

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSENSUS ENERGY MINIMIZATION: ENSURING RE- LIABLE CONVERGENCE IN COLLABORATIVE DELIB- ERATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Multi-round deliberation among heterogeneous agents—whether humans, AI sys-
014 tems, or domain experts—offers opportunities to reduce diagnostic uncertainty
015 through complementary reasoning. Yet such collaboration can also amplify er-
016 rors if agents prematurely converge on unreliable conclusions. We propose a
017 lightweight monitoring framework, Consensus Energy Minimization (CEM), that
018 regulates collaborative decision-making without requiring domain-specific super-
019 vision. CEM formalizes deliberation as a dynamical system, where a confusion-
020 aware consensus energy functional tracks both disagreement and convergence in
021 low-reliability regions. The monitor applies stopping-time rules to either halt, con-
022 tinue, or steer discussion toward an agent’s local expertise, ensuring convergence
023 to high-confidence consensus. We provide theoretical guarantees showing that,
024 under mild reliability assumptions, CEM provably avoids harmful convergence
025 and achieves stability in safe consensus regions. Empirically, we demonstrate
026 the framework on synthetic and real-world classification tasks, where CEM re-
027 duces uncertainty and improves joint accuracy across diverse interaction scenarios
028 (ideal, asymmetric, and noisy). Our results highlight that principled monitoring,
029 rather than model accuracy alone, is key to harnessing the benefits of deliberation.

031 1 INTRODUCTION

033 As AI becomes increasingly integrated into professional domains, research has shifted from
034 technology-centered development toward collaborative designs that leverage diverse agents. De-
035 ligation, characterized by thoughtful and reasoned discussion, plays a pivotal role in enabling
036 constructive discourse and consensus-building across contexts (Bächtiger & Parkinson, 2019). In
037 particular, deliberation among heterogeneous agents, including humans, AI systems, and domain
038 experts, is increasingly adopted in high-stakes domains such as medicine, law, and scientific discov-
039 ery (Zöller et al., 2024; Ma et al., 2025; Wang et al., 2025; Green & Chen, 2019).

040 While multi-agent deliberation can reduce uncertainty by combining complementary reasoning pro-
041 cesses, it also introduces risks. Premature convergence on unreliable conclusions can amplify errors
042 rather than mitigate them. Social psychology research has shown that repeated discussions may
043 lead to group polarization, causing decisions to shift toward more extreme outcomes (Bang & Frith,
044 2017). Similar issues have emerged in AI multi-agent frameworks. Multiple LLM agents can prema-
045 turely converge to a consensus without sufficient critical evaluation, a phenomenon known as silent
046 consensus (Wang et al., 2025). For example, Wang et al. (Wang et al., 2025) introduced “catfish
047 agents” to inject structured dissent and disrupt premature consensus, Vodrahalli et al. (Vodrahalli
048 et al., 2022) showed that even uncalibrated models can shape human reliance on AI advice, Carroll
049 et al. (Carroll et al., 2020) explicitly modeled human behavior to improve coordination, Corvelo
050 Benz and Gomez-Rodriguez (Benz & Rodriguez, 2024) proposed human-aligned calibration to bet-
051 ter match AI confidence with human decision-making processes, and Cui et al. (Cui et al., 2025)
052 designed consensus-free debate protocols (Free-MAD) that evaluate reasoning trajectories rather
053 than relying solely on final majority votes. Despite these advances, most research on human–AI col-
laboration and multi-expert aggregation has focused on single-shot interactions or static accuracy
improvements, leaving the iterative dynamics of multi-round deliberation relatively underexplored.

In this study, we propose a new framework for regulating collaborative deliberation through *Consensus Energy Minimization* (CEM). Our central idea is to treat agent interaction as an iterative dynamical system in the joint space of predictions and justifications. Supervisory mechanisms have been shown to improve both reasoning reliability and feedback quality. For instance, confidence-based filtering can halt low-quality reasoning traces to enhance accuracy (Fu et al., 2025), while annotation monitoring and incentive designs ensure consistency in human feedback (Liu et al., 2025). Inspired by these findings, we introduce a lightweight monitoring mechanism—a *deliberation monitor*—that does not solve the decision task directly but instead tracks the trajectory of collaboration. The monitor evaluates a confusion-aware *consensus energy functional* capturing two key risks: (i) persistent disagreement, indicating unresolved conflict, and (ii) low-confidence convergence, indicating fragile agreement in unreliable regions. Based on this energy, the monitor applies stopping-time rules to regulate deliberation by choosing one of three actions: STOP, halting collaboration when unsafe convergence is detected; STEER, guiding the discussion toward a more reliable agent’s expertise; or CONTINUE, allowing further deliberation when convergence is safely emerging.

This formulation yields two benefits. First, it provides a principled account of multi-round deliberation: we show that under mild assumptions, consensus energy decreases monotonically and deliberation converges to high-confidence regions, while harmful consensus is detectable and avoidable. Second, it enables practical algorithms that require only historical confusion matrices and observed justifications, without domain-specific supervision or large-scale retraining.

In this paper, we focus on the two-agent case for clarity, analyzing the interaction between a pair of heterogeneous agents and demonstrating both theoretical guarantees and empirical behavior. Nonetheless, the framework naturally extends to multi-agent settings by aggregating divergence and reliability measures across agents, making CEM a general approach to safe collaborative reasoning. Through synthetic and real-world classification tasks, we show that CEM improves joint accuracy while reducing uncertainty across ideal, asymmetric, and noisy scenarios.

2 METHOD

We propose the *Consensus Energy Minimization (CEM)* framework (Figure 1) for regulating multi-round deliberation between agents. The framework formalizes interaction as an iterative dynamical system in which a lightweight monitor tracks predictions, justifications, and reliabilities, without directly solving the underlying task. The monitor computes a confusion-aware *consensus energy functional* that penalizes both disagreement and convergence in low-reliability regions, and applies stopping-time rules to decide when to halt, steer, or continue deliberation.

2.1 SETTING AND AGENTS

We consider a classification task with K possible labels $y \in \{1, \dots, K\}$ and define three primary roles in the system:

- **Agent H (human or human-like):** This agent generates predictions $\hat{y}_H^{(t)}$ and optional feature-importance weights $w_H^{(t)}$ at each round t .
- **Agent L (AI or model):** This agent produces predictions $\hat{y}_L^{(t)}$ and corresponding feature-importance weights $w_L^{(t)}$.
- **Monitor M:** Observes the sequence $\{(\hat{y}_H^{(t)}, w_H^{(t)}), (\hat{y}_L^{(t)}, w_L^{(t)})\}_{t=1}^T$ and controls the deliberation. The monitor does not make predictions itself; its role is to track the consensus dynamics and apply stopping or steering decisions.

2.2 CONFUSION-MATRIX-BASED RELIABILITY

To quantify each agent’s expertise, we characterize them by their confusion matrices. For an agent $a \in \{H, L\}$, its confusion matrix C_a is defined as:

$$C_a[i, j] = P(\hat{y}_a = j \mid y = i),$$

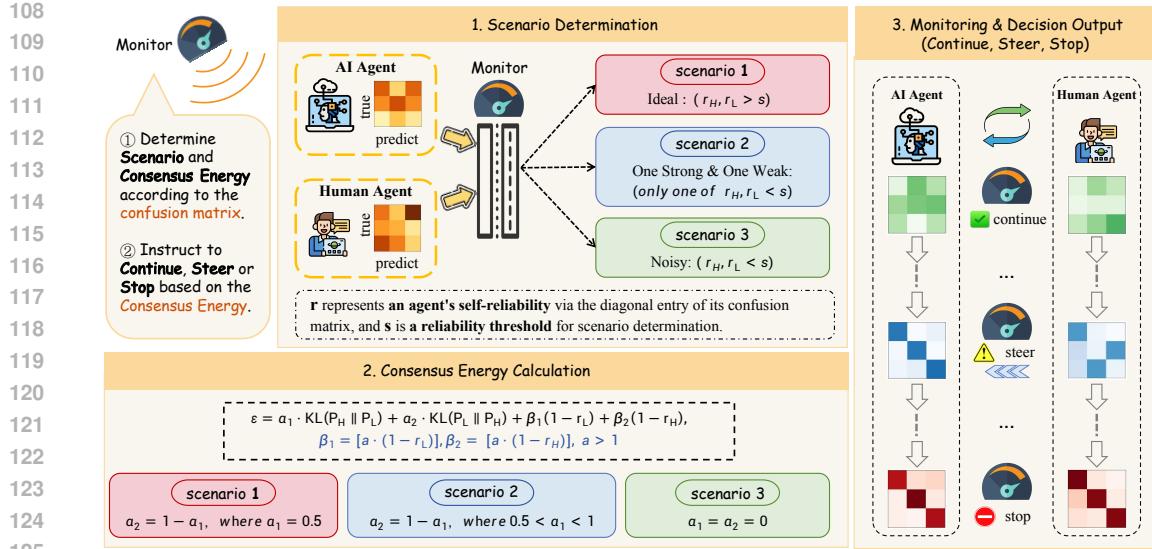


Figure 1: The Consensus Energy Minimization (CEM) framework for collaborative deliberation. The monitor first determines the interaction scenario based on agent reliabilities (r_H, r_L relative to threshold s), then computes a confusion-aware consensus energy functional ε that combines KL divergence terms with reliability penalties, and finally outputs one of three control decisions: Continue, Steer, or Stop, to ensure safe convergence in multi-round deliberation.

which encodes the probability that the agent predicts class j when the true label is i . In particular, the diagonal entries $C_a[i, i]$ capture the agent's reliability on class i , and the off-diagonals capture its systematic biases. In practice, C_a can be estimated from historical data or a calibration set.

