
Published as a conference paper at ICLR 2024

LEARNING FROM SIMPLICIAL DATA BASED ON
RANDOM WALKS AND 1D CONVOLUTIONS

Florian Frantzen
Department of Computer Science
RWTH Aachen University, Germany
florian.frantzen@cs.rwth-aachen.de

Michael T. Schaub
Department of Computer Science
RWTH Aachen University, Germany
schaub@cs.rwth-aachen.de

ABSTRACT

Triggered by limitations of graph-based deep learning methods in terms of compu-
tational expressivity and model flexibility, recent years have seen a surge of interest
in computational models that operate on higher-order topological domains such as
hypergraphs and simplicial complexes. While the increased expressivity of these
models can indeed lead to a better classification performance and a more faithful
representation of the underlying system, the computational cost of these higher-
order models can increase dramatically. To this end, we here explore a simplicial
complex neural network learning architecture based on random walks and fast 1D
convolutions (SCRaWl), in which we can adjust the increase in computational cost
by varying the length and number of random walks considered while accounting
for higher-order relationships. Importantly, due to the random walk-based design,
the expressivity of the proposed architecture is provably incomparable to that of
existing message-passing simplicial neural networks. We empirically evaluate
SCRaWl on real-world datasets and show that it outperforms other simplicial
neural networks.

1 INTRODUCTION

In recent years, there has been a strong interest in extending graph-based learning methods, in partic-
ular graph neural networks, to higher-order domains such as hypergraphs and simplicial complexes.
These higher-order abstractions offer a more comprehensive representation of relationships among
entities than traditional graph-based approaches, which are based on pairwise interactions. Accord-
ingly, it has been shown that we can achieve performance gains in various learning and prediction
tasks for complex systems by employing such higher-order models (Benson et al., 2018; Schaub
et al., 2021; Battiston & Petri, 2022). For instance, in the context of graph classification, it is well
known that standard message-passing graph neural networks with anonymous inputs are limited in
their expressiveness by the one-dimensional Weisfeiler-Leman graph isomorphism test (Morris et al.,
2019; Xu et al., 2019; Morris et al., 2023) and thus cannot distinguish certain non-isomorphic graphs.
A concrete example is that such graph neural networks cannot differentiate between a cycle of length
6 vs. two non-connected triangles. In contrast, higher-order extensions of graph-neural networks have
greater expressiveness and naturally enable us to distinguish such graphs.

However, due to the combinatorial increase in the possible interactions, there is a significant cost in
terms of increased memory and compute time associated with the use of higher-order representations.
To alleviate these issues, here we take inspiration from random walk-based graph neural networks
on graphs (Tönshoff et al., 2023) and explore the use of a random walk-based learning architecture
for simplicial complexes. The advantages of this strategy are particularly apparent for simplicial
complexes and related architectures. First, by choosing the number of random walks sampled, we
can effectively trade off the computational demands with the expressivity of our architecture. Second,
as we can compute fast 1D convolutions on the generated random walk trajectories via fast Fourier
transforms, this saves us from computing far more expensive convolutional filters on simplicial
complexes. Interestingly, it was shown in (Tönshoff et al., 2023) that there exist graphs that cannot
be distinguished by the classical Weisfeiler-Leman (WL) test, that can be distinguished using such a
random walk-based learning strategy, and vice versa that certain graphs cannot be distinguished that
are distinguishable by the 1-WL test. This incomparability to message-passing schemes extends to

1

Published as a conference paper at ICLR 2024

Simplicial Complex

Random Walks

Feature Matrices

CNN

t134

t346

v1
v2

v3 v4

v5 v6

Vertices
v1 v2 v4 v3

···

Edges ···
e12 e24 e34

e46

e56

Triangles ···

F 1=[. . .]

F 2=[. . .]

F 3=[. . .]

sample walks current states

convolutionsupdate states

Figure 1: Sketch of SCRaWl illustrating the individual steps of the model. We sample a collection
of random walks on the simplicial complex and transform them into walk feature matrices. These are
then processed by a 1D convolutional network and pooled into updated simplex states.

the case of simplicial complexes, and as a result, our learning architecture has an expressivity that is
not comparable to message-passing-based schemes such as (Bodnar et al., 2021b).

Contribution We contribute SCRaWl, a novel neural network architecture for simplicial complexes
that utilizes random walks on higher-order simplices to incorporate higher-order relations between
entities into the neural network. This leads to an architecture different from existing simplicial
neural networks. We prove that SCRaWl’s expressiveness is incomparable to that of message-passing
simplicial networks and show that our model outperforms existing approaches on real-world datasets.

Related work Compared to corresponding graph learning problems, learning from data supported
on simplicial complexes has so far received far less attention. Ebli et al. (2020) presented a basic
convolutional neural network (SNN) for simplicial complexes, which was later extended by Yang et al.
(2022a) to incorporate information flows between different orders of simplices (SCNN). Roddenberry
et al. (2021) proposed a convolutional architecture for trajectory predictions that is rooted in tools
from algebraic topology and derived three desirable properties for simplicial neural architectures:
permutation equivariance, orientation equivariance, and simplicial awareness.

Bodnar et al. (2021b) proposed a message-passing simplicial network (MPSN), which adapts the
proven message-passing concept from graph neural networks to simplicial complexes using messages
to adjacent, upper-adjacent, and lower-adjacent simplices. They later extended this line of work to
the domain of cell complexes (Bodnar et al., 2021a). Similarly, Goh et al. (2022) and Giusti et al.
(2022) independently adapted the well-known attention mechanism from graph attention networks
and constructed the simplicial attention networks SAT and SAN, respectively. Apart from this line of
research focused on extending graph models to simplicial complexes, Keros et al. (2022) proposed
a graph convolutional model for learning functions parametrized by the k-homological features of
simplicial complexes.

Random walks on simplicial complexes have been considered in (Schaub et al., 2020; Alev & Lau,
2020; Parzanchevski & Rosenthal, 2017; Mukherjee & Steenbergen, 2016). Billings et al. (2019) and
Hacker (2020) proposed two similar random walk-based representation approaches (simplex2vec
and k-simplex2vec) to learn embeddings from co-appearing simplices in the walks, with the idea
that co-appearing simplices should have similar embeddings while other simplices should be further
apart in the embedding space. Yang et al. (2022b) extended this work with sc2vec, which takes
more connections into account and therefore yields more effective embeddings. These unsupervised
representation learning methods compute embeddings for simplices or simplicial complexes, which
can then be used for downstream tasks such as classification, while SCRaWl is a supervised learning
method that is trained end-to-end.

