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ABSTRACT

Multi-round deliberation among heterogeneous agents—whether humans, AI sys-
tems, or domain experts—offers opportunities to reduce diagnostic uncertainty
through complementary reasoning. Yet such collaboration can also amplify er-
rors if agents prematurely converge on unreliable conclusions. We propose a
lightweight monitoring framework, Consensus Energy Minimization (CEM), that
regulates collaborative decision-making without requiring domain-specific super-
vision. CEM formalizes deliberation as a dynamical system, where a confusion-
aware consensus energy functional tracks both disagreement and convergence in
low-reliability regions. The monitor applies stopping-time rules to either halt, con-
tinue, or steer discussion toward an agent’s local expertise, ensuring convergence
to high-confidence consensus. We provide theoretical guarantees showing that,
under mild reliability assumptions, CEM provably avoids harmful convergence
and achieves stability in safe consensus regions. Empirically, we demonstrate
the framework on synthetic and real-world classification tasks, where CEM re-
duces uncertainty and improves joint accuracy across diverse interaction scenarios
(ideal, asymmetric, and noisy). Our results highlight that principled monitoring,
rather than model accuracy alone, is key to harnessing the benefits of deliberation.

1 INTRODUCTION

As AI becomes increasingly integrated into professional domains, research has shifted from
technology-centered development toward collaborative designs that leverage diverse agents. De-
liberation, characterized by thoughtful and reasoned discussion, plays a pivotal role in enabling
constructive discourse and consensus-building across contexts (Bächtiger & Parkinson, 2019). In
particular, deliberation among heterogeneous agents, including humans, AI systems, and domain
experts, is increasingly adopted in high-stakes domains such as medicine, law, and scientific discov-
ery (Zöller et al., 2024; Ma et al., 2025; Wang et al., 2025; Green & Chen, 2019).

While multi-agent deliberation can reduce uncertainty by combining complementary reasoning pro-
cesses, it also introduces risks. Premature convergence on unreliable conclusions can amplify errors
rather than mitigate them. Social psychology research has shown that repeated discussions may
lead to group polarization, causing decisions to shift toward more extreme outcomes (Bang & Frith,
2017). Similar issues have emerged in AI multi-agent frameworks. Multiple LLM agents can prema-
turely converge to a consensus without sufficient critical evaluation, a phenomenon known as silent
consensus (Wang et al., 2025). For example, Wang et al. (Wang et al., 2025) introduced “catfish
agents” to inject structured dissent and disrupt premature consensus, Vodrahalli et al. (Vodrahalli
et al., 2022) showed that even uncalibrated models can shape human reliance on AI advice, Carroll
et al. (Carroll et al., 2020) explicitly modeled human behavior to improve coordination, Corvelo
Benz and Gomez-Rodriguez (Benz & Rodriguez, 2024) proposed human-aligned calibration to bet-
ter match AI confidence with human decision-making processes, and Cui et al. (Cui et al., 2025)
designed consensus-free debate protocols (Free-MAD) that evaluate reasoning trajectories rather
than relying solely on final majority votes. Despite these advances, most research on human–AI col-
laboration and multi-expert aggregation has focused on single-shot interactions or static accuracy
improvements, leaving the iterative dynamics of multi-round deliberation relatively underexplored.
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In this study, we propose a new framework for regulating collaborative deliberation through Consen-
sus Energy Minimization (CEM). Our central idea is to treat agent interaction as an iterative dynam-
ical system in the joint space of predictions and justifications. Supervisory mechanisms have been
shown to improve both reasoning reliability and feedback quality. For instance, confidence-based
filtering can halt low-quality reasoning traces to enhance accuracy (Fu et al., 2025), while annotation
monitoring and incentive designs ensure consistency in human feedback (Liu et al., 2025). Inspired
by these findings, we introduce a lightweight monitoring mechanism—a deliberation monitor—that
does not solve the decision task directly but instead tracks the trajectory of collaboration. The mon-
itor evaluates a confusion-aware consensus energy functional capturing two key risks: (i) persistent
disagreement, indicating unresolved conflict, and (ii) low-confidence convergence, indicating fragile
agreement in unreliable regions. Based on this energy, the monitor applies stopping-time rules to
regulate deliberation by choosing one of three actions: STOP, halting collaboration when unsafe
convergence is detected; STEER, guiding the discussion toward a more reliable agent’s expertise;
or CONTINUE, allowing further deliberation when convergence is safely emerging.

This formulation yields two benefits. First, it provides a principled account of multi-round deliber-
ation: we show that under mild assumptions, consensus energy decreases monotonically and delib-
eration converges to high-confidence regions, while harmful consensus is detectable and avoidable.
Second, it enables practical algorithms that require only historical confusion matrices and observed
justifications, without domain-specific supervision or large-scale retraining.

In this paper, we focus on the two-agent case for clarity, analyzing the interaction between a pair
of heterogeneous agents and demonstrating both theoretical guarantees and empirical behavior.
Nonetheless, the framework naturally extends to multi-agent settings by aggregating divergence and
reliability measures across agents, making CEM a general approach to safe collaborative reasoning.
Through synthetic and real-world classification tasks, we show that CEM improves joint accuracy
while reducing uncertainty across ideal, asymmetric, and noisy scenarios.

2 METHOD

We propose the Consensus Energy Minimization (CEM) framework (Figure 1) for regulating multi-
round deliberation between agents. The framework formalizes interaction as an iterative dynamical
system in which a lightweight monitor tracks predictions, justifications, and reliabilities, without
directly solving the underlying task. The monitor computes a confusion-aware consensus energy
functional that penalizes both disagreement and convergence in low-reliability regions, and applies
stopping-time rules to decide when to halt, steer, or continue deliberation.

2.1 SETTING AND AGENTS

We consider a classification task with K possible labels y ∈ {1, . . . ,K} and define three primary
roles in the system:

• Agent H (human or human-like): This agent generates predictions ŷ
(t)
H and optional feature-

importance weights w(t)
H at each round t.

