenable for the
quantitative analysis.

3For the noisy quadratic model, the angular velocity (given in
Definition 1.1) is computed with respect to one iteration, rather
than an epoch, as for this model there is no notion of the epoch.

Figure 1: Loss and angular velocity with fixed learning rate
for noisy quadratic model.

Figure 2: Loss and angular velocity with dropped learning
rate for noisy quadratic model.

Figure 3: The behavior of the loss and angular velocity for an exemplary DL problem (training ResNet-18 on CIFAR-10). An
optimizer is run with different settings of the learning rate α = [0.3, 0.1, 0.03, 0.01, 0.003]. Angular velocity is calculated
over a single epoch.

Theorem 3.2. Let the i-th diagonal terms of matrices A
and Σ in the noisy quadratic model be given as ai and σi,
respectively. Then, the expected inner product < st, st+1 >
converges to
I∗ = lim

t→∞
E[< st, st+1 >] = −α3

∑n

i=1

a3iσ
2
i

2− αai
. (4)

Moreover, the cosine value of an angle between two consec-
utive steps cos∠(st, st+1) satisfies

C∗ = lim
t→∞

E[cos(∠(st, st+1))] ≈ −
α

2

∑n
i=1

a3
iσ

2
i

2−αai∑n
i=1

a2
iσ

2
i

2−αai

(5)

≥ −αmaxi ai
2

(6)

C∗ ∈ [− 1
2 , 0] and thus limt→∞ ∠(st, st+1) ∈ [90◦, 120◦].

Theorem 3.2 implies that as training proceeds, the angu-
lar velocity eventually saturates as stated in property P1.
Theorem 3.2 furthermore shows that decreasing the learn-
ing rate causes the angle between st and st+1 to con-
verge to a smaller value. Also, from Theorem 3.2, I∗ =

limt→∞ E[< st, st+1 >] = −
∑n

i=1(αai)
3σ2

i

[
1

2−αai

]
.

When αai(i = 1, .., n) is small enough, I∗ can be treated as
0 which implies that st is orthogonal to st+1. In other words,
the angle between st and st+1 converges to 90 degrees for
a small enough learning rate. Otherwise, for larger learning
rates, this angle saturates above 90 degrees. Furthermore,
the limit of cosine angle C∗ is approximately larger than
− 1

2 , thus the saturation level of angular velocity should
be below 120 degrees. This together supports property P2
(in particular this supports points i),ii), and iv); point iii)
remains an empirical observation).

We next empirically verified whether these observations
carry over to non-convex DL setting on a simple experiment
reported in Figure 3. When it comes to the stochastic opti-
mization methods for deep learning methods, the empirical

loss at each iteration is an unbiased estimation of true ob-
jective loss with some variance. Therefore, computing the
angular velocity defined above with the parameter at each
iteration would suffer the problem of variance exploration.
To solve this problem, we update Definition 1.1 into Defini-
tion 3.3 by adding a sliding window with size k and using
the mean of parameters in the window for the computation
of the parameter xi.

Definition 3.3 (Batch angular velocity). Define the angular
velocity of model parameters as:

ωi = ∠(si, si−1), where si = xi+1 − xi (7)
and xi is the mean of the parameter vector in [ik, (i+ 1)k)
iterations, where k is the size of the sliding window. The
operator ∠(·, ·) calculates the angle between two vectors
and is defined as:

∠(si, si−1) =
180◦

π
· arccos

(
s⊺i si−1

||si||||si−1||+ ϵ

)
, (8)

For analysis simplicity, we take the window size k as the
number of iterations in one epoch. Clearly, property P1
holds, whereas property P2 is satisfied partially. In particular
conclusion iii) is broken as the angular velocity may not
reach 90 degrees.

Property P1 is a key observation underlying our algorithm.
The saturation of the angular velocity can potentially guide
the drop of the learning rate of the optimization algorithm.
In other words, given the lower-bound on the learning rate,
each time the angular velocity saturates, the learning al-
gorithm should decrease the learning rate. Tracking the
saturation of the angular velocity is more plausible than
tracking the saturation of the loss function since, as can
be clearly seen in Figure 1, angular velocity curves follow
much harder saturation pattern. Also, the loss function does
not necessarily need to have a bounded range, as opposed

to the angular velocity. We describe the Algorithm based
on property P1 in Section 4. Property P2 is crucial for the
theoretical analysis provided in Section 5.

Before moving on to the algorithmic design, we will briefly
explain the mechanism that justifies the difference in the
behavior between noise quadratic model (NQM) and DL
model. The reason DL model does not approach 90 degrees
saturation level that instead the NQM can achieve is that
the loss surface for NQM is quadratic convex and DL mod-
els instead have a highly non-convex loss surfaces, which
makes it very difficult to find the global optimum with loss
0. However, note that the saturation levels for the DL model,
similarly to NQM, still adhere to the range [90, 120].

Following the above intuition, we implement a simple al-
gorithm for optimizing the noisy quadratic model. The al-
gorithm drops the learning rate by a factor of 2 when the
angular velocity saturates (i.e.:, the change of the angular
velocity averaged across 20 iterations is smaller than 0.01
degree between 2 consecutive iterations). The initial learn-
ing rate was set to 0.06 and the minimal one was set to 0.001.
Figure 2 captures the results. It shows that the algorithm that
is using the angular velocity to guide the drop of the learning
rate indeed converges to the optimum. The aforementioned
simple algorithm led us to derive the method for optimizing
DL models using automatic learning rate drop that we refer
to as AutoDrop. The obtained method is a straightforward
extension of the above algorithm and is described in the
next section. The extension accommodates the fundamental
difference that we observed between noisy quadratic model
and the DL model: the fact that in the case of DL models,
lower learning rates lead to a larger noise of the angular
velocity at saturation.

4 ALGORITHM
In this section, we formulate an automatic learning rate
schedule algorithm, AutoDrop (Algorithm 1) based on the
properties of angular velocity stated in Section 3. The mo-
tivation for our method is to drop the learning rate every
time the angular velocity saturates. Even though the be-
havior of angular velocity is much more general compared
with the loss (Figure 3), the angular velocity is still fluctuat-
ing with variance regarding the choice of different learning
rates, which makes setting a hard threshold challenging. We
introduce a Gaussian filter to smooth the angular velocity:

K(x∗, xt;σ) = exp
(
(x∗ − xt)

2/2σ2
)
,

where σ is the standard deviation of the Gaussian distribu-
tion. We define the width of the smoothing buffer as m and
denote the buffer as Bt = {xt+i}m/2

i=−m/2 then the smoothed
angular velocity is

yt = Gau(B;σ,m) :=
1

Z(t)

∑m/2

i=−m/2
xtK(xt, xt+i;σ),

where Z(t) =
∑m/2

i=−m/2 K(xt, xt+i). The Gaussian
smooth factor at each step σ is automatically defined with

Algorithm 1 AutoDrop

Require:
α0 and α: initial learning rate of the optimizer and its
lower bound
ρ: learning rate drop factor
x0 : initial model parameter vector
Gau(·;σ,m): gaussian filter with smoothing factor σ,
buffer size for smoothing m
k : sliding window size for computing the batch angular
velocity.
α← α0, s0 ← 0, t← 0; i← 0
B ← {} //Create angular velocity buffer
for t=1,...,T do

Update the parameter xt with learning rate α
if t mod k = 0 then

yi ← 1
k

∑(i+1)∗k−1
t=i∗k xt; ωi ← ∠(yi, yi−1);

B = B ∪ {wi}
if len(B) >= 10 then
σ = min(std(B),m/2)
Ci = Gau(B;σ,m) //Smooth angular velocity
with Gaussian filter
Drop the first element in buffer B.

if Ci − Ci−1 < 0.1 then
α← max{α, ρ× α} //Drop α
B ← {}

i← i+ 1

the standard deviation of the current buffer Bt. When the
variance of the angular velocity with the current buffer is
large, it implies that the angular velocity requires a sharp
smooth. Regarding the σ-rule in statistics (nearly 70% val-
ues lie within one standard deviation of the mean), we set an
upper bound σ = m/2 for the Gaussian smoothing factor σ
to avoid too-aggressive smoothing.

The algorithm admits on its input the initial model param-
eter vector x0, the initial learning rate α0, the value of the
smallest permissible learning rate α, the sliding window
size k for computing the batch angular velocity defined
in Definition 3.3, the width m of the buffer Bt used for
smoothing of angular velocity and learning rate drop factor
ρ (ρ ∈ (0, 1); each time the learning rate is dropped, it is
multiplied by ρ). The algorithm triggers the procedure for
dropping the learning rate (i.e., multiplied by ρ) each time
the Gaussian smoothed angular velocity changes by less
than the threshold.

