
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BI-PHASE TRAINING
LEARNING EFFICIENTLY IN HIGH-DIMENSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pre-trained foundation models have achieved remarkable generalization across a
wide spectrum of downstream tasks. However, as models scale in size, the cost
to pre-train models becomes prohibitively expensive. In this work, we introduce
Bi-Phase Training (BPT), a novel parameter-efficient pre-training method designed
to capture the expressiveness of fully parameterized models while drastically re-
ducing the number of trainable parameters. BPT achieves this by combining
constrained high-rank transformations using diagonal matrices with exploration
of lower-dimensional subspaces through low-rank matrices, facilitating effective
optimization within a reduced parameter space. We empirically demonstrate the
effectiveness of BPT across various model scales, showing that it successfully
matches the performance of standard pre-training on language models while achiev-
ing significant reductions in trainable parameters, such as a 66% reduction of
trainable parameters for a 1.5B model. Furthermore, we conducted a comprehen-
sive evaluation of 17 diverse downstream tasks, confirming that models trained
with BPT maintained performance comparable to those trained with a fully param-
eterized standard method.

1 INTRODUCTION

Foundational models have demonstrated impressive general purpose performance(DeepSeek-AI et al.,
2025; Grattafiori et al., 2024). These models usually consist of billions of parameters, are trained on
massive datasets, and have become the standard in modern deep learning. Empirical studies such
as scaling laws have demonstrated that increasing model size generally leads to lower training loss
(Kaplan et al., 2020; Hoffmann et al., 2022), while also giving rise to emergent behaviors, including
complex reasoning abilities, that only appear beyond certain scale thresholds.

66 % Fewer Params

Figure 1: Evaluation log-perplexity vs. log trainable parameters (non-embedding) across model sizes.
BPT matches the fully-parameterized baseline while using far fewer trainable parameters; on the
1.5B model it achieves comparable eval loss with 66% fewer trainable parameters

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite these advancements, the continued scaling of foundation models faces practical limitations.
Although there has been substantial progress from a systems perspective, ranging from more efficient
attention mechanisms (Dao et al., 2022) to low-precision training techniques (Peng et al., 2023;
Kalamkar et al., 2019) and innovations in model architectures such as the widespread adoption of
Transformers (Vaswani et al., 2023), Mixture-of-Experts (MoE) (Shazeer et al., 2017), and state-space
models (Gu et al., 2022). However, the dominant training paradigm, full parameter optimization,
remains largely unchanged.

The scaling law (Kaplan et al., 2020; Hoffmann et al., 2022) roughly states that as we increase the
number of parameters N , we should observe our lossL to decrease propositional to a power law of
the form:

L ∝ N−α (1)

for some positive constant α, typically estimated empirically. This relationship suggests that larger
models tend to perform better, provided sufficient data and compute resources (Hoffmann et al., 2022).
However, this relation in Equation 1 only depends on the total number of parameters rather than the
total trainable parameters. This distinction is critical, as each trainable parameter incurs a fixed
memory overhead: the parameter itself (n), its gradient (n), and two optimizer states (2n) when using
Adam family of optimizers (Kingma & Ba, 2017; Loshchilov & Hutter, 2019). While total training
memory depends on several factors such as batch size and activation footprint (Chen et al., 2016),
this 4n overhead remains fixed per trainable parameter. In this paper, we distinguish non-trainable
and trainable parameters for pre-training, and interpret the total number of parameters as the model’s
capacity to learn. Our key claim is that models can learn as effectively with far fewer trainable
parameters than the total number of parameters, as long as the learning dynamics are preserved.

To preserve learning dynamics while being parameter efficient, we introduce Bi-Phase Training
(BPT), a novel parameter-efficient method for training foundation models that updates a weight
matrix W using a combination of constrained high-rank and low-rank updates simultaneously.

Pre-training foundation models are computationally expensive, so every efficiency gained translates
to substantial resource savings. Empirically, we demonstrate the effectiveness of our method by
pre-training three language models of varying sizes, showing consistent performance across scales.
We also perform a comprehensive downstream evaluation on our trained model to show that there is
no loss of generalization between using fewer trainable parameters and all trainable parameters.