From the confusion matrix, we derive two key quantities for each agent at each round t :

- **Reliability-informed posterior:** Given the agent's current prediction $\hat{y}_a^{(t)}$, we compute the posterior distribution over the true label:

$$P_a(y \mid \hat{y}_a^{(t)}) \propto C_a[y, \hat{y}_a^{(t)}].$$

This reflects how trustworthy the prediction is, based on the agent's historical performance.

- **Self-reliability score:** We define the agent's instantaneous reliability as the diagonal entry corresponding to its current prediction:

$$r_a^{(t)} = C_a[\hat{y}_a^{(t)}, \hat{y}_a^{(t)}].$$

The scalar $r_a^{(t)}$ is the probability that agent a 's prediction is correct, given historical performance. A high $r_a^{(t)}$ means agent a is usually correct when it predicts this class, whereas a low $r_a^{(t)}$ signals caution. In summary, the pair $(P_a(\cdot \mid \hat{y}_a^{(t)}), r_a^{(t)})$ captures agent a 's belief and confidence at round t .

2.3 CONSENSUS ENERGY FUNCTIONAL

We now construct a *consensus energy* $\varepsilon^{(t)}$ to measure the quality of agreement between the agents at round t . Let $P_H^{(t)}(y) = P_H(y \mid \hat{y}_H^{(t)})$ and $P_L^{(t)}(y) = P_L(y \mid \hat{y}_L^{(t)})$ be the two agents' posteriors over the true class (as defined above). We define

$$\varepsilon^{(t)} = \alpha_1 D_{KL}(P_H^{(t)} \parallel P_L^{(t)}) + \alpha_2 D_{KL}(P_L^{(t)} \parallel P_H^{(t)}) + \beta_1(1 - r_L^{(t)}) + \beta_2(1 - r_H^{(t)}).$$

Here $\alpha_1, \alpha_2, \beta_1, \beta_2 \geq 0$ are coefficients (which in principle can be adapted based on the agents' current reliabilities). Intuitively, the first two KL-divergence terms penalize persistent disagreement between the agents: they grow large if $P_H^{(t)}$ and $P_L^{(t)}$ differ significantly. The latter terms penalize

162 consensus in low-confidence regimes: if either agent has a low self-reliability $r_a^{(t)}$, then $(1 - r_a^{(t)})$ is
 163 large, raising $\varepsilon^{(t)}$. Thus, even when the agents' point predictions agree, the energy remains high if
 164 that agreement occurs in a region where an agent is known to be unreliable. One can set the weights
 165 so that, for example, a lower $r_L^{(t)}$ increases the penalty on agreement more strongly. A small $\varepsilon^{(t)}$
 166 indicates that both agents are aligning on an answer they trust, whereas a large $\varepsilon^{(t)}$ signals either a
 167 lack of consensus or a potentially dangerous consensus by uncertain agents.
 168

169 **2.4 MONITORING AND STOPPING-TIME CONTROL**
 170

171 CEM treats deliberation as an iterative process of energy minimization. At each round t , the monitor
 172 performs the following three steps:
 173

- 174 • **Scenario Determination.** The monitor compares each agent's self-reliability $r_H^{(t)}, r_L^{(t)}$ against a
 175 preset threshold s to categorize the interaction. For example, if both $r_H^{(t)}$ and $r_L^{(t)}$ exceed s , we
 176 have an *ideal* scenario (both agents are knowledgeable); if exactly one exceeds s , we have an
 177 *asymmetric* scenario (one strong agent, one weak agent); and if both fall below s , the scenario is
 178 *noisy* (neither is reliable). This classification helps interpret the energy dynamics.
 179
- 180 • **Consensus Energy Calculation.** Compute the current energy $\varepsilon^{(t)}$ as defined above, using the
 181 agents' posteriors and reliabilities. This tracks the evolution of disagreement and confidence in
 182 the discussion.
 183
- 184 • **Decision Output.** Based on $\varepsilon^{(t)}$ and its recent change $\Delta\varepsilon^{(t)} = \varepsilon^{(t)} - \varepsilon^{(t-1)}$, the monitor issues
 185 one of three instructions:
 - 186 – **CONTINUE** if $\varepsilon^{(t)}$ is steadily decreasing and still above a small safety threshold ϵ . This means
 the agents are safely moving toward consensus, so the discussion can proceed.
 187
 - 188 – **STEER** if deliberation has stalled in an *asymmetric* scenario (one agent is much more reliable
 than the other). In this case, the monitor will guide the weaker agent's reasoning toward the
 189 stronger agent's expertise (see below).
 190
 - 191 – **STOP** if $\varepsilon^{(t)}$ remains high (above a low-confidence cutoff ϵ_{low}) without decreasing. This in-
 192 dicates that continued discussion is reinforcing an unreliable consensus, so we halt to avoid
 193 harmful convergence.
 194

195 Formally, we can define the stopping time τ^* as the earliest round t such that either $\varepsilon^{(t)} \leq \epsilon$ (safe
 196 consensus achieved) or the energy descent has stagnated above the low threshold:
 197

$$198 \tau^* = \min \left\{ t \mid \varepsilon^{(t)} \leq \epsilon \text{ or } [\Delta\varepsilon^{(t)} > -\delta \text{ and } \varepsilon^{(t)} > \epsilon_{\text{low}}] \right\}. \quad (1)$$

199 Here $\epsilon > 0$ is the convergence threshold, $\epsilon_{\text{low}} > 0$ is the confidence cutoff, and $\delta > 0$ detects
 200 stagnation in the energy decrease. By this rule, deliberation stops as soon as the energy falls below ϵ
 201 (ensuring a high-confidence consensus) or if the energy has stopped decreasing while still above ϵ_{low}
 202 (preventing a low-confidence consensus). In our experiments, the default values are set as $\epsilon = 0.05$,
 203 $\epsilon_{\text{low}} = 0.3$, and $\delta = 0.01$.
 204

205 **2.5 STEERING AS FEATURE-WEIGHT OPTIMIZATION**
 206

207 When the monitor issues a **STEER** instruction, it adjusts the weaker agent's reasoning by modifying
 208 its feature-weight vector. Concretely, suppose agent H is identified as weaker and agent L is stronger
 209 at round t . Let $w_H^{(t)}$ be the weight vector of the weaker agent. We perform a small projected gradient
 210 step on a composite objective to update w_H :

$$211 w_H^{(t+1)} = w_H^{(t)} - \eta \nabla_{w_H} [\alpha \|w_H - w_H^{(t)}\|^2 + \beta \|w_H - w_{\text{expert}}^{(t)}\|^2 + \gamma E(w_H, w_L^{(t)})], \quad (2)$$

212 Here $\eta > 0$ is a small step size, and $w_{\text{expert}} = w_L^{(t)}$ is the weight vector of the more reliable agent
 213 (serving as a reference). The objective inside the gradient has three terms: (1) $\|w_H - w_H^{(t)}\|^2$ penal-
 214 izes large changes (preserving interpretability and consistency), (2) $\|w_H - w_{\text{expert}}^{(t)}\|^2$ encourages
 215 H 's weights to move closer to the stronger agent's weights (aligning their explanations), and (3)

$\varepsilon(w_H, w_L^{(t)})$ is the consensus energy as a function of w_H (promoting explicit reduction of disagreement). In effect, this update nudges the weaker agent’s justification toward the expert’s perspective while reducing the energy. Importantly, this steering acts on the explanation (feature weights) and does not change the agent’s underlying predictive model.

2.6 EXTENSIONS

CEM admits several natural extensions:

- **Dynamic reliability:** If the human agent H is learning over time, one could update C_H online as more data or feedback becomes available.
- **Adaptive thresholds:** The thresholds ϵ, δ could be tuned dynamically (for instance via reinforcement learning) based on observed outcomes or task requirements.
- **Energy visualization:** One might visualize the energy landscape of a task by plotting ε over deliberation trajectories, helping to interpret where and why discussion stalls.

