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Abstract
Continual Learning (CL) methods usually learn from all the available data. However,
this is not the case in human cognition which efficiently focuses on key experiences while
disregarding the redundant information. Similarly, not all data points in a dataset have
equal potential; some can be more informative than others. Especially in CL, such redundant
or low-quality data can be detrimental for learning efficiency and exacerbate catastrophic
forgetting. Drawing inspiration from this, we explore the potential of learning from important
samples and present an empirical study for evaluating coreset selection techniques in the
context of CL to stimulate research in this unexplored area. We train different continual
learners on increasing amounts of selected samples and elucidate the learning-forgetting
dynamics by shedding light on the underlying mechanisms driving their improved stability-
plasticity balance. We present several significant observations: learning from selectively
chosen samples (i) enhances incremental accuracy, (ii) improves knowledge retention of
previous tasks, and (iii) continually refines learned representations. This analysis contributes
to a deeper understanding of selective learning strategies in CL scenarios. The code is
available at https://anonymous.4open.science/r/Data-Diet-CD87.

1 Introduction

Machine learning has achieved remarkable success in solving complex tasks, often relying on the assumption
that data is available in a static and complete form. In traditional machine learning, models are trained
once on fixed datasets and are evaluated without further updates. While effective in controlled scenarios,
this approach falls short in dynamic environments where data and tasks evolve over time. Addressing this
limitation requires a shift from static learning paradigms to more adaptive systems capable of learning
continuously. Continual Learning (CL) bridges this gap by enabling models to learn from a stream of data
sequentially. Unlike traditional machine learning, CL emphasizes retaining previously acquired knowledge
while learning new tasks, mimicking the way humans accumulate and adapt knowledge over their lifetimes.
Class-Incremental Learning (CIL) is the most challenging scenario of CL where the learner is required to
predict outcomes for all encountered classes without being given task identifiers (Van de Ven & Tolias,
2019). However, catastrophic forgetting (McCloskey & Cohen, 1989) remains a challenge in this dynamic
setting wherein the class-incremental learners tend to lose acquired knowledge from previous tasks, upon
learning new ones. Recent research has brought solutions through various techniques, including regularization
methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Lee et al., 2017), replay strategies (Chaudhry et al.,
2018; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Borsos et al., 2020), architecture expansion (Yan et al.,
2021; Wang et al., 2022a; Zhou et al., 2022; Rusu et al., 2016; Yoon et al., 2019) and prompt learning (Wang
et al., 2022c;b; Smith et al., 2023) approaches. However, these approaches aim to learn from all the available
data during training to maximize model performance and assume that all samples are equally important. This
standardized practice may not fully reflect the efficiency and adaptability observed in human learning since,
as humans, we are initially exposed to vast amounts of information but intuitively filter and prioritize them,
focusing on key experiences (e.g. clear and novel examples) that enrich our understanding while disregarding
redundant details (Pagnotta et al., 2022; Jones et al., 2016; Posner & Petersen, 1990).

We draw inspiration from this human cognitive ability and introduce an empirical study to evaluate the
learning-forgetting dynamics of different CIL models when trained with important samples selected by a wide
range of sample selection approaches (as illustrated in Figure 1). Through a detailed analysis, we provide
insight into how data selection leads to an improved stability-plasticity balance in continual learning.
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Figure 1: Illustration of our evaluation protocol: Existing class-incremental learning methods (left) typically
utilize all available samples indiscriminately during training. In this study (right), we subject class-incremental
learners to a data diet and analyze how the selection of the most important samples with different coreset
selection methods affects the incremental performance.

We believe that this comprehensive study and investigation contributes to a deeper understanding of the
potential benefits of sample selective learning strategies in CIL scenarios and stimulates systematic research
that leverages these insights to take a more holistic and data-centric approach to continual learning.

Our contributions can be summarized as:

I. This paper presents the first explicit empirical analysis of different coreset selection methods in
combination with various continual learners in the class-incremental learning setting.

II. We find that learning from selectively chosen samples with different coreset selection methods
significantly elevates incremental learning performance.

III. We demonstrate that the increase in performance among class-incremental learners trained with
selected samples arises from enhanced retention of previously acquired concepts due to improved
representation and perception of the models.

IV. We show that continual learning can benefit from a data-centric approach, despite the fact that most
existing research has predominantly focused on model-centric enhancements.

2 Background

2.1 Class-Incremental Learning

Class-incremental learning can be broadly categorized into four main approaches (Van de Ven & Tolias, 2019);
regularization, replay, architecture-based and prompt-based. Regularization-based methods regularize the
abrupt changes in the learned parameters to prevent catastrophic forgetting (Kirkpatrick et al., 2017; Li &
Hoiem, 2017; Lee et al., 2017). Replay-based methods either retain selected exemplars from prior tasks or
generate a subset of data points from previous tasks to alleviate forgetting (Chaudhry et al., 2018; Lopez-Paz
& Ranzato, 2017; Aljundi et al., 2019; Borsos et al., 2020). Architecture-based methods prevent forgetting
by increasing model size and allocating distinct sets of parameters to individual tasks, ensuring there is no
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overlap between them (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2022; Rusu et al., 2016; Yoon et al.,
2019).Recently, with the growing popularity of large pretrained models with Vision Transformers (ViT),
prompt-based methods also received growing popularity (Wang et al., 2022c;b; Smith et al., 2023).

Summary of CIL Methods Selected for Analysis

We use 7 well-established CIL models that encompass various approaches including architecture-based,
replay-based, regularization-based, and prompt-based. We deliberately chose these methods to provide a
comprehensive analysis since they all represent different learning strategies. For more details, please see our
Appendix A.1.

DER-Architecture. Dynamically expandable representation (Yan et al., 2021) creates a new backbone
(neural network) as a feature extractor for each task and then aggregates the features of all backbones on
a single classifier. Each new or expanded backbone uses an additional auxiliary loss to differentiate better
between old and new classes. Facing new tasks, it freezes the old backbone to maintain former knowledge.

FOSTER-Architecture. Feature boosting and compression for class-incremental learning (Wang et al.,
2022a) frames the learning process as a feature-boosting problem and aims to enhance the learning of new
features. Then, it expands the continual learner on a single classifier by integrating the boosted features with
a compression step to ensure that only relevant features are retained.

MEMO-Architecture. Memory efficient expandable model (Zhou et al., 2022) expands the network in a
more efficient way. It assumes that the initial blocks of the backbone capture the general patterns for any
task and only expands the model in the last or specialized blocks that are designed to be task-specific.

iCaRL-Replay. Incremental Classifier and Representation Learning (Rebuffi et al., 2017) is a replay-based
method that stores samples from each learned task. Upon the arrival of a new task, it uses stored exemplars
together with the new one to capture the distribution at once. Therefore, it refines the features after each
task with additional distillation loss to overcome abrupt shifts in the feature space.

ER-Replay. Experience Replay (Rolnick et al., 2019) is a simple yet strong method that employs reservoir
sampling to store samples from each task and randomly retrieves stored samples with the new task to capture
the distribution all at once.

LwF-Regularization. Learning without Forgetting (Li & Hoiem, 2017) is solely a regularization-based
method without relying on any replay buffer. It utilizes a distillation loss to prevent sudden changes in the
feature space while learning new tasks.

CODA-Prompt. CODA-Prompt (Smith et al., 2023) as the name suggested is a prompt-based method
that leverages pretrained Vision Transformers (ViT) without relying on data rehearsal. It introduces a
set of prompt components that are dynamically assembled based on input-conditioned weights, generating
task-specific prompts for the transformer’s attention layers. These generated prompts selectively guide the
model’s attention to relevant features for each task, to enable better stability-plasticity tradeoff.

2.2 Coreset Selection

Coreset selection approximates the distribution of the whole dataset with a small subset and has been
extensively examined in data-efficient supervised batch learning (Toneva et al., 2018; Guo et al., 2022;
Coleman et al., 2019a; Paul et al., 2021; Welling, 2009; Coleman et al., 2019b; Iyer et al., 2021; Mirzasoleiman
et al., 2020) and active learning (Wei et al., 2015; Sener & Savarese, 2017). Coreset selection also holds
promise in continual learning to construct a memory buffer from important samples (Aljundi et al., 2019;
Borsos et al., 2020). Recently, an inspiring study (Yoon et al., 2022) improved the performance in online CL
setup by introducing a coreset selection method to select the most diverse samples while approximating the
mean of a given batch.
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However, besides this one method (Yoon et al., 2022), the interplay between coreset selection methods and
continual learning models remains unexplored. This warrants deeper investigation into their interaction
as well as the underlying mechanisms related to the improved performance. Exploring this interaction, by
focusing on the quality of the data itself, could provide novel insight to create more efficient and advanced
continual learners.

Overview of Coreset Algorithms Selected for Analysis

We employ 4 distinct coreset selection methods as well as a baseline using random selection. Once again,
we carefully chose these distinct methods to offer comprehensive empirical analysis. It is important to note
that these coreset selection methods require a brief initial training or warm-up phase to make informed and
meaningful decisions when selecting coreset samples. We provide more details in our Appendix A.2.

Random. This selection strategy involves randomly selecting a subset of data points from the entire dataset
without any specific criteria or consideration of their importance or informativeness.

Herding. Herding (Welling, 2009) chooses data points by evaluating the distance between the center of
the original dataset and the center of the coreset within the feature space. This algorithm progressively and
greedily includes one sample at a time into the coreset, aiming to minimize the distance between centers.

Uncertainty. Samples with lower confidence levels might have a stronger influence than those with higher
confidence levels, thus having these samples in the coreset can be useful. Least confidence, entropy, and
margin are the common metrics used to quantify sample uncertainty (Coleman et al., 2019b). In this study,
entropy is used as a selection metric.

Forgetting. Forgetting selects instances which were correctly classified in one epoch and then subsequently
misclassified in the following epoch during training (Toneva et al., 2018). This method provides valuable
insight into the intrinsic characteristics of the training data and removes challenging or forgettable instances.

GraphCut. GraphCut partitions the dataset into subsets based on dissimilarity or information content,
and data points from these subsets are then selected to form the coreset (Iyer et al., 2021). This approach
ensures that the coreset captures the diversity and essential information of the original dataset while reducing
redundancy.

