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Abstract

Deep generative models have become more popular in recent years due to their scalabil-
ity and representation capacity. Unlike probabilistic graphical models, they typically do
not incorporate specific domain knowledge. As such, this work explores incorporating ar-
bitrary dependency structures, as specified by Bayesian networks, into variational autoen-
coders (VAEs). This is achieved by developing a new type of graphical normalizing flow,
which extends residual flows by encoding conditional independence through masking of the
flow’s residual block weight matrices, and using these to extend both the prior and inference
network of the VAE. We show that the proposed graphical VAE provides a more inter-
pretable model that generalizes better in data-sparse settings, when practitioners know or
can hypothesize about certain latent factors in their domain. Furthermore, we show that
graphical residual flows provide not only density estimation and inference performance com-
petitive with existing graphical flows, but also more stable and accurate inversion in practice
as a byproduct of the flow’s Lipschitz bounds.

1 Introduction

Normalizing flows (NFs) (Rezende & Mohamed, 2015; Tabak & Turner, 2013) have proven to be a useful tool
in many machine learning problems. Typically parameterized by neural networks, NFs represent complex
probability distributions as bijective transformations of a simple base distribution, while tracking the change
in density through the multivariate change-of-variables formula. Variational autoencoders (VAEs) (Kingma
&Welling, 2014; Rezende et al., 2014) also provide a powerful framework for constructing deep latent variable
models, and unlike bijective flows, allow practitioners to specify the dimensionality of the latent space. By
positing and fitting a generic model of the data-generating process, VAEs allow one to generate new samples
and reason probabilistically about the data and its underlying representation. Despite the success of VAEs,
they typically use overly simple latent distributions, e.g. fully-factorized Gaussian distributions for both the
prior and variational posterior. Subsequent work has explored incorporating more complex latent variable
distributions and have shown that this results in improved performance. For example, NFs can be included
as part of the VAE’s encoder network (Kingma et al., 2016), entangling the latent variables non-linearly to
obtain a richer class of approximate posteriors. The prior distribution can also be made more complex, for
example by stacking layers of latent variables to create a hierarchical structure (Sønderby et al., 2016). This
increases the flexibility of the true posterior, leading to improved empirical results (Kingma et al., 2016).
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In contrast to data-driven deep generative models such as NFs and VAEs, Bayesian networks (BNs) model
distributions as a structured product of conditional distributions, allowing practitioners to specify both ex-
pert knowledge and quantitative information in a simple and interpretable manner. The aim of this work
is to combine the strengths of both: the simplicity and interpretability of BNs, and the scalability and
representation capacity of deep generative models. Traditional VAEs, as well as those with flow-enriched
inference networks and/or stacked layers of latent variables, do not allow one to directly control the depen-
dence structure encoded by the model. We therefore propose an approach to incorporate rich conditional
distributions for arbitrary dependency structures into VAEs. We do this by extending both the prior and
inference network with graphical NFs (Wehenkel & Louppe, 2021; Weilbach et al., 2020), which allow one to
encode an arbitrary BN structure into these distributions through the NF architecture.

The flow making up the prior of such a structured VAE will be used in both transformation directions—in
the normalizing direction for density estimation and in the inverse direction for sample generation. However,
existing graphical flows do not emphasize providing stable and efficient inversion. While NFs are theoretically
invertible, stable inversion is not always guaranteed in practice (Behrmann et al., 2021): if the Lipschitz
constant of the inverse flow transformation is too large, numerical errors may be amplified. To address
this, our work proposes a new graphical flow that encodes domain knowledge from a BN into a residual
flow (Chen et al., 2019). Residual flows ensure theoretical invertibility by imposing a Lipschitz bound on the
transformation. Graphical residual flows (GRFs) encode a predefined dependency structure by masking the
residual blocks’ weights, and obtain stable inversion in practice as a byproduct of the Lipschitz constraint.

The contribution of this work is therefore two-fold.1 First, we propose graphical residual flows as a graphical
NF that can stably and efficiently be inverted in practice. We compare the GRF to existing approaches on
both density estimation and inference tasks and confirm that this method yields competitive performance.
Our model exhibits accurate inversion that is also more time-efficient than alternative graphical flows with
similar task performance. GRFs are therefore an attractive alternative to existing approaches when a flow is
required to perform reliably in both directions. Second, we propose a structured VAE, termed the structured
invertible residual network (SIReN) VAE, that employs GRFs to encode a predefined dependency structure
over the latent and observed variables. We identify posterior collapse (Razavi et al., 2019)—where some
latent dimensions become inactive and are effectively ignored by the model—as an issue with SIReN-VAE,
as this phenomenon is influenced by the encoded structure. We consider various existing techniques to
alleviate this phenomenon, and show that they lead to improved performance. Finally, we empirically show
this model’s potential for better generalization in data-sparse settings, as well as its ability to provide more
interpretable latent spaces when practitioners know or can hypothesize about latent factors in their domain.

2 Background & Related Work

2.1 Bayesian Networks

Let P be the joint distribution over variables X = {X1, . . . , XD}. We say that Xi and Xj are conditionally
independent given Xk in P , if P (Xi, Xj |Xk) = P (Xi|Xk)P (Xj |Xk). Now, let G be a DAG with vertices
corresponding to elements of X , and let PaGXi denote the parent vertices of Xi in G. P factorizes according
to G if P can be expressed as the following product of conditional distributions (Koller & Friedman, 2009):
P (X ) =

∏
Xi∈X Pi(Xi|PaGXi). In this setting, the BN graph G provides a compact encoding of various

conditional independence assumptions about P (X ), as indicated by the absence of directed edges between
certain vertices. We aim to capture these conditional independencies in the generative models we construct.

2.2 Normalizing Flows

An NF (Rezende & Mohamed, 2015; Tabak & Turner, 2013) consists of a simple base distribution and a
bijective transformation that provides a mapping between this base distribution and a more complex data
distribution. The incurred change in density is tracked via the change-of-variables formula. For density

1An implementation of the GRF and SIReN-VAE, as well as our experimental code, can be found at https://gitlab.com/
pleased/grf-and-siren-vae.
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estimation, an NF Fx→ε(·), is used to transform a sample from the data distribution, x ∼ p, to a sample
from the base distribution, ε ∼ p0 (Papamakarios et al., 2017). The sample’s density is then given by

log p(x) = log p0(Fx→ε(x)) + log |det (JFx→ε(x))| , (1)

where JF (a) denotes the Jacobian of the transformation F at a. For amortized variational inference, where
the aim is to infer the latent posterior z ∼ q(·|x) for a given observation x, the flow Fε→z(·) instead models
the generative direction of the mapping: it transforms a sample from the base distribution to a sample from
the latent posterior (Kingma et al., 2016). The density of the generated sample is given by

log q(z|x) = log p0(ε)− log |det (JFε→z(ε))| . (2)

Flows are typically trained to implement a specific transformation direction, depending on the task. The
name normalizing flow is in reference to the procedure of letting a variable ‘flow’ through a series of transfor-
mations that ‘normalizes’ a complex data distribution into a simpler known base distribution. We refer to a
flow that instead transforms (samples from) the base distribution to (samples from) the data distribution as
a generative flow.2 The need for accurate and efficient inversion arises when using either Fx→ε to generate
new x from ε ∼ p0, or when using Fε→z to compute the density for a z not generated by the flow. In
principle, the trained flow can be inverted either analytically (if possible) or by using numerical methods.
However, inversion may be slow or numerically unstable unless suitable modelling choices are made.

Recent approaches to constructing NFs can be divided into two main categories: finite and continuous (or
infinitesimal) flows. Finite flows (Tabak & Turner, 2013) create a complex bijective mapping by composing
simpler transformations—which we refer to as flow steps—while continuous flows (Chen et al., 2018) define
the flow transformation implicitly in terms of an ordinary differential equation (ODE). One type of finite
flow ensures tractable computation of the Jacobian determinant by enforcing an autoregressive dependency
structure over the variables such that the Jacobian is triangular. Another type of finite flow, known as a
residual flow, applies the update x(t+1) = x(t) + gt(x(t)) at each flow step t and ensures invertibility and
tractability by applying suitable restrictions to gt. Since one type of residual flow, known as a contractive
residual flow, forms the basis of our proposed graphical residual flow, we discuss it in more detail below.

2.2.1 Contractive Residual Flows

Behrmann et al. (2019) show how to construct a finite NF by changing the normalization scheme of a
traditional residual network’s weights. Consider a residual network (He et al., 2016), F (x) = (fT ◦. . .◦f1)(x),
composed of blocks x(t+1) := ft(x(t)) = x(t) + gt(x(t)), with x(0) = x. F is invertible if all of its component
transformations ft are invertible, which holds if all gt are contractive, i.e. Lip(gt) < 1, where Lip(·) denotes
the Lipschitz constant for a transformation. Behrmann et al. (2019) ensure Lip(gt) < 1 by implementing gt
as a composition of activations h with Lip(h) ≤ 1 (e.g. LipSwish (Chen et al., 2019)), and affine layers with
weight matrices Wi satisfying ||Wi||s < 1. Here, || · ||s is the spectral norm, which can be computed with a
power iteration (Gouk et al., 2021). The spectral norm of Wi is constrained to [0, c] by normalizing Wi as

W̃i = min(c, ||Wi||s) ·
Wi

||Wi||s
. (3)

A (non-trivial) upper bound on the Lipschitz constant of a contractive residual block gt also implies Lipschitz
bounds for ft and f−1

t : the Lipschitz constant of the forward mapping, Lip(ft), is upper bounded by 1 +
Lip(gt) , while the Lipschitz constant of the inverse mapping, Lip(f−1

t ), is upper bounded by 1/(1−Lip(gt)).
This bi-Lipschitzivity is an attractive property for stable and efficient inversion (Behrmann et al., 2021).
To allow scaling to higher dimensions, Chen et al. (2019) use a “Russian roulette” unbiased and tractable
estimate for the Jacobian determinant. A drawback is that it has unpredictable time and memory usage.

