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Abstract

Multi-agent spatiotemporal modeling is a challenging task from both an algorithmic1

design and computational complexity perspective. Recent work has explored the2

efficacy of traditional deep sequential models in this domain, but these architectures3

are slow and cumbersome to train, particularly as model size increases. Further,4

prior attempts to model interactions between agents across time have limitations,5

such as imposing an order on the agents, or making assumptions about their relation-6

ships. In this paper, we introduce baller2vec1, a multi-entity generalization of7

the standard Transformer that can, with minimal assumptions, simultaneously and8

efficiently integrate information across entities and time. We test the effectiveness9

of baller2vec for multi-agent spatiotemporal modeling by training it to perform10

two different basketball-related tasks: (1) simultaneously modeling the trajectories11

of all players on the court and (2) modeling the trajectory of the ball. Not only does12

baller2vec learn to perform these tasks well (outperforming a graph recurrent13

neural network with a similar number of parameters by a wide margin), it also14

appears to “understand” the game of basketball, encoding idiosyncratic qualities of15

players in its embeddings, and performing basketball-relevant functions with its16

attention heads.17

1 Introduction18

Whether it is a defender anticipating where the point guard will make a pass in a game of basketball,19

a marketing professional guessing the next trending topic on a social media platform, or a theme20

park manager forecasting the flow of visitor traffic, humans frequently attempt to predict phenomena21

arising from processes involving multiple entities interacting through time. When designing learning22

algorithms to perform such tasks, researchers face two main challenges:23

1. Given that entities lack a natural ordering, how do you effectively model interactions between24

entities across time?25

2. How do you efficiently learn from the large, high-dimensional inputs inherent to such26

sequential data?27

Prior work in athlete trajectory modeling, a widely studied application of multi-agent spatiotemporal28

modeling (MASM; where entities are agents moving through space), has attempted to model player29

interactions through “role-alignment” preprocessing steps (i.e., imposing an order on the players)30

[1, 2] or graph neural networks [3], but these approaches may destroy identity information in the31

former case (see Section 4.2) or limit personalization in the latter case (see Section 5.1). Recently,32

researchers have experimented with variational recurrent neural networks (VRNNs) [4] to model33

1All data and code for the paper are available at: <anonymized>.
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the temporal aspects of player trajectory data [3, 2], but the inherently sequential design of this34

architecture limits the size of models that can feasibly be trained in experiments.35

Transformers [5] were designed to circumvent the computational constraints imposed by other36

sequential models, and they have achieved state-of-the-art results in a wide variety of sequence37

learning tasks, both in natural language processing (NLP), e.g., GPT-3 [6], and computer vision, e.g.,38

Vision Transformers [7]. While Transformers have successfully been applied to static multi-entity39

data, e.g., graphs [8], the only published work we are aware of that attempts to model multi-entity40

sequential data with Transformers uses four different Transformers to separately process information41

temporally and spatially before merging the sub-Transformer outputs [9].42

t = 4 t = 8 t = 13

Figure 1: After solely being trained to model the trajectory
of the ball ( ) given the locations of the players and the
ball on the court through time, a self-attention (SA) head
in baller2vec learned to anticipate passes. When the ball
handler ( ) is driving towards the basket at t = 4, SA
assigns near-zero weights (black) to all players, suggesting
no passes will be made. Indeed, the ball handler did not pass
and dribbled into the lane (t = 8). SA then assigns a high
weight (white) to a teammate ( ), which correctly identifies
the recipient of the pass at t = 13.