3 Data Diet

We conduct a comprehensive evaluation of existing CIL methods, assessing their performance when trained
on purposefully selected, informative samples, as opposed to the traditional approach of full dataset training.
We refer to this as a ‘Data Diet’. To clarify our approach, we first present the necessary preliminaries and
problem formulation in Section 3.1. Following this, we define our objective and outline the proposed training
strategy in Section 3.2.

3.1 Preliminaries and Problem Formulation

Formally, we define the CIL problem as a sequence of classification tasks T1:t = (T1, T2, ..., Tt). Each task Tt

is drawn from an unknown distribution and consists of input pairs (xi,t, yi,t) ∈ Xt × Yt where xi,t represents
the sample and yi,t indicates the corresponding label. Note that these learning tasks are mutually exclusive,
meaning that the label sets do not overlap, i.e., Yt−1 ∩ Yt = ∅.

From the coreset selection perspective, the aim is to find the most informative subset St from a given task Tt

with a large number of input pairs (xi,t, yi,t). Therefore, model trained with subset St ⊂ Tt with a condition
of |St| < |Tt| should have a similar generalization performance compared to a model trained with Tt.
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3.2 Objective and Training Strategy

We structure the training process into two distinct phases: the warm-up phase and the learning phase. This
is necessary because coreset selection methods operate by analysing how models behave and represent new
data. Hence, CL models needs to be at least partially trained during the initial warm-up phase to identify
the most informative samples for a given task correctly. It is important to note that the duration of the
warm-up phase is typically much shorter than that of the learning phase. Upon completion of the warm-up
phase, the learning phase proceeds with the selected subset of samples.

Algorithm 1 CL on Data Diet
Require: Model fθ, Tasks T1:t with training sets Tt, learning rate η, total epochs e, warm-up fraction α,

coreset selection function ϕ, coreset fraction s
1: for task t = 1 to Tt do
2: for epoch = 1 to ⌊αe⌋ do ▷ Warm-up Phase
3: for each batch b in Tt do
4: Compute LCE(fθ, b)
5: Update fθ ← θ − η∇θLCE

6: end for
7: end for
8: Use ϕ(fθ, Tt) to select St ⊂ Tt with a fraction of s
9: for epoch = 1 to ⌊(1− α)e⌋ do ▷ Learning Phase

10: for each batch b in St do
11: Compute LCL(fθ, b)
12: Update fθ ← θ − η∇θLCL

13: end for
14: end for
15: end for

Let fθ(·) denote the continual learning model with parameters θ. Then, the training process can then be
expressed as follows:

fθ∗ = arg min
θ
LCL(fθ, St, (1− α)e) ◦ arg min

θ
LCE(fθ, Tt, αe) (1)

Here, the second term (fθ, Tt, αe) represents training the model fθ on the full training samples of task Tt with
a defined time budget of αe where hyperparameter α ∈ (0, 1) and determines the fraction of the total training
budget allocated to the warm-up phase, and e is the total number of epochs available for training. Similarly,
the first term (fθ, St, (1−α)e) represents the training of the model fθ, for the remaining time budget (1−α)e,
on the coreset St which is selected from Tt with a fraction of s ∈ (0, 1) based on a coreset selection function
ϕ(·), so that |St| = s · |Tt|. Note that LCE represents Cross-Entropy loss and LCL represents the loss defined
by continual learning methods given in section 2.1.

To provide a more precise explanation, Algorithm 1 begins with a warm-up phase (lines 2-7) where the model
fθ observes the training samples Tt of the current task for a duration of αe. During this phase, the model
trains each batch b to compute the Cross-Entropy loss LCE(fθ, b). This initial exposure allows the model to
capture a broad understanding of the task’s characteristics.

Following the warm-up (line 8), the algorithm employs the coreset selection function ϕ(·) which requires
training samples for a given task Tt and the model fθ to filter down to a coreset St ⊂ Tt, consisting of only a
fraction s of the current task samples. The criterion for selection, depending on the coreset selection function,
can target samples with high informativeness, uncertainty, or relevance, focusing on key data points.

In the learning phase (lines 9-14), which spans the remaining (1−α)e epochs, the model is trained on batches
from St, using specific loss function of continual learners LCL(fθ, b). This refines the goal of solidifying
task-specific knowledge while minimizing interference from previous tasks to prevent catastrophic forgetting.
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4 Experimental Setting

Datasets. We use well-established continual learning datasets, specifically Split-CIFAR10 and Split-
CIFAR100 (Krizhevsky et al., 2009), Split-ImageNet-100 (Russakovsky et al., 2015) in our experiments
to evaluate and posit our findings. Split-CIFAR10 has 5 disjoint tasks and each task has 2 disjoint classes
with 10000 samples for training and 2000 samples for testing. Split-CIFAR100 has 10 disjoint tasks and
each task has 10 disjoint classes with 5000 samples for training and 1000 samples for testing. In addition, we
employ Split-ImageNet100, a subset of the large-scale ImageNet dataset, with images at a higher resolution
of 224x224 pixels. Similar to Split-CIFAR100, Split-ImageNet100 is divided into 10 tasks, each consisting of
10 disjoint classes. The increased number of classes, fewer images per class combined with longer learning
sessions, and higher resolution bring further challenges and offer a more complex scenario.

Implementation Details. We use Deepcore (Guo et al., 2022) for coreset selection methods and PYCIL
(Zhou et al., 2023) for the CIL. We employ both from scratch (ResNet18) and pretrained (ResNet18 and
ViT) backbones with prior knowledge to provide a more comprehensive analysis, using standard CL metrics
which are discussed more in detail in the Appendix A.3. We set the total training budget e to 100 epochs
where warmup fraction α is set to 0.1 and the remaining is allocated for the learning phase. We set coreset
fraction s to 10%, 20%, 50%, 80% and 90% for each task. We use SGD optimizer with a scheduled learning
rate of 0.1 and momentum of 0.9. We set a weight decay of 5× 10−4 for the initial task and 2× 10−4 for
subsequent tasks. We set the batch size to 128. We employ a fixed memory size: 50 per class for CIFAR10
and 20 per class for CIFAR100 and ImageNet100. We do not employ coreset selection methods to construct
the memory buffers, adhering instead to the original implementations. For ViT, we only modify the learning
rate to 0.001, reduce the batch size to 32, and train for 20 epochs. We run experiments on A100 GPU with
different seeds and report their average accuracy and standard deviation across three runs.

Table 1: Accuracy [%] of CIL models across various coreset fractions and selections on Split-CIFAR10.
Learning from coreset samples enhances the performance, except FOSTER and LwF. The best results are
highlighted in bold if coreset selection outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 51.79 ± 4.6 54.28 ± 3.8 55.68 ± 0.3 57.27 ± 2.9 55.61 ± 2.5 56.91 ± 1.3
Herding 41.65 ± 2.2 52.35 ± 2.5 59.79 ± 1.8 63.96 ± 1.1 62.93 ± 1.2 56.91 ± 1.3
Uncertainty 56.02 ± 1.7 59.48 ± 1.7 57.97 ± 0.8 62.01 ± 3.1 59.36 ± 1.5 56.91 ± 1.3
Forgetting 55.68 ± 2.1 60.97 ± 1.0 60.82 ± 0.3 63.46 ± 3.9 61.36 ± 0.4 56.91 ± 1.3
GraphCut 62.06 ± 1.9 64.74 ± 0.5 63.03 ± 2.0 61.17 ± 1.9 62.95 ± 1.5 56.91 ± 1.3

FOSTER (Wang et al., 2022a)

Random 52.44 ± 5.4 52.34 ± 4.3 53.22 ± 2.8 53.93 ± 4.2 53.93 ± 3.0 54.79 ± 2.9
Herding 32.00 ± 2.2 39.91 ± 8.3 46.91 ± 3.3 52.82 ± 2.6 51.34 ± 1.2 54.79 ± 2.9
Uncertainty 45.42 ± 3.6 49.18 ± 4.6 48.94 ± 3.2 50.95 ± 2.6 49.25 ± 2.2 54.79 ± 2.9
Forgetting 45.44 ± 3.2 51.59 ± 4.0 49.37 ± 0.2 48.19 ± 2.6 49.10 ± 1.5 54.79 ± 2.9
GraphCut 50.85 ± 3.1 52.54 ± 3.7 49.94 ± 0.3 49.43 ± 0.9 49.28 ± 1.0 54.79 ± 2.9

MEMO (Zhou et al., 2022)

Random 44.36 ± 4.2 45.41 ± 5.5 47.45 ± 6.4 48.93 ± 7.1 49.58 ± 7.2 49.22 ± 5.5
Herding 39.32 ± 0.2 45.04 ± 0.4 47.90 ± 3.1 49.98 ± 6.1 49.34 ± 6.3 49.22 ± 5.5
Uncertainty 38.27 ± 6.9 41.10 ± 5.0 44.99 ± 6.4 47.75 ± 6.0 47.90 ± 5.4 49.22 ± 5.5
Forgetting 35.04 ± 4.1 45.23 ± 5.4 47.74 ± 5.3 48.66 ± 5.5 47.78 ± 5.9 49.22 ± 5.5
GraphCut 51.37 ± 3.6 52.54 ± 2.3 49.67 ± 4.0 49.97 ± 6.0 48.35 ± 5.7 49.22 ± 5.5

iCaRL (Rebuffi et al., 2017)

Random 47.70 ± 4.3 55.41 ± 5.4 54.56 ± 5.8 57.75 ± 7.5 57.29 ± 6.3 59.54 ± 8.0
Herding 40.32 ± 5.0 42.99 ± 3.3 54.02 ± 4.5 58.60 ± 6.7 59.11 ± 6.3 59.54 ± 8.0
Uncertainty 50.77 ± 1.5 54.41 ± 6.2 56.78 ± 6.3 57.38 ± 6.6 57.82 ± 7.1 59.54 ± 8.0
Forgetting 53.79 ± 4.9 57.86 ± 5.9 58.30 ± 5.9 58.90 ± 6.3 56.90 ± 7.7 59.54 ± 8.0
GraphCut 61.70 ± 2.7 61.07 ± 4.2 60.88 ± 5.6 58.80 ± 7.0 57.68 ± 7.1 59.54 ± 8.0

ER (Rolnick et al., 2019)