2.2.2 Normalizing Flows with Graphical Structures

Incorporating the dependency structure of a BN into NFs has begun to receive attention in the past two
years. For finite flows, Wehenkel & Louppe (2021) consider only autoregressive flows where each step can be

2‘Normalizing flow’ is widely used for flows in both directions, but we make this distinction for clarity.
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constructed from a normalizer and a conditioner function. A normalizer applies a bijective transformation
to its input and is partially parameterized by the output of the conditioner, which controls the dependen-
cies between the variables such that the Jacobian of the flow step is triangular. They consider two specific
normalizer functions. The first is the affine transformation: f(x|m, s) = exp(s) � x + m, where � denotes
element-wise multiplication. Here, (m, s) is the output of the (arbitrarily complex) conditioner. To encode
the dependency structure, the conditioner is constrained such that (mi, si) is only a function of xi’s parents
in the corresponding BN, denoted by xPa(i), for i = 1, . . . , D. Second they consider the monotonic normal-
izer (Wehenkel & Louppe, 2019): fi(xi|ci) =

∫ xi
0 gi(t, ci) dt+βi(ci), where ci is the conditioner output, and

gi and βi are two neural networks with a strictly positive and a real scalar output, respectively. Although
one could implement D separate conditioner functions that each take a different subset of variables, xPa(i),
as input, Wehenkel & Louppe (2021) choose to use only a single neural network. To ensure that the correct
independencies are still maintained, they perform D passes through this neural network, masking out those
inputs during forward pass i that are not in xPa(i).

Weilbach et al. (2020) propose incorporating a graphical structure into continuous NFs. They consider a
neural ODE system (Chen et al., 2018), d

dtxt = f(xt, t), where the layers of the neural network f take the
form h(x, t) = tanh{Wx� η1(t)}+ b� η2(t), where the ηi are time-dependent linear gating functions. They
incorporate a graphical dependency structure by applying a binary adjacency matrix as mask to the weight
matrix W . This mask ensures that output i is dependent on only the inputs corresponding to xi and its
parents in the corresponding BN at each layer in the network. A drawback of this masking approach is that
it restricts the width of each layer of the neural network to be the same as the dimension of x.3

2.3 Variational Autoencoders

Let pθ(x, z) be a deep latent variable model over observed variables x and latent variables z, parameterized
by neural networks with parameters θ. Optimizing θ using maximum (marginal) likelihood estimation is
intractable in this setting because one typically cannot easily compute the evidence, pθ(x). By employing
amortized variational inference, one can however maximize the evidence lower bound (ELBO):

pθ(x) ≥ LELBO
θ,φ (x) = Ez∼qφ [log pθ(x, z)− log qφ(z|x)] , (4)

where the inference network with variational parameters φ outputs an approximation qφ(z|x) to the true
posterior p(z|x). The resulting model, that simultaneously optimizes θ and φ, is known as a variational
autoencoder (VAE). The vanilla approach to constructing a VAE assumes that all the latent variables are
independent in the prior and conditionally independent given x in the approximate posterior, and also uses
simple distributions for the prior, likelihood and posterior:

µ, log σ = EncoderNeuralNet(x;φ)
qφ(z|x) = N (µ,diag(σ2))

p(z) = N (0, I)
µ, log σ = DecoderNeuralNet(z; θ)
pθ(x|z) = N (µ,diag(σ2))

where DecoderNeuralNet and EncoderNeuralNet are neural networks parameterized by θ and φ, respectively.

3 Graphical Residual Flows

Assume a contractive residual flow F = fT ◦ . . . ◦ f1, where each residual block gt, t = 1, . . . , T , is a
fully-connected neural network with a single hidden layer4 and activation function h(·), where Lip(h) ≤ 1:

x(t) := ft(x(t−1)) = x(t−1) + W̃2 · h(W̃1 · x(t−1) + b1) + b2 . (5)

Here, W̃i indicates a normalized weight matrix as in Equation (3), such that Lip(gt) < 1. Similar to the
work of Wehenkel & Louppe (2021) and Weilbach et al. (2020), we can encode the graphical structure of
a BN, by ensuring that output i of each ft is only a function of those inputs corresponding to xi and its

3Weilbach et al. (2020) therefore suggest incorporating additional auxiliary variables.
4The rest of this discussion is easily extended to residual blocks with more hidden layers.
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parents in the BN graph. This can be achieved by suitably masking the weight matrices of each of the
above residual blocks before applying spectral normalization. Given a BN graph, G, over the components
of x ∈ RD, let W ′i = Wi �Mi, i = 1, 2, be the new masked weight matrices where the Mi are binary masks
ensuring that component j of the residual block’s output is only a function of the inputs corresponding
to {xj} ∪ PaGxj . The update to x(t−1) in block ft is then defined as follows:

x(t) := x(t−1) + W̃ ′2 · h(W̃ ′1 · x(t−1) + b1) + b2 . (6)

Figure 1: The update to x(t−1) at flow step t
of a GRF. Edges removed by the masks are
not shown. The remaining edges encode the
structure of the given BN.

The masks are constructed according to a new variant of
MADE (Germain et al., 2015) which allows one to encode not
only autoregressive, but arbitrary graphical structures. To
construct these masks, we assign a specific subset of variables
to each unit in the neural network: input units are assigned
their corresponding unit sets {xi} and output units are as-
signed the sets {xi} ∪ PaGxi . Each hidden unit is randomly
assigned one of the sets associated with the input and output
units. To ensure each output unit has at least one valid path
connecting it to the input, we ensure that each of the sets {xi}
i = 1, . . . , D, is assigned to at least one unit in each hidden
layer. See Figure 1 for an illustrated example. A mask is then
constructed by zeroing out a weight between two units in suc-
cessive layers if the set assigned to the unit in the later layer
is not a superset of the set assigned to the unit in the earlier
layer Our proposed masking scheme overcomes the shortcom-
ings of those used byWehenkel & Louppe (2021) andWeilbach
et al. (2020) in that it requires only a single pass through the
network and allows arbitrary hidden layer widths. Since we
are enforcing the BN’s DAG structure between the flow’s variables, we are in effect encoding a ‘sparse’
autoregressive structure. If the variables were ordered according to their topological ordering in the BN, the
update applied to each variable would only be conditioned on variables with a strictly lower index (though
not necessarily on all variables with a lower index). Unlike standard residual flows, this construction results
in a triangular Jacobian for which the determinant is easy to compute exactly as the product of the matrix’s
diagonal terms.

Inversion The inverse of this flow does not have an analytical solution (Behrmann et al., 2019). Instead,
each block can be inverted numerically using a Newton-like fixed-point method (Song et al., 2019). To
compute x = f−1

t (y), the following update is applied until convergence:

x(n+1) = x(n) − α
(
diag(Jft(x(n)))

)−1 [
ft(x(n))− y

]
, (7)

using the initialization x(0) = y and letting 0 < α < 2 (which ensures local convergence (Song et al., 2019)).
We use this instead of the Banach fixed-point approach employed by Behrmann et al. (2019), since the
convergence rate of the latter is dependent on the Lipschitz constant of the residual block and takes longer
to converge for larger bounds. We empirically demonstrate that the convergence rate of (7) does not have
this dependence (see Appendix B.3.1). It is thus preferable if we wish to use larger Lipschitz bounds for
the residual blocks, which allows for more expressive flow steps. Although (7) only guarantees local and not
global convergence like the Banach approach, we did not find this to be an issue with the datasets used.

Induced Dependency Structure For a single-step normalizing GRF, the conditional independencies of
the distribution learned by the flow will correspond exactly to the conditional independencies specified by the
encoded BN (Wehenkel & Louppe, 2021). When multiple flow steps are composed, additional dependencies
are however induced—in a multi-step GRF each variable will ultimately receive information from all of its
ancestors in the BN via the intermediate representations of its parents at previous steps, with the induced
dependency structure corresponding to the BN’s transitive closure. Because this ‘information leakage’ is
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only through intermediate representations of each variable’s parents, we nonetheless still expect GRFs to
incorporate a strong enough inductive bias to encourage the variables to adhere to the desired dependency
structure. See Appendix A.3 and B.3.3 for details and empirical results supporting this argument.

Variational Inference In the case where latent variables z are present, one typically only has access to
the forward BN that models the generating process for an observation x. That is, the BN generally encodes
the following generic factorization of the joint: p(x, z) = p(x|z)p(z). To perform inference, we first invert the
BN structure using the faithful inversion algorithm of Webb et al. (2018) to obtain a BN structure encoding
domain knowledge about the dependencies between the components of z once x is observed. This allows us
to construct a GRF over the latent variables that is conditioned on the observation: each block is constructed
as z(t) := z(t−1) +W̃ ′2 ·h(W̃ ′1 · (z(t−1)⊕x)+ b1)+ b2, where ⊕ denotes concatenation. Such a GRF is typically
applied in the generative direction to infer the latent representation of a given observation.

LipMish Activation Function Since Equations (1) and (2) contain the derivatives of the residual block
activation functions through the Jacobian term, the gradients used for training will depend on their sec-
ond derivatives. It is thus desirable to use smooth non-monotonic functions that adhere to the Lipschitz
bounds (such as LipSwish (Chen et al., 2019)), because unlike common monotonic activations, these typically
do not have a vanishing second derivative in the region where the first derivative approaches 1. In our model,
we use an activation we call “LipMish”: LipMish(x) = (x/1.088) · tanh(softplus(softplus(β) · x)) , which is a
scaled version of the non-monotonic Mish function (Misra, 2020), ensuring that Lip(LipMish) ≤ 1 for all β,
where β allows for different degrees of curvature and is passed through softplus(·) to ensure it is nonnegative.

4 VAEs with Structured Invertible Residual Networks

If we wish to construct a VAE, and have prior knowledge about the data-generating process, then it seems
beneficial to incorporate this knowledge in the VAE. In this work, we assume access to a BN specifying
the dependency structure over D observed and K latent variables. Our goal is to suitably incorporate this
information into the VAE’s encoder and decoder networks. Using θ for the decoder network’s parameters, this
means that its likelihood pθ(x|z) and prior pθ(z) should ideally factorize according to the BN’s conditional
independencies. However, Webb et al. (2018) also showed the value of encoding the generative model’s true
inverted dependency structure as far as possible in the VAE’s inference network. That is, the structure of the
variational posterior should respect knowledge about p(z|x) which can be deduced from the factorization of
p(x, z). Approximating the posterior p(z|x) in such a way requires inverting the BN (so that edges go from
x to z) while taking into account the independencies encoded by the model. As discussed in the context of
inference with flows, we use Webb et al. (2018)’s proposed algorithm for obtaining such a faithful inverse.