The rationale behind dropping the learning rate is not so
much to directly accelerate convergence, but rather to help
the optimizer that is stuck in the local optimum to escape
it. Dropping the learning rate helps DL models escape from
current optimum, and finally converge to a better quality
one. Note that popular manual learning rate methods (linear
learning rate, stepwise learning rate, cosine annealing learn-
ing rate, exponential learning rate, etc.) are all decreasing

the learning rate using different mechanisms. Our mecha-
nism is based on the angular velocity. We observed that the
saturation of the angular velocity can potentially guide the
drop of the learning rate of the optimization algorithm since
it is a direct indicator that the optimizer is slowing down,
or in other words that the loss function is entering satura-
tion, or in other words that the optimizer is getting stuck in
the local optimum. Tracking the saturation of the angular
velocity is more plausible than tracking the saturation of
the loss function for many reasons (see Figure 1 and 3):
i) angular velocity curves follow much harder saturation
pattern, ii) the loss function does not necessarily need to
have a bounded range, as opposed to the angular velocity,
iii) the angular velocity typically enters saturation slightly
earlier than the loss function so tracking the angular velocity
enables detecting the moment when the optimizer starts to
get stuck in local optimum earlier.

Detailed pseudo-code for AutoDrop could be found in Al-
gorithm 1. We further comment on the two fixed conditions
len(B) > 10 and Ci − Ci−1 < 0.1 in the algorithm. The
condition len(B) > 10 means that we will not smooth the
angular velocity at the very beginning of the training or right
after dropping the learning rate - so this is just a common-
sense initial condition since we need to gather a few samples
before applying smoothing makes sense. Regarding the con-
dition on Ci − Ci−1 < 0.1. Intuitively the threshold for that
term should be set to match the standard deviation of the
angular velocity. We found that this standard deviation is be-
tween 0.1 and 0.25 (see exemplary Table 6 in Supplementary
for the ResNet experiment with different learning rates; we
observed similar properties for the remaining experiments).

AutoDrop algorithm can be thought of as a meta-scheme that
can be put on top of any optimization method for training
deep learning models. Thus one can use any optimizer to
update model parameters. Next we discuss hyper-parameters
used in AutoDrop.

4.1 HYPER-PARAMETERS OF AUTODROP

Our method is not hyper-parameter free. note that phrase
“automatic” in the paper refers to the techniques that do
not need manual adjustments of the learning rate during the
optimization process. Other automatic learning rate sched-
ulers that we compare with (TLR and HD) also have hyper-
parameters, as well as all manual learning rate techniques.
We want to emphasize however that in case of AutoDrop,
we keep the hyper-parameters fixed across different exper-
iments, as opposed to for example HD method, and we
report ablation studies justifying the settings of the hyper-
parameters that we use. Finally, TLR also does not require
hyper-parameters to be changed across different experi-
ments, but their performance is inferior to AutoDrop (as
will be demonstrated experimentally), and furthermore they
perform no ablation studies of their hyper-parameters.

This section discusses the setting of all additional hyper-

parameters, over standard optimizers, that AutoDrop intro-
duces: the learning rate drop factor ρ, the buffer size m for
Gaussian smoothing, and the window size k for computing
the batch angular velocity.

Hyperparameters ρ and m are set fixed across all our ex-
periments (ρ = 0.95, m = 10) and we discuss them first.
Note that we also present ablation studies concerning them
in the Supplement (Section 10). To ensure that the learn-
ing rate does not drop too quickly, ρ should not be too
small. Similarly, since excessively large buffer sizes m for
Gaussian smoothing leads to over-smoothing and reduced
performance, m should not be set to a large value. ρ = 0.95,
m = 10 performed the best in our ablation study on CI-
FAR10/CIFAR100 tasks. As shown in Section 10, only
extreme cases where ρ or m are set to very high values
(ρ = 0.99, m = 50) result in significant changes in the error.
In a wide range of settings of these two hyper-parameters
we found that the changes of the model performance are not
very large, i.e., of the order 2.5%− 4%.

Regarding the sliding window size k used for computing the
batch angular velocity, it varies with respect to the size of the
training data N . Since k decides the frequency of computing
the batch angular velocity and we drop the learning rate
every time the angular velocity saturates, the learning rate αt

at iteration t for AutoDrop could be simplistically expressed
as αt = α0ρ

O(N/k), assuming ρ and m are fixed. Therefore,
when the size of the data set N is large, e.g., ImageNet
data set has ∼1.2M images, the sliding window k should
be larger than for smaller data sets, such as CIFAR10 and
CIFAR100 tasks that have ∼10K data points. We found that
k = 64 performs well for CIFAR10 and CIFAR100 tasks,
while k = 640 performs much better for ImageNet. See
Table 15 for the ablation study.

Model
Window size k

k=32 k=64 k=128 k=256
ResNet18
CIFAR10

5.65±.15 4.79±.99 6.08±.11 7.41±.24

WRN28x10
CIFAR10

4.30±.13 3.73±.07 5.77±.13 7.36±.15

ResNet34
CIFAR100

24.07±.44 21.82±.14 23.11±1.3 28.33±.20

WRN40x10
CIFAR100

20.39±.08 19.41±.10 24.49±.16 28.79±.32

Model k=64 k=256 k=512 k=640
ResNet18
ImageNet

39.22 31.04 29.70 29.24

Table 1: Ablation study for k conducted across different DL
models and data sets.

5 THEORY
This section theoretically shows that decreasing the learn-
ing rate when the angular velocity saturates guarantees the
sub-linear convergence rate for SGD and SGD momentum.
Moreover, Section 5.1 develops a general convergence proof

Figure 4: Angular velocity model for a fixed
learning rate α.

Algorithm 2 AutoDrop (approximate)

Inputs: x0: initial weight
Hyperparameters: {α̂i}: set of learning rates, vα(t): ang. vel. model, τ0:
init. threshold for the derivative of ang. vel.
Initialize i = 0, t0 = 0, t = 0
while i < n do

Update xt via (9) with learning rate αt= α̂i.
if v′α̂i

(t− ti) ≤ τi = min{τ0, γα̂i/2} then
i = i+ 1; ti = t

t = t+ 1, T = t
return {xt}T−1

t=0 (T: # iterations)

technique that not only supports AutoDrop, but is also ap-
plicable to any learning rate schedulers that decrease the
learning rate step-wisely.

5.1 UNIFIED CONVERGENCE ANALYSIS WITH
DISCRETE LEARNING RATE DROP

Firstly, we present a unified theoretical framework that cov-
ers the update rule of both SGD and momentum SGD. We
refer to these update rules jointly as Unified Momentum
(UM) method [Yang et al., 2016]:

UM :


yt+1 = xt − αtG(xt; ξt)

yst+1 = xt − sαtG(xt; ξt)

xt+1 = yt+1 + β(yst+1 − yst)

(9)

where t is the iteration index, β is the momentum parameter,
αt is the learning rate at time t, xt is the parameter vector
at time t, and G(xt; ξt) is the gradient of the loss function
at time t computed for a data mini-batch ξt. s is the factor
that controls the type of optimization method. When s = 0
and s = 1, UM method is deduced to the heavy-ball and
Nestrov (NAG) methods respectively. When s = 1/(1− β),
UM method is the vanilla gradient descent method.

Next we prove the convergence of UM methods (Theo-
rem 5.1). The theorem requires some mild constraints on
the drop gap (ki), i.e., number of iterations between two
learning rate drops: ith and (i+1)st. The constraints capture
the intuitive argument that extremely lazy changes to the
learning rate would bring the scheme close to the constant
learning rate method, essentially preventing convergence.
Theorem 5.1 accommodates learning settings relying on
discrete learning rate drops.

Theorem 5.1. Suppose f(x) is a convex function,
E [∥G(x; ξ)− E[G(x; ξ)]∥] ≤ δ2 and ∥∂f(x)∥ ≤ G for
any x and some non-negative G. Given a sequence of de-
creasing learning rates {α̂i}n−1

i=−1 ⊂ (0, 1) and a sequence
of integers {ki}n−1

i=0 ⊂ N (n ≫ 1), there exits constants
κ1, κ2 such that for all i = 0, ..., n− 1

α̂i≤(i+2)−1, kiα̂i≥κ1, kiα̂iα̂i−1≤κ2(i+1)−1. (10)

Define a partition Π : 0 = t0 < t1 < ... < tn = T (T =∑n−1
i=0 ki). Run UM update defined in Equation 9 for the

number of T iterations by setting the learning rate αt as
αt = α̂i, where ti ≤ t < ti+1. (11)

Then the following holds:
min

t=0,...,T−1
{E[f(xt)−f(x∗)]} ≤ O

(
log n/

√
n
)
.

Note that even in the convex case our analysis is highly
non-trivial. All proofs for SGD-based methods require the
learning rate to decrease continuously [Wu et al., 2018a,
2019, Gower et al., 2019, Le Roux et al., 2012, Yang et al.,
2016, Schmidt et al., 2017, Ramezani-Kebrya et al., 2018,
Zhang et al., 2019a] On the other hand, SGD does not con-
verge under a constant learning rate. Discrete learning rate
policy (as in AutoDrop) covers the space between constant
and continuous learning rate decays. It is non-trivial to see
that moving away from a continuous learning rate scheme
to a step-wise constant scheme will still sustain the rate of
convergence the same as in the continuous learning rate tech-
niques. We also show technical conditions capturing the in-
tuitive argument that extremely lazy changes to the learning
rate would bring the step-wise constant learning rate scheme
close to the constant learning rate method, essentially pre-
venting convergence. AutoDrop is a discrete learning rate
scheduler, which requires new proof techniques compared
with the traditional SGD proof scheme. We develop a gen-
eral proof technique that not only supports AutoDrop, but is
also applicable to any learning rate schedulers that decrease
the learning rate step-wise. Theorem 5 is therefore universal
and of fundamental importance.