Random 51.02 ± 2.7 56.32 ± 6.2 57.79 ± 4.6 57.20 ± 6.0 57.77 ± 6.9 58.51 ± 6.4
Herding 41.06 ± 7.5 47.97 ± 4.0 55.87 ± 4.9 58.93 ± 4.6 58.85 ± 4.9 58.51 ± 6.4
Uncertainty 52.70 ± 2.4 52.99 ± 1.1 56.35 ± 6.3 57.48 ± 6.4 58.09 ± 5.4 58.51 ± 6.4
Forgetting 52.44 ± 3.4 55.05 ± 5.8 57.43 ± 5.7 57.00 ± 5.5 56.73 ± 6.2 58.51 ± 6.4
GraphCut 63.03 ± 3.1 60.53 ± 2.6 60.34 ± 4.4 58.69 ± 5.6 57.61 ± 5.8 58.51 ± 6.4

LwF (Li & Hoiem, 2017)

Random 31.60 ± 0.8 41.46 ± 1.9 45.64 ± 1.5 51.21 ± 4.7 51.83 ± 2.1 51.15 ± 4.3
Herding 15.27 ± 3.8 23.75 ± 3.0 20.72 ± 0.7 27.74 ± 5.2 30.86 ± 4.1 51.15 ± 4.3
Uncertainty 26.89 ± 5.0 24.21 ± 3.3 28.95 ± 5.1 29.58 ± 5.8 30.54 ± 4.2 51.15 ± 4.3
Forgetting 27.10 ± 5.3 25.49 ± 4.0 27.66 ± 5.2 30.24 ± 5.5 30.57 ± 5.0 51.15 ± 4.3
GraphCut 25.34 ± 3.1 26.22 ± 3.5 29.42 ± 5.2 30.54 ± 4.2 30.95 ± 5.4 51.15 ± 4.3
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5 Results and Analysis

In Section 5.1, we conduct a thorough analysis across diverse CIL methods and different coreset selection
algorithms with varying coreset sizes. In Section 5.2, we investigate why coreset selection improves incremental
accuracy, offering insight into the stability-plasticity dynamics of each CIL method. In Section 5.3, we seek
to understand how these dynamics are reflected in the learning perception of the model.

5.1 Data diet enhances incremental performance

Large number of samples per task. Our analysis reveals a consistent trend of performance enhancement
across various continual learners when utilizing coreset selection strategies (see Table 1). We find that when
the coreset size is large enough, all selection methods tend to exhibit comparable performance. Conversely,
in scenarios where the coreset size is highly reduced and restricted, a sophisticated method like GraphCut
outperforms others. Moreover, the size of the coreset also plays a role: smaller coresets tend to yield more
significant improvements due to increased distinction between representations which we discuss more in detail
in Section 5.3. This observation is particularly evident in the case of DER which demonstrates a remarkable
enhancement of approximately 7% in performance when trained only with 20% of the samples from each task.

Small number of samples per task. When the number of samples per task is relatively limited, we still
observe performance enhancements, with mostly Uncertainty and Herding, yet they are not as pronounced
due to the increased challenge of selecting informative samples (see in Table 2 and 3). Consequently, in
such situations, opting for a larger coreset is more beneficial since a smaller coreset size would result in an
exceptionally small sample size per task, posing a challenge for CIL. For instance, in Table 2, iCaRL improves
its performance by around 3% when trained with 80% of the samples from each task, compared to full sample
training. However, its performance stars to degrade when coreset size is less than 50%.

Table 2: Accuracy [%] of CIL models across various coreset fractions and selections on Split-CIFAR100.
The best results are highlighted in bold if coreset selection outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 26.23 ± 0.6 36.35 ± 2.8 47.32 ± 2.6 53.11 ± 1.6 54.07 ± 0.1 53.81 ± 1.0
Herding 17.99 ± 7.5 24.79 ± 6.0 41.11 ± 2.7 52.48 ± 0.4 53.92 ± 0.8 53.81 ± 1.0
Uncertainty 27.54 ± 4.6 38.29 ± 3.0 49.41 ± 1.2 55.71 ± 1.9 54.55 ± 0.4 53.81 ± 1.0
Forgetting 30.32 ± 4.9 41.25 ± 1.8 49.20 ± 2.2 54.10 ± 0.3 53.68 ± 0.1 53.81 ± 1.0
GraphCut 29.61 ± 5.7 39.71 ± 3.4 50.35 ± 1.0 53.08 ± 0.8 54.89 ± 0.7 53.81 ± 1.0

FOSTER (Wang et al., 2022a)

Random 23.21 ± 0.0 32.04 ± 1.3 48.95 ± 0.8 51.71 ± 1.9 53.34 ± 0.8 56.19 ± 2.3
Herding 10.84 ± 0.8 18.38 ± 1.1 35.15 ± 2.7 51.51 ± 0.1 53.72 ± 0.9 56.19 ± 2.3
Uncertainty 16.97 ± 0.1 27.37 ± 0.9 44.29 ± 3.1 55.24 ± 0.1 55.10 ± 1.7 56.19 ± 2.3
Forgetting 21.80 ± 0.4 32.42 ± 0.8 44.97 ± 2.9 54.59 ± 0.4 54.91 ± 1.0 56.19 ± 2.3
GraphCut 22.16 ± 1.6 30.40 ± 1.1 45.91 ± 2.3 53.35 ± 1.9 55.24 ± 0.5 56.19 ± 2.3

MEMO (Zhou et al., 2022)

Random 20.79 ± 0.7 26.74 ± 0.1 29.62 ± 0.5 34.58 ± 0.1 34.58 ± 0.1 34.23 ± 0.4
Herding 13.24 ± 2.0 18.76 ± 1.5 27.26 ± 1.8 33.64 ± 0.3 34.94 ± 0.1 34.23 ± 0.4
Uncertainty 16.07 ± 2.6 23.23 ± 2.9 30.14 ± 1.7 33.41 ± 0.9 34.10 ± 1.0 34.23 ± 0.4
Forgetting 18.44 ± 1.9 23.37 ± 2.0 31.17 ± 0.3 33.10 ± 0.4 32.46 ± 2.2 34.23 ± 0.4
GraphCut 23.21 ± 1.7 27.79 ± 0.6 32.49 ± 0.6 33.61 ± 0.2 34.22 ± 0.7 34.23 ± 0.4

iCaRL (Rebuffi et al., 2017)

Random 25.48 ± 0.2 29.87 ± 3.0 35.37 ± 2.0 37.02 ± 3.1 37.11 ± 3.0 37.45 ± 1.7
Herding 13.02 ± 1.2 17.24 ± 1.5 27.91 ± 1.3 38.24 ± 1.3 37.55 ± 0.8 37.45 ± 1.7
Uncertainty 22.47 ± 1.9 28.05 ± 1.3 35.18 ± 3.3 40.25 ± 0.7 39.26 ± 2.5 37.45 ± 1.7
Forgetting 25.00 ± 0.3 27.80 ± 1.1 33.27 ± 2.0 37.80 ± 1.0 37.44 ± 2.2 37.45 ± 1.7
GraphCut 24.04 ± 0.7 30.45 ± 0.2 33.31 ± 0.3 35.76 ± 3.2 38.03 ± 0.8 37.45 ± 1.7

ER (Rolnick et al., 2019)

Random 25.23 ± 0.3 31.58 ± 3.0 37.64 ± 1.4 39.25 ± 1.3 40.66 ± 2.0 39.53 ± 1.6
Herding 19.13 ± 5.4 24.90 ± 6.3 34.92 ± 4.0 40.18 ± 2.1 41.19 ± 1.2 39.53 ± 1.6
Uncertainty 25.77 ± 4.6 31.63 ± 4.3 36.61 ± 1.5 41.14 ± 0.4 39.69 ± 1.4 39.53 ± 1.6
Forgetting 29.53 ± 4.7 33.97 ± 3.8 36.96 ± 3.4 40.58 ± 0.7 39.92 ± 2.5 39.53 ± 1.6
GraphCut 32.99 ± 8.7 38.22 ± 6.4 39.55 ± 3.5 39.61 ± 2.6 39.97 ± 0.6 39.53 ± 1.6

LwF (Li & Hoiem, 2017)

Random 11.39 ± 1.0 15.38 ± 1.3 20.26 ± 1.3 22.93 ± 2.1 23.91 ± 1.2 22.82 ± 1.4
Herding 3.67 ± 1.3 6.22 ± 0.1 12.43 ± 2.0 17.09 ± 4.6 18.08 ± 4.5 22.82 ± 1.4
Uncertainty 9.55 ± 0.5 12.17 ± 1.8 15.54 ± 2.8 18.72 ± 5.0 18.00 ± 4.2 22.82 ± 1.4
Forgetting 9.93 ± 1.3 12.75 ± 2.7 15.18 ± 2.9 17.99 ± 4.5 18.28 ± 4.4 22.82 ± 1.4
GraphCut 8.17 ± 0.3 10.37 ± 1.4 15.56 ± 3.4 17.26 ± 4.1 18.00 ± 4.9 22.82 ± 1.4
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Experiments on pretrained backbone. We further complemented our study with pretrained ResNet18
and ViT backbones where the results align with the findings discussed herein. We observe that pretraining
improves the performance regardless of coreset selection. However, coreset selection provides an additional
performance boost. For more details, specifically for CODA-Prompt, please refer to the Appendix A.5.

FOSTER benefits from more samples. FOSTER’s primary objective is to identify critical elements
that were potentially overlooked or misinterpreted by the original model during the learning process. For
instance, in the initial stages of learning, certain features may have been deemed less significant than others.
However, as the model progresses and encounters new concepts, previously redundant features may become
crucial. FOSTER addresses these dynamics by employing a feature-boosting mechanism, which aims to
highlight the evolving importance of features over time. However, this mechanism may necessitate access to
more samples to effectively capture the intricate relationships between features. Consequently, training with
the full dataset enables the model to develop a more comprehensive understanding of the underlying patterns
and correlations among the features.

LwF exhibits abrupt weight changes when trained with a coreset. Sophisticated coreset selection
approaches do not yield performance advantages in LwF. Surprisingly, learning from a random samples
appears to drive improvements instead. To understand this phenomenon, we conduct an in-depth investigation,
focusing on the performance after each task, as illustrated in Figure 2. Our analysis shows that LwF trained
with more advanced coreset selection methods, such as Uncertainty and GraphCut, demonstrate superior
adaptability to the current task. However, this enhanced adaptability comes at a cost of catastrophic
forgetting. To unravel the root cause of this forgetting phenomenon, we examine the changes in model
parameters between consecutive tasks. We found that Uncertainty and GraphCut induce abrupt changes in
the parameters, whereas it is comparatively smaller with randomly selected samples.