• Agent L (AI or model): This agent produces predictions ŷ
(t)
L and corresponding feature-

importance weights w(t)
L .

• Monitor M : Observes the sequence {(ŷ(t)H , w
(t)
H ), (ŷ

(t)
L , w

(t)
L )}Tt=1 and controls the deliberation.

The monitor does not make predictions itself; its role is to track the consensus dynamics and apply
stopping or steering decisions.

2.2 CONFUSION-MATRIX–BASED RELIABILITY

To quantify each agent’s expertise, we characterize them by their confusion matrices. For an agent
a ∈ {H,L}, its confusion matrix Ca is defined as:

Ca[i, j] = P (ŷa = j | y = i),

2
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Figure 1: The Consensus Energy Minimization (CEM) framework for collaborative deliberation.
The monitor first determines the interaction scenario based on agent reliabilities (rH , rL relative
to threshold s), then computes a confusion-aware consensus energy functional ε that combines KL
divergence terms with reliability penalties, and finally outputs one of three control decisions: Con-
tinue, Steer, or Stop, to ensure safe convergence in multi-round deliberation.

which encodes the probability that the agent predicts class j when the true label is i. In particular,
the diagonal entries Ca[i, i] capture the agent’s reliability on class i, and the off-diagonals capture
its systematic biases. In practice, Ca can be estimated from historical data or a calibration set.

From the confusion matrix, we derive two key quantities for each agent at each round t:

• Reliability-informed posterior: Given the agent’s current prediction ŷ
(t)
a , we compute the pos-

terior distribution over the true label:

Pa(y | ŷ(t)a ) ∝ Ca[y, ŷ
(t)
a ].

This reflects how trustworthy the prediction is, based on the agent’s historical performance.
• Self-reliability score: We define the agent’s instantaneous reliability as the diagonal entry corre-

sponding to its current prediction:

r(t)a = Ca[ŷ
(t)
a , ŷ(t)a ].

The scalar r(t)a is the probability that agent a’s prediction is correct, given historical performance.
A high r

(t)
a means agent a is usually correct when it predicts this class, whereas a low r

(t)
a signals

caution. In summary, the pair (Pa(· | ŷ(t)a ), r
(t)
a ) captures agent a’s belief and confidence at round

t.

2.3 CONSENSUS ENERGY FUNCTIONAL

We now construct a consensus energy ε(t) to measure the quality of agreement between the agents
at round t. Let P (t)

H (y) = PH(y | ŷ(t)H ) and P
(t)
L (y) = PL(y | ŷ(t)L ) be the two agents’ posteriors

over the true class (as defined above). We define

ε(t) = α1 DKL

(
P

(t)
H ∥P (t)

L

)
+ α2 DKL

(
P

(t)
L ∥P (t)

H

)
+ β1

(
1− r

(t)
L

)
+ β2

(
1− r

(t)
H

)
.

Here α1, α2, β1, β2 ≥ 0 are coefficients (which in principle can be adapted based on the agents’
current reliabilities). Intuitively, the first two KL-divergence terms penalize persistent disagreement
between the agents: they grow large if P (t)

H and P
(t)
L differ significantly. The latter terms penalize

3
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consensus in low-confidence regimes: if either agent has a low self-reliability r
(t)
a , then (1− r

(t)
a ) is

large, raising ε(t). Thus, even when the agents’ point predictions agree, the energy remains high if
that agreement occurs in a region where an agent is known to be unreliable. One can set the weights
so that, for example, a lower r(t)L increases the penalty on agreement more strongly. A small ε(t)

indicates that both agents are aligning on an answer they trust, whereas a large ε(t) signals either a
lack of consensus or a potentially dangerous consensus by uncertain agents.

2.4 MONITORING AND STOPPING-TIME CONTROL

CEM treats deliberation as an iterative process of energy minimization. At each round t, the monitor
performs the following three steps:

• Scenario Determination. The monitor compares each agent’s self-reliability r
(t)
H , r

(t)
L against a

preset threshold s to categorize the interaction. For example, if both r
(t)
H and r

(t)
L exceed s, we

have an ideal scenario (both agents are knowledgeable); if exactly one exceeds s, we have an
asymmetric scenario (one strong agent, one weak agent); and if both fall below s, the scenario is
noisy (neither is reliable). This classification helps interpret the energy dynamics.

• Consensus Energy Calculation. Compute the current energy ε(t) as defined above, using the
agents’ posteriors and reliabilities. This tracks the evolution of disagreement and confidence in
the discussion.

• Decision Output. Based on ε(t) and its recent change ∆ε(t) = ε(t) − ε(t−1), the monitor issues
one of three instructions:

– CONTINUE if ε(t) is steadily decreasing and still above a small safety threshold ϵ. This means
the agents are safely moving toward consensus, so the discussion can proceed.

– STEER if deliberation has stalled in an asymmetric scenario (one agent is much more reliable
than the other). In this case, the monitor will guide the weaker agent’s reasoning toward the
stronger agent’s expertise (see below).

– STOP if ε(t) remains high (above a low-confidence cutoff ϵlow) without decreasing. This in-
dicates that continued discussion is reinforcing an unreliable consensus, so we halt to avoid
harmful convergence.

Formally, we can define the stopping time τ∗ as the earliest round t such that either ε(t) ≤ ϵ (safe
consensus achieved) or the energy descent has stagnated above the low threshold:

τ∗ = min
{
t | ε(t) ≤ ϵ or

[
∆ε(t) > −δ and ε(t) > ϵlow

]}
. (1)

Here ϵ > 0 is the convergence threshold, ϵlow > 0 is the confidence cutoff, and δ > 0 detects
stagnation in the energy decrease. By this rule, deliberation stops as soon as the energy falls below ϵ
(ensuring a high-confidence consensus) or if the energy has stopped decreasing while still above ϵlow
(preventing a low-confidence consensus). In our experiments, the default values are set as ϵ = 0.05,
ϵlow = 0.3, and δ = 0.01.