For graphs, several neural networks based on random walks have been proposed. Nikolentzos &
Vazirgiannis (2020) proposed RWNN, a model that integrates a random walk-based kernel into a GNN
architecture. Jin et al. (2022) and Eliasof et al. (2022) proposed two architectures that aggregate node
features along random walks to learn information based on walk distances. Our work here extends
the approach by Tönshoff et al. (2023), which proposed a random walk-based graph neural network

2

Published as a conference paper at ICLR 2024

architecture that enriches the random walks with local structural information and processes the
resulting feature matrices with a 1D convolutional neural network. Zhou et al. (2023) connect some
of these concepts and extend ideas behind RWNN to simplicial complexes. In contrast to SCRaWl,
they use walk probabilities to enrich the node and edge features for following message-passing steps,
while we make use of explicit random walks as the main building block of our architecture.

Another popular abstraction tool for higher-order data is hypergraphs, for which several learning
architectures have been proposed. In a similar vein to simplicial neural networks, graph neural
networks have been abstracted to hypergraphs, e.g., convolutional networks (Yadati et al., 2019),
attention networks (Chen et al., 2020), and message-passing networks (Heydari & Livi, 2022; Chien
et al., 2022). Very recently, Behrouz et al. (2023) presented a walk-based hypergraph neural network
that uses temporal walks to extract higher-order causal patterns. Compared to their approach, SCRaWl
can capture more structural properties as part of the feature matrices resulting from the random walks.

Outline The remainder of this manuscript is structured as follows. Section 2 gives an overview
of the mathematical concepts of simplicial complexes and random walks on them. In Section 3,
we present our proposed architecture SCRaWl in detail. Section 4 analyzes the expressiveness of
SCRaWl compared to MPSN and Section 5 evaluates SCRaWl empirically on a variety of datasets.

2 BACKGROUND

Here, we present an elementary overview of concepts used to process signals defined on simplicial
complexes. For more details, see (Bredon, 1993; Hatcher, 2002) for background in algebraic topology
and (Schaub et al., 2021; Roddenberry et al., 2022) for topological signal processing.

We use [n] to denote the set of integers from 0 to n− 1. Vectors are denoted by boldface lowercase
letters v, matrices and tensors by capital letters F . For ease of notation, we index rows and columns
from 0. F i,− and F−,j denote the i-th row and j-th column, respectively, of a matrix F . 0n and 1n

denote an n-dimensional all-zero and all-one vector, respectively.

An abstract simplicial complex (SC) (Bredon, 1993; Hatcher, 2002) X consists of a finite set of points
V , and a set of non-empty subsets of V that is closed under taking non-trivial subsets. A k-simplex
Sk ∈ X is a subset of V with k + 1 points and if Sk ∈ X , then for all non-empty Sk−1 ⊂ Sk,
Sk−1 ∈ X . We denote the set of k-simplices in X by Xk and their cardinality by nk = |Xk|.
Furthermore, for k > 0 the faces F(Sk) =

{
Sk−1 ∈ Xk−1 | Sk−1 ⊂ Sk

}
of Sk are the subsets of

Sk with cardinality k. We set F(Sk) = ∅ for k = 0. If Sk−1 is a face of Sk, Sk is called a coface of
Sk−1. We denote the set of cofaces of Sk by C(Sk).

We respectively denote the set of lower and upper adjacent simplices of Sk by:

N↓(Sk) =
{
S ′k ∈ Xk | F(Sk) ∩ F(S ′k) ̸= ∅

}
, (1)

N↑(Sk) =
{
S ′k ∈ Xk | C(Sk) ∩ C(S ′k) ̸= ∅

}
. (2)

Note that SCs can be understood as an extension of graphs: X0 is the set of vertices, X1 is the set of
edges, X2 is the set of filled-in triangles (not all 3-cliques have to be filled-in triangles), and so on.

Simplices are equipped with features fk : Xk → Rdk . For flexibility, we allow the feature spaces to
be different for each simplex order, as is common in real-world data sets. If no features are supported
on a simplex order, we set dk = 0.

3 METHOD

At its core, SCRaWl extracts information from data supported on a simplicial complex by sampling
random walks on the underlying complex. These walks are then transformed into feature matrices,
which are used to update the states of the simplices in the subsequent steps. More precisely, SCRaWl
consists of three steps, as are illustrated in Figure 1: First, we sample random walks on simplicial
complexes, as described in Section 3.1. Second, as discussed in Section 3.2, we transform these walks
into feature matrices that encode the random walks, the simplex states that appear on them, and the
local adjacencies between simplices along the walk. Finally, we process these feature matrices with a
simple convolutional neural network to update the hidden states of the simplices (see Section 3.3).

3

Published as a conference paper at ICLR 2024

3.1 RANDOM WALKS ON SIMPLICIAL COMPLEXES

A walk of length ℓ on the k-simplices of a simplicial complex X is a sequence of k-simplices
(v0, . . . , vℓ−1) ∈ X l

k such that vi and vi+1 share a common face or coface ei for all i ∈ [ℓ], i.e.,
vi+1 ∈ N↓(vi)∪N↑(vi). Note that different from the case of a graph ei is not uniquely defined given
vi and vi+1, since vi+1 can be reached by either a common face or a common coface. We keep track
of the connection used to reach the next neighbor and define W = (v0, e0, v1, e1, . . . , eℓ−2, vℓ−1).

While there are many possible sampling schemes for random walks on SCs, for simplicity, we only
consider two elementary sampling methods: (a) uniform connection sampling, and (b) uniform
neighbor sampling. For both sampling strategies, we obtain a random walk on the k-simplices of X
as follows: First, sample a random starting k-simplex v0 ∼ U(Xk) and then sample the subsequent
simplices in a walk as described in the following subsections. Using this strategy we sample m
random walks on the simplicial complex, which can be chosen at runtime and can vary between
training and prediction. In the case m = |X|, we opt to start a random walk from each simplex, i.e.,
we do not sample v0 uniformly at random but choose every simplex once as v0. Note that by choosing
a smaller m we can reduce the computational cost we incur for learning and processing the data.

Uniform Connection Sampling Starting from simplex v0 we iteratively sample a face or coface
ei ∼ U

(
F(vi) ∪ C(vi)

)
and a neighbor

vi+1 ∼

{
U
(
C(ei)

)
if ei ∈ F(vi)

U
(
F(ei)

)
if ei ∈ C(vi)

(3)

of vi that is connected to vi via ei uniformly at random. This way, a neighbor with more connections
to the current simplex is more likely to be sampled.

Uniform Neighbor Sampling Starting from simplex v0 we iteratively sample a neighboring simplex
vi+1 ∼ U

(
N↓(vi) ∪N↑(vi)

)
and a suitable connection

ei ∼ U
((

F(vi) ∩ F(vi+1)
)
∪
(
C(vi) ∩ C(vi+1)

))
(4)

uniformly at random. This way, higher-order simplices do not have a disproportionate influence on
the walk due to their many low-order connections.

3.2 WALK FEATURE MATRICES

Based on the sampled collection of random walks {Wj}j∈[m] from the previous step and a local
window size s, we transform each walk Wj into feature matrix FWj . The feature matrix consists of
6 sub-matrices: (a) one matrix for the features of the current simplex, (b) one matrix for the features
of the face used to traverse to the current simplex, (c) one matrix for the features of the coface used
to traverse to the current simplex, and (d) the last three matrices encode local structural information
about the simplicial complex seen during the walk.

