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Abstract

Language models are often used for tasks in-001
volving structured data like tables and graphs,002
but there is no general approach for choosing003
the best format to represent such data across004
different tasks for fine-tuning. In this study, we005
show how the pre-trained model can suggest006
its own formats for representing structured data007
in a general task We also compare the perfor-008
mance of different formats after fine-tuning the009
models to see how they relate to the pre-trained010
performance. Our results show that different011
formats perform best across different models012
after fine-tuning for the same task. Interest-013
ingly, the format that performs best before fine-014
tuning always remains one of the top choices015
afterwards. This approach can help avoid the016
need for trial-and-error during fine-tuning, sav-017
ing time, computational resources, and reduc-018
ing the environmental impact of training large019
models.020

1 Introduction021

When using language models on tasks that involve022

structured data, such as tables or graphs, an im-023

portant decision is how to represent this data in a024

textual format. Previous work has highlighted the025

importance of choosing a good representation when026

prompting large language models (LLMs) for tasks027

that involve tables (Singha et al., 2023; Ye et al.,028

2023b) and graphs (Guo et al., 2023). In this paper,029

we explore three research questions about format-030

ting structured data for fine-tuning small language031

models (SLMs).032

To answer these questions, we explore three033

types of structured data (tabular data-frames,034

database schemas, and graphs) using three small035

language models (Mistral, Phi-3, and CodeLlama).036

For tabular data, we focus on two text-to-code037

tasks: Excel formulas (Singh et al., 2024) and038

Python functions (Yin et al., 2022). For database039

schemas, we analyze the text-to-SQL dataset (Yu040

et al., 2018), and for graph tasks, we use graph 041

question-answering data from Wang et al. (2024a). 042

First, we evaluate the extent to which the choice 043

of format still matters for fine-tuning. Out of two 044

hypotheses—either the model learns to use any 045

format during fine-tuning or the model learns more 046

efficiently with a specific format—we show that 047

the latter one holds consistently across different 048

tasks and models. The importance of choosing a 049

good representation thus remains for fine-tuning. 050

Second, we evaluate whether there is a correla- 051

tion in the performance before and after fine-tuning 052

using a specific format. If this holds—and we show 053

that it does in 16 out of 18 settings—the decision 054

about which format to use can be made using in- 055

ference only, sparing the developer an expensive 056

trial-and-error approach. 057

Third, we evaluate whether the small language 058

model can implicitly suggest candidate formats to 059

evaluate. If it can—which it does—a developer is 060

less reliant on their own experience with structured 061

formats, and thus less likely to forget validating a 062

specific format. 063

To summarize, our key contributions are as fol- 064

lows: 065

• We show that small language models prefer 066

specific textual representations of structured 067

data over others, even when fine-tuning. 068

• We demonstrate that performance after fine- 069

tuning closely aligns with the base model per- 070

formance across different formats, reducing 071

the need for extensive fine-tuning experiments. 072

This finding saves significant time and com- 073

putational resources. 074

• We show that small language models can pro- 075

vide their own suggestions for data formats, 076

offering a practical way to identify suitable 077

formats for structured data tasks. 078
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2 Experimental setup079