2.5 STEERING AS FEATURE-WEIGHT OPTIMIZATION

When the monitor issues a STEER instruction, it adjusts the weaker agent’s reasoning by modifying
its feature-weight vector. Concretely, suppose agent H is identified as weaker and agent L is stronger
at round t. Let w(t)

H be the weight vector of the weaker agent. We perform a small projected gradient
step on a composite objective to update wH :

w
(t+1)
H = w

(t)
H − η∇wH

[
α∥wH − w

(t)
H ∥2 + β∥wH − w

(t)
expert∥2 + γE(wH , w

(t)
L )

]
, (2)

Here η > 0 is a small step size, and wexpert = w
(t)
L is the weight vector of the more reliable agent

(serving as a reference). The objective inside the gradient has three terms: (1) ∥wH −w
(t)
H ∥2 penal-

izes large changes (preserving interpretability and consistency), (2) ∥wH − wexpert∥2 encourages
H’s weights to move closer to the stronger agent’s weights (aligning their explanations), and (3)

4
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ε(wH , w
(t)
L ) is the consensus energy as a function of wH (promoting explicit reduction of disagree-

ment). In effect, this update nudges the weaker agent’s justification toward the expert’s perspective
while reducing the energy. Importantly, this steering acts on the explanation (feature weights) and
does not change the agent’s underlying predictive model.

2.6 EXTENSIONS

CEM admits several natural extensions:

• Dynamic reliability: If the human agent H is learning over time, one could update CH online as
more data or feedback becomes available.

• Adaptive thresholds: The thresholds ϵ, δ could be tuned dynamically (for instance via reinforce-
ment learning) based on observed outcomes or task requirements.

• Energy visualization: One might visualize the energy landscape of a task by plotting ε over
deliberation trajectories, helping to interpret where and why discussion stalls.

Multi-Agent Extension. Although we analyze the two-agent case for clarity, the framework ex-
tends naturally to N agents. Define

ε(t) = α
∑
i ̸=j

DKL(P
(t)
i ∥ P

(t)
j ) + β

∑
i

(1− r
(t)
i ).

The same stopping-time and steering logic applies: consensus is considered safe when pairwise dis-
agreements vanish and at least one agent maintains bounded reliability. Monotonicity arguments ex-
tend by convexity, ensuring that reliable subgroups dominate the consensus trajectory, while groups
with uniformly low reliability are halted. This makes CEM a general approach to multi-agent delib-
eration, covering teams, panels, or ensembles of models.

3 THEORETICAL GUARANTEES

We now formalize the guarantees of the Consensus Energy Minimization framework. The following
results establish that CEM ensures safe convergence and prevents harmful consensus. We work
under the standing assumptions summarized in Appendix B (finite label set, smoothed/confidence-
calibrated Ca with positive support, closed convex W , ε(·, wL) being C1 and L-smooth in wH , and
projected steps with η < 2/L); complete proofs are given in Appendix B.2.
Lemma 1 (Non-negativity and Monotonicity). Let the consensus energy at round t be defined as
in Secti2. Under the technical conditions specified in Appendix B, and with gradient-based STEER
updates using step size 0 < η < ηmax, the energy sequence satisfies:

ε(t+1) ≤ ε(t), ∀t,
and remains nonnegative.

Proof sketch. Nonnegativity follows from the non-negativity of KL divergence and reliability terms.
The monotonicity is guaranteed by the descent properties of the projected gradient method applied
to the smooth consensus energy functional. See Appendix B.2 for the complete proof.

Theorem 1 (Safe Convergence under Bounded Reliability). Suppose at least one agent maintains
reliability bounded away from zero, i.e. ∃a ∈ {H,L} with r

(t)
a ≥ ρ > 0 for all t. Then under the

assumptions in Appendix B, the deliberation process either:

• Halts at finite time τ∗ with ε(τ
∗) ≤ ϵ, or

• Converges to a consensus state where limt→∞ ε(t) ≤ ϵ.

Proof sketch. By Lemma 1, {ε(t)} is nonincreasing and bounded below, hence convergent. The
bounded reliability ensures that the system cannot persist at stationary limits with nonvanishing
pairwise disagreement (KL contributions would keep decreasing the energy). The complete conver-
gence analysis is provided in Appendix B.2. In particular, if some agent a maintains r(t)a ≥ ρ > 0,
choosing ϵ > β¬a(1− ρ) guarantees termination in the safe region (Appendix B.2).
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Theorem 2 (Detectability of Harmful Convergence). If both agents’ reliabilities vanish (r(t)H , r
(t)
L →

0), then under the conditions in Appendix B and for any ϵlow < β1 + β2:

∆ε(t) → 0, ε(t) > ϵlow for sufficiently large t.

Consequently, the STOP condition in Eq. 1 is triggered, preventing reinforcement of unreliable con-
sensus.

Proof sketch. Vanishing reliabilities cause the penalty term to approach β1+β2, keeping the energy
bounded away from zero unless disagreement disappears; thus for any ϵlow < β1+β2 the inequality
holds eventually. Meanwhile, gradient magnitudes diminish and the one-step decrease vanishes,
i.e., ∆ε(t) → 0. The stopping condition in Eq. 1 detects stagnation above ϵlow and halts. See
Appendix B.2.

Corollary 1 (Multi-Agent Extension). For N agents with the extended energy functional, the mono-
tonicity, convergence, and detectability guarantees extend naturally under similar technical condi-
tions.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

We evaluate our framework on one synthetic dataset and three real-world benchmarks (Drug Clas-
sification, Weather Type Classification, and Customer Segmentation) with dataset details in
Appendix C. To simulate both human and agent behaviors, Large language models (LLMs) are
employed, with prompts and configurations provided in Appendix D. As detailed in the Method
section, we categorize collaboration into three scenarios: Ideal, One Strong & One Weak, and Noisy,
based on the reliability scores rH and rL. We then systematically examine how these scenarios
influence model performance, focusing on two key metrics: (i) absolute accuracy of final decisions
for each agent and (ii) the consensus energy value, where lower energy indicates safer convergence
with reduced uncertainty.