More formally, given a walk Wj of length ℓ on k-simplices, embedding functions fk′ : Xk′ → Rdk′

for i ∈ {k − 1, k, k + 1}, and a local window size s > 0, we define the walk feature matrix FWj as

FWj
=

[
F→

Wj
F ↓

Wj
F ↑

Wj
IWj ,s A↓

Wj ,s
A↑

Wj ,s

]
∈ Rℓ×(dk+dk−1+dk+1+3s−2). (5)

The first sub-matrix FWj ∈ Rℓ×dk records the features of the k-simplices appearing on the walk W :

(F→
W)i,− = f(vi) for i ∈ [ℓ]. (6)

The second and third sub-matrices F ↓
Wj

and F ↑
Wj

record the features of the faces and cofaces,
respectively, that have been used in the random walk to get from the last simplex to the current one:

(F ↓
Wj

)
i,−

=

{
f(ei−1), if i > 0 and |ei−1| < k

0dk−1
, otherwise.

(7)

(F ↑
Wj

)
i,−

=

{
f(ei−1), if i > 0 and |ei−1| > k

0dk+1
, otherwise.

(8)

4

Published as a conference paper at ICLR 2024

Feature Face Coface Identity

Lower Con.

Upper Con.

v1 f0(v1) 0 0000 000
v2 f0(v2) f1(v1,v2) 0000 000
v4 f0(v4) f1(v2,v4) 0000 100
v3 f0(v3) f1(v4,v3) 0000 010
v6 f0(v6) f1(v3,v6) 0000 100
v4 f0(v4) f1(v6,v4) 0010 101

...
...

...
...

...

v2 c0,1
v4 c0,2
v3 c0,3

...

v1

v2

v3 v4

v5 v6

FW0 :
CW0 :

(v1,v2) f1(v1,v2) 0 0 0000 000 000
(v2,v4) f1(v2,v4) f0(v2) 0 0000 000 000
(v3,v4) f1(v3,v4) 0 f2(v1,v2,v3) 0000 000 000
(v4,v6) f1(v4,v6) 0 f2(v1,v2,v3) 0000 100 000

...
...

...
...

...
...

...

(v2,v4) c1,1
(v3,v4) c1,2
(v4,v6) c1,3

...

v1

v2

v3 v4

v5 v6
FW1 : CW1 :

[
(v1,v3,v4) f2(v1,v3,v4) 0 0000 000
(v3,v4,v6) f2(v3,v4,v6) f1(v3,v4) 0000 000

...
...

...
...

...

] [
(v3,v4,v6) c2,1

...

]
v1

v2

v3 v4

v5 v6FW2 : CW2 :

Walk Feature Matrices Convolutions Pooling

Figure 2: Information flow in SCRaWl modules for simplex orders 0, 1, and 2. Using the walks
shown in Figure 1, we compute the feature matrices F0, F1, and F2 based on simplex features f and
a window size of s = 4. The feature matrices are convolved with a 1D CNN while keeping track of
the central simplex within the window (values to the left of the convolution matrices). Convolved
matrices are pooled into simplices grouped by the central simplices.

Note that whenever a face or a coface feature is present, the entries of the other matrix are zero.
Further, assume that d−1 = dkmax+1 = 0 and hence F ↓

Wj
and F ↑

Wj
are empty for walks on 0-simplices

and on maximum order simplices, respectively, where kmax is the maximum order in the SC.

The remaining three sub-matrices IWj
∈ {0, 1}ℓ×s

,A↓
Wj

∈ {0, 1}ℓ×(s−1) and A↑
Wj

∈ {0, 1}ℓ×(s−1)

record structural information in the form of local identity and local adjacency features:

(IWj ,s)i,i′ =

{
1, if i ≥ i′ and vi = vi′

0, otherwise.
(9)

(A↓
Wj ,s

)
i,i′

=

{
1, if i > i′ and vi′−i ∈ N↓(vi)

0, otherwise.
(10)

(A↑
Wj ,s

)
i,i′

=

{
1, if i > i′ and vi′−i ∈ N↑(vi)

0, otherwise.
(11)

In other words, IWj ,s keeps track of whether the current simplex has been visited before within the
local window s, while A↓

Wj ,s
and A↑

Wj ,s
keep track of whether the current simplex is lower or upper

adjacent to a previously visited simplex within the local window s, respectively.

Figure 2 (left) shows an example of the walk feature matrices for the walks on the vertices, the
edges, and the triangles shown in Figure 1. Note in particular the last three sub-matrices for each
walk: For W0, vertex v4 is visited twice, once in the third and once in the fifth step, thus we have
(IW0,4)5,2 = 1. In the same walk, we go from v1 via the edges (v1, v2) and (v2, v4) to v4, which

is also directly connected with v1. Thus we have (A↑
W0,4

)
2,0

= 1. Similarly, for W1, we go from

(v2, v4) over two steps to (v4, v6), which share a common vertex v4. Thus we have (A↓
W1,4

)
3,0

= 1.

3.3 SCRAWL MODULE

A SCRaWl module on layer t operating on order k-simplices takes as input the random walks on
k-simplices and the current hidden states Ht−1

k ,Ht−1
k−1, and Ht−1

k+1 of the previous layer t− 1. These

5

Published as a conference paper at ICLR 2024

SCRaWl Layer User-defined Output

H0
0 H1

0
. . . HL

0

H0
1 H1

1
. . . HL

1

H0
2 H1

2
. . . HL

2

{Wi}i∈[m]

SCRaWl
Module ⊕

SCRaWl
Module ⊕

SCRaWl
Module ⊕

SCRaWl
Module ⊕

SCRaWl
Module ⊕

SCRaWl
Module ⊕

MLP y0

MLP y1

MLP y2

Figure 3: Architecture of a SCRaWl model operating on simplex orders 0, 1, and 2 with L
SCRaWl layers and an user-defined output layer. We reuse the same collection of random walks
{Wj}j∈[m] in each SCRaWl module for performance reasons.

matrices are then used in lieu of the simplex, face, and coface features in the walk feature matrices,
respectively. The module first computes the feature matrices FWj for each walk Wj as described in
the previous subsection and stacks them into a tensor F k.

We process the walk features F k by a 1D convolutional network CNNt
k (without padding) performed

over the walk steps to obtain the convolved matrix Ct
k ∈ Rmk×(l−s)×d, where mk is the number of

walks on k-simplices. The CNNs can be configured flexibly depending on the task.

For each row of the convolved matrix Ct
k, we separately keep track of the simplex in the center

row of the convolution window, as is illustrated in Figure 2 with the indices next to the convolution
matrices. For each k-simplex, we pool all entries of Ct

k that correspond to that simplex using mean
or sum pooling. This operation results in a vector pt

k(v) for each k-simplex v, which is then fed into
a trainable multilayer perceptron Updatetk to obtain the updated hidden state Ht

k(v).