Multi-Agent Extension. Although we analyze the two-agent case for clarity, the framework extends naturally to N agents. Define

$$\varepsilon^{(t)} = \alpha \sum_{i \neq j} D_{KL}(P_i^{(t)} \parallel P_j^{(t)}) + \beta \sum_i (1 - r_i^{(t)}).$$

The same stopping-time and steering logic applies: consensus is considered safe when pairwise disagreements vanish and at least one agent maintains bounded reliability. Monotonicity arguments extend by convexity, ensuring that reliable subgroups dominate the consensus trajectory, while groups with uniformly low reliability are halted. This makes CEM a general approach to multi-agent deliberation, covering teams, panels, or ensembles of models.

3 THEORETICAL GUARANTEES

We now formalize the guarantees of the Consensus Energy Minimization framework. The following results establish that CEM ensures safe convergence and prevents harmful consensus. We work under the standing assumptions summarized in Appendix B (finite label set, smoothed/confidence-calibrated C_a with positive support, closed convex \mathcal{W} , $\varepsilon(\cdot, w_L)$ being C^1 and L -smooth in w_H , and projected steps with $\eta < 2/L$); complete proofs are given in Appendix B.2.

Lemma 1 (Non-negativity and Monotonicity). *Let the consensus energy at round t be defined as in Secti2. Under the technical conditions specified in Appendix B, and with gradient-based STEER updates using step size $0 < \eta < \eta_{\max}$, the energy sequence satisfies:*

$$\varepsilon^{(t+1)} \leq \varepsilon^{(t)}, \quad \forall t,$$

and remains nonnegative.

Proof sketch. Nonnegativity follows from the non-negativity of KL divergence and reliability terms. The monotonicity is guaranteed by the descent properties of the projected gradient method applied to the smooth consensus energy functional. See Appendix B.2 for the complete proof. \square

Theorem 1 (Safe Convergence under Bounded Reliability). *Suppose at least one agent maintains reliability bounded away from zero, i.e. $\exists a \in \{H, L\}$ with $r_a^{(t)} \geq \rho > 0$ for all t . Then under the assumptions in Appendix B, the deliberation process either:*

- Halts at finite time τ^* with $\varepsilon^{(\tau^*)} \leq \epsilon$, or
- Converges to a consensus state where $\lim_{t \rightarrow \infty} \varepsilon^{(t)} \leq \epsilon$.

Proof sketch. By Lemma 1, $\{\varepsilon^{(t)}\}$ is nonincreasing and bounded below, hence convergent. The bounded reliability ensures that the system cannot persist at stationary limits with nonvanishing pairwise disagreement (KL contributions would keep decreasing the energy). The complete convergence analysis is provided in Appendix B.2. In particular, if some agent a maintains $r_a^{(t)} \geq \rho > 0$, choosing $\epsilon > \beta_{-a}(1 - \rho)$ guarantees termination in the safe region (Appendix B.2). \square

270 **Theorem 2** (Detectability of Harmful Convergence). *If both agents' reliabilities vanish ($r_H^{(t)}, r_L^{(t)} \rightarrow 0$), then under the conditions in Appendix B and for any $\epsilon_{\text{low}} < \beta_1 + \beta_2$:*

273 $\Delta\varepsilon^{(t)} \rightarrow 0, \quad \varepsilon^{(t)} > \epsilon_{\text{low}}$ for sufficiently large t .

274 *Consequently, the STOP condition in Eq. 1 is triggered, preventing reinforcement of unreliable con-*

277 *Proof sketch.* Vanishing reliabilities cause the penalty term to approach $\beta_1 + \beta_2$, keeping the energy
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1

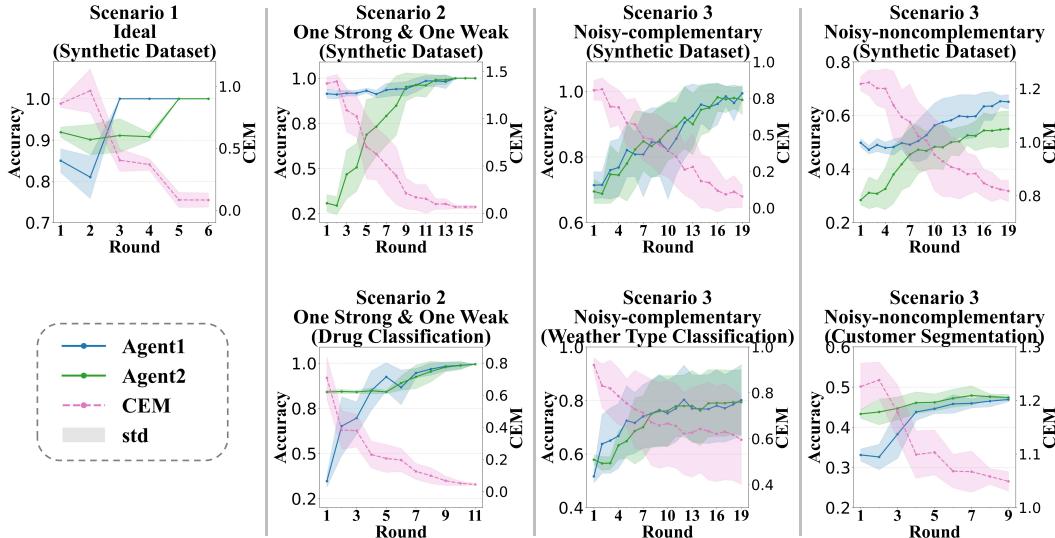


Figure 2: Accuracy and consensus energy trends of agents across three experimental scenarios.

- Scenario 2 features distinct initial accuracy conditions: one agent starting high (0.9) and the other low (0.3), the framework mitigates the negative impact of the less accurate agent, resulting in substantial accuracy gains for the latter and modest gains for the more accurate agent, with both eventually nearing accuracy 1 as consensus energy declines.
- Even under unbounded reliability setting in Scenario 3, both agents exhibit accuracy improvements. The complementary case outperforms the non-complementary by about 0.1, and the latter avoids convergence on errors, confirming the monitoring and termination mechanism’s effectiveness.

Stepwise Confusion Matrix Visualization Confusion matrix visualization provides insight into the distribution of agents’ cognitive capabilities after autonomous learning or mutual interaction. It also reveals the influence of monitoring instructions on agent interaction. For each scenario and dataset, we randomly select one iteration of the confusion matrix for illustration. Figure 3 presents the two most contrasting cases on the synthetic dataset (the ideal and noisy-non-complementary scenarios), while the remaining five results are provided in Appendix E.

- In ideal case, both agents possess strong capabilities such that further self-learning yields limited improvement. In this setting, timely mutual interaction allows their strengths to complement each other, leading to enhanced overall performance.
- In noisy-non-complementary case, when both agents initially exhibit low capabilities, early-stage interference is minimized to enable autonomous learning and avoid premature consensus. As capabilities and reliability gradually improve, if one agent develops cognitive bias, timely “steer” instructions can guide it back to the correct trajectory, preventing harmful consensus even without further capability gains.

4.2 ABLATION STUDIES AND COMPARATIVE ANALYSIS

4.2.1 FREE DISCUSSION WITHOUT MONITOR

To evaluate the effectiveness of our framework in facilitating multi-agent learning and interaction, we conducted a comparative study between free discussion without monitor supervision (Free Discussion) and the complete framework (Figure 4). In the free discussion setting, agents, whose behaviors are simulated by Large Language Models (LLMs), exchange feedback and update their reasoning based on observed cases in each round, brainstorming collectively without a monitor to decide whether deliberation should continue, steer, or stop. This comparison illustrates the peak performance achievable through collaborative deliberation without monitoring. In contrast, the moni-

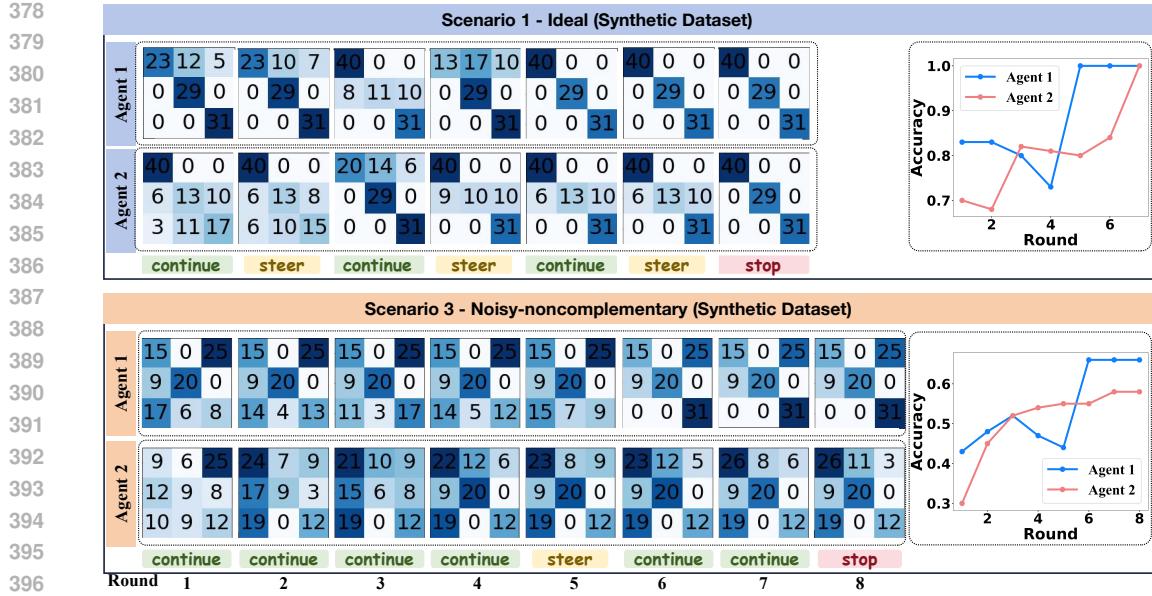


Figure 3: Stepwise confusion matrices and accuracy trends for two representative scenarios with monitor instructions.

tered framework achieves higher accuracy with fewer rounds, reducing unnecessary interaction and enhancing both the quality and stability of deliberation.