In this paper, we introduce a multi-43

entity Transformer that, with minimal44

assumptions, is capable of simultane-45

ously integrating information across46

agents and time, which gives it pow-47

erful representational capabilities. We48

adapt the original Transformer archi-49

tecture to suit multi-entity sequen-50

tial data by converting the standard51

self-attention mask matrix used in52

NLP tasks into a novel self-attention53

mask tensor. To test the effectiveness54

of our multi-entity Transformer for55

MASM, we train it to perform two dif-56

ferent basketball-related tasks (hence57

the name baller2vec): (1) simulta-58

neously modeling the trajectories of59

all players on the court (Task P) and60

(2) modeling the trajectory of the ball61

(Task B). Further, we convert these tasks into classification problems by binning the Euclidean62

trajectory space, which allows baller2vec to learn complex, multimodal trajectory distributions via63

strictly maximizing the likelihood of the data (in contrast to variational approaches, which maximize64

the evidence lower bound and thus require priors over the latent variables). We find that:65

1. baller2vec is an effective learning algorithm for MASM, obtaining a perplexity of 1.64 on66

Task P (compared to 15.72 when simply using the label distribution from the training set) and67

13.44 on Task B (vs. 316.05) (Section 4.1). Further, compared to a graph recurrent neural68

network (GRNN) with similar capacity, baller2vec is ∼3.8 times faster and achieves a69

10.5% lower average negative log-likelihood (NLL) on Task P (Section 4.1).70

2. baller2vec demonstrably integrates information across both agents and time to achieve71

these results, as evidenced by ablation experiments (Section 4.2).72

3. The identity embeddings learned by baller2vec capture idiosyncratic qualities of players,73

indicative of the model’s deep personalization capabilities (Section 4.3).74

4. baller2vec’s trajectory bin distributions depend on both the historical and current context75

(Section 4.4), and several attention heads appear to perform different basketball-relevant76

functions (Figure 1; Section 4.5), which suggests the model learned to “understand” the77

sport.78

2 Methods79

2.1 Multi-entity sequences80

Let A = {1, 2, . . . , B} be a set indexing B entities and P = {p1, p2, . . . , pK} ⊂ A be the K entities81

involved in a particular sequence. Further, let Zt = {zt,1, zt,2, . . . , zt,K} be an unordered set of K82

feature vectors such that zt,k is the feature vector at time step t for entity pk. Z = (Z1, Z2, . . . , ZT ) is83

thus an ordered sequence of sets of feature vectors over T time steps. When K = 1, Z is a sequence84

of individual feature vectors, which is the underlying data structure for many NLP problems.85

We now consider two different tasks: (1) sequential entity labeling, where each entity has its own label86

at each time step (which is conceptually similar to word-level language modeling), and (2) sequential87
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labeling, where each time step has a single label (see Figure 3). For (1), let V = (V1, V2, . . . , VT ) be88

a sequence of sets of labels corresponding to Z such that Vt = {vt,1, vt,2, . . . , vt,K} and vt,k is the89

label at time step t for the entity indexed by k. For (2), let W = (w1, w2, . . . , wT ) be a sequence of90

labels corresponding to Z where wt is the label at time step t. The goal is then to learn a function f91

that maps a set of entities and their time-dependent feature vectors Z to a probability distribution92

over either (1) the entities’ time-dependent labels V or (2) the sequence of labels W .93

2.2 Multi-agent spatiotemporal modeling94

Figure 2: An example of a binned tra-
jectory. The agent’s starting position is
at the center of the grid, and the cell
containing the agent’s ending position
is used as the label (of which there are
n2 possibilities).

In the MASM setting, P is a set of K different agents and95

Ct = {(xt,1, yt,1), (xt,2, yt,2), . . . , (xt,K , yt,K)} is an un-96

ordered set of K coordinate pairs such that (xt,k, yt,k) are97

the coordinates for agent pk at time step t. The ordered98

sequence of sets of coordinates C = (C1, C2, . . . , CT ),99

together with P , thus defines the trajectories for the100

K agents over T time steps. We then define zt,k as:101

zt,k = g([e(pk), xt,k, yt,k, ht,k]), where g is a multilayer102

perceptron (MLP), e is an agent embedding layer, and ht,k103

is a vector of optional contextual features for agent pk at104

time step t. The trajectory for agent pk at time step t is105

defined as (xt+1,k−xt,k, yt+1,k−yt,k). Similar to Zheng106

et al. [10], to fully capture the multimodal nature of the107

trajectory distributions, we binned the 2D Euclidean space108

into an n× n grid (Figure 2) and treated the problem as a classification task. Therefore, Z has a cor-109