We study this approach across three distinct data080

structures: tables, database schemas, and graphs,081

using three open-source language models for fine-082

tuning: Phi-3, Mistral and CodeLlama.083

2.1 Datasets084

We consider three commonly used structures on085

four datasets (two datasets for tables) following086

prior studies on structured data understanding for087

LLMs (Jiang et al., 2023; Zhuang et al., 2024).088

Tables Tables are a common structure in text-to-089

code tasks. We focus on two such tasks: generating090

Python code and Excel formulas from natural lan-091

guage. For Python, we use the Arcade dataset (Yin092

et al., 2022) involves generating code that uses093

the pandas library to manipulate dataframes, select-094

ing all 208 that we can execute for testing and095

synthetically generating 4836 training and 1210096

validation samples using gpt-4-turbo following097

Singha et al. (2024). For Excel formulas, we use098

the 5668 validated training samples (5246 train and099

422 validation) and 200 test cases from Singh et al.100

(2024).101

Database schemas Text-to-SQL is another text-102

to-code task, but input is a database schema instead103

of a whole table. We use the Spider dataset (Yu104

et al., 2018) of 1032 tests and split the training set105

into 5509 training and 1482 validation examples.106

Graphs Whereas tables have an intuitive textual107

representation for language models, like CSV or108

column-oriented JSON, graphs are less straightfor-109

ward. Following an exploration of the ability of110

LLMs to solve graph problems in natural language111

(Wang et al., 2024a) we consider the tasks of cycle112

detection (graph → bool), flow estimation (graph113

→ float) and finding the shortest path (graph →114

path). There are 100 tests for each task. A single115

model is trained across all tasks on a training and116

validation set of consist of 6500 and 500 samples117

respectively, uniformly divided over all tasks.118

2.2 Fine-tuning setup119

We fine-tuned all models: Phi-3-120

mini-4k-instruct (3.8B parameters), Mistral-121

7B-Instruct-v0.2 (7B parameters), and122

CodeLlama-7b-hf (7B parameters) using low-123

rank adaptation (LoRA) (Hu et al., 2021) for 10124

epochs. The best checkpoint was determined by125

selecting the one with the lowest validation loss.126

All experiments were conducted on a single A100 127

GPU. For all models, we use a batch size of 8, 128

optimizer as adamw_torch and weight decay of 129

0.001. For LoRA configuration, we set the rank to 130

64, alpha parameter to 16 and dropout to 0.1. The 131

learning rate for Mistral and CodeLlama was set to 132

2e-4 and for Phi-2 it was set to 1e-4. These settings 133

are based on commonly used configurations in 134

similar fine-tuning setups (Hu et al., 2021). These 135

values have been validated in our preliminary 136

experiments. 137

2.3 Evaluation metrics 138

For all the code generation tasks, we use the 139

pass@k (Chen et al., 2021) metric based on ex- 140

ecution match of code, which estimates the proba- 141

bility that at least one out of k generations passes 142

all provided tests. We compute pass@5 over 10 143

predictions at temperature 0.6. A temperature of 144

0.6 was chosen to balance diversity and quality in 145

generations during fine-tuning, like prior works in 146

LLMs (Chen et al., 2021). 147

Similarly, for flow estimation and shortest path, 148

we use exact match with the pass@5 metric, based 149

on 10 predictions at a temperature of 0.6. For cy- 150

cle detection, which requires generating a binary 151

response (true or false) we use exact match for a 152

single prediction at zero temperature because using 153

pass@k for higher k gives inflated results. 154

3 Getting formatting suggestions 155

You are given a description of a formula
and a table (as a dataframe).
You write an Excel formula that matches the description
and that can be executed on the table.
Use structured references [@ColumnName] to refer to
columns.

