
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOW-RANK ADVERSARIAL PGD ATTACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial attacks on deep neural networks have become essential tools for
studying model robustness, with Projected Gradient Descent (PGD) being widely
adopted due to its effectiveness and computational efficiency. In this work, we
provide empirical evidence that PGD perturbations are, on average, low-rank, with
their magnitude concentrated in the bottom part of the singular value spectrum
across CIFAR-10 and ImageNet datasets and multiple architectures. Building on
this insight, we introduce LoRa-PGD, a simple low-rank variation of PGD that
directly computes adversarial attacks with controllable rank. Through extensive
experiments on different datasets and models from the RobustBench ModelZoo, we
demonstrate that LoRa-PGD systematically outperforms or matches standard PGD
in terms of robust accuracy and achieves performance comparable to AutoAttack
while requiring orders of magnitude less computational time. Additionally, we
show that models adversarially trained with LoRa-PGD are consistently more
accurate and more robust against full-rank attacks compared to standard adversarial
training, suggesting that low-rank perturbations capture important but otherwise
hidden vulnerability patterns.

1 MOTIVATION AND CONTRIBUTIONS

Adversarial attacks, characterized by subtle data perturbations that destabilize neural network predic-
tions, have been a topic of significant interest for over a decade Szegedy et al. (2013); Goodfellow
et al. (2014); Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2017). These attacks have evolved
into various forms, depending on the knowledge of the model’s architecture (white-box, gray-box,
black-box) Vivek et al. (2018), the type of data being targeted (graphs, images, text, etc.) Entezari
et al. (2020); Sun et al. (2022); Goodfellow et al. (2014); Zhang et al. (2020), and the specific
adversarial objectives (targeted, untargeted, defense-oriented) Yuan et al. (2019); Madry et al. (2017)
and parameter free Croce & Hein (2020).

While numerous defense strategies aim to broadly stabilize models against adversarial attacks,
independent of the specific attack mechanism Cisse et al. (2017); Galloway et al. (2018); Ghiasi et al.
(2024); Savostianova et al. (2024), the most effective and widely-used defenses focus on adversarial
training, where the model is trained to withstand particular attacks Madry et al. (2017); Wang et al.
(2019). Adversarial training is known for producing robust models efficiently, but its effectiveness
hinges on the availability of adversarial attacks that are both potent in degrading model accuracy and
efficient in terms of computational resources. However, the most aggressive attacks often require
significant computational resources, making them less practical for adversarial training. The projected
gradient descent (PGD) attack Madry et al. (2017) is popular in adversarial training due to its balance
between aggressiveness and computational efficiency.

Recent work has provided evidence that adversarial vulnerability may have a spectral origin. In
Jere et al. (2020), the authors investigate the dependency of robustness on the rank of images in a
classification dataset, with results suggesting that adversarial vulnerability may be caused by the
classifier’s dependency on small singular values of the input image. Similarly, Harder et al. (2021)
shows that adversarially perturbed images can be identified through a discriminator neural network
operating in the Fourier domain. These findings suggest that imperceptible adversarial examples
may result from the network’s dependency on “spectrally negligible” features of the input. This
perspective also suggests that norms measuring spectral discrepancies, such as the nuclear norm,
rather than norms focused on pixel-wise differences, such as the L2 norm, may provide different
insight into the nature of adversarial examples on images.
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Building on this line of work, in this paper, we observe that perturbations generated by PGD
predominantly affect the lower part of the singular value spectrum of input images, indicating that
these perturbations are indeed approximately low-rank. Additionally, we find that the magnitude
of PGD-generated attacks differs significantly between standard and adversarially trained models
when measured by their nuclear norm, which sums the singular values of the attack. This metric
provides insight into the frequency profile of the attack when analyzed using the singular value
decomposition and aligns with known frequency profiles observed under discrete Fourier and discrete
cosine transforms of PGD attacks Yin et al. (2019); Maiya et al. (2021).

Following these observations, we introduce LoRa-PGD, a simple yet effective low-rank variation
of PGD designed to compute adversarial attacks with controllable rank. Our results demonstrate
that perturbing only a small percentage of the image’s singular value spectrum can achieve accuracy
degradation comparable to full-rank PGD when the perturbation size is measured using the pixel-
wise L2 norm, or superior performance when measured with the nuclear norm, while requiring
smaller run time. Moreover, when used to adversarially train a model from scratch, the computed
low-rank perturbations prove more effective, resulting in models that are significantly more resilient
to adversarial attacks.