responding sequence of sets of trajectory labels (i.e., vt,k = Bin(∆xt,k,∆yt,k), so vt,k is an integer110

from one to n2), and the loss for each sample in Task P is: L =
∑T

t=1

∑K
k=1− ln(f(Z)t,k[vt,k]),111

where f(Z)t,k[vt,k] is the probability assigned to the trajectory label for agent pk at time step t by f ;112

i.e., the loss is the NLL of the data according to the model.113

For Task B, the loss for each sample is: L =
∑T

t=1− ln(f(Z)t[wt]), where f(Z)t[wt] is the114

probability assigned to the trajectory label for the ball at time step t by f , and the labels correspond115

to a binned 3D Euclidean space (i.e., wt = Bin(∆xt,∆yt,∆zt), so wt is an integer from one to n3).116

Transformer Transformer

Figure 3: An overview of our multi-entity Transformer, baller2vec. Each time step t consists
of an unordered set Zt of entity feature vectors (colored circles) as the input, with either (left) a
corresponding set Vt of entity labels (colored diamonds) or (right) a single label wt (gray triangle) as
the target. Matching colored circles/diamonds across time steps correspond to the same entity. In our
experiments, each entity feature vector zt,k is produced by an MLP g that takes a player’s identity
embedding e(pk), raw court coordinates (xt,k, yt,k), and a binary variable indicating the player’s
frontcourt ht,k as input. Each entity label vt,k is an integer indexing the trajectory bin derived from
the player’s raw trajectory, while each wt is an integer indexing the ball’s trajectory bin.

2.3 The multi-entity Transformer117
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Figure 4: Left: the standard self-attention mask matrix M .
The element atMt1,t2 indicates whether or not the model can
“look” at time step t2 when processing time step t1. Right:
the matrix form of our multi-entity self-attention mask tensor.
In tensor form, element Mt1,k1,t2,k2

indicates whether or
not the model can “look” at agent pk2 at time step t2 when
processing agent pk1 at time step t1. In matrix form, this
corresponds to element Mt1K+k1,t2K+k2 when using zero-
based indexing. The M shown here is for a static, fully
connected graph, but other, potentially evolving network
structures can be encoded in the attention mask tensor.

We now describe our multi-entity118

Transformer, baller2vec (Figure 3).119

For NLP tasks, the Transformer self-120

attention mask M takes the form of a121

T × T matrix (Figure 4) where T is122

the length of the sequence. The ele-123

ment at Mt1,t2 thus indicates whether124

or not the model can “look” at time125

step t2 when processing time step126

t1. Here, we generalize the stan-127

dard Transformer to the multi-entity128

setting by employing a T × K ×129

T × K mask tensor where element130

Mt1,k1,t2,k2 indicates whether or not131

the model can “look” at agent pk2
at132

time step t2 when processing agent133

pk1
at time step t1. Here, we mask134

all elements where t2 > t1 and leave135

all remaining elements unmasked, i.e.,136

baller2vec is a “causal” model.137

In practice, to be compatible with Transformer implementations in major deep learning libraries,138

we reshape M into a TK × TK matrix (Figure 4), and the input to the Transformer is a matrix139

with shape TK × F where F is the dimension of each zt,k. Irie et al. [11] observed that positional140

encoding [5] is not only unnecessary, but detrimental for Transformers that use a causal attention141

mask, so we do not use positional encoding with baller2vec. The remaining computations are142

identical to the standard Transformer (see code).143

3 Experiments144

3.1 Dataset145

We trained baller2vec on a publicly available dataset of player and ball trajectories recorded from146