# Problem
## Description
Insert two dashes between the first name and last name.
## Table
```python
pd.DataFrame( data=[['Erik','Magnusson'],        

      ['Jon','Snow']],
columns=['first_name','last_name'])

Description

Context

Completion

Figure 1: An example of incomplete prompt and its
completion used for generating formatting suggestions.

We can leverage the pre-trained model to sug- 156

gest format for data structures by providing a par- 157

tial prompt to the model, letting it auto-complete 158

the data structure and then parsing the format. A 159

typical fine-tuning prompt includes a task descrip- 160

tion (like writing formulas from natural language) 161

and some context on the problem instance (like the 162
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natural language utterance and a table). We struc-163

ture this prompt to ensure that the data structure164

is the last part of the context, cut the prompt short165

right before the data structure, and let the model166

auto-complete the structure. An example for NL2F167

is shown in Figure 1.168

We generate 10 predictions for each instance169

at a temperature of 0.8 for each problem and an-170

alyze the results with regular expressions. In the171

following two sections, we respectively analyze172

the discovered formats and how their occurrence173

statistics correlate to fine-tuning performance.174

3.1 Suggested formats175

An overview of occurrence statistics is shown in176

Table 1 and detailed in the following paragraphs.177

Dataframe tables We prefix the format with a178

pd.DataFrame constructor to encourage the model179

towards more variety, as the default mode is to180

suggest markdown. We find the following formats181

a⃝ Record: a list of row dictionaries, where each182

row maps a column name to a single value.183

b⃝ Column: a dictionary with each column name184

mapped to a list of of its values.185

c⃝ Row: a list of column names followed by a186

list of values for each row.187

d⃝ Row-invert: similar to Row, but with column188

names listed after the row values.189

and illustrate them in 2. Tables 1a and 1b show190

that the column format is suggested significantly191

more often than others for all models. Interestingly,192

the second format differs across models and tasks.193

CodeLlama has the most diversity, suggesting each194

format more than 1.5% of completions.195

Database schemas The most common formats196

generated by the models are197

a⃝ SQL code: the representation resembles SQL198

code for creating tables, with column names199

and data types enclosed within the statement.200

b⃝ Open column: a natural listing of table name,201

a colon (:) and a list of column names. Unlike202

the closed bracket format, column names can203

be placed on new lines.204

c⃝ Closed bracket: tables are represented with205

column names enclosed in parentheses, simi-206

lar to function parameters.207

Table 1: Occurrence statistics of formats suggested by
different models across all tasks.

Format Mistral Phi-3 CodeLlama

Column 85.60 85.40 69.70
Record 0.35 5.30 4.40
Row 6.55 0.15 2.50
Row-invert 6.15 5.40 21.65
Others 1.35 3.75 1.75

(a) Formula

Format Mistral Phi-3 CodeLlama

Column 80.53 91.92 73.27
Record 0.72 7.69 4.90
Row 3.51 0.05 2.93
Row-invert 13.61 0.24 15.48
Others 1.63 0.10 3.41

(b) Python

Format Mistral Phi-3 CodeLlama

Closed bracket 50.49 66.4 33.32
SQL code 26.39 16.10 29.57
Column list 22.35 13.3 21.43
Markdown 0.14 1.50 9.76
Others 0.61 3.48 5.92

(c) SQL

Task Format Mistral Phi-3 CodeLlama

CD

Adj. dict 40.61 10.00 19.80
Adj. matrix 0.20 13.00 10.10
Edge list 58.99 31.52 21.31
NL Graph 0.05 11.11 4.85
Others 0.15 34.37 43.94

FE

Adj. dict 27.90 12.70 17.40
Adj. matrix 3.00 4.00 15.80
Edge list 67.10 80.40 28.10
NL Graph 0.03 2.70 8.30
Others 2.00 0.02 30.40

SP

Adj. dict 74.8 45.90 29.20
Adj. matrix 0.60 0.60 8.60
Edge list 24.4 38.20 26.00
NL Graph 0.01 14.70 7.80
Others 0.19 0.60 27.40

(d) Graphs: cycle detection (CD), flow estimation (FE)
and shortest path (SP)

d⃝ Markdown: each schema is represented as a 208

table header in Markdown. 209

which are illustrated in Figure 3. All models favour 210

the closed bracket format, but there is more vari- 211

ation than for tables. CodeLlama is again the 212

most diverse, with three formats almost getting 213

suggested an equal number of cases. It is also the 214

only model that suggests markdown a significant 215

number of times. 216

Graphs Following are the most commonly gen- 217

erated formats across all tasks 218
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pd.DataFrame({
    "Year": [2017, 2020],
    "Quarter": ["Dec", "Sep"],
    "Head count": [2104, 3151],
     "Percent": [0.36, 0.42]
})

pd.DataFrame.from_records([
    { "Year": 2017, "Quarter": "Dec",
      "Head count": 2104, "Percent": 0.36 },
    { "Year": 2020, "Quarter": "Sep",
      "Head count": 3151,"Percent": 0.42 }
])

pd.DataFrame(
    columns=["Year", "Quarter", "Head count", "Percent"],
    data=[
        ["2017", "Dec", "2104", "0.36"],
        ["2020", "Sep", "3151", "0.42"],
    ],
)

pd.DataFrame(
    data=[
        ["2017", "Dec", "2104", "0.36"],
        ["2020", "Sep", "3151", "0.42"],
    ],
    columns=["Year", "Quarter", "Head count", "Percent"],
)

ca

b d