2 RELATED WORK

Following the seminal contributions of Szegedy et al. (2013); Goodfellow et al. (2014), the past
decade has witnessed significant efforts to understand the stability properties of neural networks.
This has led to the development of various adversarial attacks, categorized broadly into model-based
approaches Poursaeed et al. (2018); Laidlaw & Feizi (2019); Xiao et al. (2018); Song et al. (2018) and
optimization-based methods Moosavi-Dezfooli et al. (2016); Goodfellow et al. (2014); Madry et al.
(2019). Concurrently, several robustification strategies have been proposed to mitigate these attacks
Madry et al. (2017); Bai et al. (2021). A key challenge in these approaches is the dependency on the
availability of adversarial examples during the training phase, making the efficiency of generating
such examples a central concern. Furthermore, the perceptibility of adversarial attacks is another
critical factor that has been explored in various studies Croce & Hein (2019); Qin et al. (2019).

Adversarial Attacks and Training The discovery of adversarial examples has catalyzed extensive
research on developing robust models. Typically, ensuring robustness against adversarial attacks is
computationally intensive, as it often requires the generation of adversarial examples during training
Goodfellow et al. (2014); Xiao et al. (2018). However, adversarial training is not the only method
for achieving robustness. Other approaches involve imposing constraints on models to enhance
their robustness Leino et al. (2021); Savostianova et al. (2024); Zhang et al. (2022); Fazlyab et al.
(2023). The primary distinction between these approaches lies in their trade-offs: adversarial training
techniques generally offer higher robustness but are more expensive due to the need for real-time
adversarial example generation during training. In contrast, approaches aiming at improving intrinsic
model robustness may be less efficient in terms of robustness accuracy but are typically less expensive
and more general, in the sense that they offer robustness properties that do not depend on the training
data or the specific attack, and thus are more consistent across different scenarios.

Spectral and Frequency Properties of Adversarial Attacks Recent research has focused on the
spectral and frequency properties of adversarial attacks, revealing key insights into their nature. Jere
et al. (2020) investigate the relationship between adversarial robustness and the rank properties of
images, demonstrating that adversarial vulnerability may stem from classifiers’ dependency on small
singular values of input images. Similarly, Harder et al. (2021) show that adversarially perturbed
images can be detected through spectral analysis in the Fourier domain, further supporting the
connection between adversarial examples and spectrally negligible features. Additional studies
have explored frequency-domain characteristics of adversarial attacks Maiya et al. (2021); Luo
et al. (2022); Guo et al. (2020); Sharma et al. (2019); Yin et al. (2019), revealing that adversarial
perturbations often concentrate energy in specific frequency bands.

Low-Rank Structures Low-rank structures are widely explored and used in deep learning and sci-
entific computing to develop more effective and memory-efficient algorithms. Classical applications
range from singular value decomposition for image compression to tensor networks used for effi-
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Figure 1: Relative magnitude of singular value change for PGD-attacked images, demonstrating
the low-rank nature of adversarial perturbations. The plots show the average relative change in
singular value magnitudes across the entire spectrum for 5000 images from CIFAR-10 (left, green)
and ImageNet (right, blue) datasets and across ten different neural network models. The x-axis
represents the singular value index (ordered from largest to smallest), while the y-axis shows the
relative change in magnitude. Experimental details are described in Section 4.

ciently representing quantum wave functions, as well as neural network layers Chen (2018); Román
(2019); Ceruti et al. (2021); Pan et al. (2019). Low-rank methods are effectively used to develop
recommender systems Koren et al. (2009), latent factor models, and principal component analysis
Jolliffe & Cadima (2016); Yang (2021). Low-rank factorizations have also proven very effective in
deep learning, for their ability to provide efficient neural network post-training compression Wang
et al. (2020); Hsu et al. (2022); Yuan et al. (2023); Pan et al. (2019), compression during training
Lialin et al. (2024); Zhao et al. (2024); Schotthöfer et al. (2022); Idelbayev & Carreira-Perpinan
(2020); Novikov et al. (2015), and efficient fine-tuning with low-rank adapters Hu et al. (2022); Zhang
et al. (2023); Schotthöfer et al. (2025); Mao et al. (2024).

Despite the extensive application of low-rank methods in neural network optimization and com-
pression, their direct application to adversarial attacks remains underexplored. In this work we
address this gap by introducing LoRa-PGD, a simple and memory and time-efficient attack strategy
superimposing a low-rank structure in the perturbations.