631 National Basketball Association (NBA) games from the 2015-2016 season.2 All 30 NBA teams147

and 450 different players were represented. Because transition sequences are a strategically important148

part of basketball, unlike prior work, e.g., Felsen et al. [1], Yeh et al. [3], Zhan et al. [2], we did not149

terminate sequences on a change of possession, nor did we constrain ourselves to a fixed subset of150

sequences. Instead, each training sample was generated on the fly by first randomly sampling a game,151

and then randomly sampling a starting time from that game. The following four seconds of data were152

downsampled to 5 Hz from the original 25 Hz and used as the input.153

Because we did not terminate sequences on a change of possession, we could not normalize the154

direction of the court as was done in prior work [1, 3, 2]. Instead, for each sampled sequence,155

we randomly (with a probability of 0.5) rotated the court 180◦ (because the court’s direction is156

arbitrary), doubling the size of the dataset. We used a training/validation/test split of 569/30/32157

games, respectively (i.e., 5% of the games were used for testing, and 5% of the remaining 95%158

of games were used for validation). As a result, we had access to ∼82 million different (albeit159

overlapping) training sequences (569 games × 4 periods per game × 12 minutes per period × 60160

seconds per minute × 25 Hz × 2 rotations), ∼800x the number of sequences used in prior work.161

For both the validation and test sets, ∼1,000 different, non-overlapping sequences were selected for162

evaluation by dividing each game into d 1,000N e non-overlapping chunks (where N is the number of163

games), and using the starting four seconds from each chunk as the evaluation sequence.164

3.2 Model165

We trained separate models for Task P and Task B. For all experiments, we used a single Transformer166

architecture that was nearly identical to the original model described in Vaswani et al. [5], with167

dmodel = 512 (the dimension of the input and output of each Transformer layer), eight attention heads,168

2https://github.com/linouk23/NBA-Player-Movements
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dff = 2048 (the dimension of the inner feedforward layers), and six layers, although we did not use169

dropout. For both Task P and Task B, the players and the ball were included in the input, and both170

the players and the ball were embedded to 20-dimensional vectors. The input features for each player171

consisted of his identity, his (x, y) coordinates on the court at each time step in the sequence, and a172

binary variable indicating the side of his frontcourt (i.e., the direction of his team’s hoop).3 The input173

features for the ball were its (x, y, z) coordinates at each time step.174

The input features for the players and the ball were processed by separate, three-layer MLPs before175

being fed into the Transformer. Each MLP had 128, 256, and 512 nodes in its three layers, respectively,176

and a ReLU nonlinearity following each of the first two layers. For classification, a single linear layer177

was applied to the Transformer output followed by a softmax. For players, we binned an 11 ft× 11 ft178

2D Euclidean trajectory space into an 11 × 11 grid of 1 ft × 1 ft squares for a total of 121 player179

trajectory labels. Similarly, for the ball, we binned a 19 ft × 19 ft × 19 ft 3D Euclidean trajectory180

space into a 19× 19× 19 grid of 1 ft× 1 ft× 1 ft cubes for a total of 6,859 ball trajectory labels.181

We used the Adam optimizer [12] with an initial learning rate of 10−6, β1 = 0.9, β2 = 0.999, and182

ε = 10−9 to update the model’s parameters, of which there were ∼19/23 million for Task P/Task B,183

respectively. The learning rate was reduced to 10−7 after 20 consecutive epochs of the validation loss184

not improving. Models were implemented in PyTorch and trained on a single NVIDIA GTX 1080 Ti185

GPU for seven days (∼650 epochs) where each epoch consisted of 20,000 training samples, and the186

validation set was used for early stopping.187

3.3 Baselines188

Table 1: The perplexity per trajectory bin
on the test set when using baller2vec
vs. the marginal distribution of the tra-
jectory bins in the training set (“Train”)
for all predictions. baller2vec consid-
erably reduces the uncertainty over the
trajectory bins.

baller2vec Train

Task P 1.64 15.72
Task B 13.44 316.05

As our naive baseline, we used the marginal distribution of189

the trajectory bins from the training set for all predictions.190

For our strong baseline, we implemented a baller2vec-191

like graph recurrent neural network (GRNN) and trained192

it on Task P (code is available in the baller2vec repos-193

itory).4 Specifically, at each time step, the player and ball194

inputs were first processed using MLPs as in baller2vec,195

and these inputs were then fed into a graph neural net-196

work (GNN) similar to Yeh et al. [3]. The node and197

edge functions of the GNN were each a Transformer-198

like feedforward network (TFF), i.e., TFF(x) = LN(x+199

W2ReLU(W1x+ b1) + b2), where LN is Layer Normal-200

ization [13], W1 and W2 are weight matrices, b1 and b2201

are bias vectors, and ReLU is the rectifier activation function. For our RNN, we used a gated recurrent202

unit (GRU) RNN [14] in which we replaced each of the six weight matrices of the GRU with a TFF.203