4.1.1 SCENARIO DESIGN

Scenario1: Ideal In the ideal setting, both agents maintain consistently high reliability (rH , rL >
s). This scenario evaluates whether the framework can sustain deliberation toward a safe consensus
without unnecessary intervention. Since such an ideal case is rare in real-world applications, we
conducted experiments on a synthetic dataset.

Scenario2: One Strong & One Weak In the One Strong & One Weak scenario, reliability is
asymmetric (rH , rL > s for only one agent), meaning the stronger agent compensates for the weaker
agent’s shortcomings. We evaluate whether the framework can steer deliberation to align the weaker
agent with the stronger one without misleading the latter. Experiments were conducted on both a
synthetic dataset and a real-world drug classification dataset.

Scenario 3: Noisy In the Noisy scenario, both agents exhibit low reliability (rH , rL → 0), with
additional perturbations injected into their justifications. We investigate whether the stopping rule
can prevent harmful error reinforcement in the non-complementary case, and whether the consen-
sus energy functional can still drive safe convergence when agents are complementary despite lack-
ing bounded reliability. Experiments were conducted on synthetic data and two real-world datasets:
weather type classification (complementary) and customer segmentation (non-complementary).

4.1.2 FUNDAMENTAL EXPERIMENTAL RESULTS

Summary of Accuracy and Consensus Energy Trends The accuracy and consensus energy
trends of the agents across the three experimental scenarios on each dataset are shown in Figure 2.

• In Scenario 1, Both agents’ accuracies steadily improve and approach 1, while consensus energy
decreases, showing safe convergence and reduced uncertainty.

6
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Figure 2: Accuracy and consensus energy trends of agents across three experimental scenarios.

• Scenario 2 features distinct initial accuracy conditions: one agent starting high (0.9) and the other
low (0.3), the framework mitigates the negative impact of the less accurate agent, resulting in
substantial accuracy gains for the latter and modest gains for the more accurate agent, with both
eventually nearing accuracy 1 as consensus energy declines.

• Even under unbounded reliability setting in Scenario 3, both agents exhibit accuracy improve-
ments. The complementary case outperforms the non-complementary by about 0.1, and the latter
avoids convergence on errors, confirming the monitoring and termination mechanism’s effective-
ness.

Stepwise Confusion Matrix Visualization Confusion matrix visualization provides insight into
the distribution of agents’ cognitive capabilities after autonomous learning or mutual interaction.
It also reveals the influence of monitoring instructions on agent interaction. For each scenario and
dataset, we randomly select one iteration of the confusion matrix for illustration. Figure 3 presents
the two most contrasting cases on the synthetic dataset (the ideal and noisy-non-complementary
scenarios), while the remaining five results are provided in Appendix E.

• In ideal case, both agents possess strong capabilities such that further self-learning yields limited
improvement. In this setting, timely mutual interaction allows their strengths to complement each
other, leading to enhanced overall performance.

• In noisy-non-complementary case, when both agents initially exhibit low capabilities, early-stage
interference is minimized to enable autonomous learning and avoid premature consensus. As
capabilities and reliability gradually improve, if one agent develops cognitive bias, timely “steer”
instructions can guide it back to the correct trajectory, preventing harmful consensus even without
further capability gains.

4.2 ABLATION STUDIES AND COMPARATIVE ANALYSIS

4.2.1 FREE DISCUSSION WITHOUT MONITOR

To evaluate the effectiveness of our framework in facilitating multi-agent learning and interaction,
we conducted a comparative study between free discussion without monitor supervision (Free Dis-
cussion) and the complete framework (Figure 4). In the free discussion setting, agents, whose be-
haviors are simulated by Large Language Models (LLMs), exchange feedback and update their
reasoning based on observed cases in each round, brainstorming collectively without a monitor to
decide whether deliberation should continue, steer, or stop. This comparison illustrates the peak per-
formance achievable through collaborative deliberation without monitoring. In contrast, the moni-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Round 1                    2                    3                    4                    5                  6                     7                    8

A
ge

nt
 1

A
ge

nt
 2

steercontinue continuecontinuecontinue continue continue stop

A
ge

nt
 1

A
ge

nt
 2

steer steer steercontinue continue continue stop

Scenario 3 - Noisy-noncomplementary (Synthetic Dataset)
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Figure 3: Stepwise confusion matrices and accuracy trends for two representative scenarios with
monitor instructions.

tored framework achieves higher accuracy with fewer rounds, reducing unnecessary interaction and
enhancing both the quality and stability of deliberation.

Synthectic Dataset

Scenario1
Ideal

Synthectic Dataset

Scenario2
One strong & One weak

Drug 
Classification

Synthectic Dataset

Scenario3
Noisy-complementary

Weather 
Classification

Synthectic Dataset

Scenario3
Noisy-noncomplementary

Customer 
Segmentation

Figure 4: Performance comparison of accuracy and max round: monitor supervision vs. free dis-
cussion across three scenarios.

4.2.2 MODELING REALISTIC ACCEPTANCE HETEROGENEITY AMONG AGENTS

We evaluate the framework across multiple interaction rounds (4, 8, and 12) and acceptance levels
(25%, 50%, 75%, 100%), reporting mean accuracies ± standard deviations for Agent 1 (human-
simulating) and Agent 2 (LLM), along with consensus energy. Overall, accuracies consistently
improve while consensus energy declines, reflecting effective steering and stopping mechanisms.
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• In the “ideal” setting, Table 1 shows that when both agents resist deliberation (low acceptance
rate), consensus energy gradually weakens. Even at a 25% acceptance rate, the framework re-
mains effective: consensus energy decreases from 0.775 ± 0.164 to 0.478 ± 0.167 between
rounds 4 and 12, with both agents improving in accuracy. One increases from 0.828 ± 0.015
to 0.860± 0.080, while the other shows a larger gain from 0.663± 0.100 to 0.836± 0.074.

