
Loss in the Crowd: Hidden Breakthroughs in Language Model Training

Sara Kangaslahti 1 Elan Rosenfeld 2 Naomi Saphra 1

Abstract
The training loss curves of a neural network
are typically smooth. Any visible discontinu-
ities draw attention as discrete conceptual break-
throughs, while the rest of training is less carefully
studied. In this work we hypothesize that similar
breakthroughs actually occur frequently through-
out training, though their presence is obscured
when monitoring the aggregate train loss. To find
these hidden transitions, we introduce POLCA, a
method for decomposing changes in loss along an
arbitrary basis of the low rank training subspace.
We use our method to identify clusters of samples
that exhibit similar changes in loss through train-
ing, disaggregating the overall loss into that of
smaller groups of conceptually similar datapoints.
We validate our method on synthetic arithmetic,
showing that POLCA recovers clusters which rep-
resent easily interpretable breakthroughs in the
model’s capabilities whose existence would oth-
erwise be lost in the crowd.

1. Introduction
As machine learning researchers continue to observe and
highlight previously undiscovered phase transitions in train-
ing, the community has responded by attempting to char-
acterize the structures and mechanisms that develop during
such significant moments. These sudden drops in loss reveal
the formation of induction heads (Olsson et al., 2022), syn-
tactic attention structure (Chen et al., 2024a), hierarchical
bias (Murty et al., 2023), and many other conceptual break-
throughs (McGrath et al., 2022; Lovering et al., 2022; Power
et al., 2022; Abbe et al., 2021). However, the loss curve
as a whole remains stubbornly smooth. Phase transitions
and momentary concept learning are therefore treated as
isolated curiosities; the vast majority of training time is seen
as predictable. We will show that in fact, the model is under-
going abrupt conceptual breakthroughs that are concealed
by aggregating all data into a single loss curve.
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We decompose the loss in two different ways to find hidden
breakthroughs. First, we decompose the aggregate loss into
loss over individual examples or homogeneous subsets of
data. By clustering the loss curves of individual examples,
we identify subsets of data that experience synchronized
changes in loss stability, implying that they rely on the same
conceptual breakthroughs. However, any individual exam-
ple might benefit from multiple conceptual breakthroughs;
in such cases, the example may undergo multiple changes
that are synchronized with different subsets of the data. In
order to disentangle these breakthroughs, we must instead
find different mechanisms or internal changes that affect the
loss curve for a given example.

Because we need to disentangle multiple relevant concepts,
we introduce a second decomposition, which transforms
changes in loss into a collection of responses to movement
in specific directions during training. By analyzing these
loss curves along specific bases, we identify conceptual
breakthroughs that rely on a particular direction of move-
ment. The latter analysis permits further granularity in
clustering data, as final performance on an individual exam-
ple may rely on multiple conceptual breakthroughs, each
corresponding to a particular linear direction in training.

• By clustering datapoints on the basis of loss changes
during training, we discover that concepts are learned
at specific breakthrough times. Using changes in dat-
apoint loss to measure stability, we show that smooth
aggregated loss curves can conceal momentary inflec-
tions in datapoint loss, a scenario we describe as break-
through elision.

• We introduce a modified form of Loss Change Alloca-
tion (Lan et al., 2020) called Projection Oriented Loss
Change Allocation (POLCA) to measure changes in
loss due to parameter adjustments in arbitrary direc-
tions during training. Using POLCA, we extend our
cluster analysis to identify conceptual breakthroughs
that occur in a restricted gradient subspace.

2. Background
What can we learn from transitions in stability? Previ-
ous work has extensively documented phase transitions in
the stability and sharpness of the loss surface. Jastrzȩbski
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et al. (2020) point to a clear phase transition in the gradient
variance early in training, and Ma et al. (2022) show that
such behavior could arise due to the existence of multiple
different scales of loss.

Why disaggregate the overall train loss? Individual
samples often exhibit changes in loss that are out of
line with the monotonic average trend (Xia et al., 2023;
Rosenfeld & Risteski, 2024). In full-batch gradient descent,
Cohen et al. (2022) identified non-monotonicity arising
from oscillation about the maximum Hessian eigenvector.
Rosenfeld & Risteski (2024) gave evidence that these
oscillations occur across different axes for different samples,
and they highlighted human-interpretable semantic features
of the data as a likely cause. We hypothesize that movement
in these separate directions signals the model’s acquisition
of distinct capabilities (i.e. “skills” (Arora & Goyal, 2023;
Chen et al., 2024b)). To test this hypothesis, and to better
identify the semantic meaning of each of these directions,
we propose to decompose this instability—defined as the
magnitude of oscillation—according to a basis derived from
the full loss Hessian at various training checkpoints.