Figure 2: Table dataframe structures obtained from the base model completions for Formula and Python tasks.

CREATE TABLE department (
    Department_ID number,
    Name text,
    Creation text,
    Ranking number,
);

CREATE TABLE management (
    department_ID number,
    head_ID number,
    temporary_acting text,
);

a

## department
| Department_ID | Name | Creation | Ranking | 
| ------------- | ---- | -------- | ------- |

## management
| department_ID | head_ID | temporary_acting |
| ------------- | ------- | ---------------- |

Table department, columns: Department_ID, Name, Creation, Ranking
Table management, columns: department_ID, head_ID, temporary_acting

department(Department_ID, Name, Creation, Ranking)
management(department_ID, head_ID, temporary_acting)

b

c

d

Figure 3: Database schema representations obtained from the base model completions for the SQL task.

a⃝ Edge list: The connection between any two219

nodes is represented as a triple (i, j, w) with220

i and j nodes and w the weight of the edge221

between them.222

b⃝ Adjacency dictionary: Each node and its as-223

sociated connected nodes are represented as a224

list along with their weights.225

c⃝ Adjacency matrix: The graph is represented226

as an adjacency matrix format where each227

entry (i, j) in the matrix represent the weight228

between nodes i and j.229

d⃝ NL: Each edge is presented as a sentence node230

i is connected to node j with a weight of w.231

which are detailed in Figure 4. we find adjacency232

dictionary, adjacency matrix and edge list to be the233

most commonly used representations. There is a234

significant number of cases where the completions235

are just textual description about the problem with-236

out any graph representation. This prompted us237

to add the NL format, which was used in recent238

studies (Wang et al., 2024a; Ye et al., 2023a).239

{'1': [(2, 4), (3, 1)],
 '2': [(1, 4), (4, 2)]}

[[0 4 1 0]
 [4 0 0 2]]

[(1, 2, 4), (1, 3, 1),
 (2, 1, 4), (2, 4, 2)]

Node 1 is connected to Node 2 with an edge of weight 6.
Node 3 is connected to Node 4 with an edge of weight 5.

a

b
c

d

Implicit nodes

Figure 4: Graph representations obtained from base
model completions.

3.2 Occurrence versus performance 240

We study the correlation between occurrence statis- 241

tics and fine-tuning performance in Figure 5, for a 242

total of 18 cases (3 models × 6 problems). There 243

are some correlations (4/18) for Mistral on all 244

text-to-code and flow estimation, and for Phi-3 on 245

Python. For the majority of settings, however, it 246

does not hold, with 5/18 cases (Mistral on cycle 247

detection, Phi-3 on formula and flow estimation, 248

CodeLlama on formula and SQL) obtaining the 249

worst performance for the most common format. 250

This motivates the analysis between performance 251

before and after fine-tuning to still determine an ap- 252
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(e) Flow estimation
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Figure 5: Relation between occurrences of formats and fine-tuning performance on text-to-code tasks for different
models. There is some correlation, especially for the Mistral model, but it does not always hold up. This motivates
the analysis between performance before and after fine-tuning on these formats in Section 4.

propriate format without different fine-tuning runs.253

4 Performance before and after254

fine-tuning255

Next, we study the correlation between the per-256

formance before and after fine-tuning on different257

formats to identify any underlying patterns.258

We use a few-shot prompt with three exam-259

ples in the prompt to evaluate base model per-260

formance. Using 3 examples align with previous261

studies (Brown et al., 2020) where adding a few262

static examples allows models to infer task-specific263

patterns. We report results averaged over three264

fine-tuning runs (with different random seeds) to265

ensure the robustness of results.266

4.1 Results 267

Formula (Figure 6a) We observe that the best 268

performance on the Mistral base model is achieved 269

with the Column format, which also delivers the 270

highest performance after fine-tuning. For Phi-3, 271

both Row and Row-invert format give equal and 272

highest performance before and after fine-tuning. 273

Similarly, for CodeLlama, the Record format yield- 274

ing the best base model performance continue to 275

give highest performance post fine-tuning. This 276

indicates that different models prefer different rep- 277

resentations for the same task. But, the format that 278

performs best during base model inference consis- 279

tently leads to the best fine-tuning results. Some 280

other interesting insights are: For Mistral, the Row- 281
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Figure 6: Performance before and after fine-tuning on
text-to-code tasks. In 7/9 settings, we can select the
right format from the performance before fine-tuning.
In one setting (Phi-3 on Python) the best performance
before fine-tuning is tied with a winner after fine-tuning.
Surprisingly, CodeLlama does not learn anything for
the SQL code format, allowing it to be surpassed by the
open bracket format after fine-tuning.

invert format shows improved performance after282

fine-tuning, despite being the lowest-performing283