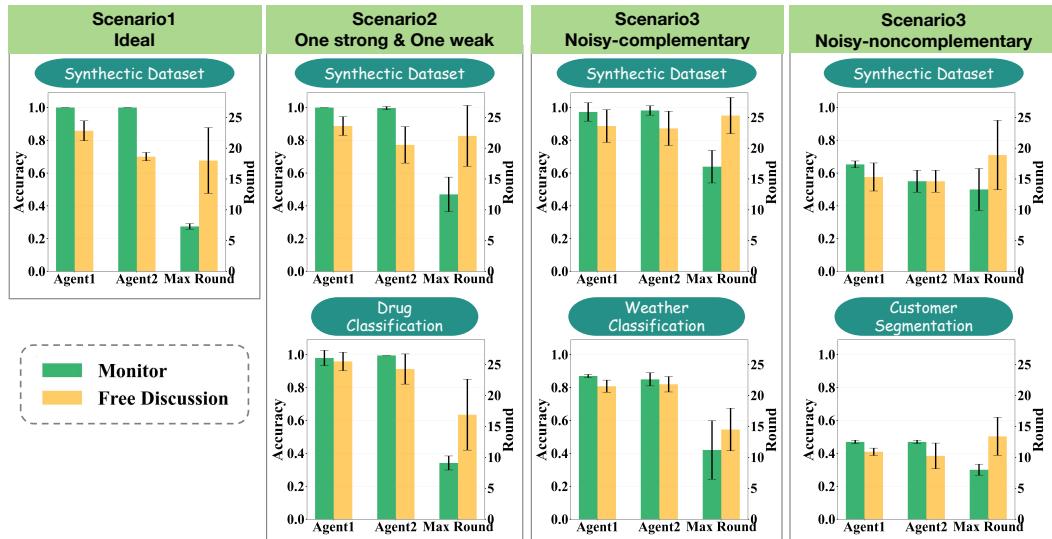


Figure 4: Performance comparison of accuracy and max round: monitor supervision vs. free discussion across three scenarios.

4.2.2 MODELING REALISTIC ACCEPTANCE HETEROGENEITY AMONG AGENTS

We evaluate the framework across multiple interaction rounds (4, 8, and 12) and acceptance levels (25%, 50%, 75%, 100%), reporting mean accuracies \pm standard deviations for Agent 1 (human-simulating) and Agent 2 (LLM), along with consensus energy. Overall, accuracies consistently improve while consensus energy declines, reflecting effective steering and stopping mechanisms.

- In the “ideal” setting, Table 1 shows that when both agents resist deliberation (low acceptance rate), consensus energy gradually weakens. Even at a 25% acceptance rate, the framework remains effective: consensus energy decreases from 0.775 ± 0.164 to 0.478 ± 0.167 between rounds 4 and 12, with both agents improving in accuracy. One increases from 0.828 ± 0.015 to 0.860 ± 0.080 , while the other shows a larger gain from 0.663 ± 0.100 to 0.836 ± 0.074 .
- When reliability is asymmetric, accuracy gains shrink as the acceptance rate decreases but remain positive for both agents. Crucially, even when the stronger agent fully accepts weaker input, the framework prevents harmful convergence, ensuring the weaker agent improves more than the stronger one, demonstrating resilience to asymmetric influence and safeguarding against dangerous consensus.
- In noisy environments, complementary noise allows accuracy improvements at a 25% acceptance rate, though with smaller gains. In non-complementary noisy settings, the early-stopping mechanism halts deliberation before errors can reinforce, so ablation results are omitted.

Table 1: Ablation study under varying acceptance rates across three scenarios on both synthetic and real-world datasets.

Scenario 1 – Ideal

Acceptance	Synthetic Dataset								
	Round=4			Round=8			Round=12		
Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	
25%	0.828 \pm 0.015	0.663 \pm 0.100	0.775 \pm 0.164	0.834 \pm 0.020	0.762 \pm 0.119	0.627 \pm 0.162	0.860 \pm 0.080	0.836 \pm 0.074	0.478 \pm 0.167
50%	0.831 \pm 0.020	0.747 \pm 0.126	0.634 \pm 0.212	0.907 \pm 0.069	0.823 \pm 0.083	0.445 \pm 0.205	0.878 \pm 0.068	0.868 \pm 0.080	0.412 \pm 0.139
75%	0.835 \pm 0.030	0.691 \pm 0.100	0.689 \pm 0.145	0.925 \pm 0.075	0.870 \pm 0.090	0.319 \pm 0.100	1.000 \pm 0.000	1.000 \pm 0.000	0.034 \pm 0.018
100%	0.825 \pm 0.040	0.814 \pm 0.030	0.529 \pm 0.050	1.000 \pm 0.000	1.000 \pm 0.000	0.038 \pm 0.015	1.000 \pm 0.000	1.000 \pm 0.000	0.038 \pm 0.015

Scenario 2 – One Strong & One Weak

Acceptance	Synthetic Dataset								
	Round=4			Round=8			Round=12		
Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	
25%	0.906 \pm 0.019	0.393 \pm 0.129	1.226 \pm 0.220	0.910 \pm 0.025	0.486 \pm 0.192	1.057 \pm 0.327	0.906 \pm 0.023	0.573 \pm 0.186	0.905 \pm 0.307
50%	0.898 \pm 0.027	0.470 \pm 0.128	1.092 \pm 0.221	0.907 \pm 0.026	0.682 \pm 0.153	0.694 \pm 0.280	0.917 \pm 0.034	0.780 \pm 0.160	0.510 \pm 0.289
75%	0.909 \pm 0.023	0.525 \pm 0.126	0.992 \pm 0.220	0.918 \pm 0.036	0.686 \pm 0.164	0.688 \pm 0.279	0.954 \pm 0.048	0.866 \pm 0.133	0.331 \pm 0.252
100%	0.917 \pm 0.016	0.506 \pm 0.133	1.025 \pm 0.220	0.940 \pm 0.036	0.848 \pm 0.164	0.397 \pm 0.304	0.985 \pm 0.000	0.991 \pm 0.027	0.096 \pm 0.057

Scenario 3 – Noisy-complementary

Acceptance	Synthetic Dataset								
	Round=4			Round=8			Round=12		
Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	
25%	0.655 \pm 0.145	0.839 \pm 0.012	0.358 \pm 0.120	0.842 \pm 0.092	0.849 \pm 0.011	0.210 \pm 0.069	0.861 \pm 0.084	0.845 \pm 0.022	0.203 \pm 0.072
50%	0.711 \pm 0.052	0.874 \pm 0.062	0.308 \pm 0.045	0.893 \pm 0.089	0.878 \pm 0.059	0.162 \pm 0.063	0.911 \pm 0.097	0.913 \pm 0.061	0.133 \pm 0.074
75%	0.698 \pm 0.092	0.852 \pm 0.049	0.321 \pm 0.086	0.907 \pm 0.086	0.880 \pm 0.055	0.153 \pm 0.059	0.947 \pm 0.054	0.936 \pm 0.066	0.101 \pm 0.056
100%	0.849 \pm 0.109	0.848 \pm 0.017	0.230 \pm 0.083	0.968 \pm 0.034	0.954 \pm 0.057	0.099 \pm 0.049	0.995 \pm 0.000	0.995 \pm 0.000	0.044 \pm 0.005