We use GRFs to incorporate these desired structures into the generative and inference network of a VAE,
yielding the structured invertible residual network (SIReN) VAE. For an observed sample x, the encoder
network (below left), with parameters φ, is defined as a GRF conditioned on x. The subscript g denotes
that this is a generative flow, and for all our investigations, we set p0 to N (0, IK). For a sample z from the
encoder network, the decoder (below right) uses a normalizing flow for the prior density, and a fully-factored
Gaussian likelihood, with parameters output by a network denoted by DecoderNN:

z = GRFg(ε; x, φ) where ε ∼ p0

log qφ(z|x) = log p0(ε)− log
∣∣det(JGRFg (ε))

∣∣
log pθ(z) = log p0(GRFn(z; θ)) + log |det(JGRFn(z))|
µ, log σ = DecoderNN(z; θ)
pθ(x|z) = N (µ,diag(σ2))

The subscript n above denotes a normalizing flow. To encode the conditional independencies between the
latent and observed variables, DecoderNN is also masked according to the scheme discussed for GRFs. Note
that GRFn must be inverted to generate samples from this VAE, making sample generation slower than
with regular VAEs. A key benefit of GRFs over other graphical flows, however, is that they guarantee stable
inversion. The inversion time per flow step of a GRF is also relatively low compared to other graphical flows
with similar modelling capability. This motivates our use of GRFs instead of other existing graphical flows.
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Figure 2: SIReN-VAE encodes the BN’s graphical structure into the decoder (right) via masking of the
normalizing GRF (GRFn) and decoder neural network (DecoderNN) weights. The inference network (left)
similarly encodes the inverted BN structure in its generating GRF (GRFg).

5 Experiments

We evaluate the proposed GRF and SIReN-VAE models on a range of synthetic and real-world datasets that
each have an associated true or hypothesized BN graph. The synthetic datasets are generated from fully
specified BNs. All models were trained using the Adam optimizer with an initial learning rate of either 0.01
or 0.001 and a batch size of 100. The learning rate was decreased by a factor of 10 each time no improvement
in the loss was observed for a set number of consecutive epochs, until a minimum learning rate of 10−6 was
reached, at which point training was terminated. The initial learning rate and duration before learning rate
reduction was chosen based on the lowest validation loss obtained over the grid {0.01, 0.001} × {10, 20, 30}.

5.1 Graphical Residual Flows

We first compare GRF to two existing approaches—the graphical NF (GNF) of Wehenkel & Louppe (2021),
for which we consider both affine and monotonic normalizers (denoted by GNF-A and GNF-M, respectively)
and the structured conditional continuous NF (SCCNF) presented in Weilbach et al. (2020). Our experiments
use three synthetic datasets: the Arithmetic Circuit dataset (Weilbach et al., 2020; Wehenkel & Louppe,
2021), an adaptation of the Tree dataset (Wehenkel & Louppe, 2021) as well as a linear Gaussian BN,
EColi, adapted from the repository of Scutari (2022). We also consider two real-word datasets, namely
Protein (Sachs et al., 2005) and MEHRA (Vitolo et al., 2018). Further information is given in Appendix B.1.
To provide more informative comparisons between the flows, we train two models per task for each approach.
The first is a smaller model with a maximum capacity of 5000 trainable parameters, denoted by a subscript
S, e.g., GRFS. We also train a larger model with a maximum capacity of 15000 parameters, denoted by the
subscript L. For further information on the flow architectures, see Appendix B.2. Our experiments consider
the relative performance of the flows with respect to tasks in both the generative and normalizing directions,
as well as the efficiency and accuracy of flow inversion.

5.1.1 Density Estimation & Inference

Table 1 provides the negative log-likelihood (NLL) and the negative ELBO achieved by each model on the
test set of the various datasets for the density estimation and variational inference tasks, respectively. For
density estimation we assumed all variables were observed. Inference is only performed for the synthetic
datasets, since we require access to the true model p(x, z) to compute the ELBO. We find that GRFs
provide performance competitive with GNF-M and SCCNF, with the GRF models achieving the best NLL
and ELBO on the majority of the datasets. GNF-A, with its reliance on simple affine transformations, is
unable to match the performance of the other approaches for these primary modelling tasks.
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Table 1: Density estimation and inference performance. NLL and −ELBO are the averages on the test
set (lower is better) over five runs, with standard deviation given in the subscript. Bold indicates the best
result in each group. The number of edges (E) and observed (D) and latent (K) variables in the datasets’
associated BNs are also provided. Inference was not performed on the real-world datasets (where K = 0).

Density Estimation (NLL) Variational Inference (−ELBO)

BN D K E Flow Small Budget Large Budget Small Budget Large Budget

A
rit

hm
et
ic

C
irc

ui
t

2 6 8

GNF-A 1.26±0.02 1.41±0.16 4.90±0.79 4.59±0.28
GNF-M 1.19±0.07 1.14±0.04 3.96±0.19 3.92±0.08
SCCNF 0.86±0.01 0.85±0.00 4.01±0.07 3.97±0.03
GRF 1.25±0.01 1.11±0.01 4.19±0.19 3.71±0.14

Tr
ee 1 6 8

GNF-A 9.32±0.00 9.32±0.00 2.36±0.04 2.38±0.05
GNF-M 8.65±0.01 8.65±0.01 1.72±0.01 1.70±0.00
SCCNF 8.59±0.01 8.59±0.00 1.78±0.01 1.76±0.01
GRF 8.64±0.01 8.64±0.00 1.74±0.00 1.71±0.00

P
ro
te
in

11 0 20

GNF-A 6.93±0.90 6.92±0.57 — —
GNF-M −3.00±0.77 −5.48±0.23 — —
SCCNF −4.88±0.21 −5.60±0.05 — —
GRF −5.26±0.01 −6.11±0.01 — —

E
C
ol
i

29 15 59

GNF-A 40.11±0.01 40.11±0.00 34.98±0.00 34.98±0.00
GNF-M 40.13±0.01 40.13±0.00 34.99±0.01 34.98±0.01
SCCNF 40.12±0.02 40.08±0.01 35.24±0.01 35.24±0.01
GRF 40.06±0.00 40.06±0.00 34.96±0.00 34.96±0.00

M
E
H
R
A

10 0 10

GNF-A 12.90±0.02 12.93±0.03 — —
GNF-M 11.74±0.02 11.67±0.02 — —
SCCNF 11.80±0.05 11.76±0.02 — —
GRF 11.66±0.02 11.61±0.03 — —

Table 2: NLL achieved by GRF compared to the
vanilla residual flow (RF) of

Chen et al. (2019).
BN Flow Small Budget Large Budget

Arithmetic
Circuit

GRF 1.25±0.01 1.11±0.01
RF 1.27±0.07 1.20±0.03

Tree GRF 8.64±0.01 8.64±0.00
RF 8.66±0.02 8.62±0.04

Protein GRF −5.26±0.01 −6.11±0.01
RF −5.78±0.13 −5.84±0.15

EColi GRF 40.06±0.00 40.06±0.00
RF 40.30±0.08 40.42±0.12

MEHRA GRF 11.66±0.02 11.61±0.03
RF 8.68±0.06 8.67±0.08

We also compared the density estimation performance
of GRF to the vanilla residual flow (RF) of Chen et al.
(2019). The results are given in Table 2. The chosen
RF architectures are similar to those of the GRFs they
are being compared against: only the residual block hid-
den layer widths were reduced to ensure that the models
comply with the respective size budgets. GRF performs
the best on the majority of the datasets, specifically the
synthetic datasets where the true dependency structure
is known, but also on the real-world Protein dataset in
the large model setting. We also found that GRFs typi-
cally required less time to perform density estimate cal-
culations than RFs, which allowed for faster training.
This is to be expected, given that the Jacobian deter-
minant for the GRFs can be computed directly, whereas
RFs must use the Russian roulette estimator. However,
GRF is noticeably outperformed by RF on the real-world
MEHRA dataset. Note that GRF has the best perfor-
mance of all the graphical flows on this dataset, suggesting that its poorer performance may be a result of
the BN not fully capturing the dependencies in the data, rather than a shortcoming of GRF. The clear supe-
riority of RF over the graphical flows may cause one to question the veracity of the assumed BN structure.
In such a case, the difference in results between vanilla RFs and GRFs can serve as a prompt to further
investigate and refine the BN structure.
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Table 3: Inversion performance on 100 test samples from the Tree dataset. Bold indicates the best results in
each column. N and α are not applicable for SCCNF. Ranges indicate different optimal settings for N and α
for different samples. Inversion time is measured for the smallest N ≤ 50 that allowed the most samples in
the batch to have a reconstruction error of less than 10−4, and is the time taken to invert the entire batch.

Small Budget Large Budget

Flow Converged
within 50 steps N α

Inversion
time (ms)

Converged
within 50 steps N α

Inversion
time (ms)

GNF-M 100 4–9 0.9–1.0 53.67 98 4–47 0.4–1.0 488.51
SCCNF 98 — — 140.51 94 — — 392.97
GRF 100 3–5 1.0 49.73 100 4-6 0.9–1.0 122.27

5.1.2 Inversion

The main reason for introducing GRFs is their potential to provide more accurate inversion. Having estab-
lished that they provide competitive key task performance, we now investigate the inversion accuracy and
efficiency of GRFs compared to alternative graphical flows with similar task performance, namely GNF-M
and SCCNF. GNF-M and GRF were inverted using the Newton-like inversion procedure in (7), while SCCNF
was inverted by executing the integration in the opposite direction. For GNF-M and GRF, we considered
values for the step-size α in the set {0.1 × t| t = 1, ..., 19}, and the inversion process was deemed to have
converged when a reconstruction error of less than 10−4 was achieved. To better illustrate potential inversion
instability, we performed this inversion on a per-data-point basis for 100 test samples from the Tree dataset;
the results for the other datasets are given in Appendix B.3.1. For each data point, we note the α that
required the fewest iterations, N , for convergence. Table 3 summarizes these results, including the number
of samples for which the desired reconstruction error was achieved for GNF-M and GRF with N ≤ 50. We
also include the inversion time for the entire batch, using the settings that allowed the most samples to
achieve the desired reconstruction error.