• When reliability is asymmetric, accuracy gains shrink as the acceptance rate decreases but re-
main positive for both agents. Crucially, even when the stronger agent fully accepts weaker input,
the framework prevents harmful convergence, ensuring the weaker agent improves more than the
stronger one, demonstrating resilience to asymmetric influence and safeguarding against danger-
ous consensus.

• In noisy environments, complementary noise allows accuracy improvements at a 25% acceptance
rate, though with smaller gains. In non-complementary noisy settings, the early-stopping mecha-
nism halts deliberation before errors can reinforce, so ablation results are omitted.

Table 1: Ablation study under varying acceptance rates across three scenarios on both synthetic and
real-world datasets.
Scenario 1 – Ideal

Synthetic Dataset
Round=4 Round=8 Round=12

Acceptance Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM
25% 0.828±0.015 0.663±0.100 0.775±0.164 0.834±0.020 0.762±0.119 0.627±0.162 0.860±0.080 0.836±0.074 0.478±0.167

50% 0.831±0.020 0.747±0.126 0.634±0.212 0.907±0.069 0.823±0.083 0.445±0.205 0.878±0.068 0.868±0.080 0.412±0.139

75% 0.835±0.030 0.691±0.100 0.689±0.145 0.925±0.075 0.870±0.090 0.319±0.100 1.000±0.000 1.000±0.000 0.034±0.018

100% 0.825±0.040 0.814±0.030 0.529±0.050 1.000±0.000 1.000±0.000 0.038±0.015 1.000±0.000 1.000±0.000 0.038±0.015

Scenario 2 – One Strong & One Weak
Synthetic Dataset

Round=4 Round=8 Round=12
Acceptance Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM

25% 0.906±0.019 0.393±0.129 1.226±0.220 0.910±0.025 0.486±0.192 1.057±0.327 0.906±0.023 0.573±0.186 0.905±0.307

50% 0.898±0.027 0.470±0.128 1.092±0.221 0.907±0.026 0.682±0.153 0.694±0.280 0.917±0.034 0.780±0.160 0.510±0.289

75% 0.909±0.023 0.525±0.126 0.992±0.220 0.918±0.036 0.686±0.164 0.688±0.279 0.954±0.048 0.866±0.133 0.331±0.252

100% 0.917±0.016 0.506±0.133 1.025±0.220 0.940±0.036 0.848±0.164 0.397±0.304 0.985±0.000 0.991±0.027 0.096±0.057

Drug Classification
Round=4 Round=8 Round=12

Acceptance Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM
25% 0.655±0.145 0.839±0.012 0.358±0.120 0.842±0.092 0.849±0.011 0.210±0.069 0.861±0.084 0.845±0.022 0.203±0.072

50% 0.711±0.052 0.874±0.062 0.308±0.045 0.893±0.089 0.878±0.059 0.162±0.063 0.911±0.097 0.913±0.062 0.133±0.074

75% 0.698±0.092 0.852±0.049 0.321±0.086 0.907±0.086 0.880±0.055 0.153±0.059 0.947±0.054 0.936±0.066 0.101±0.056

100% 0.849±0.109 0.848±0.017 0.230±0.083 0.968±0.034 0.954±0.057 0.099±0.049 0.995±0.000 0.995±0.000 0.044±0.005

Scenario 3 – Noisy-complementary
Synthetic Dataset

Round=4 Round=8 Round=12
Acceptance Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM

25% 0.721±0.052 0.700±0.081 0.741±0.100 0.756±0.073 0.750±0.109 0.652±0.129 0.812±0.114 0.755±0.082 0.594±0.169

50% 0.729±0.070 0.692±0.104 0.747±0.136 0.814±0.114 0.764±0.125 0.533±0.205 0.812±0.130 0.834±0.168 0.414±0.244

75% 0.731±0.057 0.736±0.100 0.731±0.113 0.770±0.117 0.807±0.118 0.575±0.164 0.844±0.132 0.848±0.109 0.375±0.185

100% 0.768±0.088 0.745±0.065 0.689±0.120 0.845±0.105 0.833±0.097 0.469±0.183 0.905±0.110 0.920±0.094 0.262±0.175

Weather Type Classification
Round=4 Round=8 Round=12

Acceptance Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM Agent1-Acc Agent2-Acc CEM
25% 0.590±0.089 0.574±0.014 0.876±0.094 0.669±0.131 0.587±0.053 0.806±0.131 0.688±0.120 0.621±0.104 0.772±0.155

50% 0.638±0.144 0.588±0.052 0.833±0.140 0.740±0.149 0.643±0.106 0.726±0.163 0.768±0.135 0.735±0.141 0.642±0.207

75% 0.692±0.109 0.669±0.116 0.727±0.199 0.740±0.138 0.736±0.121 0.667±0.210 0.772±0.140 0.776±0.135 0.595±0.232

100% 0.668±0.121 0.633±0.053 0.785±0.123 0.751±0.125 0.750±0.124 0.672±0.187 0.803±0.128 0.780±0.116 0.622±0.179

5 CONCLUSION

In this work, we introduced Consensus Energy Minimization (CEM), a lightweight monitoring
framework for regulating multi-round collaborative deliberation among heterogeneous agents. By
modeling deliberation as a dynamical system, CEM employs a confusion-aware consensus energy
functional that penalizes both persistent disagreement and convergence in low-reliability regions.
Through theoretical analysis and empirical evaluation, we demonstrated that principled monitor-
ing, rather than accuracy alone, is essential for preventing harmful consensus, establishing CEM
as a general foundation for reliable human–AI collaboration and a promising direction for future
applications in high-stakes decision-making.
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A RELATED WORK