Our main contributions are as follows:

• We introduce Bi-Phase Training (BPT) to significantly reduce the number of trainable
parameters required during pre-training.

• We provide a theoretical upper-bound to the update induced by BPT and provide empirical
evidence to show that this method works across the model scales.

• We comprehensively test the method on 17 downstream evaluation tasks and show that it
matches the performance of the fully parameterized model.

2 BACKGROUND

During neural network training, we aim to find a weight matrix W ∈ Rn×m that minimizes a loss
function, L. This matrix defines a linear transformation from an input space Rm to an output space
Rn. The matrix is updated iteratively using gradient signals from backpropagation. The rank of the
update serves as a proxy for the number of independent directions explored during optimization,
higher-rank updates enable more expressive subspace traversal better utilizing redundant dimensions.
Formally, we want to optimize the weight matrix W using ∆W:

W′ = W+∆W

where W′ is the optimized weight matrix. For a single training example with an input vector x ∈ Rm

and a corresponding layer output y ∈ Rn, the gradient of the loss with respect to the weight matrix G
is the outer product of the upstream gradient and the input vector’s transpose:

G =
∂L

∂W
=

(
∂L

∂y

)
xT

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Since this is an outer product of two vectors, its rank is at most 1. In stochastic gradient descent
(SGD), where only the gradient of the matrix is used for the update, ∆W, the rank of ∆W for a
single example is at most 1. For a mini-batch of B training examples. We can stack the inputs into a
matrix X ∈ Rm×B and the corresponding upstream gradients into a matrix Λ ∈ Rn×B . The gradient
for the entire mini-batch is then given by the matrix product:

G = ΛXT

The rank of a matrix product is less than or equal to the minimum rank of its factors. Since the rank of
Λ is at most min(n,B) and the rank of XT is at most min(B,m), the rank of the resulting gradient
matrix is bounded by:

rank(G) ≤ min(rank(Λ), rank(XT)) ≤ min(n,m,B)

For the sake of simplicity, let B ≤ min(n,m). For the update ∆W in SGD, the rank(W) is at most
B. In modern optimizers such as Adam (Kingma & Ba, 2017), where exponential moving averages
(EMA) accumulate gradients overtime, at any timestep t, the rank of the update is no longer upper
bounded by just B but rather min(n,m, t ·B).

To practically reduce the number of trainable parameters in W , we ideally want to express ∆W with
minimal number of parameters while having high-rank such that the trainable parameter reduction
does not alter it’s learning dynamics.

In LoRA(Hu et al., 2021), ∆W is defined to be product of two low-rank matrices B ∈ Rn×r and
A ∈ Rr×m such that ∆W = αBA, where α is some scaling factor. LoRA yields strong results for
fine-tuning a pre-trained weight, however, the objective landscape for pre-training from scratch is
too complex to be modeled by r-dimensional subspace alone (Lialin et al., 2023). Since the ∆W
rank in LoRA is always bounded by r, it can never utilize the full rank potential of W. To address
this limitation, ReLoRA (Lialin et al., 2023) extends LoRA by accumulating low-rank updates over
multiple steps:

∆W = s

N∑
n=1

BA

where B and A are low-rank matrices. During training, B and A are optimized, and their low-rank
matrices are periodically merged back into the original weight matrix W. Following each merge, B
and A are reinitialized, allowing the accumulated update ∆W to surpass the rank constraint r after
multiple merge cycles. Despite this improvement, the rank of updates at any single step remains
confined to a low-rank subspace. Also for the duration of ∆t between two merge cycles, the update is
restricted to only rank-r subspace. This limits it’s ability to learn as efficiently as fully parameterized
model as the update rank for any given timestep can be high-rank and results in weaker performance
compared to full parameter pre-training (Lialin et al., 2023). In a related work, HyperAdapt (Gurung
& Campbell, 2025) proposed a parameter-efficient high-rank adaptation method by defining the
update as:

∆W = AWB−W

where A ∈ Rn×n and B ∈ Rm×m are trainable diagonal matrices, and W is non-trainable parameter.
Since both trainable matrices are diagonal, only n +m number of parameters are needed to train
them. Here the rank of ∆W is upper-bounded by the 2 · rank(W). However, this method assumes
that pre-trained weight matrices already contain relevant orthogonal directions which can be scaled
relevant to the downstream fine-tuning task, strictly limiting its application to fine-tuning pre-trained
models.