Each TFF had the same dimensions as the Transformer layers used in baller2vec. Our GRNN had204

∼18M parameters, which is comparable to the ∼19M in baller2vec. We also trained our GRNN205

for seven days (∼175 epochs).206

3.4 Ablation studies207

To assess the impacts of the multi-entity design and player embeddings of baller2vec on model208

performance, we trained three variations of our Task P model using: (1) one player in the input209

without player identity, (2) all 10 players in the input without player identity, and (3) all 10 players in210

the input with player identity. In experiments where player identity was not used, a single generic211

player embedding was used in place of the player identity embeddings. We also trained two variations212

of our Task B model: one with player identity and one without. Lastly, to determine the extent to213

which baller2vec uses historical information in its predictions, we compared the performance of214

our best Task P model on the full sequence test set with its performance on the test set when only215

predicting the trajectories for the first frame (i.e., we applied the same model to only the first frames216

of the test set).217

3We did not include team identity as an input variable because teams are collections of players and a coach,
and coaches did not vary in the dataset because we only had access to half of one season of data; however, with
additional seasons of data, we would include the coach as an input variable.

4We chose to implement our own strong baseline because baller2vec has far more parameters than models
from prior work (e.g., ∼70x Felsen et al. [1]).
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4 Results218

4.1 baller2vec is an effective learning algorithm for multi-agent spatiotemporal modeling.219

Table 2: The average NLL (lower is better) on the Task P test
set and seconds per training epoch (SPE) for baller2vec
(b2v) and our GRNN. baller2vec trains ∼3.8 times faster
per epoch compared to our GRNN, and baller2vec outper-
formed our GRNN by 10.5% when given the same amount
of training time. Even when only allowed to train for half
(“0.5x”) and a quarter (“0.25x”) as long as our GRNN,
baller2vec outperformed our GRNN by 9.1% and 1.5%,
respectively..

b2v b2v (0.5x) b2v (0.25x) GRNN

NLL 0.492 0.499 0.541 0.549
SPE ∼900 ∼900 ∼900 ∼3,400

The average NLL on the test set220

for our best Task P model was221

0.492, while the average NLL for222

our best Task B model was 2.598.223

In NLP, model performance is often224

expressed in terms of the perplexity225

per word, which, intuitively, is the226

number of faces on a fair die that has227

the same amount of uncertainty as228

the model per word (i.e., a uniform229

distribution over M labels has a per-230

plexity of M , so a model with a per231

word perplexity of six has the same232

average uncertainty as rolling a fair233

six-sided die). In our case, we con-234

sider the perplexity per trajectory bin, defined as: PP = e
1

NTK

∑N
n=1

∑T
t=1

∑K
k=1− ln(p(vn,t,k)), where235

N is the number of sequences. Our best Task P model achieved a PP of 1.64, i.e., baller2vec236

was, on average, as uncertain as rolling a 1.64-sided fair die (better than a coin flip) when predicting237

player trajectory bins (Table 1). For comparison, when using the distribution of the player trajectory238

bins in the training set as the predicted probabilities, the PP on the test set was 15.72. Our best Task239

B model achieved a PP of 13.44 (compared to 316.05 when using the training set distribution).240

Compared to our GRNN, baller2vec was ∼3.8 times faster and had a 10.5% lower average NLL241

when given an equal amount of training time (Table 2). Even when only given half as much training242

time as our GRNN, baller2vec had a 9.1% lower average NLL.243

4.2 baller2vec uses information about all players on the court through time, in addition to244

player identity, to model spatiotemporal dynamics.245

Table 3: The average NLL on the test set
for each of the models in our ablation experi-
ments (lower is better). For Task P, using all
10 players improved model performance by
18.0%, while using player identity improved
model performance by an additional 4.4%.
For Task B, using player identity improved
model performance by 2.7%. 1/10 indicates
whether one or 10 players were used as input,
respectively, while I/NI indicates whether or
not player identity was used, respectively.