The process of a SCRaWl module is illustrated in Figure 2. As can be seen, the new hidden state
of k-simplices depends on the hidden state of upper and lower adjacent simplices, and hence, over
multiple layers, information is propagated through different simplex orders.

3.4 COMPLETE SCRAWL ARCHITECTURE

Based on the aforementioned building blocks, we can assemble the SCRaWl model, as illustrated in
Figure 3: Given a range of simplex orders [K] and the number of layers L as hyperparameters, the
model consists of L SCRaWl layers, each consisting of K SCRaWl modules, one for each simplex
order. Within one layer, SCRaWl modules run in parallel for each simplex order k ∈ [K]. We add
skip connections for each module. Information flows between different simplex orders in between
each layer in the form of the hidden states of faces and cofaces appearing in the random walks.

At the end of the last layer, we obtain hidden states HL
k for each simplex order k ∈ [K]. These can

then be processed by user-defined output layers, e.g., by adding multilayer perceptrons that transform
the hidden states into a classification or regression output, to obtain the final output of the model.

3.5 PERFORMANCE CONSIDERATIONS

Most of the computational complexity of SCRaWl is due to the sampling of random walks. Hence,
we only sample the random walks once in each epoch and reuse this collection in all layers, i.e., each
module transforms them into module-specific feature matrices with different feature values (first
three sub-matrices) but reuses the same random walks for that. This is also depicted in Figure 3 with
the same collection {Wj}j∈[m] of random walks passed to each layer. We further describe how to
sample the random walks more efficiently using boundary maps.

The structure of a simplicial complex can be encoded by boundary maps Bk, which record the
incidence relations between (k − 1)-simplices and k-simplices (Hatcher, 2002). Rows and columns
of Bk are indexed by (k − 1)-simplices and by k-simplices, respectively. The entry (i, j) is set to
1 or 0 depending on whether the i-th (k − 1)-simplex is incident to the j-th k-simplex. Thus, the

6

Published as a conference paper at ICLR 2024

Simplicial Complexes
Graphs MPSNGNN

SCRaWlCRaWl

Figure 4: Expressiveness relations of
SCRaWl to other neural network models.
SCRaWl and MPSN are strict extensions of
their graph counterparts CRaWl and message-
passing GNNs, respectively, and their expres-
sive power is incomparable.

Paper Authors Citations

1 A, B 35
2 B, D 20
3 C, D 15
4 A, B, C 10

10

A

B

C

D
45

10

10

20

15

Figure 5: Example of a citation simplicial
complex. Each vertex represents an author and
connections (edges and triangle) indicate co-
authorship. The value of the connection is the
total number of citations of the papers the au-
thors have written together.

matrix B1 is the unsigned vertex-to-edge incidence matrix, and B2 is the edge-to-triangle incidence
matrix. For ease of notation, we define B0 = Bk+10. Further define Sk = hstack(B⊤

k ,Bk+1).

For uniform connection sampling on the k-simplices, we can efficiently sample the next connection j
from Sk, as the connections for the i-th k-simplex are precisely those with value one in (Bk)−,i and
(Bk+1)i,−. If the sampled index j ≤ nk−1, the walk transitions over the face j, otherwise over the
coface j − nk−1. The next walk simplex can then be sampled uniformly from S⊤

k .

For uniform neighbor sampling, compute Ak = B⊤
k Bk +Bk+1B

⊤
k+1 and Âk = sign(Ak). The

neighbor of the i-th k-simplex can be sampled uniformly at random from (Âk)i,−.

4 EXPRESSIVE POWER

It is known that the expressive power of message-passing GNNs with anonymous inputs is limited by
the WL graph isomorphism test (Morris et al., 2019; Xu et al., 2019; Morris et al., 2023) and thus
such GNNs cannot distinguish between non-isomorphic graphs that cannot be separated by color
refinement. In (Bodnar et al., 2021b, Definition 5) a simplicial version of the WL test (SWL) was
introduced and it was shown that the expressiveness of message-passing simplicial networks (MPSN)
is limited by this test. The following theorem asserts that for SCRaWl this analysis does not apply.
Theorem 1. The expressiveness of SCRaWl is incomparable to the expressiveness of an MPSN, i.e.,
there are simplicial complexes that can be distinguished by SCRaWl but not by MPSN and vice versa.

Proof. Note that when applied to 1-simplicial complexes and considering vertex colorings, SWL is
equivalent to WL and by extension, the expressiveness of MPSNs corresponds to the expressiveness
of GNNs (Bodnar et al., 2021b). Note also that SCRaWl is equivalent to CRaWl when applied to
1-simplicial complexes. Thus the theorem follows from (Tönshoff et al., 2023, Theorem 1).

The expressiveness inclusions of the various architectures are shown in Figure 4. This implies that
the expressiveness of SCRaWl is incomparable to the WL test and its simplicial counterpart.

5 EXPERIMENTAL RESULTS

We evaluate SCRaWl on a variety of datasets and compare it to other simplicial neural networks1.
Following the training procedure of Dwivedi et al. (2023), we use the Adam optimizer with an initial
learning rate 10−3. The learning rate decays with a factor of 0.5 if the validation loss does not
improve for 10 epochs. Training is stopped once the learning rate drops below 10−6. For a full list of
hyperparameters and a more detailed description of the training setup, see Appendix A.

5.1 SEMANTIC SCHOLAR CO-AUTHORSHIP NETWORK

Following Ebli et al. (2020), we use SCRaWl to impute missing citation counts for a subset of the
Semantic Scholar co-authorship network. Vertices represent distinct authors, and a paper with k + 1

1Source code and datasets are available at https://git.rwth-aachen.de/netsci/scrawl.

7

https://git.rwth-aachen.de/netsci/scrawl

Published as a conference paper at ICLR 2024

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

id
at

io
n

A
cc

ur
ac

y
Percentage Missing

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

Percentage Missing

V
al

id
at

io
n

A
cc

ur
ac

y

SCNN
SAN
MPSN
SCRaWl

Figure 6: Imputation accuracies on the Semantic Scholar dataset with different percentages of
missing citations. We report the mean and standard deviation over 10 runs. Left: Training progress
of SCRaWl. Right: Accuracies of SCRaWl, SIN (MPSN), SAN, and SCNN for each simplex order
as more and more data is missing. Increasingly lighter lines indicate higher simplex orders.

authors implies a k-simplex connecting these authors in the network (see Figure 5). The value on
a k-simplex is the sum of citations of the papers written together by the respective k + 1 authors
(including papers with more than these authors). Citation values are randomly deleted at a rate of
10%, 20%, 30%, 40%, and 50% and replaced by the median of the remaining known citations.