3 OUR METHOD

The success of large foundation models, often linked to scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022), suggests that models benefit significantly from a vast parameter space. For a model with
a total number of parameters C, it represents the model’s capacity to learn for a given architecture.
We hypothesize that for the same model, only using the total number of trainable parameters N ,
where N ≪ C, can approach the learning dynamics of a fully trainable model by matching the rank
and geometry of its updates. In particular, since a fully parameterized model can realize high-rank

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Bi-Phase Training Forward Pass: Here the green squares are trainable parameters in the
model while the blue squares are frozen during training.

updates at any step t, we seek an update ∆W whose rank is comparably high while minimizing total
number of trainable parameter to express ∆W. To do this, we introduce Bi-Phase Training (BPT), a
parameter-efficient method designed to induce high-rank updates within individual weight matrices
using diagonal matrices and build low-rank subspace using low-rank matrices.

Our method conceptualizes the optimization of a weight matrix W ∈ Rn×m not as a direct update to
all n×m parameters, but as an update structure ∆W that combines transformations applied through
efficient high-rank diagonal matrices with exploration guided by low-rank matrices. This allows us
to approximate the expressiveness of full parameter updates while drastically reducing the trainable
parameter count. Formally, for a weight matrix W, the update ∆W is defined as:

∆W = A

(
W+

T∑
t=1

UV

)
B−W (2)

where A ∈ Rn×n and B ∈ Rm×m are diagonal trainable matrices, while U ∈ Rn×r and V ∈ Rr×m

are low-rank trainable matrices. Also, W remains fixed throughout training, meaning it does not
receive a gradient update. At a given time t, we only keep a pair of U and V trainable and periodically
merge U and V to W. So that means for a given step t, we have:

∆W = A(W+UV)B−W (3)
We show that for any given time t, this update (Equation 3) is a high-rank update Theorem 3.1.
Intuitively, the low-rank matrices U and V find and accumulate relevant orthogonal directions
within a lower-dimensional subspace, while the diagonal matrices A and B scale relevant orthogonal
directions, thus effectively guiding the high-rank updates. For a given input x, our modified forward
pass becomes:

h = (W+∆W)x

= (A (W+UV)B)x

This forwards pass yields high-rank update using minimal trainable parameters.
Lemma 3.1. The upper bound for the rank of the update ∆W = A(W + UV)B −W is 2R + r,
where R = rank(W) and r = rank(UV).

Proof. We have
∆W = A(W+UV)B−W = AWB+AUVB−W.

For all conformable matrices X and Y, rank(X + Y) ≤ rank(X) + rank(Y). Therefore,

rank
(
AWB+AUVB−W

)
≤ rank(AWB) + rank(AUVB) + rank(−W).

Since matrix multiplication cannot increase rank, rank(AXB) ≤ rank(X) for any X, and hence

rank
(
AWB+AUVB−W

)
≤ rank(W) + rank(UV) + rank(−W).

We have rank(UV) = r and rank(W) = rank(−W) = R, so

rank
(
∆W

)
≤ R+ r +R = 2R+ r.

Hence the rank of the update ∆W is upper-bounded by 2R+ r. Trivially, it is also bounded by its
dimensions so ∆W ≤ min(n,m, 2R+ r)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 COMPOUNDING EFFECT

A key property of BPT is that the low–rank matrices (U,V) and the diagonal matrices (A,B) reinforce
each other over time. Each merge step (Equation 4) stores the currently discovered low–dimensional
subspace into the base weight,

W := W+UV,

so that subsequent optimization starts from a matrix which contains the subspace discovered in the
previous merge cycle by UV. Because A and B are not merged or reinitialized, they continuously
rescale these accumulated directions, effectively bootstrapping the previously discovered subspaces
while the next (U,V) pair explores new ones (Equation 2). This yields a high–rank update at each
step with only a small number of trainable parameters.