Task 1-NI 10-NI 10-I

Task P 0.628 0.515 0.492
Task B N/A 2.670 2.598

Results for our ablation experiments can be seen in246

Table 3. Including all 10 players in the input dra-247

matically improved the performance of our Task P248

model by 18.0% vs. only including a single player.249

Including player identity improved the model’s per-250

formance a further 4.4%. This stands in contrast to251

Felsen et al. [1] where the inclusion of player identity252

led to slightly worse model performance; a coun-253

terintuitive result given the range of skills among254

NBA players, but possibly a side effect of their role-255

alignment procedure. Additionally, when replacing256

the players in each test set sequence with random257

players, the performance of our best Task P model de-258

teriorated by 6.2% from 0.492 to 0.522. Interestingly,259

including player identity only improved our Task B260

model’s performance by 2.7%. Lastly, our best Task261

P model’s performance on the full sequence test set262

(0.492) was 70.6% better than its performance on the single frame test set (1.67), i.e., baller2vec is263

clearly using historical information to model the spatiotemporal dynamics of basketball.264

4.3 baller2vec’s learned player embeddings encode individual attributes.265

Neural language models are widely known for their ability to encode semantic relationships between266

words and phrases as geometric relationships between embeddings—see, e.g., Mikolov et al. [16,267

17], Le and Mikolov [18], Sutskever et al. [19]. Alcorn [20] observed a similar phenomenon in a268

baseball setting, where batters and pitchers with similar skills were found next to each other in the269
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Figure 5: As can be seen in this 2D UMAP of the player embeddings, by exclusively learning to
predict the trajectory of the ball, baller2vec was able to infer idiosyncratic player attributes. The
left-hand side of the plot contains tall post players ( , ), e.g., Serge Ibaka, while the right-hand
side of the plot contains shorter shooting guards (9) and point guards (+), e.g., Stephen Curry. The
connecting transition region contains forwards ( , ) and other “hybrid” players, i.e., individuals
possessing both guard and post skills, e.g., LeBron James. Further, players with similar defensive
abilities, measured here by the cube root of the players’ blocks per minute in the 2015-2016 season
[15], cluster together.

embedding space learned by a neural network trained to predict the outcome of an at-bat. A 2D270

UMAP [21] of the player embeddings learned by baller2vec for Task B can be seen in Figure 5.271

Like (batter|pitcher)2vec [20], baller2vec seems to encode skills and physical attributes in272

its player embeddings.273

Figure 6: baller2vec’s trajectory predicted tra-
jectory bin distributions are affected by both
the historical and current context. At t = 1,
baller2vec is fairly uncertain about the target
player’s ( ; k = 8) trajectory (left grid and dotted
red line; the blue-bordered center cell is the “sta-
tionary” trajectory), with most of the probability
mass divided between trajectories moving towards
the ball handler’s sideline (right grid; black = 1.0;
white = 0.0). After observing a portion of the
sequence (t = 6), baller2vec becomes very cer-
tain about the target player’s trajectory (f6,8), but
when the player reaches a decision point (t = 13),
baller2vec becomes split between trajectories
(staying still or moving towards the top of the
key). Additional examples can be found in Fig-
ure S1. = ball, = offense, = defense, and
ft,k = f(Z)t,k.

Querying the nearest neighbors for individ-274

ual players reveals further insights about the275

baller2vec embeddings. For example, the276

nearest neighbor for Russell Westbrook, an ex-277

tremely athletic 6’3" point guard, is Derrick278

Rose, a 6’2" point guard also known for his279

athleticism. Amusingly, the nearest neighbor280

for Pau Gasol, a 7’1" center with a respectable281

shooting range, is his younger brother Marc282

Gasol, a 6’11" center, also with a respectable283

shooting range.284

4.4 baller2vec’s predicted285

trajectory bin distributions depend286

on both the historical and current context.287

Because baller2vec explicitly models the dis-288

tribution of the player trajectories (unlike varia-289

tional methods), we can easily visualize how290

its predicted trajectory bin distributions shift291

in different situations. As can be seen in Fig-292

ure 6, baller2vec’s predicted trajectory bin293

distributions depend on both the historical and294

current context. When provided with limited295

historical information, baller2vec tends to296

be less certain about where the players might297

go. baller2vec also tends to be more certain298

when predicting trajectory bins at “easy” mo-299

ments (e.g., a player moving into open space) vs.300

“hard” moments (e.g., an offensive player choos-301

ing which direction to move around a defender).302
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4.5 Attention heads in baller2vec appear to perform basketball-relevant functions.303

