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Abstract

Keypoint detection underpins many vision pipelines, from human-pose estimation and view-
point recovery to 3D reconstruction. Yet, modern neural models remain vulnerable to subtle
input variations. Despite its importance, robustness verification for keypoint detection re-
mains largely unexplored due to the high dimensionality of input spaces and the complexity
of deep models. In this work, we verify a property that bounds the joint deviation across
all keypoints, capturing interdependencies among keypoints specified by system designers or
derived from downstream performance requirements (e.g., pose-based error budgets). A few
existing approaches reformulate the problem by decoupling each keypoint (or its neighbor-
ing pixels) into independent classification tasks, leading to overly conservative guarantees
and fails to account for the collective role keypoints play in downstream tasks. We ad-
dress this gap with the first coupled robustness verification framework for heatmap-based
keypoint detectors under joint specifications. Our method supports any backbone architec-
ture (e.g., CNN, ResNet, Transformer) that produces per-keypoint heatmaps, followed by a
max-activation operation to extract coordinates. To do so, we combine the reachability and
optimization methodologies by formulating robustness verification as a property falsification
problem using a Mixed-Integer Linear Program (MILP) that combines (i) reachable sets of
heatmap outputs, obtained via existing reachability analysis tools, and (ii) a polytope encod-
ing the joint keypoint deviation constraint. Infeasibility of the MILP certifies robustness,
while feasibility yields a potential counterexample. We prove that our method is sound,
that is, it certifies robustness only when the property truly holds. Experiments demonstrate
that our coupled method achieves a verified rate comparable to the testing-based method
when the keypoint error thresholds are not tight. Moreover, under stricter keypoint error
thresholds, our method maintains a high verified rate, whereas the decoupled approach fails
to verify the robustness of any image in these scenarios.

1 Introduction

Keypoint detection is a fundamental computer vision problem that involves identifying distinctive locations
or landmarks within an image. It serves as a critical building block for numerous downstream tasks in
vision. For example, reliably detecting human body keypoints (e.g. joints) is the basis of pose estimation
algorithms, enabling the interpretation of human posture from images (Sun et al., 2019a). In fact, accurate
keypoint localization is central to a wide range of visual understanding applications – including viewpoint
estimation (Zhou et al., 2018), action recognition (Hachiuma et al., 2023), feature matching (Sarlin et al.,
2020), and 3D reconstruction (Novotny et al., 2022) – highlighting its broad importance. The success of
these high-level tasks critically depends on the precision and reliability of the underlying keypoint detectors.

Nowadays, deep neural networks have emerged as the dominant paradigm for keypoint detection, owing to
their ability to learn rich, task-specific feature representations from data. However, neural networks are
known to be sensitive to distribution shifts and adversarial perturbations (Goodfellow et al., 2014), and
keypoint detectors are no exception. Even subtle changes in an input image – such as occlusions, changes in
lighting, or small noise patterns – can lead a neural network to predict incorrect or mislocalized keypoints.
Researchers have proposed various training-time techniques to bolster the empirical robustness of keypoint
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models (e.g. extensive data augmentation (Liu et al., 2020), adversarial training (Zhu et al., 2021), and
specialized loss functions (Cheng et al., 2019) to handle occlusions or illumination changes). While these
strategies can improve resilience to common perturbations, they do not guarantee reliability under all possible
conditions. In particular, they provide no formal assurances that a trained keypoint detector will behave
correctly on worst-case input variations that were not seen during training.

Robustness verification of keypoint detectors, proving that a model’s outputs remain stable under specified
input perturbations – remains largely unexplored. To date, most formal verification research in computer
vision has focused on simpler tasks like image classification (Zhou et al., 2024; Brix et al., 2024), where
the desired property (e.g. the predicted class label remains unchanged) is relatively straightforward to
define and verify. In contrast, keypoint detection produces point coordinates, making it more challenging to
formally define and verify robustness (since “approximately correct” keypoint locations must be tolerated
rather than exact equality). As a result, very few works have tackled formal robustness guarantees for
keypoint detection models (Kouvaros et al., 2023; Anonymity)1. These approaches typically reformulate the
keypoint detection verification problem as a classification verification task by treating each keypoint—or
pixels in its vicinity—as a distinct class. However, this decoupled approach overlooks the collective influence
of keypoints on downstream tasks such as pose estimation, thereby leading to conservative results. This
gap is especially concerning because keypoint detectors are increasingly deployed in safety-critical settings,
such as autonomous driving, robotics, aerospace, and augmented reality, where prediction failures can have
serious consequences.

In this work, we focus on a commonly used architecture for keypoint detection, where the input image
is processed to generate a set of heatmaps—each representing the likelihood of a pixel being a specific
keypoint. The keypoint locations are then extracted by applying a max activation operation over these
heatmaps. The backbone network responsible for producing heatmaps can adopt various architectures,
including convolutional, ResNet-based, or transformer-based designs. To bridge the gap in formal robustness
verification, we target a property that captures the interdependency among keypoints—for example, requiring
that the total deviation across all predicted keypoints remains below a specified threshold. Such a property
can be specified either by system designers or derived from the requirements of downstream tasks. For
instance, Anonymity translate pose error bounds into bounds on keypoint deviations. In contrast to prior
works (Kouvaros et al., 2023; Anonymity), which treat each keypoint independently with its own error
bound, our coupled approach preserves the collective behavior of keypoints without isolating them. Our main
contribution is a MILP-based formulation that attempts to falsify this robustness property. This formulation
integrates reachable sets of the heatmaps—obtained using various reachability analysis techniques—and a
specification over joint keypoint deviations represented as a polytpe, as depicted in Fig. 1. If the MILP
is infeasible, no counterexample exists that violates the property, certifying robustness. Conversely, if the
MILP is feasible, we cannot guarantee robustness and the property remains unverified. Theoretically, we
prove that our approach is sound, meaning it certifies robustness only when the specified property truly
holds.