Concretely, after t merge cycles the span of W contains the union of the t discovered rank-r subspaces,
while the diagonal matrices A ∈ Rn×n and B ∈ Rm×m provide elementwise left/right scaling that
can immediately modulate any of these directions without re-discovering them through another
low–rank matrices U and V. The result is a compounding effect: (i) low–rank factors (U,V) add
new useful directions to W; (ii) diagonals (A,B) amplify or attenuate both old and newly added
directions; and (iii) the process repeats from a progressively better-conditioned base.

This differs from ReLoRA–style training, where the update is always confined to a rank-r subspace
for the duration of ∆t between two merge cycles. Once merged, those directions become part of W
but are not actively and continuously reweighted. Consequently, ReLoRA must trade off between
modifying previously learned directions and discovering new ones within a fixed rank budget at each
step, whereas BPT can simultaneously (a) cheaply explore new subspaces via (U,V) and (b) flexibly
reshape all accumulated directions through (A,B).

3.2 PARAMETER EFFICIENCY AND COMPUTATIONAL ADVANTAGE

The primary advantage of BPT lies in its significant reduction in the number of trainable parameters
compared to training the full weight matrix W. For a single layer with weight matrix W ∈ Rn×m,
the trainable parameters in BPT are located only in the diagonal matrices A and B, and the low-rank
matrices U and V.

The total number of trainable parameters for one such layer in BPT is n+m (from diagonal A and
B) plus n× r+ r×m (from low-rank U and V). In contrast, training the full weight matrix requires
n ×m parameters. Since r ≪ min(n,m), the total trainable parameters in BPT are substantially
less than nm.

n+m︸ ︷︷ ︸
Diagonal Matrices

+ nr + rm︸ ︷︷ ︸
Low-Rank Matrices

≪ nm︸︷︷︸
Full Matrix

This parameter reduction directly translates into lower memory overhead during training with efficient
kernel implementation. This trainable parameter count reduces the fixed memory cost associated with
training neural networks as stated in section 1.

3.3 INITIALIZATION

Proper initialization is crucial for stable training. We initialize the fixed weight matrix W using the
standard Kaiming initialization (He et al., 2015). The diagonal matrices A and B are initialized to
one, such that the diagonal matrices start as identity matrices. For the low-rank matrices U and V, we
initialize U to be semi-orthogonal and V to be zero. This means that U has full rank for its capacity
and also no direction is dominant. Since V is zero, the product UV also zeros out, so the initial
forward pass would be the same as Kaiming initialization.

3.4 RE-INITIALIZATION AND MERGING

The optimization process in BPT involves learning the diagonal scaling factors in A and B and
accumulating updates in the low-rank term UV. Periodically, we merge the learned low-rank
subspace into the base weight matrix W. This process stores the progress made in navigating the
parameter space and allows the low-rank components to explore new low-rank subspace. The merging

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

step updates the fixed weight matrix W:

W := W+UV (4)

After merging, the low-rank matrices U and V are re-initialized to be semi-orthongal and zero matrix
respectively :

U := init.orthogonal , V := init.zero

Similar to initialization, the product UV zeros out, ensuring that re-initialization does not introduce
a sudden change in the weight matrix used in the forward pass immediately after merging. This
guarantees that the effective weight matrix W + UV is equivalent to the weight matrix W from
Equation 4 at the point of re-initialization. The random semi-orthogonal initialization of U upon re-
initialization ensures that it starts with a rank of r, ready to explore new low-dimensional subspaces
effectively. Unlike the low-rank matrices, which are merged and re-initialized to explore new
subspaces, merging the diagonal matrices does not yield exploration of new parameter subspaces.

Finally, merging and re-initializing the low-rank matrices makes the exponential moving aver-
ages(EMA) stored by the optimizer obsolete. However, since the diagonals are not merged, the EMAs
remain intact, helping the training be stable without sudden loss spikes.