One of the main paradigms for enforcing global inversion stability is using Lipschitz-constrained flow trans-
formations (Behrmann et al., 2021). For GRFs, this stability is automatically achieved as a byproduct of
the flow design, and we see that GRF shows excellent inversion accuracy. GNF-M, depending on the archi-
tecture and learned weights, has either potentially very large Lipschitz bounds, or no global bounds at all.
This helps to explain its poorer inversion results. As illustrated in Figure 3, numerically inverting GNF-M
can lead to very large reconstruction errors. While SCCNFs have global Lipschitz bounds, these are not
controlled during training and numerical instability can occur. For further information see Appendix A.2.

Figure 3: Reconstruction error when inverting GNF-M and GRF on 100 test samples from the Tree dataset.
Note the large reconstruction error of GNF-M (left) for different values of the step-size, α, compared to the
fast convergence of GRF (right) to the correct inverse.
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5.2 SIReN-VAE

As with GRFs, we evaluate the SIReN-VAE model on various synthetic and real-world datasets that each
have an associated BN graph. For each BN, all leaf nodes are considered observed, and the rest are taken
to be latent. Since VAEs are typically used to encode information into a lower-dimensional representation,
we only consider the datasets for which there are fewer latent than observed variables, i.e. EColi and
MEHRA. Additionally, we use an altered version of the Arithmetic Circuit dataset, where the number of
observed variables has been increased from 2 to 10, as well as a larger linear Gaussian BN, Arth (Scutari,
2022). To better compare the effect of the encoded structure, we train three SIReN-VAE models that
each incorporate a different structure. These are either fully-connected (SIReN-VAEFC), random (SIReN-
VAERand), or adhere to the true dependencies (SIReN-VAETrue). For SIReN-VAEFC, each observed variable
is conditioned on all latent variables. SIReN-VAERand encodes a BN graph with the same number of edges
as the graph encoded by SIReN-VAETrue, but where these edges have been assigned to random pairs of
vertices. All models used the same latent dimension as SIReN-VAETrue. Details on the model architectures
for each dataset is given in Appendix B.2. We also compare the results to those of a vanilla VAE, and a
model (VAE+IAF+MAF) that is similar to SIReN-VAEFC except that the latent prior and approximate
posterior were implemented with a masked autoregressive flow (MAF) (Papamakarios et al., 2017) and an
inverse autoregressive flow (IAF) (Kingma et al., 2016), respectively. The decoder network of both these
models, as well as the encoder network for the vanilla VAE, had similar architectures to the DecoderNN
used in the SIReN-VAE models, i.e., the same activation functions, number of hidden layers and hidden layer
widths were used. The MAF and IAF each consisted of three transformation steps, where the order of the
input features was reversed in successive steps, as recommended by Kingma et al. (2016).

5.2.1 Performance in a Data-sparse Setting

We compared training the models on the full training sets of the respective datasets against using much
smaller training sets consisting of only 2×|G| instances, where |G| = D+K. We noted each model’s average
negative log-evidence on the test set over five independent runs. The log-evidence per test point is estimated
using 50 importance-weighted samples as in Burda et al. (2016). We also determined the average number of
latent variables that collapsed during training. To measure whether a specific variable z has collapsed, we use
the statistic presented by Burda et al. (2016): Az = Varx∼pD (Ez∼q(z|x)[z]). This is based on the assumption
that if a latent dimension encodes useful information about the data, then its posterior mean would be
expected to vary as the observations change. As in Burda et al. (2016), z is deemed inactive if Az ≤ 0.01.
These results are given in Table 4. In these initial experiments, SIReN-VAETrue is not able to match the
performance of SIReN-VAEFC in terms of log-evidence on most of the datasets when enough training data
is available. Furthermore, using GRFs to construct the latent space for fully-connected SIReN-VAEs in this
setting provided comparable performance to using affine autoregressive flows with feature shuffling between
flow steps. In all cases, SIReN-VAERand did significantly worse. This shows that the encoded structure does
play a significant role in modelling performance and that using the true (or hypothesised) BN structure aids
in learning appropriate observational and latent distributions. When only limited training data is available,
SIReN-VAETrue clearly outperforms the other models, and achieves a higher log-evidence on most of the
datasets. We speculate that the increased sparsity of the neural network weights, in line with the true BN
independencies, poses an easier learning task and results in better generalization performance.

5.2.2 Addressing Posterior Collapse

As seen in Table 4, SIReN-VAETrue suffers from posterior collapse. We are especially motivated in this
setting to avoid this in order to learn meaningful latent distributions in line with the provided BN structure.
We first investigate whether the position of a latent variable within the BN graph affects the likelihood that
it will collapse, which would suggest that the encoded structure further contributes to inactive latents apart
from known causes. We visualize in Figure 4 the logarithm of the average value of Az for each latent variable
over the five runs used to generate the results in Table 4 for the two datasets in which posterior collapse
occurred for the full training set. If the encoded structure plays no role, we expect the indices of collapsed
variables to be arbitrary, resulting in all latent variables having a similar average activity score. This is what
we would expect for the vanilla VAE, where all z are independent and have the same prior distribution.
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Table 4: Negative log-evidence (− log p(x)) achieved by each model when trained on different sized training
sets, as well as the number of collapsed latent variables. Each entry corresponds to the average over five
runs with standard deviation given in the subscript. Bold indicates the best result in each group.

2× |G| training samples All training samples
D K E Model − log p(x) #Inactive Units − log p(x) #Inactive Units

A
rit

hm
et
ic

C
irc

ui
t
2

10 5 15

VAE 13.90±0.73 0.00±0.00 9.79±0.01 2.00±0.00
VAE+IAF+MAF 13.27±0.75 0.00±0.00 9.76±0.00 0.00±0.00
SIReN-VAEFC 13.14±0.78 0.00±0.00 9.76±0.02 0.00±0.00
SIReN-VAERand 14.86±1.39 2.00±0.89 11.09±0.32 1.20±0.75
SIReN-VAETrue 12.29±0.84 2.60±0.49 10.03±0.01 2.00±0.00

EC
ol
i

29 15 59

VAE 40.91±1.07 0.00±0.00 35.02±0.02 4.33±1.25
VAE+IAF+MAF 39.57±1.33 0.00±0.00 35.04±0.01 0.00±0.00
SIReN-VAEFC 38.84±0.22 0.00±0.00 35.02±0.03 0.00±0.00
SIReN-VAERand 43.69±0.40 2.00±0.89 41.63±0.53 1.80±1.47
SIReN-VAETrue 37.54±0.33 4.20±0.75 34.99±0.01 0.00±0.00

A
rt
h

67 40 150

VAE 64.22±2.14 0.00±0.00 37.45±0.03 23.33±6.34
VAE+IAF+MAF 42.79±0.25 2.40±1.62 37.59±0.01 1.80±1.17
SIReN-VAEFC 43.35±0.10 2.40±1.36 37.56±0.07 6.33±1.89
SIReN-VAERand 52.74±6.16 3.80±3.19 40.81±0.18 5.20±2.04
SIReN-VAETrue 41.56±0.53 19.40±2.06 37.73±0.05 14.80±0.33

M
EH

R
A

7 3 10

VAE 10.57±0.21 0.00±0.00 7.65±0.02 0.00±0.00
VAE+IAF+MAF 10.42±0.33 0.00±0.00 7.61±0.02 0.00±0.00
SIReN-VAEFC 10.56±0.32 0.50±0.50 7.58±0.01 0.00±0.00
SIReN-VAERand 10.65±0.04 1.80±0.40 8.92±0.23 0.00±0.00
SIReN-VAETrue 10.60±0.05 1.33±1.11 8.37±0.06 0.00±0.00

Considering Figure 4, this is indeed the case as the average activity of the vanilla VAE’s latent variables is
far more uniform (compared to SIReN-VAETrue). Interestingly, for SIReN-VAEFC, the higher the index of
the latent, the lower its activity on average. For the fully-connected BNs, each variable is conditioned on all
variables with a lower index. This suggests that the model may tend to de-emphasize latent variables that
are conditioned on many others. Figure 4 shows that in SIReN-VAETrue, posterior collapse tends to happen
for certain variables far more than for others. Further inspecting the positions of the collapsed z in the BNs
shows that the corresponding vertices typically only share edges with other latent variables, and not with
any observed variables. This aligns with the findings of Burda et al. (2016), who observed that the latents
in higher layers of a hierarchical VAE (which do not directly influence any x) are more prone to collapse.

Since we would like the learned latent distribution of SIReN-VAETrue to respect the provided BN structure
and utilize all the latent dimensions, the fact that aspects of the encoded structure make posterior collapse
more likely, makes it doubly important for us to try to address it in some way. We therefore investigate
the efficacy of warm-up (WU) (Bowman et al., 2016) and importance-weighted (IW) (Burda et al., 2016)
objectives in combatting posterior collapse, with the results given in Table 5.5 Since we have found that a
certain subset of latent variables is more prone to collapse than others, we compare two different approaches
to warm-up. The standard, more naïve, approach applies the warm-up factor to all latent variables, and is
denoted by WUall. We also apply the warm-up term to only those latent variables that typically collapsed,
as identified in Figure 4. We denote this ‘retrained’ approach by WUselect. We do not apply warm-up if
no posterior collapse occurred on the full training set as indicated in Table 4. For further information, see
Appendix B.2. For comparison, we also apply these techniques to SIReN-VAEFC.

5We also considered using lower-variance gradient estimates (Tucker et al., 2018) to combat posterior collapse. Although
this approach generally provided slight performance gains, it comes at a significant time and memory cost—see Appendix B.3.4.
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Figure 4: The (logarithm of the) average of the posterior collapse statistic Azi , for each of the latent variables
of the Arithmetic Circuit 2 and Arth datasets. The top, middle and bottom bar for each dataset corresponds
to the vanilla VAE, SIReN-VAEFC and SIReN-VAETrue, respectively. The lower this value, the darker the
corresponding block. Note that log(0.01) ≈ −4.6 is the point at which a latent variable is deemed collapsed.

Table 5: Performance of SIReN-VAE when applying posterior collapse mitigation techniques, namely: warm-
up (WU) and importance weighted objective (IWAE). Warm-up is applied to either all latents (WUall), or
to a selected subset that is prone to collapse (WUselect).