Cognitive Alignment A rich vein of research has shown that effective Human-AI collaboration
system requires both human and AI agents to progressively converge toward shared beliefs and
judgments (Noti et al., 2025; Tian et al., 2023; Liu et al., 2025; Wang et al., 2020). The need for
AI to integrate into human workflows and co-manage tasks with mutual understanding is central
to creating effective Human-AI collaboration(Wang et al., 2020). For example, Theory of Mind
models show how agents can infer and adapt to others’ mental states (Rabinowitz et al., 2018), while
studies on human learning dynamics highlight that both parties update their internal models through
interaction (Tian et al., 2023). In AI-assisted decision-making, algorithms must not only provide
immediately useful advice but also foster long-term improvements in human reasoning across rounds
(Noti et al., 2025). Moreover, the reliability of human feedback plays a critical role in shaping
the convergence outcome (Liu et al., 2025). In clinical domains, cognitive informatics stresses
the need for alignment with physicians’ reasoning processes (Patel & Kannampallil, 2015). Taken
together, these studies suggest that human–AI collaboration should be understood as a multi-round
convergence process, where mutual adaptation gradually reduces disagreement and improves joint
accuracy.

Expert modeling Expert modeling has been extensively studied in medical diagnosis and
decision-making, focusing on annotator reliability, inter-observer variability, and human–AI com-
plementarity (Raykar et al., 2010; Steyvers et al., 2022; Noti et al., 2025; Gebeşçe et al., 2025).
Prior work has mainly relied on Bayesian aggregation of noisy labels (Raykar et al., 2010; Steyvers
et al., 2022) or divergence-based measures of decision similarity and trust (Gebeşçe et al., 2025).
These approaches advance statistical modeling but typically abstract expertise into latent reliability
parameters, limiting interpretability and failing to capture domain-specific specialization. Recent
work on AI-assisted decision-making has emphasized the importance of adapting the algorithm’s
feature selection process based on the evolving expertise and understanding of human decision-
makers(Steyvers et al., 2022). In this study, we model two heterogeneous agents with varying ex-
pertise levels, where their interactions lead to an evolving understanding of the decision-making
rules, guided by the Consensus Energy Minimization (CEM) framework.

Consensus Energy Minimization The idea of consensus energy builds on energy-based views
of uncertainty reduction. The Free Energy Principle suggests agents minimize free energy to align
beliefs with reality (Mazzaglia et al., 2022). Perdomo et al. showed that model predictions can shift
the data distribution and demonstrated that learning algorithms can converge to a performatively
stable point by iteratively retraining (Perdomo et al., 2021). Moreover, Agarwal and Brown found
that by combining historical behavior with current states, model can effectively avoid feedback loops
and stabilize long-term performance (Agarwal & Brown, 2024). Recent methods such as DeepConf
prune low-confidence reasoning to enforce internal consistency (Fu et al., 2025). Extending these
ideas, our CEM framework formalizes a consensus energy between human and AI latent states. By
minimizing it online with confusion-matrix–based monitoring, CEM enables cooperative alignment
that improves accuracy and stability in multi-round interaction.

B TECHNICAL ASSUMPTIONS AND DETAILED PROOFS

B.1 TECHNICAL ASSUMPTIONS

The theoretical guarantees rely on the following technical assumptions:

Assumption 1 (Decision Consistency). 1. Rational Alignment: Each agent’s feature
weights w

(t)
a accurately reflect their internal belief state and are consistent with their

reliability-informed posterior P (t)
a

2. Truthful Reporting: Agents report their genuine assessments without strategic manipula-
tion or systematic bias between internal reasoning and external expression

3. Cognitive Transparency: The mapping from internal feature importance to external pre-
dictions is well-defined and stable over time
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Assumption 2 (Smoothness and Regularity). 1. The confusion matrices Ca are strictly posi-
tive definite: mini Ca[i, i] ≥ γ > 0 for some γ > 0

2. The feature weight vectors w(t)
a belong to a compact convex set W ⊂ Rd

3. The consensus energy functional ε(wH , wL) is continuously differentiable and L-smooth
in wH on W

4. The step size satisfies 0 < η < 2/L for projected gradient descent

Assumption 3 (Bounded Interactions). 1. The label space is finite: |Y| = K < ∞

2. The reliability scores are bounded: r(t)a ∈ [0, 1] for all a, t

3. The energy coefficients are positive: α1, α2, β1, β2 > 0

B.2 DETAILED PROOFS

Proof of Lemma 1. We prove the two claims separately:

Nonnegativity: The consensus energy ε(t) consists of four non-negative terms:

• KL divergences: DKL(P ∥ Q) ≥ 0 for any distributions

• Reliability penalties: 1− r
(t)
a ≥ 0 since r

(t)
a ∈ [0, 1]

Since all coefficients α1, α2, β1, β2 are positive, ε(t) is a sum of non-negative terms, hence ε(t) ≥ 0.

Monotonicity: We consider two cases:

Case 1: Steering is applied. When the monitor issues a STEER instruction, it updates the weaker
agent’s feature weights wH to minimize a composite objective:

L(wH) = α∥wH − w
(t)
H ∥2︸ ︷︷ ︸

stability

+β∥wH − w
(t)
expert∥2︸ ︷︷ ︸

alignment

+ γε(wH , w
(t)
L )︸ ︷︷ ︸

consensus

By Assumption 2.3, L is smooth, so gradient descent with step size η < 2/L guarantees:

L(w(t+1)
H ) ≤ L(w(t)

H )− η

2
∥∇L(w(t)

H )∥2 ≤ L(w(t)
H )

Since ε(t) appears in L and the other terms are non-negative, we have:

ε(t+1) ≤ L(w(t+1)
H ) ≤ L(w(t)

H ) ⇒ ε(t+1) ≤ ε(t)

Case 2: Natural deliberation. When agents discuss without steering, we assume they rationally
update their beliefs to reduce disagreement (e.g., through Bayesian updating or consensus-seeking
behavior). This naturally decreases the KL divergence terms in ε(t), while reliability scores either
improve or remain stable. Thus, ε(t+1) ≤ ε(t).