In the next section we extend the obtained theorem to our
AutoDrop approach.

5.2 CONVERGENCE ANALYSIS OF AUTODROP

For a fixed learning rate α, we introduce a simplified math-
ematical model of the behavior of the angular velocity as
a function of iterations. The model is defined below (and
depicted in Figure 4):

vα(t) =
π

2
(1 + ϵα)

(
1− 1

γα(t+ 1/γα)

)
, (12)

where t is the number of iterations, ϵ and γ control the
asymptote and curvature of the velocity.

vα(t) saturates in π
2 [1+ϵα] when t goes to infinity. Note that

the given model complies with the property P2 empirically
observed and described in Section 3: i) if the learning rate is
large enough, the angular velocity saturates at a level larger
than π/2 and smaller than 2π/3; ii) as the learning rate
decreases, the angular velocity saturates at progressively
lower levels; iii) smaller learning rate leads to a slower
saturation of angular velocity; iv) when the learning rate
is low enough the angular velocity saturates at π/2. Let’s
assume an upper-bound αmax for the learning rate. Since
the limit of the angular velocity should be between π/2 and
2π/3, the range of factor ϵ is set to be (0, 1

3αmax
). Finally,

Equation (12) is universal and accommodates any saturation
level between 90 and 120 degrees, thus the behavior of the
DL model from Figure 3 could very well be represented
using this Equation.

For the purpose of the theoretical analysis, we drop the
learning rate every time the derivative of the angular ve-
locity decreases to a threshold τi (Algorithm 2) instead of
detecting whether the change of the angular velocity is small
enough (Algorithm 1). Intuitively, when the derivative of
the angular velocity is close to zero, we would expect the
angular velocity to saturate. The convergence of Algorithm
2 is an approximate version of Algorithm 1. The behavior
of the angular velocity and the learning rate for Algorithm 2
is depicted in Figure 5 in Supplementary 11.

Theorem 5.2. Suppose f(x) is a convex function,
E [∥G(x; ξ)− E[G(x; ξ)]∥] ≤ δ2 and ∥∂f(x)∥ ≤ G for
any x and some non-negative G. Given the sequence of the
learning rates {α̂i}n−1

i=−1 such that α̂i = (i+1)−
2
3 , parame-

ters ϵ ∈ (0, 1
3α̂0

) and γ defining the angular velocity model
vα(t) (Equation 12), and the initial threshold τ0 (τ0 < 2)
for the derivative of the angular velocity, the sequence of
weights {xt}T−1

t=0 generated by Algorithm 2 satisfies

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤O
(
log T/

√
T
)
,

where κ1 =
√
π−1
γ and κ2 = 1

γ

√
2π/3τ0.

Theorem 5.2 obtained by extending Theorem 5.1 to the
setting accommodating the angular velocity model from
Equation 12 guarantees sub-linear convergence rate of Al-
gorithm 2.

6 EXPERIMENTAL RESULTS

In this section, we compare the performance of AutoDrop,
that automatically adjusts the learning rate, with the SOTA
learning rate schedulers for training DL models on the im-
age classification and NLP tasks. In the selection of SOTA
baselines, we always choose the best performing strategy
reported in the literature for a given data set and architecture.
Note that the best performing strategy reported by others
relies on manual learning rate drop. For vision tasks the best

performing strategy is referred to as SOTA Baseline and
for NLP tasks, this is either ReduceLR or LinearLR in our
tables (the references to relevant papers are provided in the
text).

We want emphasize that our goal in this paper is to design
the automatic learning rate scheduler that could reach the
SOTA performance. We do not intend to outperform the
SOTA, but rather show that it is possible to design an auto-
matic learning rate scheduler that indeed can match manual
schemes that the SOTA relies on. Our method performance-
wise matches or outperforms SOTA approach, as will be
demonstrated, and wins with all other learning rate sched-
ulers, manual and automatic. So for example existing au-
tomatic learning rate schedulers, HD and TLR, lose with
SOTA since they suffer from the short-horizon problem,
which we by design do not have.

6.1 IMAGE CLASSIFICATION

The CIFAR-10 and CIFAR-100 data sets[Krizhevsky
et al., 2009] consist of 50 K training images, with 10 and 100
different classes respectively. For CIFAR-10 experiments
we used a ResNet-18 [He et al., 2016] and a WRN-28x10
[Zagoruyko and Komodakis, 2016] models. For CIFAR-100
experiments we used a ResNet-34 [He et al., 2016] and a
WRN-40x10 [Zagoruyko and Komodakis, 2016] models.
We do not use the dropout [Srivastava et al., 2014] layers for
WRN models in our experiments since this led to better per-
formance. The implementation involving WRN architecture
and CIFAR data set relies on publicly available codes4. For
the above experiments, we refer to [Zhang et al., 2019b] and
[Zagoruyko and Komodakis, 2016] for ResNet and WRN
models respectively. The ImageNet (ILSVRC-2012) data
set [Deng et al., 2009] consists of 1.2 M images divided into
1 K categories. We train a ResNet-18 and a ResNet-50[He
et al., 2016] model on this data set. We use official model
implementation from PyTorch 5.
In our experiments, for the SOTA baseline (the method
achieving the best performance on the given data set and
model, as reported in the literature) we use the same setting
of hyperparameters (including the learning rate schedule) as
recommended in the referenced literature. For CLR [Smith,
2017] we test with triangular2 learning policies by adjust-
ing the stepsize (the number of iterations in half a cycle)
for different models as recommended by the authors and
OneCycle policy with only one triangular cycle. For Ex-
pLR [Li and Arora, 2019], we grid search the decay fac-
tor from γ = [0.8, 0.9, 0.95, 0.99, 0.999]. For HD [Baydin
et al., 2018] we grid search the hypergradient learning rate
β from [10−3, 10−4, 10−5] as suggested in the reference
paper. For TLR [Retsinas et al., 2022] we set gap p for up-
dating the learning rate as 0.33 epoch and bound c=1/4,
as recommended by the authors. For AutoDrop, we fixed

4https://github.com/meliketoy/wide-resnet.pytorch
5https://pytorch.org/vision/stable/models.html

Model HD TLR CLR OneCycle ExpLR SOTA Baseline AutoDrop
ResNet18
CIFAR10 6.78±.23 5.70±.19 5.14±.11 4.86±.12 5.82±.10 4.79±.17

† 4.79±.99

WRN28x10
CIFAR10 9.12± .60 16.70±2.2 5.48±.11 4.78±.16 6.80±.15 3.77±.05

‡ 3.73±.07

ResNet34
CIFAR100 26.89±1.5 23.91±.35 22.69±.30 22.29±.09 24.29±.47 21.92±.34

† 21.82±.14

WRN40x10
CIFAR100 29.32±.46 39.54±.48 23.61±.38 22.60±.66 23.32±.24 18.96±0.05

‡ 19.41±.10

ResNet18
ImageNet 30.43 29.81 30.48 30.67 30.10 29.74∗ 29.246

ResNet50
ImageNet 25.35 26.51 24.15 27.84 24.57 23.76∗ 23.92

Table 2: Test errors of AutoDrop, SOTA baselines reported in the literature, and baseline manual (CLR, OneCycle, ExpLR)
and automatic (HD and TLR) learning rate adjustment algorithms. We run each experiment four times with different random
seeds and report the mean and standard deviation of the minimal test error (at the 200th epoch for CIFAR10/CIFAR100 and
100th epoch for ImageNet). † ‡ and ∗ follows[Zhang et al., 2019b], [Zagoruyko and Komodakis, 2016] and [He et al., 2016]
respectively.

ρ= 0.95 and m= 10, and searched k for the best one as
described in Section 4.1.

Table 2 shows the final test error performance obtained
on CIFAR-10, CIFAR-100 and ImageNet datasets and the
behavior of the train and test errors/losses and learning
rate with epochs for all our experiments is deferred to the
Supplement, Section 13.1. Our method shows compara-
ble performance in terms of the test error compared to the
manually-tuned SOTA Baseline approaches while automati-
cally selecting the iterations for dropping the learning rate.
Simultaneously, AutoDrop was shown superior to manual
(CLR, OneCycle, and ExpLR) and automatic (HD and TLR)
learning rate adjustment algorithms that were all unable to
match the performance of the SOTA baseline.

In Table 3, we also show the the computational time for a
single iteration of HD, TLR, SOTA Baseline, and AutoDrop
run on the same machine (NVIDIA GeForce GTX 1080 Ti)
for different models on different data sets. We use the same
batch size of 64 for all methods to have a fair comparison.
As you can see the training time per-iteration is practically
the same for all methods. Therefore our method does not
introduce any additional significant extra computations com-
pared to the existing optimization methods.