Table 3: Accuracy [%] of CIL models across various coreset fractions and selections on Split-ImageNet100.
Learning from coreset samples enhances the performance, except FOSTER and LwF. The best results are
highlighted in bold if coreset outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 19.89 ± 2.3 32.70 ± 1.5 42.45 ± 0.6 52.61 ± 1.8 53.12 ± 1.0 55.03 ± 1.2
Herding 18.30 ± 1.2 29.83 ± 0.6 44.77 ± 0.8 53.59 ± 0.3 55.52 ± 0.1 55.03 ± 1.2
Uncertainty 27.08 ± 0.5 36.92 ± 0.9 49.84 ± 0.4 55.10 ± 0.2 56.46 ± 0.6 55.03 ± 1.2
Forgetting 32.69 ± 2.1 40.21 ± 1.3 50.27 ± 0.9 55.15 ± 0.7 55.60 ± 0.8 55.03 ± 1.2
GraphCut 32.91 ± 0.7 38.90 ± 0.4 50.12 ± 0.8 54.71 ± 0.3 55.81 ± 0.1 55.03 ± 1.2

FOSTER (Wang et al., 2022a)

Random 17.59 ± 1.3 22.68 ± 0.8 34.20 ± 3.8 46.90 ± 4.1 48.64 ± 4.2 52.06 ± 0.4
Herding 8.67 ± 0.1 13.42 ± 0.2 30.63 ± 1.7 45.85 ± 1.0 48.89 ± 0.1 52.06 ± 0.4
Uncertainty 8.14 ± 0.1 15.91 ± 0.5 35.40 ± 0.5 46.39 ± 0.5 48.37 ± 0.5 52.06 ± 0.4
Forgetting 11.62 ± 0.5 18.71 ± 0.4 35.26 ± 0.3 46.95 ± 0.9 49.45 ± 0.4 52.06 ± 0.4
GraphCut 16.74 ± 0.5 22.99 ± 0.1 37.42 ± 0.4 47.22 ± 0.4 49.95 ± 0.9 52.06 ± 0.4

MEMO (Zhou et al., 2022)

Random 18.79 ± 0.1 27.29 ± 0.2 40.02 ± 1.7 44.48 ± 0.2 47.80 ± 1.9 46.36 ± 1.0
Herding 18.15 ± 1.1 26.08 ± 0.4 37.71 ± 3.1 46.76 ± 2.3 47.94 ± 1.1 46.36 ± 1.0
Uncertainty 20.22 ± 0.8 26.94 ± 2.2 39.39 ± 1.1 45.90 ± 0.4 48.54 ± 0.2 46.36 ± 1.0
Forgetting 24.40 ± 1.5 33.16 ± 1.0 41.86 ± 0.5 45.57 ± 0.5 47.19 ± 0.9 46.36 ± 1.0
GraphCut 29.76 ± 1.8 35.73 ± 1.1 42.80 ± 1.9 45.98 ± 2.8 48.50 ± 1.3 46.36 ± 1.0

iCaRL (Rebuffi et al., 2017)

Random 21.93 ± 0.7 27.29 ± 0.5 30.21 ± 3.7 29.12 ± 1.9 30.30 ± 1.6 33.05 ± 1.8
Herding 20.80 ± 1.8 24.29 ± 2.3 30.92 ± 0.2 33.23 ± 0.9 34.04 ± 0.2 33.05 ± 1.8
Uncertainty 22.52 ± 0.3 22.37 ± 0.9 32.67 ± 1.6 33.03 ± 0.1 34.76 ± 0.9 33.05 ± 1.8
Forgetting 26.38 ± 0.1 28.35 ± 0.8 31.85 ± 0.7 33.80 ± 0.6 34.77 ± 2.7 33.05 ± 1.8
GraphCut 33.04 ± 0.6 35.10 ± 0.6 34.87 ± 1.1 35.19 ± 0.2 31.29 ± 0.3 33.05 ± 1.8

ER (Rolnick et al., 2019)

Random 20.19 ± 0.1 25.84 ± 2.7 30.47 ± 2.0 29.14 ± 1.0 30.81 ± 0.6 34.23 ± 4.2
Herding 20.21 ± 0.1 24.56 ± 0.8 29.81 ± 1.1 31.92 ± 0.4 33.68 ± 0.7 34.23 ± 4.2
Uncertainty 20.82 ± 0.6 23.08 ± 0.6 29.23 ± 0.5 29.35 ± 1.1 30.74 ± 1.4 34.23 ± 4.2
Forgetting 24.85 ± 0.6 28.32 ± 1.4 29.03 ± 0.2 32.85 ± 0.4 31.74 ± 2.1 34.23 ± 4.2
GraphCut 30.13 ± 1.0 30.52 ± 0.2 34.83 ± 0.6 32.05 ± 1.5 32.16 ± 0.5 34.23 ± 4.2

LwF (Li & Hoiem, 2017)

Random 9.25 ± 0.1 11.22 ± 0.7 15.88 ± 0.8 16.27 ± 1.1 16.52 ± 0.5 16.46 ± 1.8
Herding 5.70 ± 0.5 7.65 ± 1.1 10.70 ± 0.1 11.33 ± 0.2 11.64 ± 0.2 16.46 ± 1.8
Uncertainty 7.84 ± 0.1 8.07 ± 0.1 11.27 ± 0.2 11.41 ± 0.1 11.51 ± 0.3 16.46 ± 1.8
Forgetting 7.38 ± 0.2 10.01 ± 0.1 11.60 ± 0.2 12.15 ± 0.1 12.57 ± 0.3 16.46 ± 1.8
GraphCut 7.41 ± 0.2 9.29 ± 0.8 10.77 ± 0.5 12.06 ± 0.2 12.88 ± 0.1 16.46 ± 1.8
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Figure 2: Accuracy [%] on Split-CIFAR10 after each learning step on LwF (above), reveals that Random
selection demonstrates relatively less forgetting while effectively learning. This is due to the abrupt parameter
changes. For example, on the last layer between consecutive tasks (below), Uncertainty and GraphCut
abruptly shift the parameters.

This is because, coreset selection strategies (e.g., herding, uncertainty, and graph cut) prioritize the most
informative samples specific to the current task. When the CL approach relies solely on regularization, this
prioritization can lead to overfitting to the current task’s distribution. Such overfitting amplifies significant
representation shifts, resulting in abrupt parameter updates that results in catastrophic forgetting of previously
learned tasks. In contrast, random selection is implicitly incorporates as a form of regularizer with a greater
diversity and variability in the sample distribution across tasks, which helps to mitigate overfitting and results
in more stable parameter updates. This suggests that the traditional regularization methods may not be as
effective as replay-based approaches when considering coreset utilization.

5.2 Incremental performance increases because models forget less

The performance improvements observed in class-incremental learners when trained on coreset samples can
be attributed to several factors:

(i) First, coreset samples are carefully selected to represent the most informative subset of the data, thereby
reducing redundancy and focusing on critical information. This strategy enhances the model’s capacity for
retention of essential information while minimizing the risk of overfitting to less relevant data points. In
other words, this allows for more focused exposure to relevant data and develops robust representations
that consolidate the acquired knowledge better, leading to improved performance in most class-incremental
learning baselines in our analysis.

(ii) Second, sample selection before training is also crucial in enhancing the data quality utilized during
the replay or memory construction phase in continual learning. By filtering out potentially irrelevant or
redundant data points beforehand, it ensures that only the most informative and representative samples
are stored in memory. This contributes to enhanced retention or consolidation of learned knowledge from
previous tasks over time by focusing on key patterns and relationships.
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(a) DER
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(b) FOSTER
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(d) iCaRL
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(e) ER
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(f) LwF

Figure 3: Accuracy [%] of each task after every learning session on different class-incremental learning methods
with Split-CIFAR10. This comparison includes the performance using all samples vs. the best performing
coreset selection, which may involve different coreset fractions. The underlying reason for the improved
accuracy is attributed to reduced forgetting.

Consequently; DER, iCaRL, and ER demonstrate noticeable improvement in knowledge retention learning
when trained on coreset samples (see Figure 3). These methods leverage the enhanced representativeness
and diversity of coreset samples, reinforcing old knowledge retention while learning new ones. MEMO and
LwF also benefit from training on coreset samples, albeit to a lesser extent. FOSTER still appears to rely
more heavily on learning from the complete dataset, maintaining consistent performance across tasks. This
reaffirms that its learning strategy may be better suited to leveraging the full dataset rather than coreset
samples as we discuss above. In the Appendix A.4, we also provide more details and share the accuracy
per task after each learning session on Split-CIFAR100. Overall, our analysis indicates that the enhanced
incremental performance with coreset selection is primarily attributed to knowledge retention.
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5.3 Models that forget less, preserve the representations better

Here, we delve deeper into the key factor that drives enhanced knowledge retention. Specifically, we aim
to explore how different class-incremental learners’ perceptions evolved under different coreset methods
and fractions. To achieve this, we generate saliency maps, as illustrated in Figure 4, with the objective of
discerning where the model directed its attention after being trained with a coreset and compare against all
data samples. We find that models trained with the coresets exhibit a greater ability to retain focus on the
object itself, effectively capturing the essence of the image. In contrast, models trained on all data samples
tend to shift their focus to areas outside the main object. This insight sheds light on our earlier discussion
regarding the model’s knowledge retention or not forgetting ability, and highlights that coreset selection gives
more attention to relevant features.

Figure 4: Saliency maps from the first encountered task after completing all learning sessions. Models trained
with selected coresets exhibit enhanced perception capabilities in capturing the important parts of an input.
Note that we select top performing coreset selection methods across different class-incremental learners.
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Figure 5: DER’s representation of all classes on Split-CIFAR10 with varying coresets selected with GraphCut,
compared to the full samples. When it is trained with coresets, it exhibits superior ability to distinct
representations.
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Furthermore, we investigate how the model’s representation ability evolves as the coreset size changes,
providing insights on the relationship between coreset composition and class separability. To illustrate this,
in Figure 5, we employ DER to examine its representation of each class after completing all learning sessions.
Notably, when using a smaller coreset, such as 20%, the model demonstrates distinct separations between
classes, effectively preserving boundaries between different categories. This suggests that with fewer, more
concentrated samples, the model can maintain clearer distinctions.