2× |G| training samples All training samples

Model − log p(x) #Inactive Units − log p(x) #Inactive Units

Arithmetic
Circuit 2

SIReN-IWAEFC 12.78±0.43 0.00±0,00 9.73±0.01 0.00±0,00

SIReN-IWAETrue+WUall 11.88±0.27 0.00±0,00 9.86±0.08 1.00±0.00
SIReN-IWAETrue+WUselect 11.96±0.40 0.00±0,00 9.80±0.00 0.00±0,00

EColi SIReN-IWAEFC 38.86±0.28 0.00±0,00 35.04±0.01 0.00±0,00

SIReN-IWAETrue 38.42±0.98 1.60±0.80 34.98±0.00 0.00±0,00

Arth
SIReN-IWAEFC+WUall 43.02±0.80 7.40±3.93 37.32±0.18 1.00±0.00

SIReN-IWAETrue+WUall 41.09±0.42 15.00±1.26 37.48±0.47 10.20±1.33
SIReN-IWAETrue+WUselect 41.31±0.43 17.60±1.85 37.42±0.24 7.00±2.28

MEHRA SIReN-IWAEFC 10.47±0.45 0.33±0.75 7.58±0.02 0.00±0,00

SIReN-IWAETrue 10.36±0.27 0.50±0.50 8.19±0.06 0.00±0,00

Table 5 shows that these techniques help to improve the performance of SIReN-VAETrue and reduce the
number of inactive latent variables. However, when enough data is available, SIReN-VAETrue still does
not quite match the performance of SIReN-VAEFC, especially on the real-world MEHRA dataset. This
could be because BNs constructed for real-world domains tend to focus more on the key influences between
variables and neglect smaller interactions, which could limit SIReN-VAETrue’s ability to achieve comparable
log-evidence scores. Promisingly, SIReN-VAETrue performed the best on MEHRA in the data-sparse setting
when employing an IW objective. It is perhaps precisely the coarser-grained structure encoded by SIReN-
VAETrue that prevents it from overfitting and allows better generalization performance.
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5.2.3 Interpretability of the Latent Space

One of the anticipated benefits of incorporating hypothesized BN structures into a VAE is a more in-
terpretable latent space. Since we have access to the true latent variables of the datasets,6 we investigated
whether this is being realized by estimating the mutual information (MI) between each component of the true
latent, z∗, and each component of the latent inferred by the model, z, denoted by I(z∗i , zj) for i, j = 1, . . . ,K,
using the MI neural estimator (MINE) of Belghazi et al. (2018). The samples used to estimate MI were
obtained by sampling a single point zn from qφ(·|xn) for each pair (xn,z∗n) in the training set. Figure 5 gives
these results. We used the SIReN-VAETrue models that achieved the best log-evidence as given in Table 5
above. In Figure 6, we also plot the MI between pairs of true latent and observed variables, and pairs of
latent and observed variables sampled from SIReN-VAETrue for the EColi dataset.

Figure 5: Visualization of the MI between latent variables. Each entry corresponds to MI between the true
and inferred latent variables, I(z∗i , zj) for i, j = 1, . . . ,K, computed using the MI neural estimator (MINE)
of Belghazi et al. (2018). The higher the MI, the darker the associated entry.

Figure 6: MI between latent and observed vari-
ables for the EColi dataset.

If SIReN-VAETrue learns meaningful latent representa-
tions, with each zi affecting its neighbourhood in a way
similar to the true hidden variable, we would expect the MI
between z∗i and zi to be high and for I(z∗i , zj) ≈ I(z∗j , zi).
Visually, this means that we expect the matrix plots of
Figure 5 to be approximately symmetric and to have a
noticeable line on the diagonal. This holds the most no-
ticeably for the EColi dataset. Although arguably not as
distinct, similar trends are evident for the other datasets
as well, e.g. for the real-world MEHRA dataset, two out of
the three latent variables of the model have very high MI
with their true counterparts. The two plots in Figure 6 are
also nearly identical, meaning that SIReN-VAETrue closely
mimics the dependencies of the true model in terms of the
MI between variables. The results support our hypothesis
that SIReN-VAETrue should provide better interpretability
in that one gains further insight into which latent variables
directly influence each other. This could aid in more con-
trolled conditional sample generation, and could allow one
to associate specific roles with each latent factor of SIReN-VAETrue, corresponding to their meaning in the
original BN, as for example in the MEHRA BN where the latent variables represent atmospheric conditions.

6For the synthetic datasets, the latent variables were sampled from the known models. For the real-world MEHRA dataset,
we assumed certain dimensions to be latent for our purposes, and as such have access to the true ‘latent’ data.
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6 Discussion

Limitations & Future Work BNs are commonly defined over sets of both continuous and discrete
variables. Extending GRFs and SIReN-VAEs to support discrete variables would thus greatly broaden
their applicability. One desirable direction for future work is therefore to investigate integrating gradient
estimation approaches for discrete variables (e.g. Bengio et al. (2013); Tran et al. (2019)) into these models.

In this work, we assumed access to an appropriate BN describing the dependency structure between the
variables of interest. However, in most real-world settings one does not typically have access to such a
structure, or one only has partial knowledge about the dependency graph. Therefore it is of interest to learn
or refine the dependency structure from data. This idea has been explored in the context of normalizing
flows and VAEs (e.g. (Wehenkel & Louppe, 2021; He et al., 2019)), and is an interesting future line of work
to incorporate into the GRF and SIReN-VAE models.

VAEs are typically applied to high-dimensional data like images and audio. As mentioned above, suitable
BN structures are usually not readily available in these settings. In certain contexts, one might posit an
appropriate latent structure, but it is not clear how to associate specific portions of the observation with
specific latents in a more fine-grained way than using full connectivity between certain latents and all input
features. Initial experiments using SIReN-VAE (with a convolutional decoder) on synthetically generated
images using a known sparse latent dependency structure and full connectivity between latents and observed
features did not provide interpretable latent variables. Further exploration is therefore required to determine
how best to apply SIReN-VAE directly to such high-dimensional data, and what a sensible way might be to
identify meaningful finer dependency structures between latent variables and observations.

Conclusion We proposed the GRF as an alternative to existing graphical NFs such as GNF-M (Wehenkel
& Louppe, 2021) and SCCNF (Weilbach et al., 2020). While these flows provide very good modelling
capability, they do not ensure stable inversion. GRFs on the other hand, exhibited comparable modelling
performance, while being designed for reliable and more time-efficient inversion. The GRF is thus a suitable
option to use when some assumed dependency structure is available and where the flow may be required to
perform reliably in both directions. This is for example needed in the prior of our proposed SIReN-VAE
model, which is an approach for incorporating prior information from an arbitrary BN graph into a VAE.
Encoding this structure does not lead to significantly better generalization performance than simply using a
fully-connected structure when enough data is available. The key benefits of SIReN-VAETrue are its ability
to provide more nuanced interpretability and to allow stable training with good generalization on small
training sets. Practitioners who elicit BNs typically omit unknown factors, because they cannot in general
use them in current modelling frameworks. Based on our results, we suggest that SIReN-VAETrue might be
of use when practitioners know or can hypothesize about the dependency structure of certain latent factors
in their domain, especially if they wish to interpret the model according to the chosen dependency structure.
SIReN-VAETrue could also facilitate higher quality data augmentation from limited real-world data.
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A Appendix: Additional Theoretical Background

A.1 Extending MADE for Arbitrary Graphical Structures

Suppose a joint distribution factorizes as

p(x) =
D∏
i=1

p(xi|PaGxi) (8)

for DAG G. PaGxi denotes the parents of xi in G. For a given neural network that takes x as input, the goal is
to have the output units associated with xi be computed from only those input units associated with xi and
its parents. This means that there should be no computational paths between an input and an output unit
if there is no direct dependency between the associated variables in G. This can be achieved by applying a
masking matrix to the weights of each neural network layer (which can be of arbitrary width) such that at
least one weight on any such computational path is set to zero.

We follow a similar approach to MADE (Germain et al., 2015), which constructs masks for an implicit
fully-connected BN. We begin by assigning a specific subset of variables to each unit in the neural network.
Specifically, each input unit is assigned a unit set containing its corresponding input variable: {xi}. Each
output unit is assigned a set consisting of its associated variable and that variable’s parents in the BN:
{xi} ∪ PaGxi . Lastly, each hidden unit is randomly assigned one of the following sets: {xi} or {xi} ∪ PaGxi
where i can be any of 1, . . . , D.7

A correct mask can then be constructed by ensuring that it zeroes out any weight between two neural network
units if the set assigned to the unit in the next layer is not a superset of the set assigned to the unit in the
previous layer. This has the implication that any path from input to output for any variable has a single
associated set switch from {xi} to {xi} ∪ PaGxi .

A.2 Invertibility of Graphical Normalizing Flows in Practice

The Lipschitz constants of the forward and inverse transformation of an invertible neural network quantifies
its worst-case stability. Bounds on these values play an important role in understanding and mitigating
possible exploding inverses.

GNF-A No global bounds can be placed on the Lipschitz constant of this type of flow, which complicates
the task of ensuring stable inversion in all scenarios. Behrmann et al. (2021) provide the following simple
illustration of why GNF-A only has local Lipschitz bounds. Assume x consists of two variables, x0 and x1,
where x1 is dependent on x0 in the corresponding BN. Let [F (x)]1 = x1 exp(s(x0)) be the transformation
applied to x1 by a single-step GNF-A, where s(x0) = [s(x)]1 is the second output dimension of the conditioner
function s(·) and the dependence on only x0 has been made explicit. The output of the conditioner function
[m(x)]1 is taken to be 0 for simplicity. Then

∂[F (x)]1
∂x0

= x1
∂ exp(s(x0))

∂x0
= x1 exp(s(x0))s′(x0) . (9)

Thus, if x1 may grow arbitrarily large, this derivative will be unbounded, which could allow the Jacobian,
JF (x), to have an unbounded Frobenius norm. Due to the equivalence of norms in finite dimensions, this
in turn can induce an unbounded spectral norm of the Jacobian. Lastly, we consider the following theorem
from Federer (1996): if F : RD → RD is a Lipschitz continuous and differentiable function under the
Euclidean norm, then

Lip(F ) = sup
x∈RD

||JF (x)||2, (10)

where || · ||2 denotes the spectral norm. Based on Equation (10), we conclude that if the spectral norm of
the Jacobian is unbounded, then no global Lipschitz bound can be obtained.