Model\Opt HD TLR SOTA
Baseline

AutoDrop

WRN28x10
CIFAR10

0.21s 0.23s 0.20s 0.20s

WRN40x10
CIFAR100

0.31s 0.31s 0.29s 0.30s

ResNet50
ImageNet

0.42s 0.43s 0.38s 0.40s

Table 3: Computational time for a single iteration of HD,
TLR, SOTA Baseline, and AutoDrop.

Finally, regarding convergence of the methods, note that
the theoretical convergence of our method is shown in the

paper and the rate in theory matches traditional optimizers,
such as SGD. The convergence curves are deferred to the
Supplement (Section 13). The curves reveal that AutoDrop
converges to SOTA performance, unlike other methods. Fur-
thermore, looking at the test error for different methods
at different epochs (50, 100, 150, 200) for the exemplary
ResNet18/CIFAR10 task (see Table 16 in the Supplement)
reveals that AutoDrop reaches comparable performance as
SOTA Baseline with sightly faster convergence rate that
others cannot attain.

6.2 NLP TASKS

Machine Translation. A transformer model based on
[Vaswani et al., 2017] was trained to translate German to
English on the WMT2014 data set [Bojar et al., 2014], using
ADAM [Kingma and Ba, 2015] optimizer. The performance
of our AutoDrop is compared with ReduceLROnPlateau
[Red], HD, and TLR. We train the model for 10K iterations.
Table 4 displays the BLEU score obtained on the test data
set. The proposed optimizer led to the highest score on the
machine translation task. Figure 12 in the Supplementary
material 13.2 displays the training curve and shows that
AutoDrop also converges faster.

Model HD TLR ReduceLR AutoDrop
Trans
WMT14 19.07 19.48 19.96 20.37

Table 4: BLUE score of AutoDrop, manual (ReduceLROn-
Plateau) learning rate and automatic (HD and TLR) learn-
ing rate adjustment algorithms on transformer model for
WMT2014 data set.

GLUE Benchmark. We apply the large language model
BERT[Devlin et al., 2018] on the GLUE[Wang et al., 2018]
benchmark data set, using ADAM [Kingma and Ba, 2015]
optimizer. As is commonly known, the initial increase of

the learning rate during training, which is also known as the
“warm-up” phase, plays an important role in the training of
large language model. For the GLUE benchmark, we run all
methods with and without warm-up and choose the best per-
former. We compare our Autodrop with the manual learning
rate methods: constant learning rate method (ConstLR) and
linear learning rate method (LinearLR), and automatic learn-
ing rates schemes: TLR and HD. ConstLR is keeping the
learning rate constant and LinearLR is reducing it linearly
during the training process. And in particular, for AutoDrop
and linear and constant learning rate schedulers, adding
warm-up improved performance. For the others (HD and
TLR), the performance was deteriorated. For constant/linear
learning rate, we grid search the learning rate/the peak of
learning rate α from [1e − 7, 1e − 6, 1e − 5] and choose
the best performer. In Table 5 for each method the best
performance is reported. AutoDrop performs much better
than automatic learning rate schedulers (HD and TLR) and
achieves comparable performance to manual learning rate
schedulers (linear and constant learning rate methods).

GLUE HD TLR LinearLR ConstLR AutoDrop
CoLA 80.44 78.90 82.07 83.41 82.83
MNLI 78.92 81.43 83.71 83.21 83.76
QNLI 90.46 91.17 91.54 91.32 91.74
QQP 86.42 87.33 90.51 90.48 90.04
SST-2 91.51 91.49 92.66 91.97 92.74

Table 5: BLUE score on GLUE benchmark for BERT.

7 CONCLUSION
This paper addresses the question: how to relieve the la-
borious task of tuning the learning rate when training DL
models? Our work is motivated by a growing need to de-
velop DL optimization techniques that are more automated
in order to increase their scalability and improve the acces-
sibility to DL technology by a wider range of participants.
The selection of hyperparameters for training DL models,
and especially the learning rate scheduling, is a very hard
problem and still remains largely unsolved in the literature.
We provide a new algorithm, AutoDrop, for adjusting the
learning rate drop during the training of DL models that
works online and can be run on top of any DL optimiza-
tion scheme. AutoDrop has a compelling list of features: it
is a simple algorithm to implement and use, it is theoreti-
cally well-grounded, it compares favorably to a large cohort
of different baseline training approaches, and by design it
avoids the short-horizon problem. In our future work, we
intend to generalize our approach to automatically schedule
other hyper-parameters than the learning rate, such as the
momentum term.

Acknowledgements

The authors acknowledge that the NSF Award #2041872
sponsored the research in this paper. This work was also

supported in part by the NYUAD Center for Artificial Intelli-
gence and Robotics, funded by Tamkeen under the NYUAD
Research Institute Award CG010.

References

Pytorch: Reducelronplateau. https://pytorch.or
g/docs/stable/generated/torch.optim.
lr_scheduler.ReduceLROnPlateau.html#
torch.optim.lr_scheduler.ReduceLROnP
lateau.

O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn.
Applying convolutional neural networks concepts to hy-
brid NN-HMM model for speech recognition. In ICASSP,
2012.

Naman Agarwal, Surbhi Goel, and Cyril Zhang. Accelera-
tion via fractal learning rate schedules. In International
Conference on Machine Learning, pages 87–99. PMLR,
2021.

A. G. Baydin, R. Cornish, D. Martinez Rubio, M. Schmidt,
and F. Wood. Online learning rate adaptation with hyper-
gradient descent. In ICLR, 2018.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. In NeurIPS, 2011.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry
Haddow, Philipp Koehn, Johannes Leveling, Christof
Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al.
Findings of the 2014 workshop on statistical machine
translation. In Proceedings of the ninth workshop on
statistical machine translation, pages 12–58, 2014.

L. Bottou. Online algorithms and stochastic approximations.
In Online Learning and Neural Networks. Cambridge
University Press, Cambridge, MA, 1998.

Jerry Chee and Panos Toulis. Convergence diagnostics for
stochastic gradient descent with constant learning rate. In
International Conference on Artificial Intelligence and
Statistics, pages 1476–1485. PMLR, 2018.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected crfs. CoRR, abs/1606.00915, 2016.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and
Ameet Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. In International
Conference on Learning Representations, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database.
In CVPR, 2009.

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

M. Donini, L. Franceschi, O. Majumder, M. Pontil, and
P. Frasconi. Marthe: Scheduling the learning rate via
online hypergradients. In IJCAI, 2020.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(61):2121–
2159, 2011.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and
efficient hyperparameter optimization at scale. In ICML,
2018.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. For-
ward and reverse gradient-based hyperparameter opti-
mization. In ICML, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, Cambridge, MA, 2016. http:
//www.deeplearningbook.org.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev,
E. Shulgin, and P. Richtárik. Sgd: General analysis and
improved rates. In ICML, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential
model-based optimization for general algorithm configu-
ration. In LION, 2011.

Izmailov, P. et al. Averaging weights leads to wider optima
and better generalization. arXiv:1803.05407, 2018.

M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki,
J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dun-
ning, K. Simonyan, C. Fernando, and K. Kavukcuoglu.
Population based training of neural networks. CoRR,
abs/1711.09846, 2017.

Y. Jin, T. Zhou, L. Zhao, Y. Zhu, C. Guo, M. Canini, and
A. Krishnamurthy. Autolrs: Automatic learning-rate
schedule by bayesian optimization on the fly. In ICLR,
2020.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with
convolutional neural networks. In CVPR, 2014.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 and cifar-
100 datasets. https://www.cs.toronto.edu
/kriz/cifar.html, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient
method with an exponential convergence rate for finite
training sets. In NeurIPS, 2012.

A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg, C. Gu,
D. Budden, T. Harley, and P. Gupta. A generalized frame-
work for population based training. In ACM SIGKDD,
2019.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based approach
to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-
tzur, M. Hardt, B. Recht, and A. Talwalkar. A system for
massively parallel hyperparameter tuning. In Proceedings
of Machine Learning and Systems, 2020.

Zhiyuan Li and Sanjeev Arora. An exponential learn-
ing rate schedule for deep learning. arXiv preprint
arXiv:1910.07454, 2019.

J. Martens and R. Grosse. Optimizing neural networks
with kronecker-factored approximate curvature. In ICML,
2015.

J. Parker-Holder, V. Nguyen, and S. J. Roberts. Prov-
ably efficient online hyperparameter optimization with
population-based bandits. In NeurIPS, 2020.

T. Peng. The Staggering Cost of Training SOTA
AI Models, Technical Report by Medium.
https://medium.com/syncedreview/th
e-staggering-cost-of-training-sota-a
i-models-e329e80fa82, 2019.

Scott Pesme, Aymeric Dieuleveut, and Nicolas Flammarion.
On convergence-diagnostic based step sizes for stochastic
gradient descent. In International Conference on Machine
Learning, pages 7641–7651. PMLR, 2020.

Georg Ch Pflug. Non-asymptotic confidence bounds for
stochastic approximation algorithms with constant step
size. Monatshefte für Mathematik, 110:297–314, 1990.