Why decompose the aggregate loss? Similar to the quan-
tization model of parameter scaling of Michaud et al. (2024),
we aim to cluster datapoints according to the skills they rely
on. However, our POLCA decomposition also addresses
what they call polygenic scaling effects—samples which
combine multiple skills and therefore exhibit breakthroughs
at multiple scales. If we assume that a specific skill is en-
abled by movement along a particular basis vector, then the
loss change attributed to movement along the basis vector
will stabilize for a sample that requires that skill at the mo-
ment the skill is acquired, moving the sample from early to
late dynamics through a basis-specific loss phase transition.
In other words, by monitoring changes in directions corre-
sponding to specific skills, we support the speculation of
Nanda et al. (2023) that phase transitions are everywhere.

Why is linear decomposition sufficient? In practice, a
conceptual breakthrough would not be expected to occur in
a single direction that persists throughout training. However,
there is an abundance of evidence that the linear bases of the
low rank training subspace (Gur-Ari et al., 2018) are con-
ceptually meaningful. In the late stages of training, linear
interpolation between a pair of checkpoints yields a convex
path in the loss space (Frankle et al., 2020). Although in-
dependently finetuned models with similar generalization
heuristics are also linearly connected, interpolations from a
nonlinear connection between a model pair with unmatched
heuristics fail to generalize with either heuristic (Juneja
et al., 2023, ref Appendix D). These observations suggest
that linear decomposition should give good results, and our
experiments show that the resulting clusters are interpretable

in practice.

3. Methods
The key to our approach is the separate consideration of how
each individual example’s datapoint loss changes through-
out training. We contrast this individualized metric with the
evaluation of in-distribution performance simultaneously
across the entire training or validation set, which we call
the aggregated loss. Using the datapoint loss, we can clus-
ter individual examples on the basis of their loss L(wt),
change in loss L(wt)− L(wt−1), or magnitude of change
|L(wt)− L(wt−1)| during training.

3.1. Projection Oriented Loss Change Allocation
(POLCA)

Our next objective is to decompose the loss itself into spe-
cific directions in the weight space, motivated by several
considerations: First, while we have moved from an aggre-
gated loss metric to a more granular datapoint loss metric,
we are still only considering breakthroughs that are general
enough to be perceived in loss curves. Second, an individual
datapoint may benefit from a variety of conceptual break-
throughs, but will not be clustered on the breakthroughs
individually. Finally, once we have identified a subset of the
data as benefiting from a particular conceptual breakthrough,
decomposing into individual weight directions allows us to
locate where in the weights the breakthrough occurs and to
thereby identify the mechanism involved.

Next we break this loss down by directional movement
during training, allowing us to discover breakthroughs that
are specific to a given direction. Our procedure, Projec-
tion Oriented Loss Change Allocation (POLCA), comprises
two steps: first, the selection of the basis, followed by the
decomposition of the loss according to that basis.

3.1.1. FINDING THE BASIS

Algorithm 1 Finding the POLCA basis

input: Training set X , Model checkpoints {θt}Tt=1.
B ← ∅ ∈ Rd×0.
for t = 1 . . . T do
Π⊥ ← I −B(B⊤B)−1B⊤

H ← ∇2
θL(X, θ).

Define B+ ∈ Rd×k as the top k eigenvectors of Π⊥H
(e.g., via the Lanczos method).
B ← [B,B+].

end for
return B

We focus on a restricted subspace when decomposing the
loss, selecting the basis of this subspace from the maximum
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eigenvectors of the Hessian matrix. We posit this basis
to be interpretable because each basis vector expresses a
high gradient covariance and therefore represents a potential
decision boundary.