However, as the coreset size increases, we observe a noticeable convergence in class representations, with
boundaries between classes becoming less distinct. This trend suggests that larger coresets, while offering
more data, may introduce redundancy or noise, causing overlap between classes and ultimately increasing the
misclassification during inference. This phenomenon underscores the delicate balance between data quantity
and quality, where more data does not necessarily translate into better generalization in class-incremental
learning.

6 Conclusion

Existing CL approaches predominantly use all available data during training yet not all samples carry equal
informational value and not need to go under the training process. In this study, we explore the underutilized
potential of selective learning from key samples, demonstrating that model performance is strongly influenced
by both the quality and quantity of data. Our empirical analysis yields three key findings that challenge and
extend current CL methodologies. First, we show that learning from coreset samples enhances incremental
performance. We attribute this improvement to better knowledge retention across tasks, achieved by reducing
redundancy and focusing on high-value information. Further, we observe that models trained with coresets
exhibit a refined perception, capturing essential features of input data more effectively and maintaining
clearer class distinctions by the end of all sessions. Additionally, our results reveal that the effectiveness
of coreset selection algorithms is highly context dependent, varying with both the chosen method and the
specific dataset. This underscores the necessity for CL-tailored coreset strategies to optimize performance
across diverse scenarios. These findings underscore the substantial impact of learning from coreset samples
on continual learning, and aims to provide a foundation for designing more effective CL models for practical
applications. Future studies could extend this work by examining coreset strategies in online or blurry
class-incremental learning contexts, potentially enhancing adaptability and efficiency in real-world scenarios.

Broader Impact Statement

This paper aims to advance the field of Machine Learning, especially on the subject of Class-Incremental
Learning. Besides the advancements in the field, it shows training with smaller but more representative
samples improves performance, thereby reducing memory and computation concerns.
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A Appendix

In this appendix, we first give more detailed explanations of the continual learning methods and coreset
selection methods used in our experiments. This includes a comprehensive overview of the baseline methods
and their key characteristics. Next, we provide more details about our implementation for the backbones we
used and the metrics that we evaluated. Then, we share the accuracy of each task after every learning session
for the Split-CIFAR100 dataset trained with ResNet18, similar to Figure 3. Finally, we provide more results
with pretrained ResNet18 and pretrained ViT on Split-CIFAR10 and Split-CIFAR100.

A.1 Continual Learning Approaches

In our evaluation, we selected a diverse set of continual learning methods to ensure a comprehensive analysis,
including regularization-based, replay-based, architecture-based, and prompt-based approaches. In total, we
evaluated seven different methods.

A.1.1 Regularization-based Methods

Regularization-based methods utilize a single backbone, meaning they rely on one fixed architecture without
altering its structure. These methods operate without accessing any memory data, working solely with
the data from the current task. This constraint makes them particularly challenging compared to other
approaches. To mitigate catastrophic forgetting, these methods regularize weight updates during the learning
of each new task. By carefully controlling the extent of weight changes, they ensure that the model retains
knowledge from previous tasks.

LwF is one of the most well-known and well-established regularization approaches in continual learning. It
tackles catastrophic forgetting by leveraging knowledge distillation to transfer knowledge from a previously
trained model (the teacher) to the current model (the student) as new tasks are introduced. When training
on a new task, LwF preserves the knowledge of earlier tasks by ensuring the current model reproduces the
predictions of the teacher model for the classes associated with prior tasks. Specifically, the teacher model
is frozen after completing a task and generates soft labels for the new training data, which represent the
probability distribution over previously learned classes. Formally, the learning process is guided by two losses:
cross-entropy loss LCE given in Eq 2 where yi is the true label and pi is the predicted probability for the i-th
input, and the distillation loss LKL given in Eq 3 where qteacher(xi) is the probability distribution from the
teacher model and qstudent(xi) is the probability distribution from the current model for the same input.

LCE = −
N∑

i=1
yi log(pi) (2)

LKL =
N∑

i=1
KL (qteacher(xi) ∥ qstudent(xi)) (3)

Cross-entropy loss ensures that the model performs well on the current task and the distillation loss helps
the model retain knowledge from previously learned tasks. It measures the difference between the predicted
probability distributions of the current model and the teacher model for previously seen examples. This is
typically calculated using the Kullback-Leibler (KL) divergence.

Finally, the CL loss LCL for LwF is the combination of the cross-entropy loss LCE and the distillation loss
LKL with a scaling factor of λ that controls the importance of the distillation loss:

LLwF
CL = LCE + λLKL (4)
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A.1.2 Replay-based Methods

Replay-based methods, on the other hand, employ an additional memory buffer to store a subset of past task
data. While learning new tasks, these methods simultaneously utilize the memory buffer samples M together
with current task samples N , allowing the model to retain a degree of knowledge about previous tasks. This
mechanism provides a practical way to alleviate forgetting.

ER is a key replay-based method in continual learning. It maintains a memory buffer containing data from
previous tasks and combines this replayed data with the new task data. The model then computes the
cross-entropy loss, given in Eq. 2, to evaluate how well the model’s predictions align with the true labels for
both the current task and the replayed task samples.

LER
CL = −

N+M∑
i=1

yi log(pi) (5)

iCaRL differs from the ER method by introducing a specific memory selection strategy, known as herding,
and incorporating a distillation loss into its training objective. While ER relies solely on cross-entropy loss
for current and replayed data, iCaRL combines cross-entropy loss Eq. 2 with a distillation loss Eq. 3 to
strengthen its knowledge retention mechanism, similar to LwF.

LiCaRL
CL = −

N+M∑
i=1

yi log(pi) + λLKL (6)

A.1.3 Architecture-based Methods

Architecture-based methods take a different approach by dynamically modifying the model’s backbone. When
encountering a new task, these methods either create a completely new architecture (a new model) or initialize
additional components. The newly added parts are then trained specifically on the new task data, enabling
the model to adapt structurally to task-specific requirements and reinforce knowledge retention.

DER initializes a new backbone for each task and aggregates features from both old (frozen) and new
backbones using an expanded fully connected layer. This enables the model to specialize for new tasks while
preserving knowledge from earlier tasks. A key component of DER is the auxiliary loss Laux in Eq. 7 which
promotes learning diverse and discriminative features for each task. Therefore, it uses temporary auxiliary
classes yaux and classifier by treating all old classes as one category and the new classes as another. Therefore,
the complete loss function for DER can be expressed as in Eq. 8 .

Laux = −
N+M∑

i=1
yaux

i log(paux
i ) (7)

LDER
CL = −

N+M∑
i=1

yi log(pi) + Laux (8)
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MEMO operates on the assumption that shallow network layers capture general patterns, while deeper
layers specialize in task-specific concepts. To accommodate new tasks, MEMO initializes fresh deep layers or
blocks for each task while preserving the shallow layers unchanged. Consequently, the model expands only
the deep layers for new tasks. MEMO employs the same loss function as the DER method, enhanced by the
inclusion of an additional lambda hyperparameter that controls the auxiliary loss:

LMEMO
CL = −

N+M∑
i=1

yi log(pi)− λLaux (9)

FOSTER combines feature boosting and feature compression in two stages to alleviate forgetting. In the
boosting stage, FOSTER adds a new feature extractor to the model when a new task arrives. The new
feature extractor learns residual features, which capture the differences (residuals) between the target outputs
and the predictions from the frozen old model. These residual features are then concatenated with the frozen
old features, creating a combined representation.

In the boosting stage FOSTER benefits from 2 different classifiers. The first one maintains the balance
between old and new classes by aligning the logits (Eq.10), and the second one explicitly improves the
representation of old classes by using only the new feature extractor’s output over all classes (Eq. 11). Finally,
similar to LwF and iCaRL, knowledge distillation is applied during this stage to align the outputs of the new
model with the frozen old model to further preserve the knowledge from previous tasks. Then the total loss
for FOSTER can be expressed as in Eq. 12.

LLA = −
N+M∑

i=1
yi log(paligned

i ) (10)

LFE = −
N+M∑

i=1
yi log(penhanced

i ) (11)

LFOSTER
CL = LLA + LFE + λLKL (12)

Following the boosting stage, where a new feature extractor is added to handle residual features for new
tasks, the compression process starts to address the problem of parameter growth caused by the dynamic
expansion of the model. In this final stage, the dual-branch architecture (frozen old model + new feature
extractor) is compressed into a single compact backbone.

A.1.4 Prompt-based Methods

Prompt-based methods represent a recently developed approach in the field of continual learning. Drawing
inspiration from prompt-tuning techniques in natural language processing, these methods use task-specific
prompts to guide the model’s behavior. Unlike traditional approaches that modify weights or architectures,
prompt-based methods largely retain the shared backbone architecture and instead focus on learning small,
task-specific prompts.
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CODA-Prompt learns prompt components that are dynamically combined with input conditioned weights
to create task-specific prompts. When a new task is introduced, a distinct prompt is initialized to capture
task-specific information. This prompt interacts with the shared backbone model to activate the relevant
representations for the current task. By localizing task-specific adaptations within the prompts, the model
can effectively generalize across tasks while minimizing interference. This leads to the model’s ability to retain
previously acquired knowledge, as the large pretrained backbone remains unchanged, while still efficiently
learning new tasks. Formally, to achieve this, CODA-Prompt uses the prompt loss in Eq. 13 that aims to
maximize the alignment between the prompts and the task-specific features while minimizing redundancy or
uninformative contributions. In this formulation, Pi represents the prompt embedding for block i, and Qi

denotes the corresponding input feature embedding for block i. The term ∥ · ∥2
2 is the squared L2-norm, which

measures the difference between the prompt and input embeddings. N is the number of transformer blocks
with prompts. This enforces that the prompt embeddings Pi are closely aligned with the input embeddings
Qi, ensuring task relevance.

Lprompt = 1
N

N∑
i=1
∥Pi −Qi∥2

2 (13)

Finally, CODA-Prompt combines the standard cross-entropy loss for classification with the prompt loss
summed over all transformer blocks to learn the task-specific prompts on top of pretrained ViTs:

LCODA
CL = −

N∑
i=1

yi log(pi) + Lprompt (14)

A.2 Coreset Selection Approaches

Coreset selection refers to the process of selecting a small, representative subset of data points from a given
larger original dataset D = {(xi, yi)}N

i=1 where xi are the input features and yi, such that the selected subset
(the coreset) can approximate the performance of the full dataset for a given machine learning task.