B.T. Polyak. Some methods of speeding up the convergence
of iteration methods. Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

A. Ramezani-Kebrya, A. Khisti, and B. Liang. On the
stability and convergence of stochastic gradient descent
with momentum. CoRR, abs/1809.04564, 2018.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www. cs. toronto. edu/kriz/cifar. html
https://www. cs. toronto. edu/kriz/cifar. html
https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82
https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82
https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82
https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82

George Retsinas, Giorgos Sfikas, Panagiotis Filntisis,
and Petros Maragos. Trainable learning rate, 2022.
URL https://openreview.net/forum?id=
fHeK814NOMO.

T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning
rates. In ICML, 2013.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite
sums with the stochastic average gradient. Mathematical
Programming, 162(1-2):83–112, 2017.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019.

L. N Smith. Cyclical learning rates for training neural
networks. In WACV, 2017.

L. N. Smith and N. Topin. Super-convergence: Very fast
training of residual networks using large learning rates.
CoRR, abs/1708.07120, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 15(1):1929–
1958, 2014.

T. Tieleman, G. Hinton, et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. Glue: A multi-task
benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018.

J. Weston, S. Chopra, and K. Adams. #tagspace: Semantic
embeddings from hashtags. In EMNLP, 2014.

X. Wu, R. Ward, and L. Bottou. Wngrad: Learn the learning
rate in gradient descent. CoRR, abs/1803.02865, 2018a.

X. Wu, S. S. Du, and R. Ward. Global convergence of adap-
tive gradient methods for an over-parameterized neural
network. CoRR, abs/1902.07111, 2019.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse.
Understanding short-horizon bias in stochastic meta-
optimization. In International Conference on Learning
Representations, 2018b. URL https://openrevi
ew.net/forum?id=H1MczcgR-.

T. Yang, Q. Lin, and Z. Li. Unified convergence analysis
of stochastic momentum methods for convex and non-
convex optimization. CoRR, abs/1604.03257, 2016.

Z. Yang, C. Wang, Z. Zhang, and J. Li. Mini-batch algo-
rithms with online step size. Knowledge-Based Systems,
165:228–240, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks.
In BMVC, 2016.

M. D Zeiler. Adadelta: an adaptive learning rate method.
CoRR, abs/1212.5701, 2012.

A. Zela, A. Klein, S. Falkner, and F. Hutter. Towards auto-
mated deep learning: Efficient joint neural architecture
and hyperparameter search. In ICML AutoML Workshop,
2018.

G. Zhang, J. Martens, and R. B. Grosse. Fast convergence
of natural gradient descent for over-parameterized neural
networks. In NeurIPS, 2019a.

M. Zhang, J. Lucas, J. Ba, and G. E. Hinton. Lookahead
optimizer: k steps forward, 1 step back. In NeurIPS,
2019b.

https://openreview.net/forum?id=fHeK814NOMO
https://openreview.net/forum?id=fHeK814NOMO
https://openreview.net/forum?id=H1MczcgR-
https://openreview.net/forum?id=H1MczcgR-

AutoDrop: Training Deep Learning Models with Automatic Learning
Rate Drop

(Supplementary Material)

8 INTERPRETATION OF ANGULAR VELOCITY

The numerator of angular velocity is a dot product of two consecutive gradients. A popular study regarding the meaning of
this quantity comes from a hypergradient method Baydin et al. [2018], where the authors discover that the derivative of the
loss with respect to the learning rate is closely related to the dot product of the gradients of two consecutive steps. That is:

∂L(θt)

∂α
= −⟨∇L(θt),∇L(θt−1)⟩ ,

where L is the loss function, θt are the model parameters at step t, ∇L(θt) is the gradient of the loss, and α is the learning
rate. From the above formula we can see that the dot product could be used as an indicator for adjusting the learning rate.
However, if we adjust the learning too frequently, it will introduce the short-horizon bias problem as we discussed before.
Greedily selecting the learning rate only based on the current step may hurt optimizer’s performance in the long term. The
empirical results of Hypergradient Descent Baydin et al. [2018] (HD) in Table 1 confirm that.

What if we do not allow the learning rate to change until the optimizer saturates? From Theorem 1, we could conclude that
for a constant learning rate:

• The expected value of the dot product of the consecutive gradients converges to some value smaller than 0.

• The angular velocities of the gradients converge to some value between 90 and 120 degrees.

This theorem could be interpreted as:

• Under current learning rate, the loss will no longer decrease when the expected value of the dot product of the
consecutive gradients/the angular velocity converges.

• The dot product of the consecutive gradients is always smaller than 0 when it converges, which means the learning rate
can only decrease, but not increase, after the dot products of the consecutive gradients/angular velocity saturates.

Therefore, the AutoDrop method is designed to detect whether the dot product/angular velocity converges and drop the
learning rate then. Furthermore, the angular velocity is easier to track compared to other metrics, like the dot product of
consecutive gradients or training loss, because it has much less oscillations when it converges and it is naturally bounded in
[0◦, 180◦]. Thus the threshold of saturation for angular velocity becomes easy to determine.

9 PROOF FOR THEOREM 3.2

Proof for Theorem 3.2. First note that if the learning rate is chosen as specified, then each of the trajectories is a contraction
map. By Banach’s fixed point theorem, they each have a unique fixed point. Clearly

E∗
SGD = lim

t→∞
E[xt] = 0.

For the variance we can solve for the fixed points directly. Define V∗
SGD = limt→∞ V[xt],

V∗
SGD = (I − γA)2V∗

SGD + γA2Σ,

=⇒V∗
SGD =

γ2A2Σ

I − (I − γA)2
= diag(

α2a21σ
2
1

1− (1− αa1)2
, · · · , α2a2nσ

2
n

1− (1− αan)2
),

where σ2
i is the i-th diagonal element of the variance matrix Σ of a gaussian noise ct. Because

V∗
SGD = lim

t→∞
V[xt] = lim

t→∞
E
[
(xt − E[xt])(xt − E[xt])

T
]

= lim
t→∞

E[xtx
T
t]

= diag(lim
t→∞

E[x2
t,1], lim

t→∞
E[x2

t,2], · · · , lim
t→∞

E[x2
t,n]),

we have

lim
t→∞

E[x2
t,i] =

α2a2iσ
2
i

1− (1− αai)2
i = 1, · · · , n. (13)

Since ct ∼ N(0,Σ),

lim
t→∞

E[c2t,i] = σ2
i i = 1, · · · , n. (14)

The update formula with learning rate α is

xt+1 = xt − α∇L̂(xt) = xt − αA(xt − ct), ct ∼ N(0,Σ). (15)

For the next iteration, the update formula can be written as

xt+2 = xt+1 − α∇L̂(xt+1) (16)
= xt+1 − αA(xt+1 − ct+1), ct+1 ∼ N(0,Σ)

= xt+1 − αA(xt − αA(xt − ct)), ct, ct+1 ∼ N(0,Σ)

= xt+1 − αA(xt − ct+1) + α2A2(xt − ct), ct, ct+1 ∼ N(0,Σ).

Define the step at iteration t as st = xt+1 − xt, then the inner product of two consecutive steps can be written as

< st, st+1 >= < −αA(xt − ct),−αA(xt − ct+1) + α2A2(xt − ct) > (17)

=α2(xt − ct)
TA2(xt − ct+1)− α3(xt − ct)

TA3(xt − ct)

=α2
[
xT
t A

2xt−xT
t A

2ct+1−cTt A2xt+cTt A
2ct+1−αxT

t A
3xt+2αxtA

3ct−αcTt A3ct
]
.

Therefore, the trajectory of the expectation of the inner product converges to

I∗ = lim
t→∞

E[< st, st+1 >] = α2
[
lim
t→∞

E[xT
t A

2(I − αA)]xt − α lim
t→∞

E[cTt A3ct]
]

(18)

= α2

[
n∑

i=1

a2i (1− αai) lim
t→∞

E[x2
t,i]−

n∑
i=1

αa3i lim
t→∞

E[c2t,i]

]

= α2
n∑

i=1

[
a2i (1− αai)

αaiσ
2
i

2− αai
− αa3iσ

2
i

]

= α2
n∑

i=1

αa3iσ
2
i

[
1− αai
2− αai

− 1

]

= −α3
n∑

i=1

a3iσ
2
i

2− αai
.

The norm of step st at iteration t is written as

∥st∥2 = ∥αA(xt − ct)∥2 (19)

= α2(xt − ct)
TA2(xt − ct)

= α2(xT
t A

2xt − 2xT
t A

2ct + cTt A
2ct).

Therefore the trajectory of the expectation of the norm of st converges to

N∗ = lim
t→∞

E[∥st∥2] = α2 lim
t→∞

E[xT
t A

2xt] + α2 lim
t→∞

E[cTt A2ct] (20)

= α2
n∑

i=1

a2i
(
E[x2

t,i] + E[c2t,i]
)

= α2
n∑

i=1

a2iσ
2

(
αai

2− αai
+ 1

)

= 2α2
n∑

i=1

a2iσ
2

2− αai
.