format in the base model. This suggests that the284

model learns to better recognize its structure, likely285

because it closely resembles the markdown for-286

mat. Interestingly, in all cases, Row and Row-invert287
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Figure 7: Performance comparison of different formats
on Graph Q&A tasks before fine-tuning (base) and after
fine-tuning. In all the settings we can directly choose the
right format for fine-tuning based on pre-trained model
performance.

formats show same performance after fine-tuning 288

across all models, even though their performance 289

differs before fine-tuning likely because, after fine- 290

tuning, the position of columns and rows no longer 291

significantly affects the model’s performance. 292

Python (Figure 6b) We observe that the best per- 293

formance for Mistral, both on the base model and 294

after fine-tuning, comes from the Column format, 295

consistent with the Formula task. CodeLlama per- 296
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forms best with the Record format, both before and297

after fine-tuning. These results hold true for both298

the Formula and Python tasks, indicating that the299

Column format for Mistral and the Record-column300

format for CodeLlama are generally well-suited301

for tabular understanding tasks. For Phi-3, the per-302

formance remains almost same after fine-tuning303

(except for Row format for which there is a slight304

decline). This could be because the model was305

already exposed to similar data during its train-306

ing, resulting in minimal additional learning during307

fine-tuning. However, the record format remains308

best before and after fine-tuning for Phi-3. For the309

Python task, the trend holds that the format yield-310

ing the highest performance on the base model311

continues to do so post fine-tuning. We also see312

that it is possible for multiple formats to achieve313

the highest performance post fine-tuning, but the314

top-performing format on the base model is always315

among the leading candidates (as seen with case of316

record and column Format for Phi-3).317

SQL (Figure 6c) For Mistral, the best perfor-318

mance both before and after fine-tuning is achieved319

with the Closed bracket format. Phi-3 gives equal320

and best performance for three formats before fine-321

tuning: closed bracket, SQL code and open column,322

out of which 2 formats remain the best after fine-323

tuning: closed Bracket & SQL code. In the case324

of CodeLlama, the performance either remains the325

same or improves only for the open column for-326

mat. Since the base model performance for CodeL-327

lama is already comparable to the fine-tuned per-328

formance of the other models, it’s likely that the329

model has encountered this data during training.330

There is an inconsistency with CodeLlama: the331

best-performing format before fine-tuning is SQL332

code, but after fine-tuning, it is the open column333

format. One hypothesis is that the open column for-334

mat has the fewest notation to learn, which enables335

more effective learning during fine-tuning. Overall,336

the very close performance of different formats on337

the base model makes it challenging to distinguish338

the best representation for this task.339

Graphs (Figure 7) In all settings, the format that340

performs best before fine-tuning performs best af-341

ter fine-tuning. Interestingly, different models have342

different preferences for different tasks, even if343

the same model is fine-tuned. Even though the344

NL format seems the most natural for a language345

model, it does not always outperform the structured346

formats—perhaps because the models also tend to 347

favor more compact structures over verbose inputs 348

for certain tasks. CodeLlama does better with adja- 349

cency dictionary on 2/3 tasks, which relates with 350

it best performance with record format (dictionary 351

like structures) in text-to-code tasks. Adjacency 352

matrix seems to be the least performing format for 353

all models, which shows it is not a suitable structure 354

for shortest path task. 355

4.2 Conclusion 356

In summary, performance before fine-tuning allows 357

to predict performance after fine-tuning in 16/18 358

settings (7/9 for text-to-code and 9/9 for graphs). 359

We conclude that the pre-trained model allows us 360

to select which format to use for fine-tuning. 361

5 Related Work 362

Recent studies have explored various techniques 363

to represent complex structures, such as tables, 364

graphs, and database schemas, for prompting or in- 365

context learning in large language models (LLMs). 366

These representations are important for enabling 367

LLMs to understand structural information effec- 368

tively. Research has shown that the performance 369

of LLMs can be sensitive to the choice of format 370

(Fang et al., 2024; Fatemi et al., 2023) which high- 371

lights the need to determine optimal representations 372

for fine-tuning tasks. 373

Tabular data representation For tabular data, 374

Sui et al. (2024) proposed a method where LLMs 375

generate explanations for table structures, which 376

are then used to re-prompt the model for improved 377

performance. Other approaches such as Gong et al. 378