2 Related Work

2.1 Formal verification of neural networks

The objective of verifying neural networks involves ensuring they meet certain standards of safety, security,
accuracy, or robustness. This essentially means determining the truth of a specific claim about the outputs
of a network based on its inputs. In recent years, there has been a significant influx of research in this area.
For comprehensive insights into neural network verification, one can refer to Liu et al. (2021). Verification
techniques are generally divided into three main groups: reachability-based approaches, which perform a
layer-by-layer analysis to assess network output range (Gehr et al., 2018; Xiang et al., 2018; Tran et al.,
2020; Choi et al., 2025); optimization methods, which seek to disprove the assertion (Bastani et al., 2016;
Tjeng et al., 2018; Banerjee et al., 2024); and search-based strategies which combine with reachability analysis
or optimization to identify instances that contradict the assertion (Katz et al., 2019; Xu et al., 2020; Wu et al.,

1Due to the double-blind review process, we omit the details of this prior work and refer to it as “baseline” in the following
text.
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Figure 1: Overview of the keypoint detection pipeline and the proposed verification framework. A thick
red dashed line divides the sections for keypoint detection (above) and verification (below). A seed image
X0 where an airplane is parking at the airport is processed by the model to identify keypoints, which are
marked as green dots. The verification framework takes as input the seed image X0 and a set of perturbed
images X (with local perturbations indicated by red circles) that form the convex hull X , along with the
keypoint error bound δV. By checking the feasibility of the MILP that is derived from the reachable set Z
of the backbone model and the keypoint error bound δV, the verification tool returns whether the model is
robustness.

2024; Duong et al., 2024). In 2020, VNN-COMP (Brix et al., 2023) launched as a competition to evaluate
the capabilities of advanced verification tools spanning a variety of tasks, including collision detection, image
classification, dataset indexing, and image generation. However, these methods treat deep neural networks
in isolation, concentrating on analyzing the input-output relationship.

Concurrently, there is research focused on the system-level safety of closed-loop cyber-physical systems
(CPS) incorporating neural network components, particularly within the system and controls domain. They
broadly fall into two categories. The first category (Tran et al., 2019; Dutta et al., 2019; Everett, 2021;
Ivanov et al., 2021a) focuses on ensuring the correctness of neural network-based controllers, taking their
input from the structured outcomes of the state estimation module, regardless of whether the state estimation
module is based on perception or not. Neural network controllers of this type generally consist of several
fully connected layers, making them relatively straightforward to verify. The second category focuses on
validating the closed-loop performance of vision-based dynamic systems that incorporate learning-based
components. Among these, studies (Sun et al., 2019b; Ivanov et al., 2020; 2021b; Hsieh et al., 2022; Sun
et al., 2022) examine LiDARs as the perception module, processed by multi-linear perceptrons (MLPs)
with a few hidden layers. Other approaches, primarily applied to runway landing and lane tracking, deal
with high-dimensional inputs from camera images, employing methods like approximate abstraction of the
perception model (Hsieh et al., 2022), contract synthesis (Astorga et al., 2023), simplified networks within the
perception model (Cheng et al., 2020; Katz et al., 2022), or a domain-specific model of the image formation
process (Santa Cruz & Shoukry, 2022). Nevertheless, few studies directly handle camera-image inputs, owing
to their unstructured, high-dimensional nature, in contrast with structured robot states such as position and
velocity.

2.2 Certification of keypoint detection

The investigation of verification methods for keypoint detection is relatively limited. Talak et al. (2023) in-
troduced a certifiable approach to keypoint-based pose estimation from point clouds by correcting keypoints
identified by the model, ensuring the correctness guarantee of the pose estimation. Shi et al. (2023) expanded
on this by integrating the correction concept with ensemble self-training. Similarly, by propagating the un-
certainty in the keypoints to the object pose, Yang & Pavone (2023) created a keypoint-based pose estimator
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for point clouds that is provably correct and is characterized by definitive worst-case error bounds. While
these efforts focus on point clouds, in the image domain, Holmes et al. (2025) introduced an optimization
layer for deep-learning networks that provides certifiably correct and differentiable solutions when the re-
laxation is tight, and demonstrated its application in detecting image keypoints for robot localization under
challenging lighting conditions. Of all these studies, Kouvaros et al. (2023); Anonymity are the most closely
related to our work, as they address the robustness verification of keypoint detection networks. However, in
contrast to their decoupled verification approaches, we verify all keypoints jointly.

3 Background

In this work, we represent scalars and scalar functions by italicized lowercase letters (x), vectors and vector
functions by upright bold lowercase letters (x), matrices and matrix functions by upright bold uppercase
letters (X), and sets and set functions with calligraphic uppercase letters (X ). Let R and Z represent the
sets of real and integer numbers, respectively.

3.1 Keypoint detection

A common strategy to detect keypoints involves the use of heatmap regression, wherein ground-truth
heatmaps are created by placing 2D Gaussian kernels atop each keypoint. The heatmap pixel values are
interpreted as the likelihood of each pixel being a keypoint. These heatmaps are then used to guide the
training through an ℓ2 loss. The detection network can be divided into two parts. A backbone network,
denoted by Fb, inputs a 2D image to produce heatmaps, one per keypoint, which is followed by an argmax
operation for keypoint extraction. We refer to the argmax part as the head network. The entire network is
represented by V = F(X) = Fh ◦ Fb(X), where X ∈ RH×W ×C represents a 2D RGB image with dimensions
being H × W × C, and V ∈ ZK×2 denotes the 2D coordinates of K keypoints. Here, ◦ denotes function
composition. In this paper, we impose no restrictions on the structure of the backbone model—it can be
convolutional, ResNet-based, or transformer-based. To enhance accuracy and robustness, it’s often essential
to preprocess the input image X before it is passed to the network, such as resizing and color normalization.
Denote this preprocessing step by F0, leading to the equation V = F(X) = Fh ◦Fb ◦F0(X). In what follows,
we omit the preprocessing step unless it is critical to consider it.

3.2 Verification of neural networks

Consider a multi-layer neural network representing a function f , which takes an input x ∈ Dx ⊆ Rd0 and
produces an output y ∈ Dy ⊆ Rdn , where d0 is the input dimension, and dn is the output dimension. Any
non-vector inputs or outputs are restructured into vector form. The verification process entails assessing the
validity of the following input-output relationships defined by the function f : x ∈ X ⇒ y = f(x) ∈ Y, where
sets, X ⊆ Dx and Y ⊆ Dy, are referred to as input and output constraints, respectively.

In the context of confirming the robustness of a classification network, the goal is to ascertain that all samples
within a proximal vicinity of a specified input x0 receive an identical classification label. Assuming the target
label is i∗ ∈ {1, . . . , dn}, the specification for verification is that yi∗ > yj for every j not equal to i∗. The
constraints on inputs and outputs are established accordingly: X = {x | ∥x − x0∥p ≤ ϵ}, Y = {y | yi∗ >
yj , ∀j ̸= i∗}, where ϵ represents the maximum permissible deviation in the input space. The metric used to
quantify disturbance can be any ℓp norm.