Acceptance	Drug Classification								
	Round=4			Round=8			Round=12		
Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	
25%	0.655 \pm 0.145	0.839 \pm 0.012	0.358 \pm 0.120	0.842 \pm 0.092	0.849 \pm 0.011	0.210 \pm 0.069	0.861 \pm 0.084	0.845 \pm 0.022	0.203 \pm 0.072
50%	0.711 \pm 0.052	0.874 \pm 0.062	0.308 \pm 0.045	0.893 \pm 0.089	0.878 \pm 0.059	0.162 \pm 0.063	0.911 \pm 0.097	0.913 \pm 0.061	0.133 \pm 0.074
75%	0.698 \pm 0.092	0.852 \pm 0.049	0.321 \pm 0.086	0.907 \pm 0.086	0.880 \pm 0.055	0.153 \pm 0.059	0.947 \pm 0.054	0.936 \pm 0.066	0.101 \pm 0.056
100%	0.849 \pm 0.109	0.848 \pm 0.017	0.230 \pm 0.083	0.968 \pm 0.034	0.954 \pm 0.057	0.099 \pm 0.049	0.995 \pm 0.000	0.995 \pm 0.000	0.044 \pm 0.005

Acceptance	Weather Type Classification								
	Round=4			Round=8			Round=12		
Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	Agent1-Acc	Agent2-Acc	CEM	
25%	0.590 \pm 0.089	0.574 \pm 0.014	0.876 \pm 0.094	0.669 \pm 0.131	0.587 \pm 0.053	0.806 \pm 0.131	0.688 \pm 0.120	0.621 \pm 0.104	0.772 \pm 0.155
50%	0.638 \pm 0.144	0.588 \pm 0.052	0.833 \pm 0.140	0.740 \pm 0.149	0.643 \pm 0.106	0.726 \pm 0.163	0.768 \pm 0.135	0.735 \pm 0.141	0.642 \pm 0.207
75%	0.692 \pm 0.109	0.669 \pm 0.116	0.727 \pm 0.199	0.740 \pm 0.138	0.736 \pm 0.121	0.667 \pm 0.210	0.772 \pm 0.140	0.776 \pm 0.135	0.595 \pm 0.232
100%	0.668 \pm 0.121	0.633 \pm 0.053	0.785 \pm 0.123	0.751 \pm 0.125	0.750 \pm 0.124	0.672 \pm 0.187	0.803 \pm 0.128	0.780 \pm 0.116	0.622 \pm 0.179

5 CONCLUSION

In this work, we introduced Consensus Energy Minimization (CEM), a lightweight monitoring framework for regulating multi-round collaborative deliberation among heterogeneous agents. By modeling deliberation as a dynamical system, CEM employs a confusion-aware consensus energy functional that penalizes both persistent disagreement and convergence in low-reliability regions. Through theoretical analysis and empirical evaluation, we demonstrated that principled monitoring, rather than accuracy alone, is essential for preventing harmful consensus, establishing CEM as a general foundation for reliable human–AI collaboration and a promising direction for future applications in high-stakes decision-making.

486 REPRODUCIBILITY STATEMENT
487488 All codes and datasets used in this work will be made publicly available upon acceptance.
489490 REFERENCES
491492 Arpit Agarwal and William Brown. Online recommendations for agents with discounted adaptive
493 preferences, 2024. URL <https://arxiv.org/abs/2302.06014>.494 Dan Bang and Chris D. Frith. Making better decisions in groups. *Royal Society Open Science*, 4
495 (8):170193, August 2017. doi: 10.1098/rsos.170193. URL <http://doi.org/10.1098/rsos.170193>.496
497 Nina L. Corvelo Benz and Manuel Gomez Rodriguez. Human-aligned calibration for ai-assisted
498 decision making, 2024. URL <https://arxiv.org/abs/2306.00074>.500 André Bächtiger and John Parkinson. *Mapping and Measuring Deliberation: Towards a New De-*
501 *liberative Quality*. Oxford University Press, 01 2019. ISBN 9780199672196. doi: 10.1093/oso/9780199672196.
502 001.0001. URL <https://doi.org/10.1093/oso/9780199672196.001.0001>.503
504 Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
505 Anca Dragan. On the utility of learning about humans for human-ai coordination, 2020. URL
506 <https://arxiv.org/abs/1910.05789>.507
508 Yu Cui, Hang Fu, Haibin Zhang, Licheng Wang, and Cong Zuo. Free-mad: Consensus-free multi-
509 agent debate, 2025. URL <https://arxiv.org/abs/2509.11035>.510
511 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
512 URL <https://arxiv.org/abs/2508.15260>.513
514 Ali Gebeşçe, Muge Kural, Tilek Chubakov, and Gözde Gül Şahin. Quantifying divergence for
515 human-ai collaboration and cognitive trust. In *Proceedings of the Extended Abstracts of the CHI*
516 *Conference on Human Factors in Computing Systems*, CHI EA '25, New York, NY, USA, 2025.
517 Association for Computing Machinery. ISBN 9798400713958. doi: 10.1145/3706599.3720105.
518 URL <https://doi.org/10.1145/3706599.3720105>.519
520 Ben Green and Yiling Chen. The principles and limits of algorithm-in-the-loop decision making.
521 *Proc. ACM Hum.-Comput. Interact.*, 3(CSCW), November 2019. doi: 10.1145/3359152. URL
522 <https://doi.org/10.1145/3359152>.523
524 Shang Liu, Hanzhao Wang, Zhongyao Ma, and Xiaocheng Li. How humans help llms: Assess-
525 ing and incentivizing human preference annotators, 2025. URL <https://arxiv.org/abs/2502.06387>.526
527 Shuai Ma, Qiaoyi Chen, Xinru Wang, Chengbo Zheng, Zhenhui Peng, Ming Yin, and Xiaojuan
528 Ma. Towards human-ai deliberation: Design and evaluation of llm-empowered deliberative ai for
529 ai-assisted decision-making, 2025. URL <https://arxiv.org/abs/2403.16812>.530
531 Pietro Mazzaglia, Tim Verbelen, Ozan Çatal, and Bart Dhoedt. The free energy principle for per-
532 ception and action: A deep learning perspective. *Entropy*, 24(2), 2022. ISSN 1099-4300. doi:
533 10.3390/e24020301. URL <https://www.mdpi.com/1099-4300/24/2/301>.534
535 Gali Noti, Kate Donahue, Jon Kleinberg, and Sigal Oren. Ai-assisted decision making with human
536 learning, 2025. URL <https://arxiv.org/abs/2502.13062>.537
538 Vimla L. Patel and Thomas G. Kannampallil. Cognitive informatics in biomedicine and health-
539 care. *Journal of Biomedical Informatics*, 53:3–14, 2015. ISSN 1532-0464. doi: <https://doi.org/10.1016/j.jbi.2014.12.007>. URL <https://www.sciencedirect.com/science/article/pii/S153204641400272X>.540
541 Juan C. Perdomo, Tijana Zrnic, Celestine Mendlner-Dünner, and Moritz Hardt. Performative predic-
542 tion, 2021. URL <https://arxiv.org/abs/2002.06673>.

540 Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali Eslami, and Matthew
 541 Botvinick. Machine theory of mind, 2018. URL <https://arxiv.org/abs/1802.07740>.
 542

543 Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca
 544 Bogoni, and Linda Moy. Learning from crowds. *Journal of Machine Learning Research*, 11(43):
 545 1297–1322, 2010. URL <http://jmlr.org/papers/v11/raykar10a.html>.

546 Mark Steyvers, Heliodoro Tejeda, Gavin Kerrigan, and Padhraic Smyth. Bayesian modeling
 547 of human-ai complementarity. *Proceedings of the National Academy of Sciences*, 119(11):
 548 e2111547119, 2022. doi: 10.1073/pnas.2111547119. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2111547119>.
 549

550 Ran Tian, Masayoshi Tomizuka, Anca Dragan, and Andrea Bajcsy. Towards modeling and influencing
 551 the dynamics of human learning, 2023. URL <https://arxiv.org/abs/2301.00901>.
 552

553 Kailas Vodrahalli, Tobias Gerstenberg, and James Zou. Uncalibrated models can improve human-ai
 554 collaboration, 2022. URL <https://arxiv.org/abs/2202.05983>.
 555

556 Dakuo Wang, Elizabeth Churchill, Pattie Maes, Xiangmin Fan, Ben Shneiderman, Yuanchun Shi,
 557 and Qianying Wang. From human-human collaboration to human-ai collaboration: Designing ai
 558 systems that can work together with people. In *Extended Abstracts of the 2020 CHI Conference
 559 on Human Factors in Computing Systems*, CHI EA '20, pp. 1–6, New York, NY, USA, 2020.
 560 Association for Computing Machinery. ISBN 9781450368193. doi: 10.1145/3334480.3381069.
 561 URL <https://doi.org/10.1145/3334480.3381069>.