7To prevent situations where there are no valid paths from an input to the corresponding output, we also require at least
one unit in each hidden layer associated with {xi}.
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GNF-M We can employ a similar illustration to investigate the Lipschitz bounds of a GNF with monotonic
transformations. Again, assume x consists of two variables, x0 and x1, where x1 depends on x0 in the
corresponding BN. The transformation applied to x1 by a single-step GNF-M is then given by [F (x)]1 =∫ x1

0 h(t, c1(x0))dt+β(c1(x0)). We take the partial derivative of the above transformation and apply Leibniz’s
integral rule and the chain rule:

∂[F (x)]1
∂x0

= ∂

∂x0

∫ x1

0
h(t, c1(x0)) dt+ ∂β(c1(x0))

∂x0

=
∫ x1

0

∂h(t, c1(x0))
∂c1(x0)

∂c1(x0)
∂x0

dt+ ∂β(c1(x0))
∂x0

.

(11)

The integrand above is the product of the derivatives of two neural networks with respect to their inputs.
For general networks, this integrand’s shape will depend not only on the chosen activation functions, but
also the weights obtained during training. If x1 may grow arbitrarily large, and if the area under the curve
given by the integrand is not bounded by some maximum value as x1 increases, then we can apply similar
reasoning as above to show that this flow has no global Lipschitz bounds. Thus, either the architecture of
the flow must be adapted to ensure that this integral remains bounded as a function of x1 > 0, or other
techniques must be used to improve local stability, as discussed in Behrmann et al. (2021).

SCCNF Given that the flow is defined by a neural ODE, dx(t)
dt = f(x(t), t), where t ∈ [0, 1], we

have that the Lipschitz constant for both the forward and inverse transformation are upper bounded by
eLip(f)·t (Behrmann et al., 2021).

A.3 Dependence Structure Induced by GRFs

We investigate whether the distribution represented by a given GRF does indeed encode all the conditional
independencies specified by the provided BN. We first consider a normalizing GRF with a single flow step,
F (x) = ε, which encodes the following BN chain structure: x0 → x1 → x2. Let the bijective transformations
applied to each of the dimensions be given by F0(x0) = ε0, F1(x1;x0) = ε1 and F2(x2;x1) = ε2. A
graphical illustration of this flow is given in Figure 7a. Note that these individual bijective transformations
are implemented using a single residual block neural network. We treat them separately here to simplify
the discussion. We are interested in whether the distribution represented by the flow, p(x), respects the
conditional independence assumptions specified by this BN.

After a single transformation step, the distribution of x2 will only depend on x1 as desired, since it can
be computed as: log p(x2|x1) = log p0(F2(x2;x1)) + log |det(JF2(x2;x1))|. This illustrates how the distri-
bution represented by a normalizing GRF with a single transformation step will adhere to the conditional
independencies specified by the BN, which is in line with the argument presented by Wehenkel & Louppe
(2021).

x0 x1 x2

ε0 ε1 ε2

F0 F1 F2

(a) Normalizing GRF

z0 z1 z2

ε0 ε1 ε2x

F0 F1 F2

(b) Generative GRF

Figure 7: A graphical illustration of the transformation applied by (a) a one-step normalizing GRF and (b)
a one-step generative GRF when encoding the chain dependency structures: x0 → x1 → x2 and x → z0 →
z1 → z2, respectively. The variables of the base distribution are represented by ε0, ε1 and ε2. Undirected
edges represent a bijective transformation (F0, F1 or F2) between the associated variables with the small
arrow indicating the direction of the forward mapping of the flow. Directed edges indicate the additional
variables these bijective transformations are conditioned on as enforced by the presented masking scheme.
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x0 x1 x2

ε0,0 ε0,1 ε0,2

ε1,0 ε1,1 ε1,2

Figure 8: A normalizing
GRF with two transforma-
tion steps.

Additional dependencies are however introduced when the number of flow steps
is increased. Considering Figure 8, which depicts a 2-step normalizing GRF, one
can note that when computing the latent representation of x2, information will
‘leak’ from x0 via the intermediate transformations of the observed variables.
If enough transformation steps are applied, the distribution of any observed
variable will ultimately depend on all its ancestors in the BN graph. As a result,
the encoded structure may end up corresponding to the transitive closure of
the original BN structure.

Next, consider a generative GRF with a single flow step, z = F (ε;x) for ε ∼ p0,
which encodes the following BN chain structure: x → z0 → z1 → z2. Again,
let the bijective transformations applied to each of the dimensions be given by
z0 = F0(ε0;x), z1 = F1(ε1; ε0) and z2 = F2(ε2; ε1), where each transformation
is conditioned on a subset of ε, and only F0 is conditioned on the observation,
x. A graphical illustration of this flow is given in Figure 7b. We are inter-
ested in whether the distribution of the generated samples, q(z|x), respects the conditional independence
assumptions specified by this BN, such as that z2 is conditionally independent of z0 and x, given z1. That
is, q(z2|z0, z1, x) = q(z2|z1) should hold in the distribution represented by the flow. We can compute:

log q(z2|z0, z1, x) = log p0(F−1
2 (z2; ε1)) + log

∣∣∣det(JF−1
2

(z2; ε1))
∣∣∣

= log p0(F−1
2 (z2|F−1

1 (z1;ε0))) + log
∣∣∣det(JF−1

2
(z2;F−1

1 (z1;ε0)))
∣∣∣

= log p0(F−1
2 (z2;F−1

1 (z1;F−1
0 (z0;x)))) + log

∣∣∣det(JF−1
2

(z2;F−1
1 (z1;F−1

0 (z0;x))))
∣∣∣ .

By expanding the expression in this way, we make clear the direct dependence of z2 on z0 and x—knowing
only z1 is not sufficient to specify q(z2|z1, z0, x). This dependence arises from the fact that the bijective
transformation between z2 and ε2 is only specified once ε1 is known, and ε1 is a function of both z1 and z0.
Thus, q(z2|z0, z1, x) 6= q(z2|z1). In this way, each variable could be dependent on all its ancestors in the BN,
and the dependency structure induced by the flow may again ultimately correspond to the transitive closure
of the encoded BN.

We therefore have that for both a normalizing and generative GRF, the dependency structure induced by
the flow could correspond to the encoded BN’s transitive closure. In the worst-case scenario, this transitive
closure corresponds to a fully-connected graph, in which case one would seemingly not have gained any
benefit from encoding the given structure in this way. The dependencies induced by these graphical flows
are arguably more subtle, however. For normalizing GRFs, each variable only receives information from its
ancestors via intermediate bijective transformations of its parents. Even though there is some ‘information
leakage’, it would not be unreasonable to expect that the distribution of a given variable will be more
strongly influenced by its parents, rather than by the potentially ‘diluted’ information the variable receives
about the rest of its ancestors. The degree of information leakage for generative GRFs is even less clear.
This is primarily because each variable is in fact never a direct function of its parents, but rather depends
on bijective transformations of these parents where each bijection is itself conditioned on those variables’
parents. For example, we showed that knowing only the parent of z2 is not sufficient to calculate its
density (if ε is unknown), and one additionally needs knowledge of its ancestors, including the observation x.
When performing density estimation with a generative flow, this dependence is thus already introduced
after only one flow step. When generating new samples, one however still needs three flow transformations
for a generated sample of z2 to contain any information about the observed state (similar to how ε1,2
only receives information about x0 after two steps in the normalizing GRF depicted in Figure 8). Taken
together, even though GRFs cannot in general guarantee that the distribution represented by the flow
respects the independence statements specified by the encoded BN, we still expect these flows to incorporate
a strong inductive bias that encourages the variables to adhere to the desired dependency structure (see
Appendix B.3.3).

19



Published in Transactions on Machine Learning Research (04/2023)

B Appendix: Datasets & Experiments

B.1 Bayesian Network Datasets

Arithmetic Circuit The synthetic arithmetic circuit BN is the same as used that by Weilbach et al. (2020)
and Wehenkel & Louppe (2021). For density estimation tasks, all variables are observed. For amortized
inference tasks, variables z0 to z5 are latent, while x0 and x1 are observed. This distribution consists of
heavy-tailed densities which are linked through non-linear dependencies.

z0 ∼ Laplace(5, 1)
z1 ∼ Laplace(−2, 1)
z2 ∼ N (tanh(z0 + z1 − 2.8), 0.1)
z3 ∼ N (z0 × z1, 0.1)
z4 ∼ N (7, 2)
z5 ∼ N (tanh(z3 + z4), 0.1)
x0 ∼ N (z3, 0.1)
x1 ∼ N (z5, 0.1).

z0 z1

z3 z2

x0

z4

z5

x1

Figure 9: Arithmetic Circuit BN.

Tree This is another synthetic dataset. It is adapted from the model given in Wehenkel & Louppe (2021)
to obtain a fully-specified model for which the joint density can be computed in closed form (as needed for
the inference tasks)—see Figure 10. Instead of using the circles 2D dataset from Grathwohl et al. (2019)
as in Wehenkel & Louppe (2021), the first two variables are sampled from a 2D Gaussian mixture model,
GMM2, which consists of two equally weighted components with means at (1, 1) and (−1,−1) and shared
covariance matrix 0.2× I2. As in Wehenkel & Louppe (2021), the second pair of variables is sampled from a
GMM with 8 equally weighted components with means at (0, 1.5), (1, 1), (1.5, 0), (1,−1), (0,−1.5), (−1,−1),
(−1.5, 0) and (−1, 1) and shared covariance matrix 0.1× I8.

z0, z1 ∼ GMM2

z2, z3 ∼ GMM8

z4 ∼ N (max(z0, z1), 1)
z5 ∼ N (min(z2, z3), 1)

x0 ∼ N
(

1
2(sin(z4 + z5) + cos(z4 + z5)), 1

)

z0 z1 z2 z3

z4 z5

x0

Figure 10: Tree BN.

EColi The EColi dataset was generated using a fully-specified BN adapted from the BN repository of Scu-
tari (2022). All vertices are (conditionally) Gaussian, with means given by a linear combination of the parents.
Certain leaf vertices were removed from the original BN (nmpc and ftsJ) in order to obtain a BN with fewer
latent than observed variables, making thr BN more applicable for the SIReN-VAE setting as well. The
following vertices were considered to be latent: {asnA, atpD, b1191, cspA, cspG, dnaK, eutG, fixC,
icdA, lacA, lacY, sucA, yedE, ygcE, yheI}, while the rest were considered observed. See Figure 11a
for a diagram of the BN.