We report the imputation accuracies of SCRaWl in Figure 6 (left) and compare them with k-
simplex2vec (Hacker, 2020), SNN (Ebli et al., 2020), SCNN (Yang et al., 2022a), SAT (Goh
et al., 2022), SAN (Giusti et al., 2022), and the MPSN architecture presented in (Bodnar et al., 2021b).
For readability, we omitted the results for k-simplex2vec, SNN, and SAT in Figure 6 (right). Full
results are available in Table 1 in the appendix. Following the previous work, a citation value is
correctly imputed if the prediction is within ±5%2 of the true value. We repeat each experiment 10
times and report the mean and standard deviation for missing rates of 10%, 20%, 30%, 40%, and
50%. The left plot shows the overall accuracies of our model on the different missing rates while the
right plot compares the accuracies of the different models on individual simplex orders.

We see that SCRaWl reaches accuracies of 95% to 99% for all missing rates after about 175 epochs.
Across all experiments, we consistently see a drop in accuracy around epoch 30 to 50, which is then
overcome. We forced a minimum of 100 epochs to avoid early stoppings within this drop. We also
see that SCRaWl is on par with MPSN and outperforms all other models for most missing rates and
simplex orders. Especially for missing rates above 10%, the improvement is substantial. In addition,
imputation accuracies are more consistent across different simplex orders for SCRaWl, whereas, for
the other models, the accuracy declines faster for smaller simplices than for higher-order simplices.

5.2 SOCIAL CONTACT NETWORKS

In a second set of experiments, we perform vertex classification on the primary-school and high-
school social contact datasets (Stehlé et al., 2011; Chodrow et al., 2021). The datasets are constructed
based on students’ interactions recorded by wearable sensors. Vertices represent students, and a
simplex corresponds to a group of students that were in proximity to each other at a given time.
Vertices are labeled with the classroom to which the student belongs, resulting in a total of 12 classes
for the primary school dataset and 10 classes for the high school dataset.

We use a cross-entropy loss to train the network on the dataset with 40% of the vertex classes missing
and report the validation accuracy of the imputed classes in Figure 7 (left). For the primary school
dataset, SCRaWl reaches an average accuracy of 0.927± 0.026 after about 160 epochs, and for the
high school dataset a perfect accuracy of 1.0± 0.0 after about 150 epochs.

We compare this result with the performance of MPSN on the same datasets (middle). Although
MPSN generally converges faster in our experiment, it only achieves an average accuracy of
0.727 ± 0.033 and 0.943 ± 0.033 for the primary and high school dataset, respectively, and is
thus outperformed by SCRaWl, especially on the primary school dataset. Comparisons with SCNN,

2The SNN paper used a threshold of ±10% which was later changed to ±5%.

8

Published as a conference paper at ICLR 2024

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

id
at

io
n

A
cc

ur
ac

y

SCRaWl

primary-school
high-school

0 20 40 60 80 100

Epoch

MPSN

0 50 100 150 200

Epoch

CRaWl

Figure 7: Vertex classification accuracies of SCRaWl, MPSN, and CRaWl on the social contact
datasets. We report the mean and standard deviation of the validation accuracies over 5 runs.

k-simplex2vec and some hypergraph models can be found in Table 2 in the appendix. The other
simplicial approaches did not perform well on the datasets, with SCNN reaching an average accuracy
of 0.166 ± 0.056 for the primary school dataset and 0.228 ± 0.075 for the high school dataset.
k-simplex2vec reached an average accuracy of 0.398± 0.011 and 0.308± 0.019 for the primary and
high school dataset, respectively. The hypergraph approaches performed consistently at most around
0.9 accuracy on the high school dataset, 10 percent below our result. For the primary school dataset,
CAt-Walk marginally outperformed SCRaWl with an average accuracy of 0.932± 0.025.

Importance of Higher-Order Interactions We repeated the same experiment using the graph-
based CRaWl architecture on the underlying graph skeleton of the datasets, i.e., the graph only
records pairwise proximities between students but does not record whether interactions between more
than two people occurred. Keeping all other parameters the same, we found that CRaWl performance
is clearly worse than SCRaWl on both datasets (see Figure 7). This highlights the importance of
higher-order interactions in the dataset and the ability of SCRaWl to capture them.

6 CONCLUSION

We proposed a simplicial neural network architecture SCRaWl based on random walks and 1D
convolutions. The architecture builds on the idea of (Tönshoff et al., 2023) to use sampled random
walks for graph learning tasks. We demonstrated that these ideas can be extended to work on
simplicial complexes if we carefully adjust the notion of random walks. We showed that the resulting
architecture outperforms existing simplicial neural network architectures on a co-authorship network.

Other Complexes While we focused on simplicial complexes in this work, the architecture can
naturally be applied to other types of complexes such as (regular) cell complexes without any changes.
Informally, a cell complex is a collection of cells, where each cell’s boundary is also in the complex.
Starting with points as 0-cells, 1-cells as lines with their two endpoints as their boundary, a k-cell
is defined such that its boundary consists of a collection of (k − 1)-cells. A polygon for instance is
a 2-cell with a boundary consisting of a set of lines. This highlights the difference to a simplicial
complex, as a 2-simplex must form a triangle, while a 2-cell may be any polygon.

Future Work The empirical results demonstrate the potential of the proposed architecture. However,
there are several avenues for future work worth exploring. First, we plan to investigate the performance
of SCRaWl in a broader set of applications. Simplicial complexes have gained a lot of interest for
edge flow problems, and it remains to be seen how well SCRaWl performs on these tasks. While we
have paid special attention to the computational complexity in our implementation, due to the many
simplices and hence walk feature matrices in a simplicial complex compared to a graph, we expect
that using SCRaWl with one random walk per simplex will not scale sufficiently. Approximation
guarantees for different sampling schemes are thus an interesting direction for future work.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We acknowledge funding by the Ministry of Culture and Science (MKW) of the German State
of North Rhine-Westphalia (“NRW Rückkehrprogramm”) and the European Union (ERC, HIGH-
HOPeS, 101039827). Views and opinions expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

REFERENCES

Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and applications.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp.
1198–1211, 2020. doi:10.1145/3357713.3384317.

Federico Battiston and Giovanni Petri. Higher-Order Systems. Springer International Publishing,
2022. doi:10.1007/978-3-030-91374-8.

Ali Behrouz, Farnoosh Hashemi, Sadaf Sadeghian, and Margo Seltzer. CAT-Walk: Inductive Hyper-
graph Learning via Set Walks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=QG4nJBNEar.

Austin R Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences, 115
(48):E11221–E11230, 2018. doi:10.1073/pnas.1800683115.

Jacob Charles Wright Billings, Mirko Hu, Giulia Lerda, Alexey N Medvedev, Francesco Mottes,
Adrian Onicas, Andrea Santoro, and Giovanni Petri. Simplex2vec embeddings for community
detection in simplicial complexes. arXiv preprint arXiv:1906.09068, 2019.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 2625–2640. Curran Associates, Inc., 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lió, and
Michael Bronstein. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 1026–1037.
PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/bodnar21a.
html.

Glen E. Bredon. Topology and Geometry. Graduate texts in mathematics. Springer-Verlag, New
York, 1993.