562 Yihan Wang, Qiao Yan, Zhenghao Xing, Lihao Liu, Junjun He, Chi-Wing Fu, Xiaowei Hu, and
 563 Pheng-Ann Heng. Silence is not consensus: Disrupting agreement bias in multi-agent llms via
 564 catfish agent for clinical decision making, 2025. URL <https://arxiv.org/abs/2505.21503>.
 565

566 N. Zöller, J. Berger, I. Lin, N. Fu, J. Komarneni, G. Barabucci, K. Laskowski, V. Shia, B. Harack,
 567 E. A. Chu, V. Trianni, R. H. J. M. Kurvers, and S. M. Herzog. Human-ai collectives produce
 568 the most accurate differential diagnoses, 2024. URL <https://arxiv.org/abs/2406.14981>.
 569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A RELATED WORK**

595

596 **Cognitive Alignment** A rich vein of research has shown that effective Human-AI collaboration
 597 system requires both human and AI agents to progressively converge toward shared beliefs and
 598 judgments (Noti et al., 2025; Tian et al., 2023; Liu et al., 2025; Wang et al., 2020). The need for
 599 AI to integrate into human workflows and co-manage tasks with mutual understanding is central
 600 to creating effective Human-AI collaboration(Wang et al., 2020). For example, Theory of Mind
 601 models show how agents can infer and adapt to others' mental states (Rabinowitz et al., 2018), while
 602 studies on human learning dynamics highlight that both parties update their internal models through
 603 interaction (Tian et al., 2023). In AI-assisted decision-making, algorithms must not only provide
 604 immediately useful advice but also foster long-term improvements in human reasoning across rounds
 605 (Noti et al., 2025). Moreover, the reliability of human feedback plays a critical role in shaping
 606 the convergence outcome (Liu et al., 2025). In clinical domains, cognitive informatics stresses
 607 the need for alignment with physicians' reasoning processes (Patel & Kannampallil, 2015). Taken
 608 together, these studies suggest that human–AI collaboration should be understood as a multi-round
 609 convergence process, where mutual adaptation gradually reduces disagreement and improves joint
 610 accuracy.

611

612 **Expert modeling** Expert modeling has been extensively studied in medical diagnosis and
 613 decision-making, focusing on annotator reliability, inter-observer variability, and human–AI comple-
 614 mentarity (Raykar et al., 2010; Steyvers et al., 2022; Noti et al., 2025; Gebeşç et al., 2025). Prior
 615 work has mainly relied on Bayesian aggregation of noisy labels (Raykar et al., 2010; Steyvers
 616 et al., 2022) or divergence-based measures of decision similarity and trust (Gebeşç et al., 2025).
 617 These approaches advance statistical modeling but typically abstract expertise into latent reliability
 618 parameters, limiting interpretability and failing to capture domain-specific specialization. Recent
 619 work on AI-assisted decision-making has emphasized the importance of adapting the algorithm's
 620 feature selection process based on the evolving expertise and understanding of human decision-
 621 makers(Steyvers et al., 2022). In this study, we model two heterogeneous agents with varying ex-
 622 pertise levels, where their interactions lead to an evolving understanding of the decision-making
 623 rules, guided by the *Consensus Energy Minimization* (CEM) framework.

624

625 **Consensus Energy Minimization** The idea of consensus energy builds on energy-based views
 626 of uncertainty reduction. The Free Energy Principle suggests agents minimize free energy to align
 627 beliefs with reality (Mazzaglia et al., 2022). Perdomo et al. showed that model predictions can shift
 628 the data distribution and demonstrated that learning algorithms can converge to a performatively
 629 stable point by iteratively retraining (Perdomo et al., 2021). Moreover, Agarwal and Brown found
 630 that by combining historical behavior with current states, model can effectively avoid feedback loops
 631 and stabilize long-term performance (Agarwal & Brown, 2024). Recent methods such as DeepConf
 632 prune low-confidence reasoning to enforce internal consistency (Fu et al., 2025). Extending these
 633 ideas, our CEM framework formalizes a consensus energy between human and AI latent states. By
 634 minimizing it online with confusion-matrix–based monitoring, CEM enables cooperative alignment
 635 that improves accuracy and stability in multi-round interaction.

636

637 **B TECHNICAL ASSUMPTIONS AND DETAILED PROOFS**

638

639 **B.1 TECHNICAL ASSUMPTIONS**

640

641 The theoretical guarantees rely on the following technical assumptions:

642

643 **Assumption 1** (Decision Consistency). *1. Rational Alignment:* Each agent's feature
 644 weights $w_a^{(t)}$ accurately reflect their internal belief state and are consistent with their
 645 reliability-informed posterior $P_a^{(t)}$

646 *2. Truthful Reporting:* Agents report their genuine assessments without strategic manipula-
 647 tion or systematic bias between internal reasoning and external expression

648 *3. Cognitive Transparency:* The mapping from internal feature importance to external pre-
 649 dictions is well-defined and stable over time

648 **Assumption 2** (Smoothness and Regularity). 1. The confusion matrices C_a are strictly positive definite: $\min_i C_a[i, i] \geq \gamma > 0$ for some $\gamma > 0$

649
650
651 2. The feature weight vectors $w_a^{(t)}$ belong to a compact convex set $\mathcal{W} \subset \mathbb{R}^d$
652
653 3. The consensus energy functional $\varepsilon(w_H, w_L)$ is continuously differentiable and L -smooth
654 in w_H on \mathcal{W}
655 4. The step size satisfies $0 < \eta < 2/L$ for projected gradient descent

656 **Assumption 3** (Bounded Interactions). 1. The label space is finite: $|\mathcal{Y}| = K < \infty$

657
658 2. The reliability scores are bounded: $r_a^{(t)} \in [0, 1]$ for all a, t
659
660 3. The energy coefficients are positive: $\alpha_1, \alpha_2, \beta_1, \beta_2 > 0$
661

662 B.2 DETAILED PROOFS

663 *Proof of Lemma 1.* We prove the two claims separately:

664 **Nonnegativity:** The consensus energy $\varepsilon^{(t)}$ consists of four non-negative terms:

665
666
667 • KL divergences: $D_{KL}(P \parallel Q) \geq 0$ for any distributions
668
669 • Reliability penalties: $1 - r_a^{(t)} \geq 0$ since $r_a^{(t)} \in [0, 1]$
670

671 Since all coefficients $\alpha_1, \alpha_2, \beta_1, \beta_2$ are positive, $\varepsilon^{(t)}$ is a sum of non-negative terms, hence $\varepsilon^{(t)} \geq 0$.

672 **Monotonicity:** We consider two cases:

673 *Case 1: Steering is applied.* When the monitor issues a STEER instruction, it updates the weaker
674 agent's feature weights w_H to minimize a composite objective:
675

$$\mathcal{L}(w_H) = \underbrace{\alpha \|w_H - w_H^{(t)}\|^2}_{\text{stability}} + \underbrace{\beta \|w_H - w_{\text{expert}}^{(t)}\|^2}_{\text{alignment}} + \underbrace{\gamma \varepsilon(w_H, w_L^{(t)})}_{\text{consensus}}$$

676 By Assumption 2.3, \mathcal{L} is smooth, so gradient descent with step size $\eta < 2/L$ guarantees:

$$\mathcal{L}(w_H^{(t+1)}) \leq \mathcal{L}(w_H^{(t)}) - \frac{\eta}{2} \|\nabla \mathcal{L}(w_H^{(t)})\|^2 \leq \mathcal{L}(w_H^{(t)})$$

677 Since $\varepsilon^{(t)}$ appears in \mathcal{L} and the other terms are non-negative, we have:

$$\varepsilon^{(t+1)} \leq \mathcal{L}(w_H^{(t+1)}) \leq \mathcal{L}(w_H^{(t)}) \Rightarrow \varepsilon^{(t+1)} \leq \varepsilon^{(t)}$$

678 *Case 2: Natural deliberation.* When agents discuss without steering, we assume they rationally
679 update their beliefs to reduce disagreement (e.g., through Bayesian updating or consensus-seeking
680 behavior). This naturally decreases the KL divergence terms in $\varepsilon^{(t)}$, while reliability scores either
681 improve or remain stable. Thus, $\varepsilon^{(t+1)} \leq \varepsilon^{(t)}$.

682 In both cases, the energy does not increase, proving monotonicity. \square

683 *Proof of Theorem 1.* By Lemma 1, $\{\varepsilon^{(t)}\}$ is nonincreasing and bounded below by 0, hence convergent.
684 Let $\varepsilon^* = \lim_{t \rightarrow \infty} \varepsilon^{(t)}$.

685 We consider two cases:

686 **Case 1: Finite-time convergence.** If $\varepsilon^{(t)} \leq \epsilon$ for some finite t , then the stopping rule triggers and
687 we have safe convergence at τ^* .

688 **Case 2: Asymptotic convergence.** Suppose $\varepsilon^{(t)} > \epsilon$ for all finite t . We show that $\varepsilon^* \leq \epsilon$.