Here, in order to draw meaningful conclusions we make certain simplifications and proceed by approximating
E[cos(∠(st, st+1))] ≈ E[< st, st+1 >]/E[∥st∥ ∥st+1∥].

Because cos(∠(st, st+1)) =
<st,st+1>
∥st∥∥st+1∥ and ∥s∥t converges when t is large enough, then

lim
t→∞

E[cos(∠(st, st+1))] ≈ lim
t→∞

E[< st, st+1 >]

E[∥st∥2]
. (21)

Since I∗ = limt→∞ E[cos(∠(st, st+1))] and N∗ = limt→∞ E[∥st∥2] are both bounded and not equal to 0,

lim
t→∞

E[cos(∠(st, st+1))] ≈
limt→∞ E[< st, st+1 >]

limt→∞ E[∥st∥2]
. (22)

By combining formula (22), (18) and (20), we obtain that the expectation of cosine value converges to

C∗= lim
t→∞

E[cos(∠(st, st+1))]≈
I∗

N∗ =−
α

2

∑n
i=1

a3
iσ

2
i

2−αai∑n
i=1

a2
iσ

2
i

2−αai

≥−α

2
max

i
ai

∑n
i=1

a2
iσ

2
i

2−αai∑n
i=1

a2
iσ

2
i

2−αai

=−αmaxi ai
2

(23)

Since I−αA ≻ 0 implies αai < 1 for arbitrary i, then C∗ ∈ [− 1
2 , 0] and the angle is between 90 degree to 120 degrees.

10 HYPERPARMATER SETTING FOR AUTODROP

10.1 TWO FIXED CONDITIONS IN AUTODROP

We further comment on the two fixed conditions len(B) > 10 and Ci − Ci−1 < 0.1 in the algorithm. The condition
len(B) > 10 means that we will not smooth the angular velocity at the very beginning of the training or right after dropping
the learning rate - so this is just a common-sense initial condition since we need to gather a few samples before applying
smoothing makes sense. Regarding the condition on Ci − Ci−1 < 0.1. Intuitively the threshold for that term should be set to
match the standard deviation of the angular velocity. We found that this standard deviation is between 0.1 and 0.25 (see
exemplary Table 6 in Supplementary for the ResNet experiment with different learning rates; we observed similar properties
for the remaining experiments).

ResNet18/CIFAR10 1e-1 3e-2 1e-2
Standard Deviation 0.17 0.22 0.24

Table 6: Standard deviation of angular velocity for different learning rate on ResNet18/CIFAR10.

10.2 ABLATION STUDY FOR HYPERPARAMETER ρ AND m

In this section, we perform ablation study for hyperparameter ρ and m on multiple model settings:
ResNet18/CIFAR10, WRN28x10/CIFAR100, ResNet34/CIFAR100 and WRN40x10/CIFAR100. We hyperparamter search
ρ = [0.5, 0.8, 0.9, 0.95, 0.99] and m = [5, 10, 20, 30, 50] among different tasks. ρ = 0.95, m = 10 performs the best among
all tasks. In a wide range of hyper-parameter settings that we explore, the changes of the model performance are mild, i.e.,
of the order 2.5%− 4%.

Therefore, Hyperparameters ρ and m are set fixed across all our experiments (ρ = 0.95, m = 10).

10.2.1 ResNet18-CIFAR10

Model Method ρ m k epoches Test Error

ResNet18
CIFAR10 AutoDrop

0.95 10 64 200 4.79 ± 0.99
– 5 – 200 5.05 ± 0.096
– 20 – 200 5.50 ± 0.169
– 30 – 200 6.52 ± 0.092
– 50 – 200 7.41 ± 0.111

Table 7: Ablation study on parameter m for AutoDrop on task ResNet18/CIFAR10.

Model Method ρ m k epoches Test Error

ResNet18
CIFAR10 AutoDrop

0.95 10 64 200 4.79 ± 0.99
0.5 – – 200 8.85 ± 0.873
0.8 – – 200 6.62 ± 0.259
0.9 – – 200 5.48 ± 0.040
0.99 – – 200 7.65 ± 0.178

Table 8: Ablation study on parameter ρ for AutoDrop on task ResNet18/CIFAR10.

10.2.2 WRN28x10-CIFAR10

Model Method ρ m k epoches Test Error

WRN28x10
CIFAR10 AutoDrop

0.95 10 64 200 3.73 ± 0.07
– 5 – 200 6.76 ± 0.349
– 20 – 200 4.63 ± 0.165
– 30 – 200 4.11 ± 0.137
– 50 – 200 7.85 ± 0.119

Table 9: Ablation study on parameter m for AutoDrop on task WRN28x10/CIFAR10.

Model Method ρ m k epoches Test Error

WRN28x10
CIFAR10 AutoDrop

0.95 10 64 200 3.73 ± 0.07
0.5 – – 200 6.26 ± 0.283
0.8 – – 200 5.07 ± 0.286
0.9 – – 200 3.94 ± 0.118
0.99 – – 200 7.36 ± 0.021

Table 10: Ablation study on parameter ρ for AutoDrop on task WRN28x10/CIFAR10.

10.2.3 ResNet34-CIFAR100

Model Method ρ m k epoches Test Error

ResNet34
CIFAR100 AutoDrop

0.95 10 64 200 21.82 ± 0.14
– 5 – 200 22.41 ± 0.187
– 20 – 200 22.39 ± 0.11
– 30 – 200 26.09 ± 0.612
– 50 – 200 28.53± 0.44

Table 11: Ablation study on parameter m for AutoDrop on task ResNet34/CIFAR100.

Model Method ρ m k epoches Test Error

ResNet34
CIFAR100 AutoDrop

0.95 10 64 200 21.82 ± 0.14
0.5 – – 200 30.42 ± 0.430
0.8 – – 200 25.71 ± 0.561
0.9 – – 200 23.14 ± 0.464
0.99 – – 200 30.09 ± 0.192

Table 12: Ablation study on parameter ρ for AutoDrop on task ResNet34/CIFAR100.

10.2.4 WRN40x10-CIFAR100

Model Method ρ m k epoches Test Error

WRN40x10
CIFAR100 AutoDrop

0.95 10 64 200 19.41 ± 0.10
– 5 – 200 19.84 ± 0.21
– 20 – 200 23.59 ± 0.22
– 30 – 200 25.65 ± 0.17
– 50 – 200 28.72± 0.42

Table 13: Ablation study on parameter m for AutoDrop on task WRN40x10/CIFAR100.

Model Method ρ m k epoches Test Error

WRN40x10
CIFAR100 AutoDrop

0.95 10 64 200 19.41 ± 0.10
0.5 – – 200 25.58±0.46
0.8 – – 200 21.03±0.54
0.9 – – 200 19.96±0.12
0.99 – – 200 30.23±0.35

Table 14: Ablation study on parameter ρ for AutoDrop on task WRN40x10/CIFAR100.

10.3 ABLATION STUDY FOR k

Regarding the sliding window size k used for computing the batch angular velocity, it varies with respect to the size of the
training data N . Since k decides the frequency of computing the batch angular velocity and we drop the learning rate every
time the angular velocity saturates, the learning rate αt at iteration t for AutoDrop could be simplistically expressed as
αt = α0ρ

O(N/k), assuming ρ and m are fixed. Therefore, when the size of the data set N is large, e.g., ImageNet data set

has 14 million images, the sliding window k should be larger than for smaller data sets, such as CIFAR10 and CIFAR100
tasks that have ∼10K data points. We found that k = 64 performs well for CIFAR10 and CIFAR100 tasks, while k = 640
performs much better for ImageNet.

Model
Ablation Study for k

k=32 k=64 k=128 k=256
ResNet18
CIFAR10

5.65±.15 4.79±.99 6.08±.11 7.41±.24

WRN28x10
CIFAR10

4.30±.13 3.73±.07 5.77±.13 7.36±.15

ResNet34
CIFAR100

24.07±.44 21.82±.14 23.11±1.3 28.33±.20

WRN40x10
CIFAR100

20.39±.08 19.41±.10 24.49±.16 28.79±.32

Model k=64 k=256 k=512 k=640
ResNet18
ImageNet

39.22 31.04 29.70 29.24

Table 15: Ablation study for k among different models (test error).

11 AUTODROP (APPROXIMATE)

In this section, we analyze why algorithm 2 is an appropriate approximation for Algorithm 2. Note that the main idea behind
our algorithm (either Algorithm 1 or 2) is to decrease the learning rate when the angular velocity saturates. Therefore,
the key point is how to detect the “saturation”. In AutoDrop (Algorithm 1), we determine the saturation of the angular
velocity by looking at the difference of the angular velocity in two consecutive epochs. If this difference is smaller than
a given threshold θ then we assume we entered saturation and we will drop the learning rate. However, when it comes to
theoretical analysis, it is hard to mathematically measure the “difference” of angular velocities in two consecutive steps and
thus the analysis requires some approximations when it comes to defining saturation. Intuitively, when the derivative of the
angular velocity is close to zero, we would expect the angular velocity to saturate. This motivates Algorithm 2, which is an
approximation to Algorithm 1. Moreover, for the purpose of theoretical analysis, we assume that the angular velocity curve
is smooth and could be represented with Equation 12. Under this assumption, the angular velocity is concave with no noise.
The behavior of the angular velocity and the learning rate for Algorithm 2 is depicted in Figure 5.