Figure 7: The attention outputs from baller2vec
suggest it learned basketball-relevant functions.
Left: attention head 2-7 (layer-head) appears to
focus on teammates of the ball handler ( ). Mid-
dle and right: attention head 6-2 seems to predict
(middle; ) who the ball handler will be in a future
frame (right). Players are shaded according to the
sum of the attention weights assigned to the play-
ers through time with reference to the ball in the
current frame (recall that each player occurs mul-
tiple times in the input). Higher attention weights
are lighter. For both of these attention heads, the
sum of the attention weights assigned to the ball
through time was small (0.01 for both the left and
middle frames where the maximum is 1.00). Ad-
ditional examples can be found in Figures S2 and
S3.

One intriguing property of the attention mecha-304

nism [22–25] is how, when visualized, the atten-305

tion weights often seem to reveal how a model306

is “thinking”. For example, Vaswani et al. [5]307

discovered examples of attention heads in their308

Transformer that appear to be performing var-309

ious language understanding subtasks, such as310

anaphora resolution. As can be seen in Figure311

7, some of the attention heads in baller2vec312

seem to be performing basketball understand-313

ing subtasks, such as keeping track of the ball314

handler’s teammates, and anticipating who the315

ball handler will pass to, which, intuitively, help316

with our task of predicting the ball’s trajectory.317

5 Related Work318

5.1 Trajectory modeling in sports319

There is a rich literature on MASM, particularly320

in the context of sports, e.g., Kim et al. [26],321

Zheng et al. [10], Le et al. [27, 28], Qi et al.322

[29], Zhan et al. [30]. Most relevant to our work323

is Yeh et al. [3], who used a variational recurrent324

neural network combined with a graph neural325

network to forecast trajectories in a multi-agent setting. Like their approach, our model is permutation326

equivariant with regard to the ordering of the agents; however, we use a multi-head attention327

mechanism to achieve this permutation equivariance while the permutation equivariance in Yeh et al.328

[3] is provided by the graph neural network. Specifically, Yeh et al. [3] define: v → e : ei,j =329

fe([vi, vj , ti,j ]) and e→ v : oi = fv(
∑

j∈Ni
[ei,j , ti]), where vi is the initial state of agent i, ti,j is330

an embedding for the edge between agents i and j, ei,j is the representation for edge (i, j), Ni is the331

neighborhood for agent i, ti is a node embedding for agent i, oi is the output state for agent i, and fe332

and fv are deep neural networks.333

Assuming each individual player is a different “type” in fe (i.e., attempting to maximize the level of334

personalization) would require 4502 = 202,500 (i.e., B2) different ti,j edge embeddings, many of335

which would never be used during training and thus inevitably lead to poor out-of-sample performance.336

Reducing the number of type embeddings requires making assumptions about the nature of the337

relationships between nodes. By using a multi-head attention mechanism, baller2vec learns to338

integrate information about different agents in a highly flexible manner that is both agent and time-339

dependent, and can generalize to unseen agent combinations. The attention heads in baller2vec340

are somewhat analogous to edge types, but, importantly, they do not require a priori knowledge about341

the relationships between the players.342

Additionally, unlike recent works that use variational methods to train their generative models [3, 1, 2],343

we translate the multi-agent trajectory modeling problem into a classification task, which allows us to344

train our model by strictly maximizing the likelihood of the data. As a result, we do not make any345

assumptions about the distributions of the trajectories nor do we need to set any priors over latent346

variables. Zheng et al. [10] also predicted binned trajectories, but they used a recurrent convolutional347

neural network to predict the trajectory for a single player trajectory at a time at each time step.348