Chaofan Chen, Zelei Cheng, Zuotian Li, and Manyi Wang. Hypergraph Attention Networks. In
2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 1560–1565, 2020. doi:10.1109/TrustCom50675.2020.00215.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are AllSet: A Multiset Func-
tion Framework for Hypergraph Neural Networks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clustering: From
blockmodels to modularity. Science Advances, 2021. doi:10.1126/sciadv.abh1303.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking Graph Neural Networks. Journal of Machine Learning Research,
24(43):1–48, 2023. URL http://jmlr.org/papers/v24/22-0567.html.

Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial Neural Networks. In TDA &
Beyond, 2020.

10

https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1007/978-3-030-91374-8
https://openreview.net/forum?id=QG4nJBNEar
https://doi.org/10.1073/pnas.1800683115
https://proceedings.mlr.press/v139/bodnar21a.html
https://proceedings.mlr.press/v139/bodnar21a.html
https://doi.org/10.1109/TrustCom50675.2020.00215
https://openreview.net/forum?id=hpBTIv2uy_E
https://doi.org/10.1126/sciadv.abh1303
http://jmlr.org/papers/v24/22-0567.html

Published as a conference paper at ICLR 2024

Moshe Eliasof, Eldad Haber, and Eran Treister. pathGCN: Learning General Graph Spatial Operators
from Paths. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 5878–5891. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/eliasof22a.html.

Lorenzo Giusti, Claudio Battiloro, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio Barbarossa.
Simplicial Attention Neural Networks. arXiv preprint arXiv:2203.07485, 2022.

Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial Attention Networks. In ICLR
2022 Workshop on Geometrical and Topological Representation Learning, 2022.

Celia Hacker. k-simplex2vec: a simplicial extension of node2vec. In TDA & Beyond, 2020.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Ruben Ballester,
Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera,
Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy
Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander
Nikitin, Theodore Papamarkou, Jaro Pr’ilepok, Karthikeyan Natesan Ramamurthy, Paul Rosen,
Aldo Guzm’an-S’aenz, Alessandro Salatiello, Shreyas N. Samaga, Michael T. Schaub, Luca
Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga
Zaghen, Ghada Zamzmi, Ali Zia, and Nina Miolane. Topox: A suite of python packages for
machine learning on topological domains, 2024.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Sajjad Heydari and Lorenzo Livi. Message Passing Neural Networks for Hypergraphs. In Elias
Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, and Mehmet Aydin (eds.),
Artificial Neural Networks and Machine Learning – ICANN 2022, pp. 583–592, Cham, 2022.
Springer Nature Switzerland. ISBN 978-3-031-15931-2.

Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. RAW-GNN:
RAndom Walk Aggregation based Graph Neural Network. In Luc De Raedt and Luc De Raedt
(eds.), Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI
2022, IJCAI International Joint Conference on Artificial Intelligence, pp. 2108–2114. International
Joint Conferences on Artificial Intelligence, 2022.

Alexandros D Keros, Vidit Nanda, and Kartic Subr. Dist2Cycle: A Simplicial Neural Network for
Homology Localization. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):
7133–7142, Jun. 2022. doi:10.1609/aaai.v36i7.20673.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019.
doi:10.1609/aaai.v33i01.33014602.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far,
2023.

Sayan Mukherjee and John Steenbergen. Random walks on simplicial complexes and harmonics.
Random Structures & Algorithms, 49(2):379–405, 2016. doi:10.1002/rsa.20645.

Giannis Nikolentzos and Michalis Vazirgiannis. Random Walk Graph Neural Networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 16211–16222. Curran Associates, Inc., 2020.

Ori Parzanchevski and Ron Rosenthal. Simplicial complexes: spectrum, homology and random
walks. Random Structures & Algorithms, 50(2):225–261, 2017. doi:10.1002/rsa.20657.

11

https://proceedings.mlr.press/v162/eliasof22a.html
https://doi.org/10.1609/aaai.v36i7.20673
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1002/rsa.20645
https://doi.org/10.1002/rsa.20657

Published as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

T. Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled Simplicial Neural
Networks for Trajectory Prediction. In Marina Meila and Tong Zhang (eds.), Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 9020–9029. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/roddenberry21a.html.

T. Mitchell Roddenberry, Michael T. Schaub, and Mustafa Hajij. Signal Processing on Cell Complexes.
In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8852–8856, 2022. doi:10.1109/ICASSP43922.2022.9747233.

Michael T. Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie. Random Walks
on Simplicial Complexes and the Normalized Hodge 1-Laplacian. SIAM Review, 62(2):353–391,
2020. doi:10.1137/18M1201019.

Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, and Santiago Segarra.
Signal processing on higher-order networks: Livin’ on the edge... and beyond. Signal Processing,
187:108149, 2021. ISSN 0165-1684. doi:10.1016/j.sigpro.2021.108149.

Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François Pinton,
Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, and Philippe Vanhems.
High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School. PLoS ONE,
6(8):e23176, 2011. doi:10.1371/journal.pone.0023176.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking Out of the Weisfeiler Leman
Hierarchy: Graph Learning Beyond Message Passing. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=vgXnEyeWVY.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial Convolutional Neural Networks. In ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8847–8851. IEEE, 2022a. doi:10.1109/ICASSP43922.2022.9746017.

Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient Representation Learning for Higher-Order
Data With Simplicial Complexes. In Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the
First Learning on Graphs Conference, volume 198 of Proceedings of Machine Learning Research,
pp. 13:1–13:21. PMLR, 09–12 Dec 2022b. URL https://proceedings.mlr.press/
v198/yang22a.html.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Facilitating Graph Neural Networks with Random
Walk on Simplicial Complexes. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=H57w5EOj6O.

12

https://proceedings.mlr.press/v139/roddenberry21a.html
https://proceedings.mlr.press/v139/roddenberry21a.html
https://doi.org/10.1109/ICASSP43922.2022.9747233
https://doi.org/10.1137/18M1201019
https://doi.org/10.1016/j.sigpro.2021.108149
https://doi.org/10.1371/journal.pone.0023176
https://openreview.net/forum?id=vgXnEyeWVY
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1109/ICASSP43922.2022.9746017
https://proceedings.mlr.press/v198/yang22a.html
https://proceedings.mlr.press/v198/yang22a.html
https://openreview.net/forum?id=H57w5EOj6O

Published as a conference paper at ICLR 2024

Table 1: Imputation accuracies on the Semantic Scholar dataset with varying percentages of
missing citations. We report the mean and standard deviation of the validation accuracies over 10
runs. We compare SCRaWl to the simplicial neural networks SNN, SCNN, SAT, SAN, and MPSN as
well as to the representation learning algorithm k-simplex2vec.