Neural network verification algorithms can generally be categorized into three main types: reachability
analysis, optimization, and search. NN verification essentially seeks to transform the nonlinear model check-
ing problem into piece-wise linear satisfiability problems, and it can be applied to various nonlinearities,
including ReLU and, more recently, softmax (Wei et al., 2023). Two pivotal attributes—soundness and
completeness—are of critical importance. A verification algorithm is sound if it only confirms the validity of
a property when the property is indeed valid. It is complete if it consistently recognizes and asserts the exis-
tence of a property whenever it is actually present. There is a trade-off between computational complexity
and conservativeness (or in-completeness).
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4 Problem Formulation

In this work, we consider specifications that jointly constrain allowable deviations across keypoints, offering
a more general formulation than prior work (Kouvaros et al., 2023; Anonymity) that introduces conserva-
tiveness by treating each keypoint independently. Our MILP-based method enables exact encoding of these
joint specifications, thereby improving the overall completeness of the verification approach.
Problem 1. Given a convex hull representation X consisting of a seed image X0 and n perturbed images,
defined by the set of all their possible convex combinations, i.e.,

X =
{

X

∣∣∣∣∣ X =
n∑

i=0
ωiXi, s.t. ωi ≥ 0,

n∑
i=0

ωi = 1
}

. (1)

Assume there are K keypoints, and let δv ∈ Z2K denote the 2D keypoint error vector. The set of allowable
keypoint deviations is represented by a polytope δV = {δv | Pvδv ≤ bv}, where Pv and bv are matrices of
suitable dimensions. The goal is to certify whether the keypoint detection network F = Fh ◦ Fb is robust to
any image within the set X . Mathematically,

∀ X ∈ X , v − v∗ ∈ δV s.t. v = F(X), (2)

where v∗ ∈ Z2K is the ground-truth coordinates of keypoints for the input image.
Remark 1. The permissible deviations in keypoint locations δV, may be specified directly by design require-
ments or inferred from constraints imposed by downstream modules. Note that the allowable deviations among
keypoints can exhibit interdependencies, as captured by the structure of the polytope δV, which adds com-
plexity to the problem. For example, Anonymity propagate system-level pose error bounds to keypoint-level
bounds using sensitivity analysis. To make the verification tractable, their approach eliminates interdepen-
dencies among keypoints by identifying the largest axis-aligned hyper-rectangle within δV, which dramatically
reduces the allowable keypoint error bounds and introduces conservativeness.

5 Robustness as Feasibility of the MILP

We face two main challenges. First, keypoint detection operates over two spaces: the heatmap space and
the coordinate space, linked through the process of maximum value extraction. Under perturbations, any
valid heatmap must yield a maximum whose location lies within the allowable coordinate set. Second, the
allowable deviations of keypoints are interdependent. Our approach addresses both challenges simultaneously
by formulating a MILP that attempts to falsify the condition, i.e., to identify a heatmap within the reachable
set whose maximum falls outside the allowable coordinate set defined by the joint output specifications.

Let Z denote the over-approximation of the reachable set of the backbone model, which can be obtained
by various reachability analysis methods. Without loss of generality, we assume that this reachable set is a
zonotope—a special type of convex polytope with a compact representation. In its matrix form, a zonotope
is defined by a center C ∈ RHW ×K and a linear combination of a set of m generators G ∈ RHW ×K×m.
Mathematically, it is expressed as:

Z =
{

Z ∈ RHW ×K

∣∣∣∣∣ Z = C +
m∑

k=1
αkGk, αk ∈ [−1, 1]

}
. (3)

where Gk is the k-th generator, and each heatmap is flattened into a vector of length HW . Any point
Z within the reachable set Z represents multi-channel heatmaps, which are used to predict keypoints by
extracting the maximum value from each channel. The resulting keypoint errors are classified as in-bound if
they fall within the polytope δV. Otherwise, they are categorized as out-of-bound.

We formulate a MILP aiming to determine whether a point Z ∈ Z, i.e., multi-channel heatmaps, within
the reachable set exists such that the corresponding keypoint errors are out of bound. If no such point
exists, i.e., the MILP is infeasible, it indicates that the keypoint detection is considered robust. Conversely,
if out-of-bound keypoint errors are identified, the robustness result is deemed unknown since typically the
reachable set Z overapproximates the true reachable set.
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(a) (b) (c)

(d)

Figure 2: (a) Ground-truth keypoints are shown in green. (b) Deviations from the ground-truth keypoints
are illustrated in both the vertical (first element) and horizontal (second element) directions. (c) Decoupled
keypoint errors as determined by the method in the baseline (Anonymity). (d) Eight scenarios of coupled
keypoint errors are evaluated using our approach, where the error of the first keypoint is fixed and the feasible
error combinations for the second keypoint are enumerated. For example, the top-left case shows the feasible
δh2 and δw2 values when δh1 = δw1 = −1. The bottom-right case illustrates cases where keypoint errors fall
outside the polytope. Specifically, when the first keypoint deviates from the ground truth by 1 pixel in both
directions, no feasible solution exists, even if the second keypoint aligns perfectly with the ground truth.
Note that (c) and (d) are best interpreted with reference to (b) to evaluate satisfaction of the constraints
in (4).

Example 1. We illustrate the advantages of our approach using a simple example with a 3 × 3 input image
and two keypoints. In contrast to the “decoupled” method in Anonymity, which enforces independence among
keypoint errors by disentangling them, our method preserves their interdependence. Assume the ground truth
positions of the keypoints are as follows: the first keypoint is located at the center of the image, while the
second keypoint is at the top-left corner (see Fig. 2(a)). Let δhi and δwi, for i = 1, 2, represent the errors
in the vertical and horizontal directions for the keypoints. The polytope δV representing the keypoint error
bound is defined as:

δh1 + δw1 + δh2 + δw2 ≤ 1, (4a)
δh1 + δw1 + δh2 + δw2 ≥ −1. (4b)

Fig. 2(c) illustrates the independent keypoint error model from the baseline (Anonymity), where the allowable
deviations are represented as red rectangles centered at the ground-truth positions, that is,

δh1 = 0, −1 ≤ δw1 ≤ 1, δh2 = 0, δw2 = 0.

Under this method, the first keypoint is permitted to deviate by one pixel in the horizontal direction but none
vertically, while the second keypoint is not allowed any deviation. In contrast, our coupled approach leverages
the entire feasible region within the polytope (4), as illustrated by the irregular geometry in Fig. 2(d). Clearly,
the decoupled method in Anonymity is overly conservative, as it excludes a significant portion of feasible cases
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inside δV. The bottom-right section of Figure 2(d) illustrates cases where the keypoint errors fall outside the
allowable polytope δV (e.g., δh1 = 1, δw1 = 1).