5.2 Transformers for multi-agent spatiotemporal modeling349

Giuliari et al. [31] used a Transformer to forecast the trajectories of individual pedestrians, i.e., the350

model does not consider interactions between individuals. Yu et al. [9] used separate temporal and351

spatial Transformers to forecast the trajectories of multiple, interacting pedestrians. Specifically, the352

temporal Transformer processes the coordinates of each pedestrian independently (i.e., it does not353

model interactions), while the spatial Transformer, which is inspired by Graph Attention Networks354
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[8], processes the pedestrians independently at each time step. Sanford et al. [32] used a Transformer355

to classify on-the-ball events from sequences in soccer games; however, only the coordinates of the356

K-nearest players to the ball were included in the input (along with the ball’s coordinates). Further,357

the order of the included players was based on their average distance from the ball for a given358

temporal window, which can lead to specific players changing position in the input between temporal359

windows. As far as we are aware, baller2vec is the first Transformer capable of processing all360

agents simultaneously across time without imposing an order on the agents.361

6 Limitations362

While baller2vec does not have a mechanism for handling unseen players, a number of different363

solutions exist depending on the data available. For example, similar to what was proposed in Alcorn364

[20], a model could be trained to map a vector of (e.g., NCAA) statistics and physical measurements365

to baller2vec embeddings. Alternatively, if tracking data is available for the other league, a single366

baller2vec model could be jointly trained on all the data.367

At least two different factors may explain why including player identity as an input to baller2vec368

only led to relatively small performance improvements. First, both player and ball trajectories are369

fairly generic—players tend to move into open space, defenders tend to move towards their man or370

the ball, point guards tend to pass to their teammates, and so on. Further, the location of a player371

on the court is often indicative of their position, and players playing the same position tend to have372

similar skills and physical attributes. As a result, we might expect baller2vec to be able to make373

reasonable guesses about a player’s/ball’s trajectory just given the location of the players and the ball374

on the court.375

Second, baller2vec may be able to infer the identities of the players directly from the spatiotemporal376

data. Unlike (batter|pitcher)2vec [20], which was trained on several seasons of Major League377

Baseball data, baller2vec only had access to one half of one season’s worth of NBA data for378

training. As a result, player identity may be entangled with season-specific factors (e.g., certain379

rosters or coaches) that are actually exogenous to the player’s intrinsic qualities, i.e., baller2vec380

may be overfitting to the season. To provide an example, the Golden State Warriors ran a very specific381

kind of offense in the 2015-2016 season—breaking the previous record for most three-pointers made382

in the regular season by 15.4%—and many basketball fans could probably recognize them from a383

bird’s eye view (i.e., without access to any identifying information). Given additional seasons of data,384

baller2vec would no longer be able to exploit the implicit identifying information contained in385

static lineups and coaching strategies, so including player identity in the input would likely be more386

beneficial in that case.387

7 Conclusion388

In this paper, we introduced baller2vec, a generalization of the standard Transformer that can389

model sequential data consisting of multiple, unordered entities at each time step. As an architecture390

that both is computationally efficient and has powerful representational capabilities, we believe391

baller2vec represents an exciting new direction for MASM. As discussed in Section 6, training392

baller2vec on more training data may allow the model to more accurately factor players away393

from season-specific patterns. With additional data, more contextual information about agents (e.g.,394

a player’s age, injury history, or minutes played in the game) and the game (e.g., the time left in395

the period or the score difference) could be included as input, which might allow baller2vec to396

learn an even more complete model of the game of basketball. Although we only experimented with397

static, fully connected graphs here, baller2vec can easily be applied to more complex inputs—for398

example, a sequence of graphs with changing nodes and edges—by adapting the self-attention mask399

tensor as appropriate. Lastly, as a generative model (see Alcorn and Nguyen [33] for a full derivation),400

baller2vec could be used for counterfactual simulations (e.g., assessing the impact of different401

rosters), or combined with a controller to discover optimal play designs through reinforcement402

learning.403
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