0 1 2 3 4 5
n0 = 352 n1 = 1474 n2 = 3285 n3 = 5019 n4 = 5559 n5 = 4547

k-simplex2vec 0.02 ± 0.014 0.07 ± 0.013 0.40 ± 0.040 0.78 ± 0.021 0.96 ± 0.007 0.93 ± 0.069
SNN 0.91 ± 0.003 0.91 ± 0.002 0.90 ± 0.004 0.91 ± 0.004 0.90 ± 0.016 0.90 ± 0.008

SCNN 0.91 ± 0.004 0.91 ± 0.002 0.91 ± 0.002 0.92 ± 0.001 0.92 ± 0.002 0.92 ± 0.002
SAT 0.18 ± 0.000 0.31 ± 0.000 0.28 ± 0.001 0.34 ± 0.001 0.53 ± 0.001 0.55 ± 0.001
SAN 0.91 ± 0.004 0.95 ± 0.019 0.95 ± 0.019 0.97 ± 0.016 0.98 ± 0.009 0.98 ± 0.007

SIN (MPSN) 0.99 ± 0.004 0.99 ± 0.003 0.99 ± 0.002 0.97 ± 0.008 0.97 ± 0.004 0.97 ± 0.003
SCRaWl 0.99 ± 0.035 1.00 ± 0.009 0.98 ± 0.020 0.95 ± 0.138 0.90 ± 0.252 0.97 ± 0.020

k-simplex2vec 0.03 ± 0.023 0.08 ± 0.013 0.46 ± 0.014 0.81 ± 0.021 0.95 ± 0.009 0.92 ± 0.079
SNN 0.81 ± 0.006 0.82 ± 0.003 0.82 ± 0.005 0.83 ± 0.004 0.82 ± 0.012 0.83 ± 0.007

SCNN 0.81 ± 0.007 0.82 ± 0.003 0.83 ± 0.003 0.83 ± 0.002 0.84 ± 0.002 0.84 ± 0.002
SAT 0.18 ± 0.000 0.20 ± 0.000 0.29 ± 0.001 0.35 ± 0.001 0.50 ± 0.001 0.58 ± 0.001
SAN 0.82 ± 0.008 0.91 ± 0.024 0.82 ± 0.008 0.96 ± 0.004 0.96 ± 0.013 0.97 ± 0.009

SIN (MPSN) 0.99 ± 0.005 0.99 ± 0.002 0.99 ± 0.004 0.99 ± 0.008 0.98 ± 0.006 0.99 ± 0.004
SCRaWl 1.00 ± 0.006 0.99 ± 0.006 0.98 ± 0.015 0.98 ± 0.019 0.99 ± 0.008 0.98 ± 0.013

k-simplex2vec 0.01 ± 0.008 0.07 ± 0.003 0.41 ± 0.019 0.79 ± 0.020 0.95 ± 0.006 0.92 ± 0.088
SNN 0.72 ± 0.006 0.73 ± 0.004 0.73 ± 0.005 0.75 ± 0.002 0.75 ± 0.002 0.75 ± 0.003

SCNN 0.72 ± 0.005 0.73 ± 0.004 0.74 ± 0.003 0.75 ± 0.002 0.76 ± 0.002 0.77 ± 0.002
SAT 0.19 ± 0.000 0.33 ± 0.001 0.25 ± 0.001 0.33 ± 0.000 0.47 ± 0.001 0.53 ± 0.001
SAN 0.75 ± 0.021 0.89 ± 0.021 0.82 ± 0.008 0.94 ± 0.004 0.95 ± 0.005 0.96 ± 0.005

SIN (MPSN) 0.99 ± 0.004 0.99 ± 0.002 0.98 ± 0.004 0.98 ± 0.009 0.99 ± 0.001 0.98 ± 0.001
SCRaWl 0.98 ± 0.015 0.99 ± 0.004 0.99 ± 0.003 0.98 ± 0.016 0.98 ± 0.012 0.98 ± 0.010

k-simplex2vec 0.01 ± 0.003 0.08 ± 0.007 0.46 ± 0.024 0.77 ± 0.016 0.92 ± 0.008 0.90 ± 0.085
SNN 0.63 ± 0.007 0.64 ± 0.003 0.65 ± 0.003 0.66 ± 0.004 0.67 ± 0.009 0.67 ± 0.008

SCNN 0.63 ± 0.006 0.64 ± 0.003 0.65 ± 0.002 0.66 ± 0.002 0.67 ± 0.003 0.69 ± 0.002
SAT 0.20 ± 0.000 0.29 ± 0.000 0.22 ± 0.000 0.43 ± 0.001 0.51 ± 0.001 0.50 ± 0.001
SAN 0.67 ± 0.019 0.85 ± 0.028 0.82 ± 0.008 0.91 ± 0.009 0.93 ± 0.011 0.95 ± 0.016

SIN (MPSN) 0.98 ± 0.002 0.99 ± 0.001 0.98 ± 0.003 0.96 ± 0.007 0.98 ± 0.002 0.98 ± 0.008
SCRaWl 0.98 ± 0.009 0.98 ± 0.009 0.97 ± 0.021 0.97 ± 0.028 0.97 ± 0.012 0.98 ± 0.013

k-simplex2vec 0.07 ± 0.015 0.07 ± 0.008 0.36 ± 0.016 0.80 ± 0.022 0.91 ± 0.007 0.95 ± 0.003
SNN 0.54 ± 0.007 0.55 ± 0.005 0.56 ± 0.003 0.57 ± 0.003 0.59 ± 0.004 0.60 ± 0.005

SCNN 0.54 ± 0.006 0.55 ± 0.004 0.56 ± 0.003 0.58 ± 0.003 0.59 ± 0.003 0.61 ± 0.002
SAT 0.19 ± 0.000 0.30 ± 0.001 0.22 ± 0.000 0.32 ± 0.001 0.43 ± 0.000 0.48 ± 0.001
SAN 0.61 ± 0.019 0.79 ± 0.043 0.82 ± 0.008 0.88 ± 0.015 0.92 ± 0.007 0.94 ± 0.011

SIN (MPSN) 0.94 ± 0.004 0.97 ± 0.006 0.97 ± 0.008 0.95 ± 0.002 0.96 ± 0.004 0.97 ± 0.009
SCRaWl 0.95 ± 0.029 0.98 ± 0.009 0.96 ± 0.009 0.96 ± 0.032 0.97 ± 0.014 0.96 ± 0.035

Validation
Size Method

Simplex Order

10%

20%

30%

40%

50%

SNN and SCNN have been reported by Yang et al. (2022a), SAT and SAN have been reported by Giusti et al. (2022).

A TRAINING DETAILS AND RESULTS

For all experiments, we use the Adam optimizer with an initial learning rate of 10−3. The learning
rate is reduced by a factor of 0.5 if the validation loss does not improve for 10 epochs. Training is
stopped once the learning rate drops below 10−6.

The walk length ℓ is the primary hyperparameter that determines the receptive field of the model. As
the citation counts in the Semantic Scholar dataset can be imputed well with only local information,
we choose a walk length of 5 for this dataset. On other datasets, the model is trained with a walk
length of 50. The walk length can be increased independently in prediction, but we did not make use
of this option in our experiments.