4 RELATED WORK

While the past few years have witnessed remarkable progress in reducing the memory footprint
for fine-tuning large language models, memory-efficient pre-training remains considerably less
explored. GaLore (Zhao et al., 2024) addresses this gap by proposing a novel approach to parameter-
efficient training that projects gradients into a low-rank subspace, diverging from traditional methods
that directly parameterize low-rank weight matrices. However, GaLore’s reliance on Singular
Value Decomposition (SVD) to identify the optimal low-rank approximation presents a significant
bottleneck. The computational cost of SVD scales poorly with the dimensions of the matrix, making
GaLore difficult to scale.

LoRA-the-explorer (LTE) (Huh et al., 2024) extends LoRA to pre-training by exploring the low-rank
solution space in parallel across different computing nodes. While LTE’s parallel search strategy
presents a seemingly promising avenue to mitigate the computational bottlenecks associated with
full-rank pre-training, it unfortunately inherits the same fundamental drawbacks, which is that at each
step, optimization is only limited to a low-rank subspace similar to other low-rank methods section 2.

5 EMPIRICAL EXPERIMENTS

To evaluate the effectiveness of our proposed method, we conducted a series of pre-training exper-
iments on language models of varying scales and assessed their performance on a diverse suite of
downstream tasks. Our primary goal was to demonstrate that BPT can match the performance of
standard full parameter pre-training while requiring significantly fewer trainable parameters, thereby
lowering the computational barrier to developing large foundation models.

All models were pre-trained from scratch using the standard next-token prediction objective. We used
a 10 billion token subset of the FineWeb-Edu dataset (Penedo et al., 2024), a high-quality, carefully
curated collection of educational content from the web. Our baseline for comparison are standard
full parameter pre-training (referred to as “Full”), where all parameters of the model are trainable
and ReLoRA. Importantly, all methods use the exact same underlying model architecture and total
number of parameters; the difference lies solely in the number of trainable parameters during training.
All models are based on the Qwen2.5 architecture (Qwen et al., 2025): in addition to the standard
0.5B and 1.5B parameter versions, we developed a custom 100M parameter variant by scaling down
the same architecture. Detailed specifications of the model architectures are provided in Table 6.
To summarize the parameter reduction achieved through BPT in Table 1. As the model scales, the
number of trainable parameters required to match the full parameterized model reduces drastically
since the number of trainable parameters for layers like the embedding layer does not have an out
sized effect on larger models. We also additionally pre-train OLMo-2-1B (OLMo et al., 2024) on the
same dataset. Although both models are transformer-based auto-regressive language models, they
differ slightly in their attention implementation (Grouped Query Attention vs Multi-head Attention).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Additionally, Qwen-2.5 ties its input and output embeddings, whereas OLMo-2 has separate input
and output embeddings. Further details on hyper-parameters and experimental setup can be found in
Appendix.

Table 1: Trainable parameter counts by method and model size

Model Full BPT Reduction% Reduction%
Trainable Trainable (non-embed)

Small 108M 89M 17.8 63.5
Medium 0.5B 0.2B 58.2 80.4
Large 1.5B 0.5B 65.9 77.4

For a fair comparison, all experiments for a given model size used the same batch size and were
trained for the same total number of steps. The optimizer used was AdamW (Loshchilov & Hutter,
2019), and the learning rate followed a warm-up and cosine decay schedule (WSD).

5.1 PRE-TRAINING PERFORMANCE AND PARAMETER EFFICIENCY

Our pre-training experiments demonstrate that BPT successfully matches the performance of full
parameter training across different model scales while achieving substantial reductions in trainable
parameters. Figure 1 summarizes our experimental results across different model sizes. The x-axis
represents the trainable parameters not including embedding parameters. We show for a given
model size that BPT reaches similar log-perplexity performance in a given validation set as the full
parameterized model with significantly fewer trainable parameters.

Figure 3 compares the eval log perplexity on the validation set for the Qwen-2.5-1.5B and OLMo-2
between the Full, ReLoRA and BPT. We show that even with 66% less trainable parameters, we
achieve the same eval loss. The log-perplexity of validation data shows that the model does not
simply overfit the training data and has the similar evaluation loss profile as the baseline. Both BPT
and ReLoRA has almost idential number of trainable parameters, however ReLoRA eval loss slowly
starts to diverge from that of BPT even though both method use similar high learning rate.