5.1 A point inside the reachable set and out-of-bound keypoint errors

Let S = {1, . . . , HW} represent the set of flattened indices for each heatmap, and let Z ∈ RHW ×K denote
the matrix of continuous variables. Z is contained in the zonotope if there exists a set of αk ∈ [−1, 1] such
that

Z = C +
m∑

k=1
αkGk. (5)

For the i-th keypoint, let (v∗
2i−1, v∗

2i) ∈ Z2 denote the ground-truth 2D coordinates. The condition that
i-th keypoint’s deviation (δv2i−1, δv2i) from its true position remains within the image boundaries can be
expressed as:

−(v∗
2i−1 − 1) ≤ δv2i−1 ≤ H − v∗

2i−1, for i = 1, . . . , K, (6a)
−(v∗

2i − 1) ≤ δv2i ≤ W − v∗
2i, for i = 1, . . . , K. (6b)

Define ϵ and M as very small (10−6) and very large (106) positive constants, respectively. Additionally, let
r ∈ {0, 1}r be a binary vector of size r, equal to the number of rows in the matrix Pv. Using the Big-M
method, the condition that δv lies outside the polytope of keypoint errors δV can be encoded as follows:

r∑
i=1

ri ≥ 1, (7a)

Pvδv ≥ bv + ϵ − M(1 − r). (7b)

Here, ϵ denotes a vector with all entries equal to ϵ, and ri = 1 indicates that the point δv lies outside the
i-th face of the polytope δV. To tighten constraint (7b), define Mi as the element-wise maximum value of
the vector −Pv δv + bv + ϵ, that is,

Mi = max
δv s.t. (6)

[−Pv δv + bv + ϵ]i ,

where [·]i extracts the i-th component. Assemble these values into the diagonal matrix M =
diag(M1, . . . , Mr). Now constraint (7b) can be rewritten as

Pv δv ≥ bv + ϵ − M (1 − r).

5.2 Dynamic indexing and and maximality check under keypoint deviations

Given a keypoint deviation vector δv, this section describes the procedure for retrieving values from a point
Z ∈ Z using the index v0 + δv, and verifying whether the corresponding projected values of Z are element-
wise maximal. Since δv is itself composed of variables, we refer to this as the dynamic indexing problem, as
depicted in Fig. 3.

5.2.1 Binary indicator of Z at indexed location (v0 + δv)

Let ∆ ∈ {0, 1}HW ×K , with the same dimensions as Z, denote a matrix of binary variables, where the position
indexed by (v0 + δv) is set to 1, and all others are set to 0. The perturbed coordinates of the i-th keypoint
are expressed as (hi, wi) = (v∗

2i−1 + δv2i−1, v∗
2i + δv2i). For the i-th keypoint, ∆ being the binary indicator

of Z is formulated as: ∑
j∈S

∆ji = 1, (8a)

(hi − 1)W + wi =
∑
j∈S

j∆ji. (8b)
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Figure 3: An illustration of dynamic indexing for the first keypoint: the green grid indicates the ground-truth
keypoint location, while the red grid represents the perturbed keypoint position. The index deviation (1, -1)
retrieves the value Z31.

5.2.2 Extracting values indexed by (v0 + δv)

Define M ∈ RHW ×K and M ∈ RHW ×K as the element-wise lower and upper bounds of the point Z within
the zonotope Z, respectively. Specifically, the lower bound is calculated by subtracting the absolute sum of
contributions from all generators from the center value:

M ji = Cji −
m∑

k=1
|Gjik| .

The upper bound is determined by adding the absolute sum of contributions from all generators to the center
value:

M ji = Cji +
m∑

k=1
|Gjik| .

Let Ẑ ∈ RHW ×K be a matrix of continuous variables where each element equals the corresponding element
in Z if the ∆ value at the same location is 1, and is zero otherwise. This relationship is expressed as follows
for j ∈ S:

Ẑji ≥ M ji∆ji, (9a)

Ẑji ≤ M ji∆ji, (9b)
Ẑji ≤ Zji − M ji(1 − ∆ji), (9c)

Ẑji ≥ Zji − M ji(1 − ∆ji). (9d)

If ∆ji = 1, constraints (9c) and (9d) ensure that Ẑji = Zji. Conversely, if ∆ji = 0, constraints (9a) and (9b)
enforce that Ẑji = 0. Let z ∈ RK represent the set of continuous variables corresponding to values in Z
indexed by the perturbed coordinates v∗ + δv. These values are computed as:

zi =
∑
j∈S

Ẑji. (10)

The feasible set of the variable z, defined by constraints (7) through (10), corresponds to a lower-dimensional
projection of the reachable set, determined by out-of-bound keypoint errors. We refer to this as the out-of-
bound projection, whereas projections associated with admissible keypoint deviations are termed in-bound
projections.
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5.2.3 Finding a counterexample

Let Ẑin ⊆ RK represent the sets of in-bound projections. The objective is to determine whether there exists
a z such that it is element-wise larger than any point zin ∈ Ẑin. Focusing on the i-th keypoint, this means
the i-th component zi must exceed all possible values of zi

in. To compute all possible values of zi
in, we

project the polytope of keypoint errors δV onto the i-th keypoint, denoting the resulting projected polytope
as δVi. By enumerating all pairs of integer values (δv2i−1, δv2i) within this polytope, we obtain the set of
in-bound keypoint errors for the i-th keypoint. These integer pairs must also satisfy the image boundaries
constraint (6). Each pair of in-bound errors is then added to the ground-truth coordinate (v∗

2i−1, v∗
2i) to

compute the perturbed coordinates, and we denote the resulting set of flattened in-bound indices as Si
in.

Finally, the condition that zi is greater than all possible values of zi
in can be expressed as:

zi ≥ Zji, ∀j ∈ Si
in. (11)

5.3 Pruning the size of MILP

Constraint (11) ensures that zi exceeds the largest value within the set Si
in. To reduce the number of

variables in constraint (11), we aim to minimize the cardinality of Si
in by eliminating flattened indices for

which another flattened index has a minimum value exceeding its maximum value. This is formally defined
as:

Si,−
in =

{
j ∈ Si

in | ∃j′ ∈ Si
in and j′ ̸= j, M j′i ≥ M ji

}
. (12)

We then define a refined set of in-bound indices as Si,∗
in = Si

in \Si,−
in , replacing Si

in with Si,∗
in in constraint (11).