Protein This real-world dataset consists of 11 observed variables containing information about multiple
phosphorylated human proteins (Sachs et al., 2005)—see Figure 11b for a diagram of the BN structure. The
BN structure encodes the cellular signalling network then believed to exist between these proteins.
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MEHRA The Multi-dimensional Environment-Health Risk Analysis dataset (MEHRA) was assembled
by Vitolo et al. (2018) to help model air pollution, climate and health in English regions using a BN. We
only consider the subgraph of the BN obtained during the study, corresponding to the continuous variables,
see Figure 11c. As such, only a subset of the original dataset corresponding to a fixed set of discrete
variables is used. This reduced dataset consisted of all observations of the continuous variables for the
following setting of the observed variables: {Region=Greater London Authority; Zone=Greater London
Urban Area; Type=Traffic Urban; Year=2014; Season=Winter}.
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Figure 11: BN graphs associated with the EColi, Protein and MEHRA datasets.

Since VAEs are typically used to encode information into a lower-dimensional representation, we only consider
the datasets from the GRF investigation for which there are fewer latent than observed variables. Thus, in
addition to EColi and MEHRA presented above we also use the following datasets:

Arth The Arth dataset was generated using a fully-specified BN from the BN repository of Scutari (2022).
All vertices are (conditionally) Gaussian, with means given by a linear combination of the parents. All leaf
vertices were considered to be observed, and the rest are latent. See Figure 12 for the corresponding BN
graph.
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Figure 12: Arth BN graph.

Arithmetic Circuit 2 This Arithmetic Circuit BN is an adaptation of the one described above in Figure 9,
where we have added more observed variables. Variables z0 to z4 are latent, while x0 to x9 are observed.
See Figure 13. This distribution consists of heavy-tailed densities which are linked through non-linear
dependencies.

z0 ∼ Laplace(5, 1)
z1 ∼ Laplace(−2, 1)
z2 ∼ N ((z0 × z1)/7.9− 7, 0.1)
z3 ∼ N (7, 2)
z4 ∼ N (tanh(z2 + z3), 0.1)

x0 ∼ N (tanh(z0 + z1 − 2.8), 0.1)
x1 ∼ N (tanh(z1), 1.1)
x2 ∼ N (tanh(z2 + z3), 0.1)
x3 ∼ N (z2 + 8, 0.1)
x4 ∼ N (σ(z3 − 7), 1.1)
x5 ∼ N ((z2 × z4)/6.1, 0.1)
x6 ∼ N (z4, 1.1)
x7 ∼ N (z4, 0.1)
x8 ∼ N (tanh(z4), 2.1)
x9 ∼ N (sin(z4), 1.1).

z1 z0

z2

z3

z4

x0

x1 x2

x3 x4

x5

x6

x7

x8

x9

Figure 13: Arithmetic Circuit 2 BN.
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B.2 Model Architectures & Experiment Setup

GRF We train two models per task for each of the approaches. The first is a smaller model with a
maximum capacity of 5000 trainable parameters, denoted by a subscript S. The second, larger model has a
maximum capacity of 15000 parameters, denoted by the subscript L. Table 6 details the flow architectures.
Since our proposed masking scheme can be used as a drop-in replacement, we compare the different graphical
models using this scheme to encode domain knowledge in GRF, GNF and SCCNF.

Table 6: Flow architectures. The hidden layer width and choice of activation function are the settings used
for the conditioner neural network for GNF-A and GNF-M, the residual block for GRF, and the main flow
transformation neural network for SCCNF, respectively.

BN Flow Number of
parameters

Number of
flow steps*

Hidden
layer width

Activation
function

A
rit

hm
et
ic

ci
rc
ui
t

GNF-AS 4416 4 200 ReLU
GNF-MS 4552 2 50 ReLU
SCCNFS 4621 3 140 Tanh
GRFS 4296 8 125 LipMish

GNF-AL 14796 9 300 ReLU
GNF-ML 14508 4 125 ReLU
SCCNFL 13312 5 150 Tanh
GRFL 14518 17 200 LipMish

Tr
ee

GNF-AS 4832 4 250 ReLU
GNF-MS 4934 2 75 ReLU
SCCNFS 4415 3 125 Tanh
GRFS 4576 8 125 LipMish

GNF-AL 14490 10 300 ReLU
GNF-ML 14208 4 150 ReLU
SCCNFL 13828 5 140 Tanh
GRFL 14625 15 215 LipMish

P
ro
te
in

GNF-AS 4812 4 175 ReLU
GNF-MS 4897 1 150 ReLU
SCCNFS 4788 3 150 Tanh
GRFS 4788 9 100 LipMish

GNF-AL 13788 9 225 ReLU
GNF-ML 14691 3 150 ReLU
SCCNFL 14765 5 170 Tanh
GRFL 1896 28 100 LipMish

E
C
ol
i

GNF-AS 4852 4 140 ReLU
GNF-MS 4664 1 100 ReLU
SCCNFS 4699 3 250 Tanh
GRFS 4347 9 100 LipMish

GNF-AL 14472 9 190 ReLU
GNF-ML 13992 3 100 ReLU
SCCNFL 13165 5 300 Tanh
GRFL 14944 16 200 LipMish

M
E
H
R
A

GNF-AS 4760 4 150 ReLU
GNF-MS 4976 1 125 ReLU
SCCNFS 4355 3 150 Tanh
GRFS 4797 9 125 LipMish

GNF-AL 14220 9 200 ReLU
GNF-ML 14928 3 125 ReLU
SCCNFL 14214 5 175 Tanh
GRFL 14382 17 200 LipMish

*For SCCNF, this instead refers to the number of layers in the neural network.
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SIReN-VAE Table 7 provides the network architectures used in the SIReN-VAE experiments. The models
had the same network architectures for all of the datasets, except Arth. For Arth, the hidden layers of the
neural networks had a width of 200 units, not 100. The weights of the decoder neural network and all
residual blocks were masked according to the given BN structure.

When applying warm-up, a default warm-up period of 100 epochs was used in all cases. We used 32
importance-weighted samples for the Arithmetic Circuit 2 and MEHRA datasets when employing the
importance-weighted objective, and only 8 for the Gaussian BNs, EColi and Arth, since further increas-
ing the number of samples did not lead to notably better results.

Table 7: Model architectures used for the graphical datasets. All GRFs have 5 transformation steps, with each
residual block having the same architecture as given below. D indicates the number of observed variables,
and K the number of latent variables associated with each dataset’s BN. Although not indicated here, the
weight matrices of the linear layers in the decoder neural network and residual blocks of SIReN-VAE are
masked according to the encoded BN structure. For GRFg, the input dimension of the first linear layer of
each residual block is larger to accommodate conditioning on the observation.

Model Architecture

VAE Encoder Linear(D,100) → ReLU → Linear(100,K×2)

Decoder Linear(K,100) → ReLU → Linear(100,D×2)

SIReN-VAE

Encoder GRFg

Decoder GRFn → Linear(K,100) → ReLU
→ Linear(100,D×2)

Residual Block Linear(K(+D),100) → LipMish → Linear(100,K)

B.3 Additional Results

B.3.1 Flow Inversion

Figure 14 gives the inversion performance of the Banach and Newton-like (Song et al., 2019) fixed-point
approaches on the Arithmetic Circuit dataset. Table 8 summarizes the inversion performance of the different
flow models on the rest of the datasets, with Figures 15 to 18 plotting the reconstruction error of GNF-M
and GRF for different values of α in (7), when varying the number of iterations used at each step while
inverting these flows.

Figure 14: Using the Newton-like inversion procedure of Equation (7) requires far fewer iterations per block
to accurately invert a GRF than using the Banach fixed-point approach. The plot shows the average recon-
struction error (log-scale) for 100 samples from the Arithmetic Circuit test set. Note that all the plots for the
Newton-like inversion procedure, corresponding to different values of the Lipschitz-bound hyperparameter c,
overlap. Similar results were observed for the other datasets as well.
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Table 8: Comparison of the inversion performance for the different flow models on 100 test data points from
the various datasets. Bold indicates the best results in each column. N and α are not applicable for SCCNF.
Ranges indicate different optimal settings for N and α for different data points. Inversion time is measured
for the smallest N ≤ 50 that allowed the most data points in the batch to have a reconstruction error of less
than 10−4 and is the time taken to invert the entire batch.

Small Budget Large Budget

BN Flow
Converged
within
50 steps

N α
Inversion
time (ms)

Converged
within
50 steps

N α
Inversion
time (ms)

Arithmetic
Circuit

GNF-M 99 4–42 0.3–1.1 226.17 100 5–12 1.0 141.83
SCCNF 82 — — 294.63 97 — — 540.38
GRF 100 4–5 1.0 50.15 100 3–4 1.0 91.88

Protein
GNF-M 97 9–50 0.5–1.4 145.88 100 5–32 0.8–1.2 268.28
SCCNF 93 — — 186.08 81 — — 890.38
GRF 100 5–7 0.9–1.0 71.90 100 4–8 0.9–1.0 265.23

EColi
GNF-M 100 7–45 0.4–1.0 182.40 100 6–8 1.0 98.90
SCCNF 23 — — 121.66 6 — — 516.53
GRF 100 5–6 1.0 57.91 100 4–5 1.0 101.90

MEHRA
GNF-M 100 3–11 0.9–1.0 32.91 100 3–7 0.8–1.1 62.81
SCCNF 100 — — 94.27 99 — — 190.92
GRF 100 3–4 1.0 48.15 100 3–4 1.0 89.69

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL

Figure 15: Reconstruction error achieved when inverting GNF-M and GRF on 100 test samples from the
Arithmetic Circuit dataset. The reconstruction error is plotted as a function of the number of iterations
used to invert each flow step, for different values of the step-size, α.
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(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL

Figure 16: Reconstruction error when inverting GNF-M and GRF on samples from the Protein dataset.

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL

Figure 17: Reconstruction error when inverting GNF-M and GRF on samples from the EColi dataset.

26



Published in Transactions on Machine Learning Research (04/2023)

(a) GNF-MS (b) GNF-ML

(c) GRFS (d) GRFL

Figure 18: Reconstruction error when inverting GNF-M and GRF on samples from the MEHRA dataset.