This basis is constructed as follows. Given T intermediate
checkpoints throughout training of a model with weights
in Rd and a number k of eigenvectors to compute at each
checkpoint, we seek a low rank Tk-dimensional subspace
which captures most of the movement during optimization
(Gur-Ari et al., 2018). We construct this basis iteratively,
starting with B = ∅: at each checkpoint t we project the
model’s loss Hessian onto the nullspace of B ∈ Rd×(t−1)k.
We then identify the top k eigenvectors of the resulting
projection and append these to B, expanding the dimen-
sion. The resulting basis is designed to include directions of
highest curvature at each checkpoint so that it will capture
synchronized loss behavior throughout training.

3.1.2. DECOMPOSING THE LOSS

To decompose the loss along our basis, we propose a modi-
fied version of Loss Change Allocation (LCA; Lan et al.,
2020). LCA is an interpretability tool for analyzing changes
in aggregated loss on dataset X between two checkpoints.
The output of LCA is the empirical loss change between a
pair of checkpoints which can be attributed to the motion of
each individual weight unit. Given two consecutive check-
points with parameters θt and θt+1, LCA reformulates the
change in loss as its first-order Taylor approximation, a sum
of components which each attribute some loss change to the
movement of a single parameter unit θ(j):

L(X; θt) =

d∑
j=0

(∇θL(X; θt))
(j)(θ

(j)
t+1 − θ

(j)
t ) (1)

=

d∑
j=0

LCA(X; θ
(j)
t ) (2)

The POLCA decomposition differs from LCA in three key
ways. First, we do not restrict each direction to correspond
to a single unit θ(j), instead permitting an arbitrary basis
vector b ∈ B to replace the axis-aligned basis vectors in
LCA; we project onto this basis vector using the dot product
⟨b, ·⟩. Second, we are interested in changes in the loss
on each individual example x ∈ X , not the entire dataset
X . These first two modifications provide the following
reformulation of LCA.

L(X; θt) =
∑
x∈X

L(x; θt) (3)

=
∑
x∈X

∑
b∈B

⟨b,∇θL(x; θt)⟩⟨b, θt+1 − θt⟩ (4)

The third key difference is that we must use a second order
approximation because this basis is constructed explicitly

from the Hessian eigenvectors. To understand why this
choice of basis requires a second order approximation, re-
call that each basis vector b is an eigenvector of the Hessian
matrix Ht′(X) at some timestep t′, where b is chosen be-
cause it has the largest eigenvalue λt′(X, b) over the whole
dataset. If we assume that the top eigenvectors of the ag-
gregate Hessian maintain high curvature at other points in
training and on individual datapoints, then the scaling factor
in the second order Taylor term will be very large even at
the datapoint level. Limiting the approximation to only the
first order term would give a poor estimate, as the second
order term could be expected to dominate.

Exact computation of the second order term would be
intractable, requiring computation of the top eigenval-
ues/vectors for each individual datapoint x. Instead, we
can approximate it by substituting the true eigenvalue, de-
noted λt(X, b) := b⊤Ht(X)b, with the curvature of the
individual loss in the direction b, i.e. λt(x, b) = b⊤Ht(x)b.
If the aggregate Hessian eigenvector b is close to the span of
the top eigenvectors of the datapoint-specific Hessian for x,
this provides a reasonable estimate while reducing calcula-
tion to a single hessian-vector product per eigenvector. We
therefore approximate the basis projection of the datapoint
Hessian h(x, b, θt) as detailed in Appendix A.

h(x, b, θt) =
λt(x, b)

2
⟨θt+1 − θt, b⟩2

≈ λt(X, b)

2
· ⟨θt+1 − θt, b⟩2

× ⟨L(x; θt+1)− L(x; θt), b⟩
⟨L(X; θt+1)− L(X; θt), b⟩

= h̃(x, b, θt)

(5)

Recall that b is selected to maximize the full dataset eigen-
value λ(X, b) at some timestep. Limiting the approximation
to only the first order should therefore lead to a poor ap-
proximation, as the second order term may dominate the
first order. To account for the increase in error, we modify
Equation 4 into the second order Taylor expansion using the
approximation from Equation 5.

L(X; θt) ≈
∑

x∈X

∑
b∈B ⟨b,∇θL(x; θt)⟩⟨b, θt+1 − θt⟩

+h̃(x, b, θt) (6)
=

∑
x∈X

∑
b∈B POLCA(x, b; θt) (7)

4. Arithmetic language modeling
We find that breakthrough clustering can, in fact, reveal
discretely learned concepts and natural kinds within the data,
even when those kinds are not discoverable by clustering
directly on loss curves.
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(a) Loss change magnitude clusters colored
by carrying skill.