In both cases, the energy does not increase, proving monotonicity.

Proof of Theorem 1. By Lemma 1, {ε(t)} is nonincreasing and bounded below by 0, hence conver-
gent. Let ε∗ = limt→∞ ε(t).

We consider two cases:

Case 1: Finite-time convergence. If ε(t) ≤ ϵ for some finite t, then the stopping rule triggers and
we have safe convergence at τ∗.

Case 2: Asymptotic convergence. Suppose ε(t) > ϵ for all finite t. We show that ε∗ ≤ ϵ.
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By the bounded reliability assumption, there exists ρ > 0 such that max(r
(t)
H , r

(t)
L ) ≥ ρ for all t.

This implies that the reliability penalty terms are bounded:

β1(1− r
(t)
L ) + β2(1− r

(t)
H ) ≤ β1 + β2 −min(β1, β2)ρ

Now, if ε∗ > ϵ, then the KL divergence terms cannot vanish asymptotically. But persistent disagree-
ment would generate gradients that continue to decrease the energy, contradicting convergence.
Therefore, we must have ε∗ ≤ ϵ.

The reliable agent dominates the consensus because its predictions carry higher weight in the energy
minimization process.

Proof of Theorem 2. If r(t)H , r
(t)
L → 0, then the reliability penalties satisfy:

lim inf
t→∞

[β1(1− r
(t)
L ) + β2(1− r

(t)
H )] = β1 + β2

Thus, for any ϵlow < β1 + β2, there exists T such that for all t ≥ T :

ε(t) > ϵlow

Moreover, as reliabilities vanish, the gradients diminish because:

∥∇ε∥ = O
(
max(r

(t)
H , r

(t)
L )

)
→ 0

This implies ∆ε(t) → 0. The stopping condition in Eq. 1 detects this stagnation above ϵlow and
triggers termination.

Proof of Corollary 1. For N agents, the energy functional is:

ε(t) =
∑
i̸=j

αijDKL(P
(t)
i ∥ P

(t)
j ) +

N∑
i=1

βi(1− r
(t)
i )

The convexity of KL divergence and linearity of reliability terms ensure that the multi-agent energy
inherits the smoothness properties of the two-agent case. The proofs extend by considering the
worst-case pairwise disagreement and the maximum reliability among agents.

Specifically, if there exists a reliable subgroup (agents with r
(t)
i ≥ ρ > 0), they will dominate

the consensus. If all reliabilities vanish, the energy remains bounded away from zero and descent
stagnates, triggering the stopping condition.

C EXPERIMENTAL DATASETS

C.1 SYNTHETIC DATASET

To simulate agents with varying capabilities and enable experimental simulations across multiple
scenarios, we assess their performance via a series of simulations. Below, we detail the architecture
of our simulation framework:

Synthetic Data Generator The sample generation process is based on a predefined set of ground
truth rules, as shown in Table 2. Initially, the generator selects a set of labels based on the rule
weights, simulating population-level decision-making processes. This selection is formalized by the
equation:

k ∼ Mult
(
softmax

(
sigmoid−1

(
w⊤

1 ϕ1(x), . . . ,w
⊤
k ϕk(x)

)))
,

where w⊤
1 ϕ1(x) represents the feature functions associated with the rule set, and the labels are

selected if the corresponding features satisfy the rule conditions. For a valid sample, at least one of
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the rules corresponding to the selected labels must be satisfied, while none of the rules associated
with other labels should hold. In our simulation, label k0 represents a rare class governed by longer
rules, while labels k1 and k2 correspond to common classes with simpler criteria.

We divided the entire dataset into two disjoint subsets: (i) a training dataset Dt with 20000
samples and (ii) an evaluation dataset De with 100 samples. The training dataset Dt =
{xt, {yl}Ll=1, yt, rt, y

∗} includes feature vectors, class labels, and rule-level annotations. The eval-
uation dataset De is exclusively reserved for evaluation purposes.

Table 2: The ground truth rule set.
Label Rules Weight

k0
1: x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
2: x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5

k1
3: x3 ∧ x4 ∧ x5 1.4
4: x6 ∧ x7 ∧ x9 1.6

k2
5: x1 ∧ x3 ∧ x4 1.7
6: x4 ∧ x7 ∧ x9 1.3

Agent Simulator In our framework, each agent is modeled as a rule-based probabilistic decision-
maker. Each agent is equipped with a unique set of rules, characterized by specific conditions,
classes, and weights. These rule sets may deviate from the ground-truth rules, reflecting hetero-
geneous expertise and potential biases. Unlike deterministic classifiers, the agents select actions
according to the probability distribution given by the softmax function over the rule weights.

To evaluate collaborative decision-making under diverse conditions, we design several experimental
scenarios, each consisting of a pair of agents with distinct rule sets and weight assignments. Table 3
shows representative configurations.

C.2 REAL-WORLD DATASETS

We also evaluate our framework on three publicly available classification datasets: Drug Classifi-
cation, Weather Type Classification, and Customer Segmentation.

• Drug Classification: This dataset contains 200 samples with 6 features: Age, Sex, Blood
Pressure (BP), Cholesterol level, Na-to-K ratio, and an identifier. The target variable is the
prescribed Drug type, a categorical label with 5 classes (Drug A, Drug B, Drug C, Drug
X, Drug Y).

• Weather Type Classification: This dataset provides meteorological information for
weather condition recognition. It consists of approximately 13,000 samples, each de-
scribed by 11 features, including Temperature, Humidity, Wind Speed, Precipitation, At-
mospheric Pressure, UV Index, Visibility, and categorical attributes such as Cloud Cover,
Season and Location. The target label is Weather Type, a categorical variable with 4
classes: Rainy, Sunny, Cloudy, and Snowy.