702 By the bounded reliability assumption, there exists $\rho > 0$ such that $\max(r_H^{(t)}, r_L^{(t)}) \geq \rho$ for all t .
 703 This implies that the reliability penalty terms are bounded:
 704

$$705 \beta_1(1 - r_L^{(t)}) + \beta_2(1 - r_H^{(t)}) \leq \beta_1 + \beta_2 - \min(\beta_1, \beta_2)\rho$$

707 Now, if $\varepsilon^* > \epsilon$, then the KL divergence terms cannot vanish asymptotically. But persistent disagree-
 708 ment would generate gradients that continue to decrease the energy, contradicting convergence.
 709 Therefore, we must have $\varepsilon^* \leq \epsilon$.
 710

The reliable agent dominates the consensus because its predictions carry higher weight in the energy
 711 minimization process. \square
 712

713 *Proof of Theorem 2.* If $r_H^{(t)}, r_L^{(t)} \rightarrow 0$, then the reliability penalties satisfy:
 714

$$715 \liminf_{t \rightarrow \infty} [\beta_1(1 - r_L^{(t)}) + \beta_2(1 - r_H^{(t)})] = \beta_1 + \beta_2$$

717 Thus, for any $\epsilon_{\text{low}} < \beta_1 + \beta_2$, there exists T such that for all $t \geq T$:
 718

$$719 \varepsilon^{(t)} > \epsilon_{\text{low}}$$

721 Moreover, as reliabilities vanish, the gradients diminish because:
 722

$$723 \|\nabla \varepsilon\| = O\left(\max(r_H^{(t)}, r_L^{(t)})\right) \rightarrow 0$$

725 This implies $\Delta \varepsilon^{(t)} \rightarrow 0$. The stopping condition in Eq. 1 detects this stagnation above ϵ_{low} and
 726 triggers termination. \square
 727

728 *Proof of Corollary 1.* For N agents, the energy functional is:
 729

$$730 \varepsilon^{(t)} = \sum_{i \neq j} \alpha_{ij} D_{KL}(P_i^{(t)} \parallel P_j^{(t)}) + \sum_{i=1}^N \beta_i(1 - r_i^{(t)})$$

733 The convexity of KL divergence and linearity of reliability terms ensure that the multi-agent energy
 734 inherits the smoothness properties of the two-agent case. The proofs extend by considering the
 735 worst-case pairwise disagreement and the maximum reliability among agents.
 736

737 Specifically, if there exists a reliable subgroup (agents with $r_i^{(t)} \geq \rho > 0$), they will dominate
 738 the consensus. If all reliabilities vanish, the energy remains bounded away from zero and descent
 739 stagnates, triggering the stopping condition. \square
 740

741 C EXPERIMENTAL DATASETS

743 C.1 SYNTHETIC DATASET

745 To simulate agents with varying capabilities and enable experimental simulations across multiple
 746 scenarios, we assess their performance via a series of simulations. Below, we detail the architecture
 747 of our simulation framework:
 748

749 **Synthetic Data Generator** The sample generation process is based on a predefined set of ground
 750 truth rules, as shown in Table 2. Initially, the generator selects a set of labels based on the rule
 751 weights, simulating population-level decision-making processes. This selection is formalized by the
 752 equation:

$$753 k \sim \text{Mult}\left(\text{softmax}^{-1}(\mathbf{w}_1^\top \phi_1(\mathbf{x}), \dots, \mathbf{w}_k^\top \phi_k(\mathbf{x}))\right),$$

754 where $\mathbf{w}_1^\top \phi_1(\mathbf{x})$ represents the feature functions associated with the rule set, and the labels are
 755 selected if the corresponding features satisfy the rule conditions. For a valid sample, at least one of

756 the rules corresponding to the selected labels must be satisfied, while none of the rules associated
 757 with other labels should hold. In our simulation, label k_0 represents a rare class governed by longer
 758 rules, while labels k_1 and k_2 correspond to common classes with simpler criteria.

759 We divided the entire dataset into two disjoint subsets: (i) a training dataset \mathcal{D}_t with 20000
 760 samples and (ii) an evaluation dataset \mathcal{D}_e with 100 samples. The training dataset $\mathcal{D}_t =$
 761 $\{\mathbf{x}_t, \{y_t\}_{t=1}^L, y_t, r_t, y^*\}$ includes feature vectors, class labels, and rule-level annotations. The eval-
 762 uation dataset \mathcal{D}_e is exclusively reserved for evaluation purposes.

766 Table 2: The ground truth rule set.

767 Label	768 Rules	769 Weight
770 k_0	1: $x_0 \wedge x_1 \wedge \neg x_2 \wedge x_3$	1.5
	2: $x_3 \wedge x_4 \wedge x_7 \wedge \neg x_9$	1.5
771 k_1	3: $x_3 \wedge x_4 \wedge x_5$	1.4
	4: $x_6 \wedge x_7 \wedge x_9$	1.6
772 k_2	5: $x_1 \wedge x_3 \wedge x_4$	1.7
	6: $x_4 \wedge x_7 \wedge x_9$	1.3

773
 774
 775
 776
 777
 778 **Agent Simulator** In our framework, each agent is modeled as a rule-based probabilistic decision-
 779 maker. Each agent is equipped with a unique set of rules, characterized by specific conditions,
 780 classes, and weights. These rule sets may deviate from the ground-truth rules, reflecting hetero-
 781 geneous expertise and potential biases. Unlike deterministic classifiers, the agents select actions
 782 according to the probability distribution given by the softmax function over the rule weights.

783 To evaluate collaborative decision-making under diverse conditions, we design several experimental
 784 scenarios, each consisting of a pair of agents with distinct rule sets and weight assignments. Table 3
 785 shows representative configurations.

787
 788 C.2 REAL-WORLD DATASETS

790
 791 We also evaluate our framework on three publicly available classification datasets: **Drug Classifi-**
 792 **cation**, **Weather Type Classification**, and **Customer Segmentation**.

793
 794 • **Drug Classification:** This dataset contains **200 samples** with **6 features**: Age, Sex, Blood
 795 Pressure (BP), Cholesterol level, Na-to-K ratio, and an identifier. The target variable is the
 796 prescribed **Drug type**, a categorical label with **5 classes** (Drug A, Drug B, Drug C, Drug
 797 X, Drug Y).

798
 799 • **Weather Type Classification:** This dataset provides meteorological information for
 800 weather condition recognition. It consists of approximately **13,000 samples**, each de-
 801 scribed by **11 features**, including Temperature, Humidity, Wind Speed, Precipitation,
 802 Atmospheric Pressure, UV Index, Visibility, and categorical attributes such as Cloud Cover,
 803 Season and Location. The target label is **Weather Type**, a categorical variable with **4**
 804 **classes**: Rainy, Sunny, Cloudy, and Snowy.

805
 806 • **Customer Segmentation:** This dataset contains over **8,000 customer records**, with **8**
 807 **features** such as Gender, Age, Education Level, Profession, Work Experience, Spending
 808 Score, Family Size, and Var_1. The target label is **Segmentation Class**, denoted as A, B,
 809 C, D.

810

811

Table 3: The rules assigned to each rule-based decision-maker in different scenarios.

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Scenario	Model	Rule Set	Weight
Scenario 1 Ideal	Agent 1	$a_1 \leftarrow x_3 \wedge x_4 \wedge x_5$	1.4
		$a_1 \leftarrow x_6 \wedge x_7 \wedge x_9$	1.6
		$a_2 \leftarrow x_1 \wedge x_3 \wedge x_4$	1.7
		$a_2 \leftarrow x_4 \wedge x_7 \wedge x_9$	1.3
		$a_0 \leftarrow x_3 \wedge x_4$	1.3
	Agent 2	$a_0 \leftarrow x_3 \wedge x_4 \wedge x_7 \wedge \neg x_9$	1.5
		$a_0 \leftarrow x_0 \wedge x_1 \wedge \neg x_2 \wedge x_3$	1.5
		$a_1 \leftarrow x_3 \wedge x_4$	1.5
		$a_2 \leftarrow x_1 \wedge x_3$	1.5
Scenario 2 One Strong & One Weak	Agent 1	$a_1 \leftarrow x_3 \wedge x_4 \wedge x_5$	1.4
		$a_1 \leftarrow x_6 \wedge x_7 \wedge x_9$	1.6
		$a_2 \leftarrow x_1 \wedge x_3 \wedge x_4$	1.7
		$a_0 \leftarrow x_3 \wedge x_4 \wedge x_7 \wedge \neg x_9$	1.5
		$a_0 \leftarrow x_0 \wedge x_1 \wedge \neg x_2 \wedge x_3$	1.5
	Agent 2	$a_2 \leftarrow x_1 \wedge x_3$	1.2
		$a_2 \leftarrow x_4 \wedge x_7 \wedge x_9$	1.7
		$a_0 \leftarrow x_3 \wedge x_4$	1.5
		$a_1 \leftarrow x_3 \wedge x_4$	1.5
		$a_2 \leftarrow x_1 \wedge x_3$	1.3
Scenario 3 Noisy-complementary	Agent 1	$a_1 \leftarrow x_3 \wedge x_4 \wedge x_5$	1.4
		$a_1 \leftarrow x_6 \wedge x_7 \wedge x_9$	1.6
		$a_2 \leftarrow x_1 \wedge x_3 \wedge x_4$	1.7
		$a_0 \leftarrow x_3 \wedge x_4$	1.3
		$a_2 \leftarrow x_1 \wedge x_3$	1.3
	Agent 2	$a_2 \leftarrow x_4 \wedge x_7 \wedge x_9$	1.3
		$a_0 \leftarrow x_3 \wedge x_4 \wedge x_7 \wedge \neg x_9$	1.5
		$a_0 \leftarrow x_0 \wedge x_1 \wedge \neg x_2 \wedge x_3$	1.5
		$a_1 \leftarrow x_3 \wedge x_4$	1.3
		$a_2 \leftarrow x_1 \wedge x_3$	1.0
Scenario 3 Noisy-noncomplementary	Agent 1	$a_1 \leftarrow x_6 \wedge x_7 \wedge x_9$	1.6
		$a_0 \leftarrow x_3 \wedge x_4$	1.5
		$a_1 \leftarrow x_3 \wedge x_4$	1.4
		$a_2 \leftarrow x_1 \wedge x_3$	1.5
	Agent 2	$a_2 \leftarrow x_4 \wedge x_7 \wedge x_9$	1.3
		$a_0 \leftarrow x_3 \wedge x_4$	1.5
		$a_1 \leftarrow x_3 \wedge x_4$	1.4
		$a_2 \leftarrow x_1 \wedge x_3$	1.1