0 7338 14677 22016
Step

2.8

2.9

3.0

3.1

3.2

3.3

Lo
g

pe
rp

le
xi

ty

Qwen-2.5-1.5B
Full
BPT
ReLoRA

0 7500 15000 22500
Step

2.9

3.0

3.1

3.1

3.2

3.3

Lo
g

pe
rp

le
xi

ty

OLMo-2-1B
Full
BPT
ReLoRA

Figure 3: Eval loss over training steps. Left: Qwen-2.5-1.5B. Right: OLMo-2-1B. BPT tracks the
Full baseline closely and outperforms ReLoRA over time, despite using substantially fewer trainable
parameters

5.2 DOWNSTREAM EVALUATION

The training loss and evaluation loss indicate strong performance for our proposed methods. To
further evaluate whether the parameter efficiency of BPT impacts the model’s ability to generalize to
unseen tasks, we perform downstream evaluations on our Qwen-2.5-1.5B and OLMo-2-1B models.
For all our evaluations, we do not further finetune any additional dataset and report zero-shot
performance. Evaluations were performed using the lighteval framework (Habib et al., 2023), which
is a derivative of the lm evaluation harness. We use 17 different evaluations tasks in total covering
different sub-topics of language modeling. We group these 17 tasks into 3 groups:

Natural Language Understanding This category includes classic NLU benchmarks, which test
a model’s ability to perform sentence-level and paragraph-level reasoning. Tasks such as MNLI,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

QNLI, RTE, and WNLI focus on recognizing textual entailment and semantic similarity, while SST-2
evaluates sentiment classification. These tasks collectively assess a model’s syntactic and semantic
comprehension capabilities.

Table 2: Performance on Natural Language Understanding: For all metrics higher is better

Model Method SST-2 RTE QNLI WNLI MNLI Avg
Full 51.9 54.1 49.5 42.2 33.2 46.2

Qwen-2.5-1.5B ReLoRA 50.9 55.6 49.4 50.7 34.0 48.1
BPT 49.9 55.6 49.8 46.5 34.9 47.3

Full 50.9 55.2 49.5 43.7 35.0 46.9
OLMo-2-1B ReLoRA 52.3 53.4 49.5 36.6 34.8 45.3

BPT 58.1 50.9 49.6 46.5 34.6 47.9

Commonsense Reasoning Commonsense reasoning tasks evaluate a model’s grasp of implicit,
everyday knowledge and its ability to perform inference beyond surface-level text. This includes
HellaSwag (Zellers et al., 2019) and WinoGrande (Sakaguchi et al., 2019), which require plausibility
and pronoun disambiguation skills, as well as PIQA(Bisk et al., 2019), WSC, BoolQ(Clark et al.,
2019), and WiC (Pilehvar & Camacho-Collados, 2019), which challenge the model’s understanding
of physical reasoning, coreference, binary question answering, and word sense disambiguation,
respectively. Table 3 shows the results for this category.

Table 3: Performance on Commonsense Reasoning Tasks: For all metrics higher is better

Model Method HellaSwag WinoGrande PIQA BoolQ WiC WSC Avg
Full 33.1 51.3 66.9 59.9 49.5 41.4 50.3

Qwen-2.5-1.5B ReLoRA 33.1 50.2 66.5 60.6 50.5 38.5 49.9
BPT 34.7 52.1 66.8 57.2 49.7 51.0 51.9

Full 32.8 51.1 66.6 57.9 50.0 36.5 49.2
OLMo-2-1B ReLoRA 32.8 52.2 66.5 57.9 50.8 39.4 49.9

BPT 33.1 52.6 67.7 60.7 49.8 37.5 50.2

Reading Comprehension / QA assesses the model’s ability to answer questions based on short
passages or structured knowledge, measuring the model’s ability to extract, synthesize, and reason over
textual information. ARC easy (ARC-E), ARC challenge (ARC-C) (Clark et al., 2018), OpenBookQA
(OBQA) (Mihaylov et al., 2018), and SciQ (Johannes Welbl, 2017) test scientific and factual reasoning,
while MultiRC (Khashabi et al., 2018) requires identifying multiple correct answers based on context,
further testing multi-sentence comprehension. MMLU (Hendrycks et al., 2021) evaluates broad
subject-area knowledge and reasoning across disciplines such as mathematics, law, and medicine.