Similarly, constraints (8)-(10) relate to the out-of-bound indices. The candidate set of out-of-bound indices
is defined as Si

out = S \ Si,−
in . From this set, we further remove indices where an in-bound index exists such

that its minimum value is no less than the maximum value of the out-of-bound index. This is described as:

Si,−
out =

{
j ∈ Si

out | ∃j′ ∈ Si
in and j′ ̸= j, M j′i ≥ M ji

}
. (13)

The pruned set of out-of-bound indices is then defined as Si,∗
out = Si

out \ Si,−
out . Finally, we refine con-

straint (5), (8), (9) and (10) by replacing S with Si,∗
in ∪ Si,∗

out, as the original S encompasses both in-bound
and out-of-bound indices.
Example 1. (continued) We analyze a reachable set defined by a center and a single generator, considering
two scenarios where the MILP is infeasible in the first scenario and feasible in the second. In the first
scenario, the center C and generator G are depicted in Fig. 4(a) and Fig. 4(b), respectively. For any point
in the reachable set C + αG with α ranging from -1 to 1, the minimum values at the ground-truth pixels in
each heatmap are higher than the maximum values at all other pixels. Consequently, the predicted keypoints
align perfectly with the ground truth (as shown in Fig. 4(c)). Therefore, the MILP is infeasible because there
are no out-of-bound locations whose values exceed those of the in-bound locations. In the second scenario,
using a different generator, the maximum values in the heatmaps occur at the bottom-right pixels when α = 1
(see Fig. 4(f)). This results in keypoint errors of δh1 = 1, δw1 = 1, and δh2 = 2, δw2 = 2 (refer to Fig. 2(b)),
which violate the constraints defined by (4). As a result, a counterexample is identified, where keypoint errors
fall outside the polytope δV. We present the MILP formulation for the first scenario. First, the zonotope
in (5) is expressed as

Z =
[
−5.0 −5.0 −5.0 −5.0 0.0 −5.0 −5.0 −5.0 −5.0
0.1 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0

]T

+ α1

[
−0.1 −0.1 −0.1 −0.1 2.0 −0.1 −0.1 −0.1 −0.1
1.0 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1

]T
, α1 ∈ [−1, 1].

(14)

Let δv = [δv1, δv2, δv3, δv4]. Given that the heatmap has dimensions H = 3 and W = 3, and the ground-truth
coordinates are (v∗

1 , v∗
2) = (2, 2) and (v∗

3 , v∗
4) = (1, 1), the boundary condition for δv in constraint (6) can be

9
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(a) center (b) generator (c) prediction

(d) center (e) generator (f) counter-example

Figure 4: In the first scenario (a)-(c), the MILP is infeasible. Conversely, in the second scenario (d)-(f), the
MILP is feasible, resulting in the identification of a counterexample.

expressed as

−1 ≤ δv1 ≤ 1, −1 ≤ δv2 ≤ 1, (15a)
0 ≤ δv3 ≤ 2, 0 ≤ δv4 ≤ 2. (15b)

Let r = [r1, r2] and ϵ = 1 × 10−6. The element-wise maximum values of the two entries in the vector
−Pvδv + bv + ϵ are 3.000001 and 7.000001, respectively. Accordingly, the out-of-polytope condition (7) for
δV can be written as

r1 + r2 ≥ 1, (16a)[
1 1 1 1

−1 −1 −1 −1

]
δv ≥

[
−2 + 3.000001r1
−6 + 7.000001r2

]
. (16b)

The perturbed coordinates are (h1, w1) = (2+δv1, 2+δv2) and (h2, w2) = (1+δv3, 1+δv4). Let S = {1, . . . , 9}
and ∆ ∈ {0, 1}9×2. The binary indicator constraint (8) can then be written as

1 =
∑
j∈S

∆j1, 3δv1 + δv2 + 5=
∑
j∈S

j∆j1, (17a)

1 =
∑
j∈S

∆j2, 3δv3 + δv4 + 1=
∑
j∈S

j∆j2. (17b)

The element-wise lower and upper bounds for the points contained in the zonotope Z are

M =
[
−5.1 −5.1 −5.1 −5.1 −2.0 −5.1 −5.1 −5.1 −5.1
−0.9 −5.1 −5.1 −5.1 −5.1 −5.1 −5.1 −5.1 −5.1

]T
,

M =
[
−4.9 −4.9 −4.9 −4.9 2.0 −4.9 −4.9 −4.9 −4.9
1.1 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9

]T
.

Therefore, constraint (9) becomes

Ẑ ≥ M ⊙ ∆, (18a)
Ẑ ≤ M ⊙ ∆, (18b)
Ẑ ≤ Z − M ⊙ (1 − ∆), (18c)
Ẑ ≥ Z − M ⊙ (1 − ∆). (18d)

10
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where ⊙ denotes element-wise multiplication. Let z = [z1, z2]. Then, the summation constraint (10) can be
expressed as

z1 =
∑
j∈S

Ẑj1, z2 =
∑
j∈S

Ẑj2. (19)

The projection of δV onto the first keypoint yields {(−1, −1), (−1, 0), (−1, 1), (0, −1), (0, 0), (0, 1),
(1, −1), (1, 0)}. Given the ground-truth coordinate (2, 2), this corresponds to the 2D coordinates {(1, 1),
(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2)}. The corresponding flattened in-bound indices for the first
keypoint are S1

in = {1, . . . , 8}. Similarly, S2
in = {1, . . . , 8}. Therefore, the counterexample constraint (11)

becomes

z1 ≥ Zj1, j ∈ S1
in, (20a)

z2 ≥ Zj2, j ∈ S2
in. (20b)

For the first keypoint, the lower bound (-2.0) of the value at index 5 in the first column of M exceeds the upper
bound (-4.9) of all other values in the first column of M, giving S1,−

in = {1, 2, 3, 4, 6, 7, 8}. Consequently,
S1,∗

in = S1
in \ S1,−

in = {5}. For the set of out-of-bound indices, we have S1
out = S \ S1,−

in = {5, 9}, S1,−
out = {9}.

Hence, S1,∗
out = S1

out \ S1,−
out = {5}. Similarly, for the second keypoint, S2,∗

in = {1}, S2,∗
out = {1}. We found that

S1,∗
in = S1,∗

out = {5}, S2,∗
in = S2,∗

out = {1}

which correspond exactly to the locations of the ground-truth pixels. In other words, for each keypoint,
the pruned set of out-of-bound indices coincides with the pruned set of in-bound indices. This renders the
formulation for the scenario infeasible, since an index cannot simultaneously be both in-bound and out-of-
bound.

Following the same logic, for the second scenario in Figure 4, we obtain

S1,∗
in = {5}, S1,∗

out = {5, 9}, S2,∗
in = {1}, S2,∗

out = {1, 9}.

In this case, the MILP formulation has a feasible solution with α1 = 1.0, δv = [1, 1, 2, 2], r = [1, 0], ∆91 =
∆92 = 1, z1 = Z91, z2 = Z92.

6 Theoretical Analysis

Theorem 1 (Soundness). Our approach is sound: if it certifies the model as robust, then the keypoint
detection model is guaranteed to be robust.