(b) Top 3 POLCA clusters for each vector
colored by carrying skill.

(c) Ground truth mean loss curves clustered
by carry and digit skill.

Figure 1. Average cluster loss curves for different breakthrough clustering methods on the skill-it addition dataset, and for the ground
truth subsets that correspond to each cluster’s dominant set of skills. Using POLCA and visualizing the top 3 clusters per vector, we find
clusters corresponding to the carrying skill for various digits (shown in green in (a)), which has a different loss curve to the other skills but
is challenging to recover using solely the aggregate loss.

4.1. The data

Our synthetic experiments use data from the arithmetic ad-
dition setting in Chen et al. (2024b), where the model is
trained to compute the sum of two 3-digit numbers. This
setting has 4 skills corresponding to each of the digits in
the output sum. We note that the digit in the 1000s place
is always a 0 or a 1 since the two numbers being summed
have 3 digits. As shown in Appendix Figure 2 and Chen
et al. (2024b), the skills corresponding to the digits have
different loss curves, so they provide a baseline for how well
breakthrough clustering can recover skills with different loss
curves. We also consider two additional skills: carries to
the output token and the ground truth output value. The
output value is a simple skill that is trivial to cluster on
using the data, whereas the carries and digits represent skills
that we are interested in recovering but are unknown in the
real-world setting.

Experimental setup We train a 2-layer transformer model
with embedding dimension 512, 4 attention heads, and an
MLP dimension of 2048. For a validation set with 1250
data points and 5000 output tokens, we compute the loss
and POLCA values for each token at intervals of 5 iterations
throughout training. We compute the POLCA basis using
the eigenvectors of the Hessian estimated using a 1250 data
point sample of the training set as detailed in Algorithm 1.
We compute a new basis vector every 100 iterations.

We then analyze breakthrough clustering on the loss and
POLCA trajectories in 4.2 and 4.3. We use Hierarchi-
cal Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) (Campello et al., 2013), as we are in-
terested in discovering clusters of curves that may have
different densities. The HDBSCAN outliers are shown as
cluster -1 in Appendix C but are excluded from Figure 1.

4.2. Recovering concepts from the exact loss

In our clustering experiments on arithmetic, we first con-
sider whether decomposition is necessary for identifying
individual concepts. To this end, we cluster solely on the
magnitude of the change in exact per-token loss for succes-
sive timesteps, rather than using the decomposed estima-
tions. As shown in Figure 5, we do find that it is possible to
recover, to a substantial degree, the output token value, mak-
ing it clear that this skill corresponds to example difficulty.
However, the clusters are much less homogeneous with re-
spect to the digit and carry skills, especially for the 10s
and 100s digits, which have similar loss change magnitude
curves (Figure 1a, Appendix Figure 3). We also observe
similar results for clustering on the loss (Appendix Figure
4). We will demonstrate a clear improvement in the recovery
of complex skills and the interpretability of clusters after
POLCA decomposition.

4.3. Recovering concepts with POLCA

Due to the shortcomings of clustering solely on the loss, we
instead cluster on the loss changes decomposed by POLCA,
separately considering each basis vector. The POLCA value
for a given token and basis vector represents the loss change
attributed to movement along that vector. We find that
certain vectors have homogeneous clusters corresponding
to carrying skills, such as vector 4 (Appendix Figure 10)
and vector 0 (Appendix Figure 6). The skill homogeneity is
high for the majority of vectors and is shown for the first 5
vectors in Appendix C.

Figure 1b shows the trajectories of the three top HDBSCAN
clusters for each vector. The top clusters are able to recover
different vectors corresponding to the various digit and carry
trends depicted in Figure 1c. Furthermore, the top clusters at
different vectors can be used to understand which directions
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are important for learning a specific skill and when these
directions emerge as top eigenvectors in the Hessian. As a
result, we have shown that breakthrough clustering on the
POLCA vectors can be used to find when complex skills are
learned and better understand how they are learned.
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A. Derivation of approximate second order term

gt+1(X)− gt(X) ≈ Ht(X)(θt+1 − θt) (8)
⟨gt+1(X)− gt(X), b⟩ ≈ b⊤Ht(X)b⟨b, θt+1 − θt⟩ (9)

= λt(X)⟨b, θt+1 − θt⟩ (10)

If we assume b to also be an eigenvector of the datapoint HessiansH′
t(x), we can apply a similar argument on the data point

level.