Random selection is a straightforward approach to dataset reduction. In this method, a fixed number or
proportion of data points is chosen uniformly at random from the original dataset. While this technique
does not account for the importance or representativeness of individual samples, it serves as a strong and
computationally efficient baseline. This method works by choosing I samples uniformly at random without
replacement from the original dataset and the selected coreset C can be written as:

C = {(xi, yi) | i ∈ I} (15)

Herding is a deterministic method for selecting a representative subset of data points, known as a coreset. It
focuses on capturing the overall structure of the dataset by ensuring that the selected samples approximate
the mean feature representation of the full dataset.

The method computes the mean of the features m = 1
N

∑N
i=1 ϕ(xi) where ϕ(xi) maps each data point to a

feature space, such as one generated by a neural network. The goal is to iteratively build a coreset C that
closely approximates this mean.

The algorithm starts with an empty coreset and a residual vector r = m, which keeps track of the difference
between the dataset mean and the cumulative contributions of the selected samples. At each step, the next
sample to include in the coreset is chosen by finding the data point xi whose feature vector ϕ(xi) has the
largest alignment with the residual vector r. This can be expressed as:

i∗ = arg max
i

r⊤ϕ(xi). (16)
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Once xi∗ is selected, it is added to the coreset, and the residual vector is updated by subtracting ϕ(xi∗). This
process is repeated until the desired number of samples is selected, resulting in the coreset C. By iteratively
reducing the residual, herding ensures that the selected coreset is highly representative of the original dataset.
This makes it a valuable approach for tasks requiring a compact yet informative subset of data.

Uncertainty coreset selection is a method that prioritizes data points where the model exhibits the highest
uncertainty in its predictions. The rationale is that these uncertain samples carry the most informative value,
as they highlight areas where the model is less confident and likely to benefit from further training.

For a model f(x) that outputs a probability distribution over classes, the uncertainty of a sample xi can
be quantified using measures such as entropy. The entropy for a prediction is computed as H(xi) =
−

∑
c∈C pc(xi) log pc(xi) where pc(xi) is the predicted probability for class c, and C is the set of all possible

classes. The uncertainty selection process involves computing H(xi) for all samples in the dataset and ranking
them by their uncertainty scores. The top k samples with the highest entropy are chosen to form the coreset:

C = {(xi, yi) | xi ranks among the top k in H(xi)}. (17)

By selecting the most uncertain samples, this method focuses on the regions of the data space where the
model requires additional learning, ensuring an informative and compact coreset, particularly effective when
resources for training are limited.

Forgetting coreset selection identifies data points that the model struggles to consistently classify correctly
during training. These are known as "forgotten examples" because their predictions frequently change from
correct to incorrect. By focusing on such challenging samples, this method selects a subset of data that is
highly informative for improving the model’s robustness.

During training, the model keeps track of whether it correctly predicts each sample at every training step.
Let’s denote the prediction correctness for a sample xi at a given step as a binary value; 1 if the prediction is
correct and 0 if the prediction is incorrect.

A forgetting event occurs when the model’s prediction for a sample changes from correct to incorrect as
training progresses. The forgetting score for a sample is simply the total number of forgetting events it
experiences during training. For example, if the prediction for xi flips from correct to incorrect three times,
its forgetting score would be 3. Samples with higher forgetting scores are more challenging for the model to
learn and retain. To form the coreset, the method ranks all samples by their forgetting scores and selects the
top k samples with the highest scores:

C = {(xi, yi) | xi ranks among the top k in high forgetting score} (18)

This approach ensures the coreset contains the most challenging and informative examples, which can help
the model learn and retain knowledge more effectively.

GraphCut coreset selection models the dataset as a graph to identify a subset of representative data points
by leveraging the relationships among samples. In this approach, each data points xi is represented as a node
vi ∈ V , and each edge eij ∈ E between nodes vi and vj represent weighted by a similarity metric s(xi, xj) in
a graph G = (V, E). A similarity metric s(xi, xj) with a scaling factor σ can be defined as:

s(xi, xj) = exp
(
−|xi − xj |2

2σ2

)
, (19)
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The goal is to form a coreset C by selecting a subset of nodes such that the cut value of the partition is
minimized while preserving representativeness. The cut value measures the total similarity between the
coreset and the remaining dataset, or is defined formally as the sum of the weights of the edges crossing
between the selected subset C and the remaining nodes V \ C as in Eq. 20. A lower cut value ensures that
the selected coreset is less redundant and has minimal overlap with the rest of the dataset. Therefore, the
final coreset C can be obtained by using Eq. 21 where k is the desired size of the coreset.

Cut(C, V \ C) =
∑

i∈C,j∈V \C

s(xi, xj). (20)

C = arg min
|C|≤k

Cut(C, V \ C), (21)

A.3 Implementation Details

Backbones. To offer a more comprehensive evaluation, we test both from scratch and pretrained models
across two architectures: ResNet18 (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2021).
In ResNet18 trained from scratch, we observe how well it can learn task-specific features directly from the
dataset. In contrast, the pretrained models Pretrained-ResNet18 and Pretrained-ViT are initialized
with ImageNet weights, giving them prior knowledge of visual patterns and structures, which helps them
start with a robust foundation for CL.

Metrics. We utilize average accuracy (ACC) which measures the final accuracy averaged over all tasks
and can be formulated as ACC = 1

T

∑T
i=1 AT,i where AT,i represents the testing accuracy of task T after

learning task i. To observe learning-forgetting dynamics more in detail, we utilize heatmaps that show the
accuracy of each task after every learning session instead of sharing a single numerical value.

A.4 Results for Split-CIFAR100 with ResNet18

Figure A illustrates the accuracy results on the Split-CIFAR100 dataset after each task, comparing various
class-incremental learning methods. For each method, we evaluate performance using both the full dataset and
the best-performing coreset, chosen based on size and selection criteria optimal for each approach. Notably,
the results show a pattern of improved accuracy when coresets are used, which aligns with observations made
in the Split-CIFAR10 experiments. This accuracy boost can primarily be attributed to reduced forgetting, as
training on a selected subset allows the model to retain important task information with less interference
from previous tasks. Minimizing redundancy and focusing on coreset samples, provides a more targeted
training approach and enhances overall model performance in class-incremental scenarios.

A.5 Results for Pretrained Resnet18 and ViT

We also explore the effects of learning from high-value samples when prior knowledge is available through a
pretrained backbone network. Although pretraining often provides a useful foundation, it does not have to
consistently yield performance gains, as pretrained parameters are subject to continual fine-tuning with each
new task. Our experiments on Split-CIFAR10 and Split-CIFAR100 datasets consistently demonstrate that
learning from coreset samples improves incremental performance when using ImageNet pretrained ResNet18
and ViT, aligning with our previous findings (Table A, Table B, and Table C).

In experiments with ViT, we further validate the efficacy of coreset selection by incorporating CODA-
Prompt, a prompt-based technique tailored to transformer architectures. The application of CODA-Prompt
demonstrates that coreset selection remains effective within prompt-based frameworks. Together, these results
suggest that coreset selection is a valuable strategy for enhancing class-incremental learning.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

82 0 0 0 0 0 0 0 0 0
55 84 0 0 0 0 0 0 0 0
47 66 88 0 0 0 0 0 0 0
46 56 82 79 0 0 0 0 0 0
43 50 72 75 81 0 0 0 0 0
41 48 67 67 84 53 0 0 0 0
39 46 62 60 75 77 66 0 0 0
38 44 60 57 68 67 80 52 0 0
38 43 58 53 61 57 72 79 58 0
36 41 55 51 56 53 67 72 81 46

Coreset Size (80%), Acc: 55.71%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

81 0 0 0 0 0 0 0 0 0
49 84 0 0 0 0 0 0 0 0
44 59 90 0 0 0 0 0 0 0
43 50 77 82 0 0 0 0 0 0
41 46 65 72 86 0 0 0 0 0
39 45 60 62 83 78 0 0 0 0
38 42 56 57 66 80 77 0 0 0
38 39 56 53 59 65 82 71 0 0
37 38 54 50 53 56 69 80 70 0
34 36 51 47 48 52 62 72 84 53

Coreset Size (100%), Acc: 53.81%

(a) DER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

82 0 0 0 0 0 0 0 0 0
68 79 0 0 0 0 0 0 0 0
61 68 79 0 0 0 0 0 0 0
58 63 72 73 0 0 0 0 0 0
57 60 68 64 75 0 0 0 0 0
55 58 66 58 65 73 0 0 0 0
54 56 65 56 63 59 72 0 0 0
51 55 62 54 61 55 60 71 0 0
50 52 61 52 58 53 56 63 68 0
48 51 61 50 56 50 54 59 57 66

Coreset Size (90%), Acc: 55.24%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
66 79 0 0 0 0 0 0 0 0
60 71 80 0 0 0 0 0 0 0
58 63 73 74 0 0 0 0 0 0
58 59 70 65 76 0 0 0 0 0
55 57 68 61 67 72 0 0 0 0
54 53 66 58 64 62 74 0 0 0
52 51 65 55 62 58 64 71 0 0
51 48 62 53 58 57 60 61 72 0
49 46 60 50 56 53 58 58 63 70

Coreset Size (100%), Acc: 56.19%

(b) FOSTER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

75 0 0 0 0 0 0 0 0 0
29 75 0 0 0 0 0 0 0 0
32 29 83 0 0 0 0 0 0 0
32 28 47 74 0 0 0 0 0 0
29 27 38 39 80 0 0 0 0 0
28 29 37 34 50 71 0 0 0 0
28 25 37 29 41 46 69 0 0 0
30 28 37 30 36 36 44 64 0 0
28 24 35 28 34 32 34 48 66 0
28 24 35 26 33 28 32 37 47 59

Coreset Size (90%), Acc: 34.94%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

76 0 0 0 0 0 0 0 0 0
27 76 0 0 0 0 0 0 0 0
28 30 84 0 0 0 0 0 0 0
28 29 48 76 0 0 0 0 0 0
29 25 38 40 80 0 0 0 0 0
27 26 36 34 50 74 0 0 0 0
28 23 35 31 40 48 71 0 0 0
26 23 34 28 35 34 49 68 0 0
25 23 34 27 32 32 37 51 65 0
24 24 33 25 31 29 30 39 52 55