(a) GNF-MS (b) GRFS

Figure 19: Reconstruction error when inverting GNF-M and GRF on samples from the Tree dataset.
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B.3.2 Performance of the LipMish Activation Function

Table 9 gives the performance results of GRF on the different datasets when using either the LipSwish or
LipMish activation functions. See Figure 20 for a comparison of the first and second derivatives of these
two activation functions. Apart from the activation function, the model architectures are the same as for
GRFS and GRFL as detailed in Table 6. We also determine the negative log-likelihoods achieved by GRF
as a function of the flow depth, when using different residual block activations, see Figure 21. We see that
LipMish typically slightly outperforms LipSwish. Figure 21 further supports this, with LipMish performing
on par and often better than other activations.

Table 9: Density estimation and variational inference performance of GRFS and GRFL when using either
the LipMish or LipSwish activation function. Lower is better in all cases. Note that the real-world Protein
and MEHRA datasets were not used for the inference tasks.

BN Flow Density estimation (NLL) Inference (ELBO)
LipSwish LipMish LipSwish LipMish

Arithmetic
Circuit

GRFS 1.270±0.03 1.248±0.01 4.219±0.18 4.194±0.19
GRFL 1.107±0.01 1.110±0.01 3.766±0.12 3.713±0.14

Tree GRFS 8.649±∆ 8.642±0.01 1.739±∆ 1.738±∆
GRFL 8.649±∆ 8.645±∆ 1.705±∆ 1.705±∆

Protein GRFS −5.230±0.02 −5.265±0.01 — —
GRFL −6.035±0.07 −6.111±0.01 — —

EColi GRFS 40.062±∆ 40.059±∆ 34.986±0.04 34.964±∆
GRFL 40.064±∆ 40.062±∆ 34.962±∆ 34.963±∆

MEHRA GRFS 11.665±0.01 11.660±0.02 — —
GRFL 11.623±0.04 11.612±0.03 — —

Figure 20: Comparison of the first and second derivatives of the LipSwish (Chen et al., 2019) and the
proposed LipMish activation functions.
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(a) Arithmetic Circuit (b) Tree

(c) Protein (d) EColi

(e) MEHRA

Figure 21: Negative log-likelihood achieved by GRF models for varying flow depths and different residual
block activation functions (tanh, ELU, LipSwish and LipMish) on each of the datasets. Lower is better.

B.3.3 Dependency Structure Induced by GRFs

We provide empirical results supporting our argument that even though information leakage may occur in
a GRF between variables and their ancestors, the flow architecture still provides a strong enough inductive
bias to encourage the resulting distribution to respect the provided dependence structure. If the induced
dependence structure fully corresponds to the transitive closure of the BN graph G, denoted by TC(G), then
another BN graph, G′, where TC(G′) = TC(G), should provide similar performance. We investigate this
for the Tree, Protein and EColi datasets by constructing such alternative graphs. These G′ graphs can be
constructed by removing each edge in the original graph that does not change its transitive closure, and
adding the same number of new edges that are in the transitive closure of G, but not in G itself. The
type of edge that can be removed without changing the transitive closure, is any edge between a child and
one of its parents where this parent is also an ancestor of another one of the child’s parents. The above
construction ensures that G′ has the same number of edges as G, as well as a matching transitive closure,
while specifying a different set of independence assumptions. We also compared using G and G′ to using a
graph G′min, where all possible edges have been removed such that TC(G′min) = TC(G). Since the Arithmetic
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Circuit and MEHRA BNs do not have any such edges that can be used to modify the dependence structure,
we did not consider them here. Figures 22 and 23 show the graphs G, G′ and G′min used for the Tree and
Protein datasets, respectively. Table 10 provides the modelling performance of the small and large GRF
models when encoding either G, G′ and G′min for density estimation. The architectures of these models are
the same as given in Table 6.

z0 z1 z2 z3

z4 z5

x0

(a) G

z0 z1 z2 z3

z4 z5

x0

(b) G′

z0 z1 z2 z3

z4 z5

x0

(c) G′min

Figure 22: Illustration of the BN graphs encoded into the GRFs presented in Table 10 for the Tree dataset.
Red edges in (a) the true BN graph were removed and placed between different child-ancestors pairs to create
(b) a different graph with the same transitive closure as (a), or removed entirely to obtain (c) a graph with
the minimum number of edges that still has the same transitive closure as (a).

PKCPIP2 Raf

Plcγ PKA Mek

PIP3 Jnk P38 Erk

Akt

(a) G

PKCPIP2 Raf

Plcγ PKA Mek

PIP3 Jnk P38 Erk

Akt

(b) G′

PKCPIP2 Raf

Plcγ PKA Mek

PIP3 Jnk P38 Erk

Akt

(c) G′min

Figure 23: Illustration of the BN graphs encoded into the GRFs presented in Table 10 for the Protein dataset.

Table 10: Density estimation performance of GRFS and GRFL when encoding either the true BN graph,
G, or alternative graphs G′ and G′min where TC(G) = TC(G′) = TC(G′min) still holds. TC is the transitive
closure of a graph. For each BN, we provide the number of edges that were either removed or placed between
different child-ancestor pairs to obtain the graphs G′min and G′, respectively. Each entry corresponds to the
average over the test set for five independent runs, with standard deviation given in the subscript. Lower is
better in all cases. The best performance in each group is indicated with bold.

BN #Edges Flow Density estimation (NLL)
G G′ G′min

Protein 9 GRFS −5.26±0.01 −4.87±0.04 −4.41±0.11
GRFL −6.12±0.01 −5.85±0.13 −5.65±0.09

EColi 12 GRFS 40.06±0.00 40.10±0.01 40.27±0.10
GRFL 40.06±0.00 40.07±0.00 40.10±0.02

Tree 2 GRFS 8.64±0.01 8.66±0.00 8.65±0.00
GRFL 8.64±0.00 8.66±0.00 8.65±0.00
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The results show that models encoding the original dependency structure provided the best modelling perfor-
mance in all cases. This is most noticeable for the real-world Protein dataset. Even for the simple Gaussian
EColi BN and for the Tree BN where only two edges had been changed, the original BN graph still provided
the best performance. We suspect therefore that even though information leakage may occur, the direct
dependencies encoded by the flow given the BN, still play a more important role in informing the resulting
distribution. While the GRF formulation does allow dependencies corresponding to the transitive closure of
the encoded BN graph, we expect the forms of the dependencies on variables beyond the underlying graph
to be quite constrained, making learning more sophisticated dependencies between vertices not connected
in the underlying BN more difficult. Although future work should investigate this issue in more detail, the
above results help to motivate our use of GRFs.

B.3.4 Addressing Posterior Collapse

Here, we provide the performance results of SIReN-VAETrue on the full training set when employing dif-
ferent combinations of posterior collapse mitigation techniques. Table 11 expands the results presented
in Section 5.2.2. In addition to warm-up and importance weighted objectives, we also considered using a
lower-variance gradient estimator for optimization which is expected to reduce the likelihood that posterior
collapse occurs (Melis et al., 2022). Specifically, we employed the doubly-reparameterized gradient (DReG)
estimator of Tucker et al. (2018). As seen in Table 11, using this lower-variance gradient estimator typi-
cally resulted in the model achieving a better negative log-evidence as well as having fewer collapsed latent
variables. However, using DReG requires inverting the GRF in the variational posterior (Vaitl et al., 2022),
which both slows down training and results in higher memory usage (since the computational graphs of the
fixed-point inversion iterations need to be stored to facilitate backpropagation). It is therefore not clear how
worthwhile the use of DReG to improve results is, given this additional cost.
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Table 11: Effect of applying different combinations of posterior collapse mitigation techniques, namely:
warm-up (WU), importance weighted objectives (IWAE) and doubly-reparameterized gradient estimates
(DReG). Warm-up is applied to either all latents (WUall), or to a selected subset that is prone to collapse
(WUselect). The performance metrics are the same as for Table 4.

BN Model − log p(x) #Inactive Units

A
rit

hm
et
ic

C
irc

ui
t
2

SIReN-VAETrue 10.03±0.01 2.00±0.00
SIReN-IWAETrue 9.86±0.04 1.00±0.00
SIReN-IWAETrue+DReG 9.80±0.02 1.00±0.00

SIReN-VAETrue+WUall 10.11±0.08 1.00±0.00
SIReN-IWAETrue+WUall 9.86±0.08 1.00±0.00
SIReN-IWAETrue+DReG+WUall 9.88±0.06 1.00±0.00

SIReN-VAETrue+WUselect 9.82±0.02 0.00±0.00
SIReN-IWAETrue+WUselect 9.80±∆ 0.00±0.00
SIReN-IWAETrue+DReG+WUselect 9.80±0.02 0.00±0.00

EC
ol
i

SIReN-VAETrue 34.99±0.01 0.00±0.00
SIReN-IWAETrue 34.98±∆ 0.00±0.00
SIReN-IWAETrue+DReG 34.98±0.01 0.00±0.00

SIReN-VAETrue+WUall 34.99±0.01 0.00±0.00
SIReN-IWAETrue+WUall 34.99±0.01 0.00±0.00
SIReN-IWAETrue+DReG+WUall 34.99±∆ 0.00±0.00

A
rt
h

SIReN-VAETrue 37.73±0.05 14.80±0.33
SIReN-IWAETrue 37.49±0.26 11.00±1.10
SIReN-IWAETrue+DReG 37.30±0.53 6.00±1.41

SIReN-VAETrue+WUall 37.65±0.08 11.20±0.98
SIReN-IWAETrue+WUall 37.48±0.47 10.20±1.33
SIReN-IWAETrue+DReG+WUall 37.27±0.54 7.80±1.33

SIReN-VAETrue+WUselect 37.71±0.03 9.80±2.64
SIReN-IWAETrue+WUselect 37.42±0.24 7.00±2.28
SIReN-IWAETrue+DReG+WUselect 37.43±0.22 1.80±0.98

M
EH

R
A

SIReN-VAETrue 8.37±0.06 0.00±0.00
SIReN-IWAETrue 8.19±0.06 0.00±0.00
SIReN-IWAETrue+DReG 8.08±0.02 0.00±0.00

SIReN-VAETrue+WUall 8.66±0.26 0.00±0.00
SIReN-IWAETrue+WUall 8.39±0.24 0.00±0.00
SIReN-IWAETrue+DReG+WUall 8.23±0.08 0.00±0.00
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