(a) (b)

Figure 5: (a) The behavior of the angular velocity for Algorithm 2. (b) The behavior of the learning rate for Algorithm 2.

12 PROOF FOR THEOREM 5.1

Proof in this section in inspired by Yang et al. [2016].

Proof for Theorem 2. We denote G(xt; ξt) = G(xt) = Gt. The update formula (9) implies the following recursions:

xt+1 + pt+1 =xt + pt −
αt

1− β
G(xt) (24)

vt+1 =βvt + ((1− β)s− 1)αtG(xt), (25)

where vt =
1−β
β pt and pt is given by

pt =


β

1− β
(xt − xt−1 + sαt−1G(xt−1)), k ≥ 1

0, k = 0

. (26)

Define δt = Gt − ∂f(xt) and let x∗ be the optimal point. From the above recursions we have

∥xt+1 + pt+1 − x∗∥2

= ∥xt + pt − x∗∥2− 2αt

1− β
(xt + pt − x∗)TGt+

(
αt

1− β

)2

∥Gt∥2

= ∥xt + pt − x∗∥2− 2αt

1− β
(xt − x∗)TGt−

2αtβ

(1− β)2
(xt − xt−1)

TGt

− 2sαtαt−1β

(1− β)2
GTt−1Gt+

(
αt

1− β

)2

∥Gt∥2

= ∥xt + pt − x∗∥2 − 2αt

1− β
(xt − x∗)T (δt + ∂f(xt))−

2αtβ

(1− β)2
(xt − xt−1)

T (δt + ∂f(xt))

− 2sαtαt−1β

(1− β)2
(δt−1 + ∂f(xt−1))

T (δt + ∂f(xt)) +

(
αt

1− β

)2

∥δt + ∂f(xt)∥2 . (27)

Note that

E[(xt − x∗)T (δt + ∂f(xt))] = E[(xt − x∗)T∂f(xt)]

E[(xt − xt−1)
T (δt + ∂f(xt))] = E[(xt − xt−1)

T∂f(xt)]

E[(δt−1 + ∂f(xt−1))
T (δt + ∂f(xt))] = E[(δt−1 + ∂f(xt−1))

T∂f(xt)] = E[GTt−1∂f(xt)]

E[∥δt + ∂f(xt)∥2] = E[∥δt∥2] + E[∥∂f(xt)∥2].

Taking the expectation on both sides gives the following

E[∥xt+1 + pt+1 − x∗∥2]

=E[∥xt + pt − x∗∥2]− 2αt

1− β
E[(xt − x∗)T∂f(xt)]−

2αtβ

(1− β)2
E[(xt − xt−1)

T∂f(xt)]

− 2sαtαt−1β

(1− β)2
E[GTt−1∂f(xt)] +

(
αt

1− β

)2

(E[∥δt∥2] + E[∥∂f(xt)∥2]). (28)

Moreover, since f is convex,E [∥G(x; ξ)− E[G(x; ξ)]∥] ≤ δ2, and ∥∇f(x)∥ ≤ G, then for any x

f(xt)− f(x∗) ≤ (xt − x∗)T∂f(xt)

f(xt)− f(xt−1) ≤ (xt − xt−1)
T∂f(xt)

− E[GTt−1∂f(xt)] ≤
E[∥Gt−1∥2 + ∥∂f(xt)∥2]

2
≤ δ2/2 +G2 ≤ δ2 +G2

E[∥δt∥2] ≤ δ2, E[∥∂f(xt)∥2] ≤ G2.

Therefore, (28) can be rewritten as

E[∥xt+1 + pt+1 − x∗∥2] ≤E[∥xt + pt − x∗∥2]− 2αt

1− β
E[f(xt)− f(x∗)] (29)

− 2αtβ

(1− β)2
E[f(xt)− f(xt−1)] +

2sβαtαt−1 + α2
t

(1− β)2
(G2 + δ2).

Since α̂i is decreasing, it implies that αt is non-increasing. Thus, (30) could be upper-bounded as

E[∥xt+1 + pt+1 − x∗∥2] ≤E[∥xt + pt − x∗∥2]− 2αt

1− β
E[f(xt)− f(x∗)] (30)

− 2αtβ

(1− β)2
E[f(xt)− f(xt−1)] +

(2sβ + 1)αtαt−1

(1− β)2
(G2 + δ2).

Taking t = 0, ..., T − 1 and x−1 = x0, and then summing all the inequalities gives

T−1∑
t=0

E[∥xt+1+pt+1−x∗∥2] ≤
T−1∑
t=0

E[∥xt + pt − x∗∥2]−
T−1∑
t=0

2αt

1− β
E[f(xt)− f(x∗)]

−
T−1∑
t=0

2αtβ

(1−β)2
E[f(xt)−f(xt−1)]+

(2sβ+1)(G2+δ2)

(1−β)2
T−1∑
t=0

αtαt−1.

Therefore,

2

1−β

T−1∑
t=0

αtE[f(xt)−f(x∗)] ≤∥x0−x∗∥2−
∥∥xT +pT−x∗∥∥+ 2β

(1−β)2
T−1∑
t=0

αtE[f(xt−1)−f(xt)]

+
(2sβ + 1)(G2 + δ2)

(1− β)2

T−1∑
t=0

αtαt−1,

since αT−1 ≤ ... ≤ α1 ≤ α0 < 1, mint=0,...,T−1{E[f(xt)− f(x∗)]} ≤ E[f(xt)− f(x∗)](∀t = 0, ..., T − 1). Then

2

1− β
min

t=0,...,T−1
{E[f(xt)− f(x∗)]}

T−1∑
t=0

αt ≤∥x0 − x∗∥2 + 2β

(1− β)2

T−1∑
t=0

αtE[f(xt−1)− f(xt)]

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

Moreover, αt = α̂i(ti ≤ t < ti+1) implies that

2

1−β
min

t=0,...,T−1
{E[f(xt)−f(x∗)]}

T−1∑
t=0

αt ≤∥x0−x∗∥2+ 2β

(1−β)2
n−1∑
i=0

α̂iE[f(xti)−f(xti+1)]

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

Since E[f(xti)− f(xti+1
)] is always upper-bounded by f(x0)− f(x∗), we have

2

1− β
min

t=0,...,T−1
{E[f(xt)− f(x∗)]}

T−1∑
t=0

αt ≤∥x0 − x∗∥2 + 2β

(1− β)2
[f(x0)− f(x∗)]

n−1∑
i=0

α̂i

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

After simplification, we have

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤ (1− β) ∥x0 − x∗∥2

2
∑T−1

t=0 αt

+
β[f(x0)− f(x∗)]

∑n−1
i=0 α̂i

(1− β)
∑T−1

t=0 αt

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

2(1− β)
∑T−1

t=0 αt

. (31)

Because α̂i ≤ (i+ 2)−1, kiα̂i ≥ κ1(i+ 2)−
1
3 , kiα̂iα̂i−1 ≤ κ2(i+ 1)−

2
3 ,∀i = 0, 1, ..., n− 1(n≫ 1),

n−1∑
i=0

α̂i ≤
n−1∑
i=0

(i+ 2)−1 =

∫ n−1

0

(i+ 2)−1 = log(n+ 1)− log(2) (32)

T−1∑
t=0

αt =

n−1∑
i=0

kiα̂i ≥
n−1∑
i=0

κ1 = κ1n (33)

T−1∑
t=0

αtαt−1 ≤
n−1∑
i=0

kiα̂iα̂i−1 ≤ κ2

n−1∑
i=0

(i+ 1)−1 = κ2

∫ n−1

0

(i+ 1)−1 = κ2 log n. (34)

Substituting (32-34) into inequality (31) gives

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤β(f(x0)− f(x∗))[log(n+ 1)− log 2]

κ1(1− β)n
+

(1− β) ∥x0 − x∗∥2

2κ1n

+
(2sβ + 1)(G2 + δ2)κ2 log n

2(1− β)κ1n
.

12.1 PROOF FOR THEOREM 5.2

First, we introduce Lemma 12.1 which will be used in the proof for Theorem 5.2. We prove this lemma later in this section.

Lemma 12.1. If sequences {α̂i}n−1
i=−1 ⊂ (0, 1) and {ki}ni=0 ⊂ N satisfy:

α̂i = (i+ 2)−1,
κ1

α̂i
≤ ki ≤

κ2

α̂i
,

where κ1, κ2 are constants, then

α̂i ≤ (i+ 2)−1, kiα̂i ≥ κ1, kiα̂iα̂i−1 ≤ κ2(i+ 1)−1, ∀i = 0, 1, ..., n− 1. (35)

Moreover, suppose T =
∑n−1

i=0 ki. If n≫ 1 the following holds

κ1n(n+ 3)

2
≤ T ≤ κ2n(n+ 3)

2
. (36)

Proof for Theorem 5.2. The derivative of the angular velocity model is:

v′α(t) =
π(1 + ϵα)

2γα(t+ 1/γα)2
.