For the Semantic Scholar dataset, we ran SCRaWl modules on simplex orders k ∈ {0, . . . , 5}, i.e.,
simplices of order 6 appear only as static coface features in the random walks and simplices of order
7 do not influence the model. Using uniform connection sampling, we computed m =

∑n
i=0 ni

random walks, i.e., one random walk for each simplex of order k ∈ {0, . . . , 5}. While SCRaWl
modules can be configured individually for each simplex order and each layer, we found that the
same configuration for all modules works well for this dataset: Each module is configured with a
local window size of s = 4, a kernel size of dkern = 8, a hidden feature size of d = 32, and a mean
pooling operation. Complete results for the semantic scholar experiments are given in Table 1.

For the social contact datasets, we use 4 layers and run SCRaWl modules on simplex orders k ∈
{0, . . . , 3}. We compute one random walk for each simplex. Each SCRaWl module is again
configured identically with a local window size of s = 8, a kernel size of dkern = 8, a hidden feature
size of d = 128, and a mean pooling operation. The final vertex embeddings are fed into a 2-layer
MLP with ReLU activation. Complete results for the social contact experiments are given in Table 2.

13

Published as a conference paper at ICLR 2024

Table 2: Vertex classification accuracies on the social contact datasets.

primary-school high-school

n0 242 327
n1 8317 5818
n2 5139 2370
n3 381 238

Target Classes 12 10
Random Baseline 0.107 0.135

k-simplex2veca 0.398± 0.011 0.308± 0.019
SCNN 0.166± 0.056 0.228± 0.075

SIN (MPSN) 0.727± 0.043 0.943± 0.033
CRaWl 0.415± 0.030 0.823± 0.042

SCRaWl 0.927± 0.026 1.000± 0.000

HyperGCN 0.852± 0.031 0.849± 0.036
AllSetTransformer 0.898± 0.026 0.908± 0.031

CAt-Walk 0.932± 0.025 0.907± 0.050

Dataset

Dataset
Details

Simplicial
Methods

Hypergraph
Methodsb

a For vertex classification, k-simplex2vec is oblivious to any higher-order
connection beyond edges.

b Results on hypergraphs have been reported by Behrouz et al. (2023).

Table 3: List of hyperparameters and training setup used for each experiment.
Parameter Semantic Scholar Social Contacts

Walk Length ℓ 5 50
Sampling Method uniform connection uniform connection

Number of Layers L 3 4
Max. Simplex Order K 5 -
Local Window Size s 4 8
Kernel Size dkern 8 8
Hidden Feature Size d 32 32
Pooling mean mean

171k 132k

Optimizer
LR Scheduler
Stopping Criterion

Total number of
Trainable Parameters

Adam; LR = 10−3

Reduce on plateau: factor 0.5; patience 10
LR < 10−6

A full list of hyperparameters used for each experiment is given in Table 3. The model has been
implemented using PyTorch (Paszke et al., 2019) and TopoX (Hajij et al., 2024). We adapted the
code from Tönshoff et al. (2023) to implement SCRaWl.

We used Bodnar et al. (2021b) reference implementation for MPSN and conducted the experiments
using the author’s default parameters with 4 layers, 128 hidden features, ReLU nonlinearities, and
sum aggregations. Experiments for SCNN were conducted using the implementation provided by
TopoX with 3 layers, 64 hidden features, and ReLU nonlinearities. We used our own implementation
of k-simplex2vec.

B ABLATION STUDY

In this ablation study, we investigate the influence of different hyperparameters and other aspects on
the performance of SCRaWl. For all experiments, the training setup and hyperparameters not under

14

Published as a conference paper at ICLR 2024

Baseline Upper Lower
0

0.5

1 0.93 0.89

0.45

1 0.99 0.98

V
al

id
at

io
n

A
cc

ur
ac

y

2 4 6 8

Local Window Size s

primary-school
high-school

20 40

Walk Length ℓ

Figure 8: Ablation study on the social contact datasets. Left: Influence of upper and lower
adjacency on the performance of SCRaWl. Middle: Influence of the local window size s. Right:
Influence of the walk length ℓ. We report the mean and standard deviation of the validation accuracies
over 5 runs.

investigation are set to the same values as in the main experiments. Figure 8 shows the results of the
ablation study on the social contact datasets.

Lower vs. Upper Adjacency During a random walk, the next simplex can either be reached by
traversing over a face or a coface of the current simplex. We are interested in the impact of either
form of adjacency, i.e., we compare the performance of SCRaWl when using only lower adjacency or
only upper adjacency. For simplices that don’t have a face or don’t have a coface, respectively, the
random walk stays at the current simplex. We make the exception that for node-level walks, upper
adjacency over edges is always allowed, as otherwise, no meaningful walks would be possible.

For the primary school dataset, we see that only using upper adjacency yields a significantly better
performance of 0.889± 0.063 than only using lower adjacency with 0.454± 0.099. In this case, only
using upper adjacency is thus only marginally below the baseline performance of 0.927± 0.026. On
the easier-to-learn high school dataset, the difference between using only upper or lower adjacency is
smaller with 0.994± 0.009 vs. 0.975± 0.009, compared to the baseline with 1.0± 0.0.

These results support our claim that — at least for these datasets — higher-order interactions give
additional insight into the structure of the dataset and methods that capture these (higher-order)
structures can perform better.

Influence of Local Window Size s The local window s is a parameter that influences which
structural features of the input simplicial complex are visible to the model. We thus expect that larger
windows improve the prediction performance while also increasing the computational complexity.

We validate this hypothesis by training SCRaWl on the social contact datasets with different local
window sizes s ∈ {1, . . . , 8}. As expected, we see that the prediction performance of SCRaWl
improves with larger windows: For the primary school dataset, the performance increases almost
monotonically from 0.571± 0.079 with s = 1 to 0.927± 0.026 with s = 8. For the easier-to-learn
high school dataset the performance is only marginally worse with 0.977 ± 0.006 for s = 1 vs.
1.0± 0.0 for s = 8.

Influence of Walk Length ℓ Similar to the local window size s, we expect that larger walk lengths
ℓ positively influence the prediction performance of SCRaWl, as longer walks ensure that important
structural features of the simplicial complex are captured and processed by the model.

To that end, we trained SCRaWl on the social contact datasets with different walk lengths ℓ ∈
{5, 10, . . . , 50}. The prediction performance again improved almost monotonically with increasing
walk lengths for both datasets, with the high school dataset reaching accuracies above 0.98 for ℓ ≥ 25
already. For the primary school dataset, the performance reached its best accuracy of 0.927± 0.026
only for ℓ = 50.

We note that the choice of walk length ℓ and window size s has a considerable impact on the
computational cost of the model and its value should be chosen carefully to balance predictive
performance and computational complexity.

15

	Introduction
	Background
	Method
	Random Walks on Simplicial Complexes
	Walk Feature Matrices
	SCRaWl Module
	Complete SCRaWl Architecture
	Performance Considerations

	Expressive Power
	Experimental Results
	Semantic Scholar Co-Authorship Network
	Social Contact Networks

	Conclusion
	Training Details and Results
	Ablation Study