Coreset Size (100%), Acc: 34.23%

(c) MEMO

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

82 0 0 0 0 0 0 0 0 0
50 81 0 0 0 0 0 0 0 0
39 45 88 0 0 0 0 0 0 0
37 34 60 83 0 0 0 0 0 0
35 30 44 54 88 0 0 0 0 0
31 29 41 40 61 83 0 0 0 0
31 23 38 34 45 61 87 0 0 0
28 26 38 31 38 40 57 85 0 0
29 23 35 28 34 36 40 59 87 0
28 22 34 28 33 29 35 45 64 83

Coreset Size (80%), Acc: 40.25%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
41 82 0 0 0 0 0 0 0 0
33 41 88 0 0 0 0 0 0 0
31 30 53 83 0 0 0 0 0 0
27 24 40 46 88 0 0 0 0 0
25 25 35 33 56 84 0 0 0 0
27 20 33 27 39 52 87 0 0 0
24 22 32 25 33 31 55 86 0 0
24 21 30 24 28 30 36 56 88 0
25 21 33 26 30 23 32 40 60 84

Coreset Size (100%), Acc: 37.45%

(d) iCaRL
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0
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T8
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T1

0

82 0 0 0 0 0 0 0 0 0
33 84 0 0 0 0 0 0 0 0
37 37 92 0 0 0 0 0 0 0
38 33 48 86 0 0 0 0 0 0
37 36 43 43 90 0 0 0 0 0
35 34 44 36 47 87 0 0 0 0
37 29 45 35 41 46 90 0 0 0
33 36 42 34 38 32 44 86 0 0
34 30 39 34 34 35 37 48 89 0
31 29 41 34 38 30 38 40 46 86

Coreset Size (90%), Acc: 41.19%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

79 0 0 0 0 0 0 0 0 0
32 84 0 0 0 0 0 0 0 0
37 33 92 0 0 0 0 0 0 0
36 32 46 86 0 0 0 0 0 0
36 32 44 40 91 0 0 0 0 0
33 32 43 36 43 87 0 0 0 0
34 25 43 33 38 43 89 0 0 0
30 28 42 33 36 30 42 88 0 0
32 28 38 31 33 35 34 44 90 0
30 27 40 32 38 28 36 36 45 85

Coreset Size (100%), Acc: 39.53%

(e) ER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
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T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
52 73 0 0 0 0 0 0 0 0
36 51 77 0 0 0 0 0 0 0
21 34 53 70 0 0 0 0 0 0
15 25 39 53 74 0 0 0 0 0
8 16 25 30 55 72 0 0 0 0
5 11 21 22 42 57 72 0 0 0
3 6 14 10 29 37 52 74 0 0
1 3 8 6 17 27 38 60 74 0
0 1 6 4 11 15 25 48 59 70

Coreset Size (90%), Acc: 23.91%
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T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
48 74 0 0 0 0 0 0 0 0
34 54 79 0 0 0 0 0 0 0
20 37 56 72 0 0 0 0 0 0
12 27 40 54 75 0 0 0 0 0
6 17 24 32 56 75 0 0 0 0
4 11 20 22 41 58 72 0 0 0
2 6 12 10 31 36 53 75 0 0
1 4 7 6 17 26 37 59 75 0
0 1 4 3 10 15 24 43 57 71

Coreset Size (100%), Acc: 22.82%

(f) LwF

Figure A: Accuracy [%] of each task after every learning session on different class-incremental learning
methods with Split-CIFAR100. Its results align with Split-CIFAR10 and again incremental performance
improves due to better knowledge retention.
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Table A: Accuracy [%] on Split-CIFAR10 with an ImageNet pretrained ResNet18 shows that training
with coreset samples improves incremental performance.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 40.18 ± 5.28 53.93 ± 3.36 61.35 ± 2.37 66.66 ± 2.36 67.07 ± 2.51 67.85 ± 3.30
Herding 57.35 ± 0.45 61.48 ± 1.32 65.84 ± 2.66 68.68 ± 3.74 71.36 ± 1.48 67.85 ± 3.30
Uncertainty 61.23 ± 0.14 63.38 ± 0.40 67.63 ± 1.37 70.75 ± 2.71 70.92 ± 2.08 67.85 ± 3.30
Forgetting 61.00 ± 0.23 65.02 ± 0.66 67.86 ± 1.84 71.72 ± 2.08 69.67 ± 2.78 67.85 ± 3.30
GraphCut 62.00 ± 2.03 64.87 ± 1.92 68.39 ± 0.98 71.72 ± 1.65 71.19 ± 2.77 67.85 ± 3.30

FOSTER

Random 42.82 ± 7.84 46.24 ± 2.57 60.15 ± 2.88 57.89 ± 4.07 58.32 ± 5.71 57.85 ± 3.09
Herding 48.72 ± 4.27 50.35 ± 2.35 54.76 ± 4.46 56.71 ± 2.53 57.06 ± 3.39 57.85 ± 3.09
Uncertainty 54.51 ± 1.48 58.51 ± 2.97 58.34 ± 3.54 56.85 ± 4.81 56.35 ± 3.38 57.85 ± 3.09
Forgetting 52.26 ± 0.45 55.52 ± 5.48 57.61 ± 3.53 57.65 ± 2.90 55.98 ± 2.98 57.85 ± 3.09
GraphCut 53.84 ± 3.70 59.27 ± 3.28 58.04 ± 3.86 57.57 ± 3.71 56.09 ± 2.59 57.85 ± 3.09

MEMO

Random 37.49 ± 4.08 43.77 ± 10.63 48.74 ± 7.63 53.90 ± 2.21 59.34 ± 4.88 55.65 ± 8.06
Herding 34.50 ± 7.48 44.94 ± 12.11 55.14 ± 7.53 62.84 ± 5.82 61.34 ± 5.19 55.65 ± 8.06
Uncertainty 43.02 ± 5.27 50.06 ± 6.13 54.55 ± 6.44 61.21 ± 5.79 62.00 ± 5.72 55.65 ± 8.06
Forgetting 37.64 ± 4.28 49.77 ± 8.80 54.98 ± 6.70 62.84 ± 5.78 61.84 ± 6.93 55.65 ± 8.06
GraphCut 47.23 ± 3.19 52.04 ± 8.08 55.96 ± 6.87 61.57 ± 5.18 61.37 ± 5.61 55.65 ± 8.06

iCaRL

Random 38.85 ± 0.13 47.22 ± 7.77 48.32 ± 3.87 48.97 ± 3.02 52.03 ± 5.62 53.37 ± 5.94
Herding 53.52 ± 2.71 55.21 ± 1.45 53.68 ± 6.33 55.42 ± 5.13 55.38 ± 4.59 53.37 ± 5.94
Uncertainty 53.72 ± 3.14 56.03 ± 1.67 52.81 ± 5.12 56.82 ± 6.18 54.73 ± 5.88 53.37 ± 5.94
Forgetting 53.20 ± 0.90 56.00 ± 4.88 54.76 ± 5.06 55.62 ± 5.33 54.98 ± 6.39 53.37 ± 5.94
GraphCut 57.99 ± 2.41 57.98 ± 3.45 57.03 ± 3.85 55.63 ± 4.50 57.79 ± 5.47 53.37 ± 5.94

ER

Random 41.21 ± 2.43 43.55 ± 6.68 43.21 ± 5.02 44.16 ± 6.60 44.56 ± 6.71 45.01 ± 5.56
Herding 38.28 ± 4.17 41.91 ± 3.25 47.91 ± 2.85 44.76 ± 7.06 43.17 ± 6.39 45.01 ± 5.56
Uncertainty 36.23 ± 3.22 40.28 ± 7.42 42.19 ± 6.85 44.01 ± 8.18 43.81 ± 5.51 45.01 ± 5.56
Forgetting 34.70 ± 3.03 42.90 ± 5.67 44.66 ± 6.07 44.41 ± 6.35 43.95 ± 6.01 45.01 ± 5.56
GraphCut 52.26 ± 3.93 50.82 ± 4.91 46.33 ± 5.23 44.35 ± 7.20 45.11 ± 7.77 45.01 ± 5.56

LwF

Random 30.80 ± 1.42 41.67 ± 1.89 45.95 ± 3.11 51.04 ± 0.38 54.74 ± 0.44 53.94 ± 0.79
Herding 17.65 ± 0.23 21.74 ± 3.19 26.41 ± 3.72 29.85 ± 6.65 31.53 ± 6.01 53.94 ± 0.79
Uncertainty 25.21 ± 5.02 26.38 ± 6.01 27.76 ± 6.16 30.68 ± 6.37 32.13 ± 6.92 53.94 ± 0.79
Forgetting 23.68 ± 1.81 26.99 ± 5.19 27.60 ± 5.33 30.74 ± 5.98 30.82 ± 6.81 53.94 ± 0.79
GraphCut 26.45 ± 5.28 25.23 ± 4.16 27.79 ± 5.35 31.05 ± 5.38 31.78 ± 5.26 53.94 ± 0.79
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Table B: Accuracy [%] on Split-CIFAR100 with ImageNet pretrained ResNet18. Training with coreset
samples improves the incremental performance also with a pretrained backbone.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 20.38 ± 3.27 30.82 ± 0.76 44.96 ± 0.28 53.41 ± 1.96 52.23 ± 0.84 55.85 ± 0.38
Herding 16.33 ± 4.78 22.13 ± 8.92 47.52 ± 2.47 55.51 ± 0.89 56.74 ± 1.09 55.85 ± 0.38
Uncertainty 30.03 ± 0.62 40.53 ± 0.98 52.21 ± 0.78 56.94 ± 0.97 57.22 ± 0.59 55.85 ± 0.38
Forgetting 30.08 ± 4.11 37.48 ± 5.50 51.88 ± 0.81 56.18 ± 1.53 56.16 ± 1.08 55.85 ± 0.38
GraphCut 28.20 ± 1.64 38.79 ± 1.66 50.94 ± 1.59 55.76 ± 0.68 56.95 ± 1.77 55.85 ± 0.38

FOSTER

Random 16.25 ± 0.27 19.71 ± 0.45 34.21 ± 3.55 50.80 ± 0.07 50.65 ± 1.36 56.63 ± 1.11
Herding 12.51 ± 0.03 17.86 ± 1.39 37.88 ± 1.58 54.25 ± 2.37 55.40 ± 2.13 56.63 ± 1.11
Uncertainty 14.87 ± 1.03 23.91 ± 0.86 45.93 ± 1.50 55.21 ± 2.26 56.65 ± 2.27 56.63 ± 1.11
Forgetting 18.44 ± 0.72 24.46 ± 1.84 44.04 ± 0.33 55.45 ± 2.08 56.30 ± 1.21 56.63 ± 1.11
GraphCut 17.87 ± 2.30 22.10 ± 3.81 44.94 ± 0.94 55.51 ± 1.93 56.60 ± 2.16 56.63 ± 1.11