Proof. The claim follows directly from the MILP formulation. Infeasibility of the MILP implies that there
exists no point Z ∈ Z for which the maximum value in each heatmap results in out-of-bound indices.
Equivalently, every point in Z yields keypoint deviations that remain within the acceptable output set δV.
Since Z is an over-approximation of the model’s true reachable set, we conclude that the model is robust.

7 Evaluation Results

7.1 Case study

7.1.1 Dataset

We adopt the keypoint-based pose estimation task presented in the baseline (Anonymity), which aims to
estimate the pose of an airplane parked at an airport relative to a camera. The estimation pipeline follows
a two-stage process: first, keypoints are detected in the input image; then, a Perspective-n-Point (PnP)-
based nonlinear optimization algorithm computes the pose by leveraging known 3D-2D correspondences
of keypoints. In this case, 23 keypoints are strategically placed across the airplane’s surface to provide
comprehensive coverage of the aircraft’s geometry (marked as green dots in Fig. 1). The dataset comprises
7320 RGB images of airplanes, each with a resolution of 1920 × 1200 pixels.

11
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7.1.2 Backbone model

The CNN-based model consists of five convolutional layers followed by five deconvolutional layers, designed to
process input images of size 64×64×3. In total, the network comprises 39 layers and contains approximately
6.57×105 trainable parameters.

7.1.3 Perturbations

From a dataset of over 7000 images, we randomly select 200 seed images and apply either local or global
perturbations to generate the evaluation set.

Local object occlusions We constructed a set of 40 realistic semantic disturbances representing common
airport elements such as personnel and vehicles. To generate perturbed images, we randomly selected 20
objects from this set to serve as patches, each up to 150 pixels in size, and randomly placed one patch
per image on the seed images (local objects are highlighted with red circles in Fig. 1). Perturbations were
categorized as overlapping or non-overlapping, depending on whether the added patch overlaps with any
part of the airplane in the image. Note that each convex hull used in analysis contains only overlapping or
only non-overlapping images.

In total, we generated 4000 perturbed images: 893 classified as overlapping and 3107 as non-overlapping.
To evaluate the impact of semantic disturbances on robustness, we varied the number of perturbed images
from 1 to 4 to form the convex hull X . These images were randomly sampled, enabling a controlled study
of how increasing semantic complexity influences system performance and robustness guarantees.

Global perturbations We change each pixel’s value through two types of global perturbations: brightness
and contrast. For brightness, a variation value b ∈ Z is applied such that each pixel’s value increases by
b, that is, I ′ = clip(I + b), where I represents the original pixel values, I ′ the new pixel values, and
clip ensures the values remain within the range [0, 255]. For contrast perturbation, a variation value
c ∈ R adjusts each pixel’s value by a percentage c, formulated as I ′ = clip(I × (1 + c)). The convex
hull is constructed as follows. For a positive value b ∈ Z+, two perturbed images are created for b and −b,
respectively. These images act as vertices of the convex hull. Along with the seed image, this approach
facilitates verification of the model’s robustness to any brightness variation within the range [−b, b]. The
same methodology applies to contrast variations c ∈ R+. We examine the effects for b values of {1, 2} and c
values of 5 × 10−4, 5 × 10−3, 1 × 10−2}.

7.1.4 Output specification

The system requirement is specified in terms of pose error thresholds, given by ϵr = α[10◦, 10◦, 10◦] for
rotation and ϵt = α[4, 4, 20] in meter for translation, where the scalar parameter α controls the overall
tolerance level. Following the baseline (Anonymity), through a linear approximation, the corresponding
keypoint error bounds can be derived from the pose error bounds, allowing the keypoint deviation constraints
to also be expressed as a polytope. As α increases, the allowable keypoint deviations expand accordingly.

7.2 Metrics

We aim to answer two key questions:

1. How computationally efficient is the resulting neural network verification problem?

2. How accurate is the proposed certification method for robust pose estimation?

We evaluate performance using two metrics: verification time and verified rate. Verification time statis-
tics—including the mean and standard deviation—are computed for each tested seed image under specific
perturbations. The verified rate is defined as the proportion of cases in which the verification algorithm
successfully certifies robustness at the keypoint level, relative to the total number of cases where the seed
images yield acceptable keypoint errors.

12
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Empirical verified rate Given a clean image and a specific type of perturbation, we apply a testing-based
approach (Tian et al., 2018) to compute the empirical verified rate, which acts as an upper bound for the
verified rate obtained through the verification method. Specifically, we randomly sample 100 instances within
the given convex hull and run them through the neural network to check whether the keypoint prediction
error for each instance satisfies the output specification. If all 100 instances meet the specification, the image
is considered empirically robust to that perturbation.

7.3 Results

Solver setup We employ the verification toolbox ModelVerification.jl (MV) (Wei et al., 2025), which
accepts convex hulls as input specifications. MV.jl is the state-of-the-art verifier that supports a wide range
of verification algorithms and is the most user-friendly to extend. It follows a branch-and-bound strategy to
divide and conquer the problem efficiently. Two parameters guide this process: split_method determines
the division of an unknown branch into smaller branches for further refinement, and search_method dic-
tates the approach to navigating through the branch. We set search_method to use breadth-first search
and split_method to bisect the branch. The computing platform is a Linux server equipped with dual Intel
CPUs, each with 24 cores running at 2.20 GHz and a total of 376 GB of memory. Additionally, the server
includes eight NVIDIA RTX A4000 GPUs, each with 16 GB of memory.

Local object occlusions The verified rates for non-overlapping images are presented in Table 1, with each
cell displaying both the fraction and the corresponding percentage. Under the same keypoint error thresholds
(i.e., fixed α), our method consistently outperforms the baseline (Anonymity) in terms of verified rate, as
shown by its smaller gap relative to the empirical verified rate obtained from testing. In contrast, the
baseline (Anonymity) fails to verify any image when α ≤ 0.5, highlighting the conservativeness of their
approach. Notably, our method maintains a relatively stable verified rate as the number of local objects (m)
increases, suggesting that background perturbations have limited impact on model robustness. Moreover,
for a fixed number m of local objects, the verified rate using our method remains steady across α values
from 1.0 to 0.5 and is close to the empirical verified rate, but drops significantly as α drops from 0.2 to
0.1. This indicates that tighter keypoint error bounds increase the influence of over-approximation, affecting
verification performance under stricter accuracy requirements.