Define the gaps of partition Π : 0 = t0 < t1 < ... < tn = T derived from the Algorithm 2 as

ki = ti+1 − ti, ∀i = 0, ..., n− 1.

Since we drop the learning rate every time the derivative of the angular velocity is smaller that the threshold τi =
min{τ0, γα̂i/2}, we have

v′α̂i
(ki) = τi =⇒ ki = (γα̂i)

− 1
2

√π(1 + ϵα̂i)

2τi
− (γα̂i)

− 1
2

 .

i) From τi = min{τ0, γα̂i/2}, we have τi ≤ γα̂i/2. Therefore,

ki ≥(γα̂i)
− 1

2

[√
π(1 + ϵα̂i)× (γα̂i)

− 1
2 − (γα̂i)

− 1
2

]
=

1

γα̂i

[√
π(1 + ϵα̂i)− 1

]
≥
√
π − 1

γα̂i
(37)

ii) From τi = min{τ0, γα̂i/2}, we have

ki ≤(γα̂i)
− 1

2 ×

√
π(1 + ϵα̂i)

2τi

=(γα̂i)
− 1

2 max


√

π(1 + ϵα̂i)

2τ0
,
√
π(1 + ϵα̂i)(γα̂i)

− 1
2


=max

(γα̂i)
− 1

2

√
π(1 + ϵα̂i)

2τ0
,

1

γα̂i

√
π(1 + ϵα̂i)


≤ 1

γα̂i
max


√

π(1 + ϵα̂i)

2τ0
,
√
π(1 + ϵα̂i)

 .

Since ϵ ∈ (0, 1
3α̂0

) and τ0 < 2, we could conclude

ki ≤
1

γα̂i
max

{√
2π

3τ0
,

√
4π

3

}
≤ 1

γα̂i

√
2π

3τ0
.

Combine i) and ii), we have
√
π − 1

γ
× 1

α̂i
≤ ki ≤

1

γ

√
2π

3τ0
× 1

α̂i
. (38)

Define κ1 =
√
π−1
γ and κ2 = 1

γ

√
2π
3τ0

. By Lemma 12.1, we have

α̂i ≤ (i+ 2)−1, kiα̂i ≥ κ1, kiα̂iα̂i−1 ≤ κ2(i+ 1)−1, ∀i = 0, 1, ..., n− 1. (39)

Then, by combining (39) with Theorem 5.1 we could conclude that the sequence {xt}T−1
t=0 generated by the Algorithm 2

satisfies

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤β(f(x0)− f(x∗))[log(n+ 1)− log 2]

κ1(1− β)n
+

(1− β) ∥x0 − x∗∥2

2κ1n

+
(2sβ + 1)(G2 + δ2)κ2 log n

2(1− β)κ1n
. (40)

By Equation (36) in Lemma 12.1 we have that

κ1n(n+ 3)

2
≤ T ≤ κ2n(n+ 3)

2
.

Therefore √
2T

κ2
− 3 ≤ n ≤

√
2T

κ1
. (41)

Combining (41) with (40) gives

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤
β(f(x0)− f(x∗))[log

(√
2T
κ1

+ 1
)
− log 2]

κ1(1− β)
[√

2T
κ2
− 3

] +
(1− β) ∥x0 − x∗∥2

2κ1

[√
2T
κ2
− 3

]
+

(2sβ + 1)(G2 + δ2)κ2 log
(√

2T
κ1

)
2(1− β)κ1

[√
2T
κ2
− 3

]
=O

(
log T√

T

)

12.2 PROOF FOR LEMMA 12.1

Proof for Lemma 12.1. First, we show bounds from (35) one by one:

i) α̂i = (i+ 2)−1 ≤ (i+ 2)−1.

ii) kiα̂i ≥ κ1.

iii) kiα̂iα̂i=1 ≤ κ2α̂i−1 = κ2(i+ 1)−1 ≤ κ2(i+ 1)−1.

Secondly, we compute T =
∑n−1

i=0 ki according to the definition of ki. Because n≫ 1, the sum of the sequence could be
treated as an integral:

T =

n−1∑
i=0

ki ≤ κ2

n−1∑
i=0

1

α̂i
= κ2

n−1∑
i=0

(i+ 2) =
κ2n(n+ 3)

2
,

and

T =

n−1∑
i=0

ki ≥ κ1

n−1∑
i=0

1

α̂i
= κ1

n−1∑
i=0

(i+ 2) =
κ1n(n+ 3)

2
.

13 EXPERIMENTAL DETAILS

13.1 IMAGE CLASSIFICATION

In addition to the SOTA Baseline referred in the main body of the paper, we also evaluated other competitors, including
three manual learning rate schedulers (CLR, OneCycle, ExpLR) and two automatic learning rate schedulers (HD and TLR).
For CLR Smith [2017] we test with the textitOneCycle learning rate policy and triangular2 learning policy by adjusting the
stepsize (the number of iterations in half a cycle) for different models as recommended by the authors. For ExpLR [Li and
Arora, 2019], we grid search the decay factor from γ = [0.8, 0.9, 0.95, 0.99, 0.999]. For HD [Baydin et al., 2018] we grid
search the hypergradient learning rate β from [1e− 3, 1e− 4, 1e− 5] as suggested in the reference paper. For TLR [Retsinas
et al., 2022] we set the gap p for updating the learning rate as 0.33 epoch and bound c = 1/4, as recommended by the
authors. For AutoDrop, We set k = 64, ρ = 0.95, and m = 10 as referred in Section 4.1.

Figure 6: Experimental curves for ResNet18 model and CIFAR-10 data set: learning rate, test loss, test error, and zoomed
subplots.

Figure 7: Experimental curves for task WRN28x10/CIFAR-10: learning rate, test loss, test error, and zoomed subplots.

Figure 8: Experimental curves for ResNet34 model and CIFAR-100 data set: learning rate, test loss, test error, and zoomed
subplots.

Figure 9: Experimental curves for WRN40x10model and CIFAR-100 data set: learning rate, test loss, test error, and zoomed
subplots.

Figure 10: Experimental curves for ResNet18 model and ImageNet data set: learning rate, test loss, test error, and zoomed
subplots.

Figure 11: Experimental curves for ResNet50 model and ImageNet data set: learning rate, test loss, test error, and zoomed
subplots.

Regarding convergence, note that the theoretical convergence of our method is shown in the paper and the rate in theory
matches traditional optimizers, such as SGD. The convergence curves are shown above. The curves reveal that AutoDrop
converges to SOTA performance, unlike other methods. Furthermore, the minimum test error for different methods at
different epochs (50, 100, 150, 200) for the ResNet18/CIFAR10 task is shown in Table 16. The table demonstrates that
AutoDrop reaches comparable performance to SOTA Baseline with sightly faster convergence rate that others cannot attain.

Test Error HD TLR CLR OneCycle ExpLR SOTA
Baseline

AutoDrop

50 epoch 8.87 6.79 8.62 9.56 6.81 11.18 8.76
100 epoch 6.84 5.68 5.46 8.56 5.98 5.95 5.87
150 epoch 6.81 5.59 5.3 8.14 5.98 4.95 4.90
200 epoch 6.78 5.48 5.16 4.96 5.95 4.78 4.76

Table 16: Minimum test error for different methods at different epochs (50, 100, 150, 200) for the ResNet18/CIFAR10.

13.2 MACHINE TRANSLATION

A transformer model based on Vaswani et al. [2017] was trained to translate German to English on the WMT2014 data
set [Bojar et al., 2014], using ADAM [Kingma and Ba, 2015] optimizer. The performance of our AutoDrop is compared
with ReduceLROnPlateau [Red], HD and TLR. We train the model for 10K iterations. Table 4 displays the BLEU score
obtained on the test data set. The proposed optimizer led to the highest score on the machine translation task. Figure 12 in
Supplementary 13.2 displays the training curve and shows that AutoDrop also converges faster than other methods.

Figure 12: Experimental curves for Transformer and WMT14 data set: learning rate, validation loss, test BLEU score, and
zoomed subplots.

	Introduction
	Related Work
	Motivating Example
	Algorithm
	Hyper-parameters of AutoDrop

	Theory
	Unified convergence analysis with discrete learning rate drop
	Convergence Analysis of AutoDrop

	Experimental Results
	Image Classification
	NLP tasks

	Conclusion
	Interpretation of Angular Velocity
	Proof for Theorem 3.2
	Hyperparmater setting for AutoDrop
	Two fixed conditions in AutoDrop
	Ablation Study for hyperparameter and m
	ResNet18-CIFAR10
	WRN28x10-CIFAR10
	ResNet34-CIFAR100
	WRN40x10-CIFAR100

	Ablation Study for k

	AutoDrop (approximate)
	Proof for Theorem 5.1
	Proof for Theorem 5.2
	Proof for Lemma 12.1

	Experimental Details
	Image Classification
	Machine Translation