MEMO

Random 17.21 ± 1.91 25.29 ± 0.42 38.54 ± 3.05 43.16 ± 2.88 46.32 ± 3.75 46.70 ± 3.64
Herding 10.94 ± 0.72 20.13 ± 0.21 36.26 ± 0.94 44.29 ± 0.75 46.87 ± 0.24 46.70 ± 3.64
Uncertainty 17.85 ± 1.05 24.54 ± 0.15 37.92 ± 0.73 44.87 ± 0.30 46.10 ± 0.57 46.70 ± 3.64
Forgetting 21.56 ± 0.52 28.20 ± 0.51 38.59 ± 1.06 44.49 ± 0.88 45.86 ± 0.58 46.70 ± 3.64
GraphCut 27.60 ± 5.53 33.44 ± 4.45 40.38 ± 0.13 44.54 ± 0.29 45.60 ± 0.08 46.70 ± 3.64

iCaRL

Random 20.09 ± 0.72 22.25 ± 0.93 30.08 ± 0.04 30.40 ± 1.16 33.60 ± 0.66 32.90 ± 0.80
Herding 18.46 ± 0.72 24.80 ± 1.56 32.74 ± 2.12 34.70 ± 2.10 34.74 ± 2.08 32.90 ± 0.80
Uncertainty 22.70 ± 0.23 27.82 ± 0.88 32.68 ± 1.42 33.44 ± 1.26 34.04 ± 1.65 32.90 ± 0.80
Forgetting 24.22 ± 0.69 30.00 ± 1.38 33.85 ± 2.05 34.16 ± 2.72 35.21 ± 2.10 32.90 ± 0.80
GraphCut 28.88 ± 0.34 30.93 ± 2.39 35.40 ± 1.56 34.17 ± 0.96 34.02 ± 1.47 32.90 ± 0.80

ER

Random 16.6 ± 3.59 22.35 ± 0.04 26.09 ± 0.34 25.42 ± 0.10 24.91 ± 0.16 24.58 ± 0.46
Herding 15.2 ± 0.8 19.9 ± 0.32 25.16 ± 0.97 25.94 ± 1.52 25.30 ± 0.83 24.58 ± 0.46
Uncertainty 14.4 ± 0.46 17.56 ± 0.62 22.78 ± 0.24 24.04 ± 0.14 25.58 ± 0.61 24.58 ± 0.46
Forgetting 19.01 ± 0.63 21.72 ± 0.14 25.57 ± 0.69 25.69 ± 0.89 26.26 ± 1.55 24.58 ± 0.46
GraphCut 27.01 ± 0.34 28.99 ± 1.63 27.52 ± 0.57 26.03 ± 1.43 25.43 ± 0.86 24.58 ± 0.46

LwF

Random 10.39 ± 0.36 12.63 ± 1.40 20.69 ± 0.70 22.78 ± 0.38 25.01 ± 0.46 24.31 ± 0.57
Herding 4.15 ± 0.11 5.44 ± 0.10 9.47 ± 0.84 13.11 ± 1.53 13.77 ± 0.96 24.31 ± 0.57
Uncertainty 7.42 ± 0.01 9.15 ± 0.22 11.00 ± 0.58 13.29 ± 1.18 14.46 ± 0.99 24.31 ± 0.57
Forgetting 7.26 ± 0.24 8.22 ± 0.17 10.89 ± 0.86 13.06 ± 1.14 14.04 ± 0.94 24.31 ± 0.57
GraphCut 6.59 ± 0.32 7.23 ± 0.32 11.13 ± 0.67 13.21 ± 1.21 13.65 ± 1.13 24.31 ± 0.57
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Table C: Accuracy [%] on Split-CIFAR100 with ImageNet pretrained ViT. Training with coreset samples
improves the incremental performance also with a pretrained backbone.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 61.51 ± 0.36 61.88 ± 1.00 64.39 ± 0.78 63.12 ± 0.02 64.10 ± 1.22 60.83 ± 1.93
Herding 68.25 ± 1.44 69.26 ± 1.15 70.07 ± 0.15 68.58 ± 1.03 68.88 ± 1.92 60.83 ± 1.93
Uncertainty 74.44 ± 0.37 71.30 ± 0.42 69.68 ± 0.16 68.92 ± 0.37 70.28 ± 0.18 60.83 ± 1.93
Forgetting 70.70 ± 2.70 73.10 ± 0.55 69.92 ± 1.23 68.15 ± 0.63 68.05 ± 0.09 60.83 ± 1.93
GraphCut 72.58 ± 0.27 72.29 ± 0.03 69.70 ± 1.58 68.88 ± 1.47 68.37 ± 2.21 60.83 ± 1.93

FOSTER

Random 72.51 ± 2.67 81.41 ± 0.67 84.97 ± 0.56 85.91 ± 0.28 86.35 ± 0.42 86.74 ± 0.30
Herding 68.84 ± 0.01 78.87 ± 0.34 83.68 ± 0.23 85.41 ± 0.34 85.58 ± 0.27 86.74 ± 0.30
Uncertainty 77.10 ± 0.59 82.68 ± 0.26 85.17 ± 0.23 86.03 ± 0.12 85.83 ± 0.19 86.74 ± 0.30
Forgetting 77.00 ± 1.53 82.61 ± 0.30 84.90 ± 0.39 85.74 ± 0.33 86.03 ± 0.24 86.74 ± 0.30
GraphCut 74.64 ± 0.79 79.72 ± 0.42 84.14 ± 0.08 85.09 ± 0.13 85.68 ± 0.41 86.74 ± 0.30

MEMO

Random 14.84 ± 0.20 17.87 ± 0.90 23.74 ± 5.85 27.24 ± 5.37 30.07 ± 7.65 36.12 ± 0.16
Herding 27.79 ± 1.15 24.68 ± 1.79 28.22 ± 2.03 31.02 ± 0.66 30.07 ± 0.45 36.12 ± 0.16
Uncertainty 29.21 ± 1.47 29.34 ± 1.07 32.13 ± 0.76 31.88 ± 2.99 30.95 ± 0.10 36.12 ± 0.16
Forgetting 35.14 ± 1.79 31.72 ± 0.71 29.29 ± 1.46 31.47 ± 2.11 31.00 ± 2.94 36.12 ± 0.16
GraphCut 33.74 ± 1.66 32.46 ± 2.07 33.45 ± 3.05 30.67 ± 3.23 28.38 ± 2.63 36.12 ± 0.16

iCaRL

Random 71.24 ± 1.50 71.79 ± 2.62 70.62 ± 1.56 68.30 ± 1.72 68.79 ± 2.38 66.03 ± 0.61
Herding 68.34 ± 0.21 69.85 ± 0.25 71.11 ± 0.48 70.72 ± 0.41 69.09 ± 0.59 66.03 ± 0.61
Uncertainty 74.88 ± 0.41 74.11 ± 0.14 70.61 ± 0.13 70.99 ± 0.34 69.20 ± 0.45 66.03 ± 0.61
Forgetting 73.21 ± 0.58 73.51 ± 0.40 71.91 ± 0.76 70.74 ± 0.23 70.61 ± 1.03 66.03 ± 0.61
GraphCut 72.74 ± 4.08 73.68 ± 1.78 71.72 ± 0.52 73.05 ± 2.42 73.59 ± 2.28 66.03 ± 0.61

ER

Random 69.52 ± 2.83 73.54 ± 1.81 73.59 ± 0.10 73.36 ± 0.16 72.39 ± 0.52 67.95 ± 0.86
Herding 67.47 ± 1.53 70.57 ± 0.20 71.43 ± 1.43 72.65 ± 0.60 72.24 ± 0.16 67.95 ± 0.86
Uncertainty 73.97 ± 0.25 72.71 ± 1.94 71.68 ± 0.38 72.68 ± 0.84 70.31 ± 0.37 67.95 ± 0.86
Forgetting 71.32 ± 0.73 71.31 ± 0.24 71.50 ± 1.06 72.00 ± 0.45 72.09 ± 0.27 67.95 ± 0.86
GraphCut 76.59 ± 0.35 76.39 ± 1.68 74.87 ± 0.46 70.09 ± 0.25 70.69 ± 0.66 67.95 ± 0.86

LwF

Random 52.76 ± 2.27 60.26 ± 2.62 64.73 ± 1.56 65.71 ± 0.70 65.35 ± 0.85 66.63 ± 1.41
Herding 22.99 ± 0.13 24.44 ± 0.13 27.57 ± 0.49 29.46 ± 0.67 31.10 ± 0.40 66.63 ± 1.41
Uncertainty 25.17 ± 0.60 26.27 ± 0.31 28.78 ± 0.26 30.19 ± 0.64 30.31 ± 0.04 66.63 ± 1.41
Forgetting 24.99 ± 0.29 26.50 ± 0.18 27.63 ± 0.74 31.22 ± 0.77 30.52 ± 0.44 66.63 ± 1.41
GraphCut 23.32 ± 1.24 25.84 ± 0.98 29.53 ±1.47 29.66 ± 0.45 31.82 ± 0.75 66.63 ± 1.41

CODA-Prompt

Random 78.99 ± 1.42 81.62 ± 1.89 84.01 ± 0.11 84.64 ± 0.38 85.45 ± 0.44 85.37 ± 0.79
Herding 73.21 ± 1.23 74.31 ± 1.19 83.21 ± 0.72 85.51 ± 0.65 85.73 ± 0.01 85.37 ± 0.79
Uncertainty 78.48 ± 1.02 82.32 ± 1.01 85.20 ± 0.16 85.64 ± 0.37 85.57 ± 0.92 85.37 ± 0.79
Forgetting 78.30 ± 1.81 82.48 ± 1.19 84.73 ± 0.33 85.73 ± 0.98 86.33 ± 0.81 85.37 ± 0.79
GraphCut 80.55 ± 1.28 83.33 ± 1.16 84.31 ± 0.35 85.26 ± 0.38 86.34 ± 0.26 85.37 ± 0.79
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