Similarly, Table 2 reports the verified rates for overlapping images. Unlike the non-overlapping case, for
a given α, all fractions share the same denominator, since they correspond to the same set of seed images
yielding acceptable keypoint errors, regardless of the number of local perturbations (m). In this table,
the denominator decreases as m increases because the 20 objects were randomly placed on the images.
Because the airplane occupies a relatively small portion of the image, these objects are more often disjoint
from it, resulting in sufficient data for non-overlapping images across all values of m from 1 to 4. In
contrast, overlapping images require all samples to contain overlaps, leading to fewer available images as m
increases. Regarding verified rates, while our method continues to outperform the baseline (Anonymity) ,
both approaches achieve consistently lower verified rates compared to non-overlapping images. Furthermore,
distinct from the non-overlapping case, our method’s verified rate declines rapidly as the number of local
objects (m) increases. This suggests that the neural network focuses heavily on the airplane, rendering it
more vulnerable to perturbations directly affecting it.

The verification runtimes of both methods on non-overlapping images increase as m grows, shown in Table 3,
due to the expansion of the input set and corresponding reachable set. Interestingly, when holding m
constant, our method exhibits a decreasing trend in runtime as α decreases, while the baseline (Anonymity)
shows the opposite. This leads to our method being slower at α = 1.0, but faster at α = 0.1. To explain
this observation, Table 5 reports the MILP size statistics for our method when m = 4, including counts
of binary, integer, and continuous variables, as well as constraints. For non-overlapping images, the MILP
size remains relatively stable across different α values after applying pruning. The variation in runtime is
instead attributed to MILP feasibility: smaller α leads to more feasible MILP problems, making it easier to
quickly find a feasible solution, whereas larger α makes infeasibility proofs more computationally demanding.
In contrast, the baseline (Anonymity) models each post-pooling pixel as a distinct class, so decreasing α
increases the number of output categories, leading to higher output dimensionality and longer runtimes.
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m
α = 1.0 α = 0.5 α = 0.2 α = 0.1

testing ours baseline testing ours baseline testing ours baseline testing ours baseline

1 100.0%
(200/200)

99.5%
(199/200)

47.5%
(95/200)

100.0%
(198/198)

99.0%
(196/198)

0.0%
(0/198)

100.0%
(190/190)

71.6%
(136/190)

0.0%
(0/190)

88.7%
(86/97)

10.3%
(10/97)

0.0%
(0/97)

2 100.0%
(200/200)

99.0%
(198/200)

52.5%
(105/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

98.4%
(187/190)

72.1%
(137/190)

0.0%
(0/190)

89.7%
(87/97)

8.2%
(8/97)

0.0%
(0/97)

3 100.0%
(200/200)

99.0%
(198/200)

53.0%
(106/200)

100.0%
(198/198)

99.0%
(196/198)

0.0%
(0/198)

99.4%
(189/190)

67.4%
(128/190)

0.0%
(0/190)

88.7%
(86/97)

5.1%
(5/97)

0.0%
(0/97)

4 100.0%
(200/200)

97.0%
(194/200)

53.0%
(106/200)

100.0%
(198/198)

98.0%
(194/198)

0.0%
(0/198)

99.5%
(189/190)

62.1%
(118/190)

0.0%
(0/190)

90.7%
(88/97)

7.2%
(7/97)

0.0%
(0/97)

Table 1: Statistical results on verified rate for non-overlapping local perturbations, with “testing” indicating
the empirical verified rate.

m
α = 1.0 α = 0.5 α = 0.2 α = 0.1

testing ours baseline testing ours baseline testing ours baseline testing ours baseline

1 100.0%
(196/196)

95.4%
(187/196)

50.0%
(98/196)

100.0%
(195/195)

93.3%
(182/195)

0.0%
(0/195)

96.3%
(183/190)

64.2%
(122/190)

0.0%
(0/190)

76.3%
(74/97)

6.2%
(6/97)

0.0%
(0/97)

2 100.0%
(192/192)

77.1%
(148/192)

41.1%
(79/192)

100.0%
(190/190)

78.9%
(150/190)

0.0%
(0/190)

96.7%
(175/181)

43.6%
(79/181)

0.0%
(0/181)

79.1%
(72/91)

3.3%
(3/91)

0.0%
(0/91)

3 100.0%
(157/157)

64.3%
(101/157)

33.1%
(52/157)

100.0%
(157/157)

64.3%
(101/157)

0.0%
(0/157)

96.0%
(142/148)

30.4%
(45/148)

0.0%
(0/148)

73.9%
(51/69)

1.4%
(1/69)

0.0%
(0/69)

4 100.0%
(126/126)

51.6%
(65/126)

31.0%
(39/126)

100.0%
(126/126)

46.8%
(59/126)

0.0%
(0/126)

89.0%
(105/115)

20.9%
(24/115)

0.0%
(0/115)

67.9%
(36/53)

1.9%
(1/53)

0.0%
(0/53)

Table 2: Statistical results on verified rate for overlapping local perturbations, with “testing” indicating the
empirical verified rate.

m
α = 1.0 α = 0.5 α = 0.2 α = 0.1

ours baseline ours baseline ours baseline ours baseline
1 11.8±7.4 7.6±6.6 10.8±5.2 13.0±9.0 12.6±16.1 20.4±6.3 9.1±12.4 26.4±6.4
2 17.0±15.2 12.4±9.9 18.6±29.5 19.2±12.0 16.1±12.4 26.7±7.4 12.3±16.4 33.0±11.8
3 29.8±71.0 17.2±9.6 28.9±79.2 22.5±13.5 21.9±17.9 29.8±10.7 14.1±18.1 35.6±10.8
4 36.0±73.6 21.5±12.4 37.2±77.4 28.0±15.7 29.0±23.5 34.7±12.2 18.5±23.3 39.2±14.2

Table 3: Statistical results on verification time for non-overlapping local perturbations (seconds).

m
α = 1.0 α = 0.5 α = 0.2 α = 0.1

ours baseline ours baseline ours baseline ours baseline
1 40.3±95.9 16.3±17.8 44.0±94.0 20.9±16.6 23.9±39.8 29.3±14.2 29.3±45.9 36.0±19.5
2 113.0±155.4 30.8±27.3 105.9±147.5 35.1±23.6 76.9±114.6 48.4±37.0 54.8±69.8 51.1±40.2
3 170.2±175.1 48.3±47.7 166.1±173.6 56.6±53.7 99.2±131.0 65.6±60.2 74.4±83.7 64.2±30.4
4 230.8±190.0 66.2±55.8 252.6±194.0 77.9±60.4 140.9±138.5 84.9±65.1 151.2±210.3 104.4±95.3

Table 4: Statistical results on verification time for overlapping local perturbations (seconds).