Table 4: Performance on QA and Reading Comprehension: For all metrics higher is better

Model Method SciQ OBQA ARC-E ARC-C MultiRC Avg
Full 81.1 23.6 59.2 23.0 48.9 47.2

Qwen-2.5-1.5B ReLoRA 82.6 23.2 58.8 24.5 42.8 46.4
BPT 81.2 23.0 61.9 27.3 48.6 48.4

Full 82.8 23.2 58.9 23.5 43.2 46.3
OLMo-2-1B ReLoRA 83.7 23.4 58.8 25.4 45.7 47.4

BPT 82.2 23.6 59.9 25.7 44.3 47.1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 47104 94208 141312
Step

2.6

2.7

2.9

3.0

3.2

3.3

Lo
g

pe
rp

le
xi

ty

Full
BPT

Figure 4: Qwen-2.5-1.5B: Validation Loss vs. Training Steps (Full vs. BPT) for 60B tokens

5.3 LONGER TRAINING

To further assess the effectiveness of BPT, we pre-train Qwen-2.5-1.5B model with 60 billion tokens
of fineweb-edu. With the same setup as our main experiments. The final eval difference between BPT
and Full is only 0.05 log perplexity with 66% fewer trainable parameters.

5.4 BASELINE COMPARISON OF PEFT METHODS

To evaluate the performance of PEFT methods such as LoRA and HyperAdapt, we pre-train the
Qwen-2.5-0.5B model in the same setup as our main experiments with 10 billion tokens and report
their eval loss along with the trainable parameters.

The result is summarized in Table 5. HyperAdapt, which only uses diagonal matrices to update W,
performs poorly since the base weight matrix W does not contain any relevant subspace that can be
adjusted, since W at initialization is just a random matrix. LoRA without periodic rank accumulation
performs better than HyperAdapt, and the difference between LoRA’s eval loss and ReLoRA’s eval
loss is only 0.01. BPT and Full both have eval that are similar compared to other methods.

6 CONCLUSION

Table 5: Comparison of PEFT
Methods: Trainable Parameter and
Eval Loss

Method Trainable Eval
Param Loss

Full 494M 3.02
HyperAdapt 137M 5.49
LoRA 206M 3.05
ReLoRA 206M 3.04
BPT 206M 3.01

In this paper, we introduced Bi-Phase Training (BPT), a
parameter-efficient pre-training method that couples con-
strained high-rank transformations through diagonal matrices
and explores low-dimensional subspaces via low-rank matrices.
The resulting update preserves high-rank expressivity while
drastically reducing the number of trainable parameters. We
prove an upper bound of 2R+ r on the update rank of BPT and
describe a compounding mechanism in which periodic merges
of UV into W continuously expand the accessible subspace,
while diagonals adaptively rescale accumulated directions. Em-
pirically, across models from 100M to 1.5B parameters, BPT
tracks the fully parameterized baseline during pre-training and,
at 1.5B scale, matches validation loss with 66% fewer trainable
parameters. Zero-shot results on 17 diverse downstream tasks
show that these savings do not come at the cost of generalization. BPT offers a practical path to
scaling foundation-model pre-training while being efficient.

Limitations In this work, we only investigated the application of our method in language modeling.
We leave extending Bi-Phase Training (BPT) to other domains—such as computer vision, diffusion
models, and broader deep learning applications for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,

10

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2412.19437

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

Abel Gurung and Joseph Campbell. Hyperadapt: Simple high-rank adaptation, 2025. URL https:
//arxiv.org/abs/2509.18629.

Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015. URL https://arxiv.org/abs/
1502.01852.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Minyoung Huh, Brian Cheung, Jeremy Bernstein, Phillip Isola, and Pulkit Agrawal. Training neural
networks from scratch with parallel low-rank adapters, 2024. URL https://arxiv.org/
abs/2402.16828.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2509.18629
https://arxiv.org/abs/2509.18629
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2402.16828
https://arxiv.org/abs/2402.16828

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of bfloat16 for
deep learning training, 2019. URL https://arxiv.org/abs/1905.12322.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface:a challenge set for reading comprehension over multiple sentences. In Pro-
ceedings of North American Chapter of the Association for Computational Linguistics (NAACL),
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2
Furious, 2024. URL https://arxiv.org/abs/2501.00656.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang,
Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. Fp8-lm: Training fp8 large
language models, 2023. URL https://arxiv.org/abs/2310.18313.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations, 2019. URL https://arxiv.org/
abs/1808.09121.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
URL https://arxiv.org/abs/1701.06538.

13

https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/1808.09121
https://arxiv.org/abs/1808.09121
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1701.06538

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL https:
//arxiv.org/abs/2403.03507.

A MODEL ARCHITECTURE

Table 6: Model Architecture Detail and Total Training Tokens

Models Layers Heads (Q / KV) Hidden Size Intermediate Size Training Tokens
100M 8 8/ 2 512 2048 10B
0.5B 24 14 / 2 896 4864 10B
1.5B 36 16 / 2 2048 11008 10B

B HYPERPARAMETERS AND EXPERIMENTAL SETUP

For BPT and other baselines, we applied this method exclusively to the linear layers within the
transformer blocks. Parameters such as layer normalization, embedding layers, and (lm_head)
were kept fully trainable. For the Qwen2.5 architecture, attention matrices, such as the query
projection layer q_head, have dimensions 518 by 128. Applying BPT to such layers would increase
the number of trainable parameters if the low-rank matrices’ rank is set to 128, undermining the
parameter efficiency goal for these specific matrices. Hence, we leave them unchanged. To ensure
that our method is robust across model architectures.

We did not conduct extensive hyperparameter search for learning rate. Following the trend of PEFT
papers, where learning rate is higher compared to full fine-tuning. We simply used 10x of the base
learning rate which was 2e-4 for all our base models. For ReLoRA with Qwen 1.5B model and LoRA
with Qwen 0.5B model, we used a learning rate of 1e-3 after multiple crashes with learning rate 2e-3.
For all our experiments, we used Warmup-Stable-Decay (WSD) learning rate scheduler. Additionally,
all the parameters in the model were trained using bf16 including the low-rank matrices with the
exception of the diagonal matrices which were kept in fp32 for stability.

14

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: The hyperparameters used for pre-training Qwen-2.5 Models.

Method Models 100M 0.5B 1.5B

Optimizer AdamW
Warmup Steps 2000
Decay Steps 10000,8000,8000
Max Grad Norm 1.0
Max Seq. Len 512
Batch Size 320,512,1024
LR Schedule WSD
Tokens 10B

Full Learning Rate 2e-4

BPT Learning Rate 2e-3
Rank 128,128,256

ReLoRA Learning Rate 2e-3,1e-3
Rank ,128,256

LoRA Learning Rate 1e-3
Rank 128

HyperAdapt Learning Rate 2e-3

Table 8: The hyperparameters used for pre-training OLMo-2-1B.

Method Models 1B

Optimizer AdamW
Warmup Steps 2000
Decay Steps 8000
Max Grad Norm 1.0
Max Seq. Len 512
Batch Size 960
LR Schedule WSD
Tokens 10B

Full Learning Rate 2e-4

BPT Learning Rate 2e-3
Rank 256

ReLoRA Learning Rate 2e-3
Rank 256

15

	Introduction
	Background
	Our Method
	Compounding effect
	Parameter Efficiency and Computational Advantage
	Initialization
	Re-initialization and Merging

	Related Work
	Empirical Experiments
	Pre-training Performance and Parameter Efficiency
	Downstream Evaluation
	Longer Training
	Baseline Comparison of PEFT Methods

	Conclusion
	Model Architecture
	Hyperparameters and Experimental Setup