• Customer Segmentation: This dataset contains over 8,000 customer records, with 8
features such as Gender, Age, Education Level, Profession, Work Experience, Spending
Score, Family Size, and Var 1. The target label is Segmentation Class, denoted as A, B,
C, D.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: The rules assigned to each rule-based decision-maker in different scenarios.
Scenario Model Rule Set Weight

Scenario 1
Ideal

Agent 1

a1 ← x3 ∧ x4 ∧ x5 1.4
a1 ← x6 ∧ x7 ∧ x9 1.6
a2 ← x1 ∧ x3 ∧ x4 1.7
a2 ← x4 ∧ x7 ∧ x9 1.3
a0 ← x3 ∧ x4 1.3

Agent 2

a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5
a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
a1 ← x3 ∧ x4 1.5
a2 ← x1 ∧ x3 1.5

Scenario 2
One Strong & One Weak

Agent 1

a1 ← x3 ∧ x4 ∧ x5 1.4
a1 ← x6 ∧ x7 ∧ x9 1.6
a2 ← x1 ∧ x3 ∧ x4 1.7
a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5
a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
a2 ← x1 ∧ x3 1.2

Agent 2

a2 ← x4 ∧ x7 ∧ x9 1.7
a0 ← x3 ∧ x4 1.5
a1 ← x3 ∧ x4 1.5
a2 ← x1 ∧ x3 1.3

Scenario 3
Noisy-

complementary

Agent 1

a1 ← x3 ∧ x4 ∧ x5 1.4
a1 ← x6 ∧ x7 ∧ x9 1.6
a2 ← x1 ∧ x3 ∧ x4 1.7
a0 ← x3 ∧ x4 1.3
a2 ← x1 ∧ x3 1.3

Agent 2

a2 ← x4 ∧ x7 ∧ x9 1.3
a0 ← x3 ∧ x4 ∧ x7 ∧ ¬x9 1.5
a0 ← x0 ∧ x1 ∧ ¬x2 ∧ x3 1.5
a1 ← x3 ∧ x4 1.3
a2 ← x1 ∧ x3 1.0

Scenario 3
Noisy-

noncomplementary

Agent 1

a1 ← x6 ∧ x7 ∧ x9 1.6
a0 ← x3 ∧ x4 1.5
a1 ← x3 ∧ x4 1.4
a2 ← x1 ∧ x3 1.5

Agent 2

a2 ← x4 ∧ x7 ∧ x9 1.3
a0 ← x3 ∧ x4 1.5
a1 ← x3 ∧ x4 1.4
a2 ← x1 ∧ x3 1.1
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D LLM-BASED BEHAVIOR SIMULATION

Complete Prompt Template for the Rule-Weighted Multi-Agent Classification Envi-
ronment

Task Description
• Each rule has the form “IF conditions THEN class = c”.
• For a sample, sum the weights of all triggered rules per class; predict the highest

score (ties broken by priority).
• Multiple agents have different prior strengths/weaknesses; this only affects their

initial and adjustment tendencies on weights.
• Data Type:

– If using real data, the background information about the dataset must be provided
(e.g., source, nature of features, and any domain-specific considerations).

– If using synthetic data, assume it follows the general distribution and properties
defined by the experiment setup.

Definitions and Constraints
• Features: discrete or discretized attributes.
• Classes: the label set.
• Rules: logical predicates (AND/OR/NOT) implying a target class.
• Rule weights: real values in [0, 2], contributing to class scores.
• Agents: each has a role description and class strengths/weaknesses.
• Update weights only; do not add/remove/modify rules or conditions.
• Keep rule IDs unchanged; prioritize fixing weak-class errors; push misleading rules

toward 0.
• Output must be strict JSON with no explanations when requested.

Input Format
• features = {FEATURES}
• classes = {CLASSES}
• agents = {AGENTS} (role desc, strengths/weaknesses)
• initial rules = {INITIAL RULES BY AGENT}
• feedback batch = {FEEDBACK BATCH} (optional)
• command = {”INIT” or ”CONTINUE”}

Your Task
• Analyze rule–feature logic; detect conflicts/redundancy.
• Adjust weights within [0, 2] using feedback; avoid large jumps and overfitting.
• Preserve all rule texts and IDs; resolve ties via preset priority.
• If command="CONTINUE", return only updated weights and rule text.

Output (strict JSON)
{"current_rules": "<concatenate the exact rule text>",

"rule_weights": {"rule1": 1.35, "rule2": 0.90}}

Minimal Rule Example
rule1: IF feature_3=1 AND feature_4=1 AND feature_5=1
THEN class=1.
rule2: IF feature_6=1 AND feature_4=1 AND feature_9=1
THEN class=1.
rule3: IF feature_1=1 AND feature_3=1 THEN class=0.
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E STEPWISE CONFUSION MATRIX VISUALIZATION OF EACH SCENARIO

We present the confusion matrix variations for two scenarios in Fig. 3, and here we show the confu-
sion matrix visualization results for all remaining scenarios and datasets, as shown in Fig. 5.

F BROADER IMPACT AND LIMITATION

Our framework provides a lightweight, theory-grounded tool for enhancing the safety of collabo-
rative decision-making between humans, AI systems, and domain experts. By preventing harmful
consensus, it has the potential to improve reliability in high-stakes fields such as medical diagnosis
and scientific discovery, fostering more trustworthy and effective human-AI partnerships.

Despite proposing a natural multi-agent extension of the CEM framework in Section 2.6, including a
defined multi-agent consensus energy function and outlined stopping-time/steering logic, this study
has a limitation: existing theoretical analyses and empirical validations all focus exclusively on the
two-agent setup. No rigorous mathematical proofs or systematic experiments support the multi-
agent extension, and future work will supplement multi-agent theoretical proofs and design targeted
experiments to validate its generality.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in this work exclusively for polishing the writing and
correcting grammar errors. All substantive research ideas, methodological design, and scientific
conclusions presented in this paper were independently developed and validated by the authors.
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Figure 5: Stepwise confusion matrices and accuracy trends with monitor instructions.
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