Table 4 shows that both methods experience increased verification times on overlapping images relative to
non-overlapping ones, with our method becoming slower than the baseline. This behavior stems from the
significantly larger and more complex reachable sets in the overlapping case, which reduce the effectiveness
of the pruning strategy and lead to considerably larger MILP instances. As indicated in Table 5, although
the original MILP sizes are comparable, pruning reduces the problem size by approximately three orders of
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magnitude for non-overlapping images, but only by about two orders for overlapping ones. Consequently,
the pruned MILP for overlapping images remains roughly an order of magnitude larger than that for non-
overlapping images.

α overlapping pruning binary integer continuous constraints

1.0
✗

✗ 9.42×104±0.00×101 46.0±0.0 1.89×105±5.29×102 6.61×105±1.06×103

✓ 5.31×101±4.29×101 46.0±0.0 8.36×102±7.48×102 1.95×103±1.61×103

✓
✗ 9.42×104±0.00×101 46.0±0.0 1.92×105±6.64×103 6.67×105±1.33×104

✓ 8.18×102±4.11×103 46.0±0.0 5.07×103±1.42×104 1.27×104±4.06×104

0.5
✗

✗ 9.42×104±0.00×101 46.0±0.0 1.89×105±4.41×102 6.61×105±8.97×102

✓ 4.64×101±1.60×101 46.0±0.0 7.47×102±4.93×102 1.75×103±1.03×103

✓
✗ 9.42×104±0.00×101 46.0±0.0 1.92×105±6.78×103 6.67×105±1.35×104

✓ 1.03×103±4.98×103 46.0±0.0 6.04×103±1.74×104 1.53×104±4.96×104

0.2
✗

✗ 9.42×104±0.00×101 46.0±0.0 1.89×105±5.08×102 6.60×105±1.02×103

✓ 4.78×101±2.09×101 46.0±0.0 7.89×102±5.37×102 1.84×103±1.13×103

✓
✗ 9.42×104±0.00×101 46.0±0.0 1.92×105±4.70×103 6.66×105±9.43×103

✓ 9.45×102±3.10×103 46.0±0.0 5.77×103±1.14×104 1.45×104±3.19×104

0.1
✗

✗ 9.42×104±0.00×101 46.0±0.0 1.89×105±5.01×102 6.60×105±1.04×103

✓ 4.90×101±4.09×101 46.0±0.0 7.64×102±6.75×102 1.79×103±1.46×103

✓
✗ 9.42×104±0.00×101 46.0±0.0 1.92×105±6.33×103 6.67×105±1.27×104

✓ 1.95×103±7.19×103 46.0±0.0 9.07×103±2.49×104 2.41×104±7.12×104

Table 5: Statistical results of the MILP size, including the number of binary, integer, and continuous variables,
as well as the number of constraints. These results vary with the pose error threshold α, the presence of
object-airplane overlap, and the use of the pruning strategy. Results obtained with pruning are highlighted
in gray for non-overlapping images and in orange for overlapping images.

c%
α = 1.0 α = 0.5 α = 0.2 α = 0.1

testing ours baseline testing ours baseline testing ours baseline testing ours baseline

0.05 100.0%
(200/200)

99.5%
(199/200)

55.5%
(111/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

100.0%
(190/190)

75.3%
(143/190)

0.0%
(0/190)

94.8%
(92/97)

11.3%
(11/97)

0.0%
(0/97)

0.5 100.0%
(200/200)

99.5%
(199/200)

55.0%
(110/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

99.5%
(189/190)

72.1%
(137/190)

0.0%
(0/190)

91.8%
(89/97)

10.3%
(10/97)

0.0%
(0/97)

1 100.0%
(200/200)

99.5%
(199/200)

54.0%
(108/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

98.4%
(187/190)

64.7%
(123/190)

0.0%
(0/190)

84.5%
(82/97)

8.2%
(8/97)

0.0%
(0/97)

Table 6: Statistical results on verified rate for contrast.

c%
α = 1.0 α = 0.5 α = 0.2 α = 0.1

ours baseline ours baseline ours baseline ours baseline
0.05 19.0±2.8 16.1±3.4 19.4±2.7 123.3±9.6 20.1±3.6 29.1±3.7 23.9±3.5 34.7±3.2
0.5 22.9±2.9 19.3±3.4 23.3±2.9 26.9±9.3 24.1±3.7 33.0±3.8 28.0±3.4 38.9±3.0
1 48.1±9.4 45.0±10.3 49.0±9.7 53.3±16.0 49.7±9.8 58.9±9.9 54.9±9.8 65.6±8.8

Table 7: Statistical results on verification time for contrast (seconds).

Global perturbations A similar pattern is seen for brightness and contrast perturbations, as shown in
Tables 6-9. Interestingly, the verified rates remain similar across different types of perturbations for the same
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b
α = 1.0 α = 0.5 α = 0.2 α = 0.1

testing ours baseline testing ours baseline testing ours baseline testing ours baseline

1 100.0%
(200/200)

99.5%
(199/200)

55.5%
(111/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

100.0%
(190/190)

72.1%
(137/190)

0.0%
(0/190)

93.8%
(91/97)

10.3%
(10/97)

0.0%
(0/97)

2 100.0%
(200/200)

99.0%
(198/200)

54.5%
(109/200)

100.0%
(198/198)

100.0%
(198/198)

0.0%
(0/198)

100.0%
(190/190)

63.7%
(121/190)

0.0%
(0/190)

88.6%
(86/97)

7.2%
(7/97)

0.0%
(0/97)

Table 8: Statistical results on verified rate for brightness.

b
α = 1.0 α = 0.5 α = 0.2 α = 0.1

ours baseline ours baseline ours baseline ours baseline
1 33.4±5.5 29.0±5.6 33.9±5.5 35.2±9.8 34.3±5.9 43.4±6.4 39.6±11.9 48.9±5.4
2 65.6±13.4 58.3±11.2 67.6±16.9 65.0±15.1 66.2±13.3 75.8±11.6 72.1±12.8 77.9±11.0

Table 9: Statistical results on verification time for brightness (seconds).

α values, whether the perturbations are non-overlapping local occlusions or global changes like brightness
and contrast. This indicates that the neural network exhibits a certain level of general robustness to diverse
types of perturbations with moderate intensity.

8 Conclusion

In this work, we propose a verification method that combines reachability analysis with MILP for learning-
based keypoint detection, allowing the output specification to capture interdependencies among keypoints.
Our approach encodes the coupling between keypoints directly, without decoupling, and is applicable to
general heatmap-based keypoint detection models. Experimental results show that our coupled method
achieves significantly higher verified rates compared to the decoupled approach.

However, one limitation is that, given strict output specifications, there remains a substantial gap between
the verified rates achieved by our coupled method and the empirical rates obtained through the testing-based
method. Reducing this gap may require developing techniques to compute tighter over-approximations of
the model’s reachable set.
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