864 **D LLM-BASED BEHAVIOR SIMULATION**
865866 **Complete Prompt Template for the Rule-Weighted Multi-Agent Classification Envi-
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917****Task Description**

- Each rule has the form “IF conditions THEN class = c ”.
- For a sample, sum the weights of all triggered rules per class; predict the highest score (ties broken by priority).
- Multiple agents have different prior strengths/weaknesses; this only affects their initial and adjustment tendencies on weights.
- **Data Type:**
 - If using real data, the background information about the dataset must be provided (e.g., source, nature of features, and any domain-specific considerations).
 - If using synthetic data, assume it follows the general distribution and properties defined by the experiment setup.

Definitions and Constraints

- **Features:** discrete or discretized attributes.
- **Classes:** the label set.
- **Rules:** logical predicates (AND/OR/NOT) implying a target class.
- **Rule weights:** real values in $[0, 2]$, contributing to class scores.
- **Agents:** each has a role description and class strengths/weaknesses.
- Update *weights only*; do not add/remove/modify rules or conditions.
- Keep rule IDs unchanged; prioritize fixing weak-class errors; push misleading rules toward 0.
- Output must be strict JSON with no explanations when requested.

Input Format

- `features = {FEATURES}`
- `classes = {CLASSES}`
- `agents = {AGENTS}` (role_desc, strengths/weaknesses)
- `initial_rules = {INITIAL_RULES_BY_AGENT}`
- `feedback_batch = {FEEDBACK_BATCH}` (optional)
- `command = {"INIT" or "CONTINUE"}`

Your Task

- Analyze rule–feature logic; detect conflicts/redundancy.
- Adjust weights within $[0, 2]$ using feedback; avoid large jumps and overfitting.
- Preserve all rule texts and IDs; resolve ties via preset priority.
- If `command="CONTINUE"`, return only updated weights and rule text.

Output (strict JSON)

```
{"current_rules": "<concatenate the exact rule text>",
 "rule_weights": {"rule1": 1.35, "rule2": 0.90}}
```

Minimal Rule Example

```
rule1: IF feature_3=1 AND feature_4=1 AND feature_5=1
THEN class=1.
rule2: IF feature_6=1 AND feature_4=1 AND feature_9=1
THEN class=1.
rule3: IF feature_1=1 AND feature_3=1 THEN class=0.
```

918 E STEPWISE CONFUSION MATRIX VISUALIZATION OF EACH SCENARIO
919920 We present the confusion matrix variations for two scenarios in Fig. 3, and here we show the confu-
921 sion matrix visualization results for all remaining scenarios and datasets, as shown in Fig. 5.
922923 F BROADER IMPACT AND LIMITATION
924925 Our framework provides a lightweight, theory-grounded tool for enhancing the safety of collabora-
926 tive decision-making between humans, AI systems, and domain experts. By preventing harmful
927 consensus, it has the potential to improve reliability in high-stakes fields such as medical diagnosis
928 and scientific discovery, fostering more trustworthy and effective human-AI partnerships.
929930 Despite proposing a natural multi-agent extension of the CEM framework in Section 2.6, including a
931 defined multi-agent consensus energy function and outlined stopping-time/steering logic, this study
932 has a limitation: existing theoretical analyses and empirical validations all focus exclusively on the
933 two-agent setup. No rigorous mathematical proofs or systematic experiments support the multi-
934 agent extension, and future work will supplement multi-agent theoretical proofs and design targeted
935 experiments to validate its generality.
936937 G THE USE OF LARGE LANGUAGE MODELS (LLMs)
938939 Large language models (LLMs) were used in this work exclusively for polishing the writing and
940 correcting grammar errors. All substantive research ideas, methodological design, and scientific
941 conclusions presented in this paper were independently developed and validated by the authors.
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

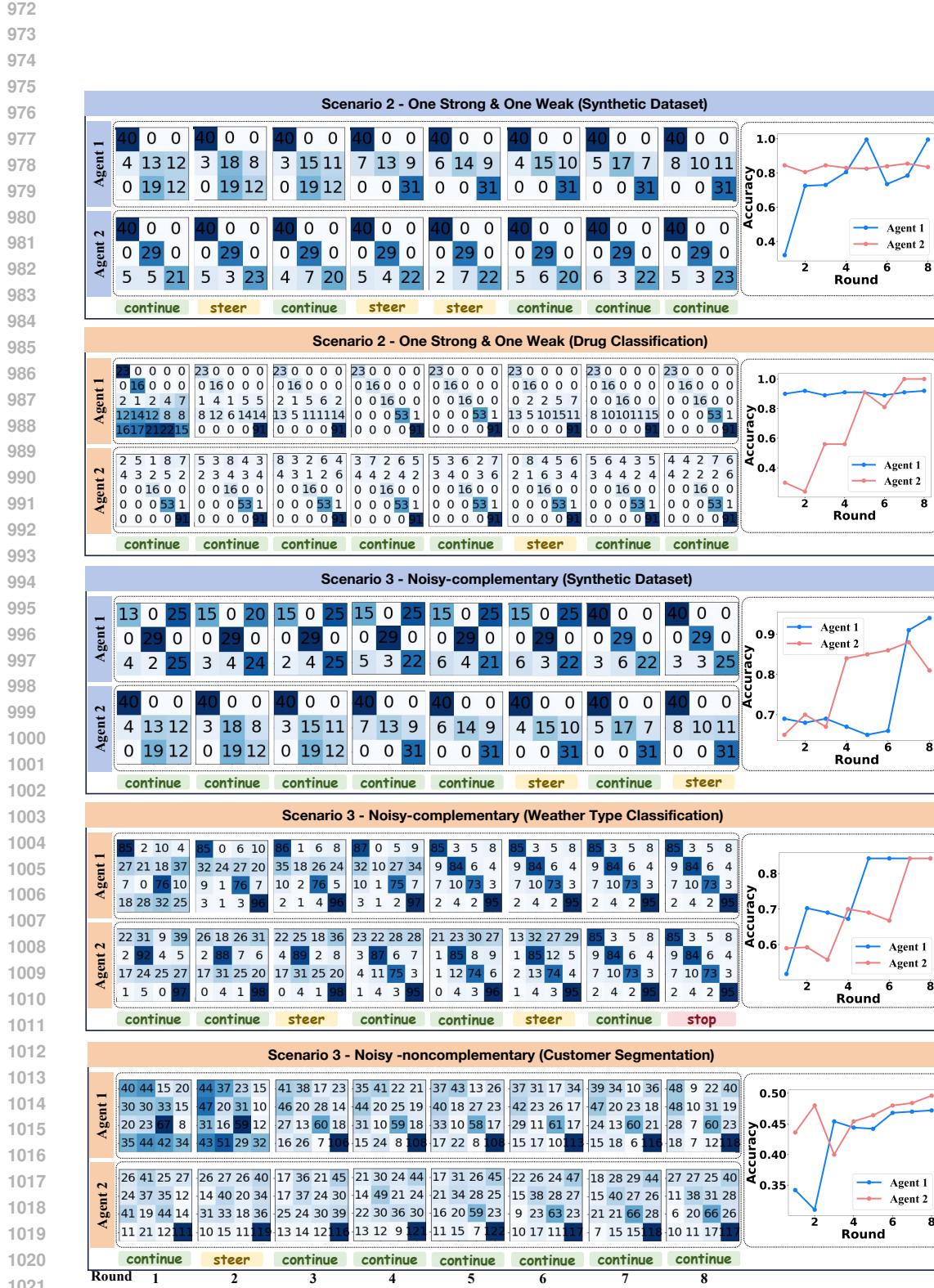


Figure 5: Stepwise confusion matrices and accuracy trends with monitor instructions.