(2020), employed a template-based approach to 379

convert table records into natural language sen- 380

tences, concatenating them for final representation. 381

Singha et al. (2023), showed that certain formats, 382

like JSON or df-loader, work best for particular 383

table understanding tasks, while (Ye et al., 2023b) 384

and (Wang et al., 2024b) demonstrated the effec- 385

tiveness of the PIPE format for table reasoning 386

tasks. Furthermore, Jaitly et al. (2023) explored 387

LaTeX-based serialization for table classification 388

tasks. Despite these insights, it remains unclear 389

whether a generalized approach can be adopted for 390

different models and different tasks. 391

Graph structure representation Similarly, for 392

graph-based tasks, various methods have been pro- 393

posed to encode graph structures. Earlier works, 394
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such as Wang et al. (2024a) and Ye et al. (2023a),395

employed natural language descriptions to repre-396

sent graph edges and nodes uniquely for each sub-397

task. However, these verbalized graphs can be-398

come lengthy, unstructured, and difficult for both399

humans and models to process (Jin et al., 2023).400

While Guo et al. (2023) suggested that appending401

explanations to the graph structure can improve402

performance, our results have been inconsistent.403

Alternative approaches, like Chai et al. (2023),404

introduced encoder-decoder architectures specif-405

ically designed to learn graph encodings. How-406

ever, our study aims to assess the impact of format407

representation within the LLM itself for different408

GraphQA tasks, without relying on external en-409

coders. Guo et al. (2023) evaluated three com-410

mon formats—edge lists, adjacency matrices, and411

GraphML descriptions—for their effectiveness in412

graph tasks. However, it is difficult for a non-expert413

practitioner to be aware of all possible formats.414

Other representations In the context of database415

schema representation for Text-2-SQL tasks, Gao416

et al. (2023) explored different formats inspired417

by external knowledge sources such as OpenAI418

prompt demonstrations and Alpaca SFT prompts.419

While their work leverages predefined formats, our420

study seeks to derive the schema representations421

directly from the model’s knowledge.422

Data Selection The work by (Liu et al., 2022)423

show that selecting data from the pre-training data424

that has a similar distribution to the fine-tuning data425

increases the value of starting from a pre-trained426

model, because it can reduce the effect of catas-427

trophic forgetting. However, in our work when428

we extract formats encountered in the pre-training429

data—by letting the model auto-complete the data,430

which informally optimizes the probability of that431

format given the task—the most common formats432

are not the best formats. This likely happens be-433

cause pre-training data for language models is typ-434

ically unstructured, causing a global bias towards435

formats that are more common and ignoring the436

task.437

6 Conclusion438

Our study shows that language models can implic-439

itly suggest candidate formats that are effective440

for fine-tuning reducing the developer’s reliance441

on personal experience with structured formats.442

Given that base model performance varies across443

different formats for representing structures, we 444

investigate whether fine-tuning teaches the model 445

to use other formats, or if the difference in per- 446

formance persists. To this end, we examine the 447

correlation between base model performance and 448

post-finetuning outcomes across formats. Notably, 449

the format that performs best on the base model 450

consistently ranks among the top candidates after 451

fine-tuning. Through experiments on various data 452

structures, we show that these findings are broadly 453

applicable. This approach offers a practical way 454

to select appropriate formats for fine-tuning with- 455

out relying on trial and error, saving both time and 456

computational resources during training. 457

7 Limitations 458

In this study we consider only easily accessible 459

models. There are two main dimensions to the 460

cost of fine-tuning an LLM: the GPU requirement 461

and the time to train on that GPU. We fix the first 462

dimension to accessible models that can be trained 463

on a single A100. 464

While we have shown a correlation between the 465

performance of the base model and the fine-tuned 466

model, this analysis is limited to a single piece of 467

structured data in the prompt. We have not evalu- 468

ated other parts of the prompt, nor the combination 469

of different sources. Since our focus was specif- 470

ically on structured data, we have restricted our 471

analysis to that area. 472

Additionally, we observed two instances in our 473

study—text-to-Python for Phi-3 and text-to-SQL 474

for CodeLlama—where fine-tuning did not yield 475

significant improvements over base model perfor- 476

mance. We understand that these are common tasks, 477

and it is possible that the base model was already 478

trained on similar tasks. However, we cannot defini- 479

tively determine whether this is the case. 480
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