⟨g′t+1(x)− g′t(x), b⟩ ≈ b⊤H′
t(x)b⟨b, θt+1 − θt⟩ (11)

Then we may approximate it as:

g′t+1(x)− g′t(x)

gt+1(X)− gt(X)
≈ H′

t(x)(θt+1 − θt)

Ht(X)(θt+1 − θt)
(12)〈

g′t+1(x)− g′t(x)

gt+1(X)− gt(X)
, b

〉
≈ b⊤H′

t(x)b⟨b, θt+1 − θt⟩
λt(X, b)⟨b, θt+1 − θt⟩

(13)〈
g′t+1(x)− g′t(x)

gt+1(X)− gt(X)
, b

〉
≈ ⟨h′

t(x), b⟩⟨b, θt+1 − θt⟩
λt(X, b)⟨b, θt+1 − θt⟩

(14)

λt(X, b)

〈
g′t+1(x)− g′t(x)

gt+1(X)− gt(X)
, b

〉
≈ ⟨h′

t(x), b⟩ (15)

B. Undecomposed trajectories for the digit skill

Figure 2. Mean and standard deviation of the loss trajectories for each digit.
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Figure 3. Mean and standard deviation of the loss difference magnitude trajectories for each digit.

C. Additional cluster histograms

(a) Undecomposed loss carry clusters. (b) Undecomposed loss digit clusters. (c) Undecomposed loss output clusters.

Figure 4. Dominant skill homogeneity for breakthrough clustering on the loss trajectories on the skill-it addition dataset. Bars are colored
by category in (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. While these
clusters are homogeneous with respect to the digit, they do not recover the carrying skill.
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(a) Undecomposed carry clusters. (b) Undecomposed digit clusters. (c) Undecomposed output clusters.

Figure 5. Dominant skill homogeneity for breakthrough clustering on the absolute loss difference trajectories on the skill-it addition
dataset. Bars are colored by category in (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output
token. While these clusters are homogeneous with respect to the value of the correct output token, they do not fully recover the carrying
skill.

(a) POLCA vector 0 carry clusters. (b) POLCA vector 0 digit clusters. (c) POLCA vector 0 output clusters.

Figure 6. Dominant skill homogeneity for breakthrough clustering on the 0th POLCA vector trajectories on the skill-it addition dataset.
Bars are colored by (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. These
clusters are homogeneous with respect to the carry skill and represent a direction that is important for learning the carrying skill.

(a) POLCA vector 1 carry clusters. (b) POLCA vector 1 digit clusters. (c) POLCA vector 1 output clusters.

Figure 7. Dominant skill homogeneity for breakthrough clustering on the 1st POLCA vector trajectories on the skill-it addition dataset.
Bars are colored by (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. These
clusters are homogeneous with respect to the carry and digit skills.
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(a) POLCA vector 2 carry clusters. (b) POLCA vector 2 digit clusters. (c) POLCA vector 2 output clusters.

Figure 8. Dominant skill homogeneity for breakthrough clustering on the 2nd POLCA vector trajectories on the skill-it addition dataset.
Bars are colored by (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. These
clusters are homogeneous with respect to the carry and digit skills.

(a) POLCA vector 3 carry clusters. (b) POLCA vector 3 digit clusters. (c) POLCA vector 3 output clusters.

Figure 9. Dominant skill homogeneity for breakthrough clustering on the 3rd POLCA vector trajectories on the skill-it addition dataset.
Bars are colored by (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. These
clusters are fairly homogeneous with respect to the combination of the three types of skills.

(a) POLCA vector 4 carry clusters. (b) POLCA vector 4 digit clusters. (c) POLCA vector 4 output clusters.

Figure 10. Dominant skill homogeneity for breakthrough clustering on the 4th POLCA vector trajectories on the skill-it addition dataset.
Bars are colored by (a) whether there is a carry to the token or not, (b) the digit, and (c) the value of the correct output token. These
clusters are homogeneous with respect to the carry and nominal skills and represent a direction that is important for learning the carrying
skill.
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