3 LOW-RANK PGD-STYLE ATTACK

3.1 THE SINGULAR SPECTRUM OF PGD ATTACKS

Let us consider a general setup based on the image classification task. Let X ∈ C ⊆ RC×N×M be
an input data tensor with C-channels (C = 3 for RGB images) of sizes N ×M and Y ∈ RD the
target tensor. Assume also we have a model fθ : RC×N×M → RD that has been trained with respect
to a loss function ℓ : RD × RD → R. An untargeted adversarial attack on the input data X can be
naturally formulated as a perturbation δX∗ of bounded norm corresponding to the largest induced loss
change for the model output, or, in other words, a solution to the constrained optimization problem:{

δX∗ ∈ argmax
δX∈RC×N×M

ℓ(fθ(X + δX), Y )

s.t. ∥δX∥ω ≤ τ, X + δX ∈ C
, (1)

where ∥ · ∥ω is a generic norm applied channel-wise (see Definition A.2) and τ > 0 is the perturbation
norm or perturbation budget. The latter is used to control the size of the attack, and therefore it can be
interpreted as a measure of the perceivability of the adversarial perturbation. Note that, in practical
applications and for general neural networks, the optimization problem formulated in Equation (1) is
non-convex but the constraint is compact, guaranteeing the existence of at least one solution.

The choice of the norm ∥ · ∥ω influences the nature of the attack δX∗, with common choices being
pixel-wise Lp norms such as ∥ · ∥∞ (entry-wise maximum) and ∥ · ∥L2 (entry-wise Euclidean norm).
Importantly, the norm ∥ · ∥ω may directly affect both the effectiveness and the perceptibility of the
attack, see e.g. Beerens & Higham (2023); Sharif et al. (2018). Even though all norms are equivalent
in finite-dimensional vector spaces, they measure different aspects of the perturbation and an attack
that is small under one norm may still be large when measured with another norm and vice-versa.

Although obtaining a global optimizer δX∗ for adversarial attacks is challenging due to the problem’s
inherent complexity, effective approximations can be efficiently derived. One of the most widely
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adopted and computationally efficient methods is the Projected Gradient Descent (PGD) scheme
Madry et al. (2017). This method approaches the problem (1) by iteratively taking steps in the
direction of the (positive) gradient of the loss projected onto the unit ∥ · ∥ω-sphere.

Traditionally, PGD is applied to the flattened image tensor X , treated as a vector of pixels and
channels. However, this flattening process ignores the spectral structure of the image and thus
overlooks potentially important information in the attack. By reshaping the PGD attack back into a
tensor and analyzing the singular values of its channels, we observed an intriguing low-rank pattern.
Specifically, we observed that the PGD attack frequently influences only a small subset of the singular
values of the original image, implying that the perturbations produced by PGD are numerically of low
rank. Figure 1 illustrates this phenomenon: the figure compares the singular values of 5000 images
before and after a targeted attack computed using PGD, by showing the average relative change in the
magnitude of the singular values across the entire singular value spectrum. The images are collected
from the CIFAR-10 and ImageNet datasets and their attacks are computed using ten different standard
neural network models, later described in Section 4.

Building on this observation, in Section 3.2, we propose a variation of PGD attack which exploits
this implicit bias by directly superimposing a low-rank structure on the perturbations. This allows
more efficient attacks that require less memory allocation and are more effective than classic PGD
for a given compute time budget. This improved adversarial performance is also reflected in a
corresponding adversarial training robustness. When used to adversarially train a model from
scratch, the computed low-rank perturbations are much more effective, resulting in models that are
significantly more resilient to adversarial attacks.

3.2 LORA-PGD: LOW-RANK PGD ATTACK

Similar to what is done in the context of parameter-efficient adaptation Hu et al. (2022), we consider
here a variation of PGD that directly searches for a low-rank structured attack.

Recall that a PGD attack is a way to produce a fast approximate solution to (1). Precisely, for L2

based attacks, the final attack is produced as the limit point of a projected gradient ascent sequence

δXk+1 = Π
(
δXk + τ

∇δXℓ(fθ(X + δXk), Y )

∥∇δXℓ(fθ(X + δXk), Y )∥L2

)
, (2)

where Π is the projection onto the constraint set C. A similar formula can be obtained for the gradient
ascent direction computed on a generic Lp norm, as we recall in Appendix B. In typical image
applications, C describes the maximal and minimal values each RGB channel can take (thus, C is an
hypercube) and the projection with respect to the L2 metric can be computed in closed form, and it is
given by the Π = clamp entry-wise function. The final PGD attack approximates δX∗ and is used as
the candidate maximizer of the loss function on the constraint C.

A low-rank attack can be formulated by looking at a rank-constrained version of (1):{
δX∗ ∈ argmax

δX∈RC×N×M

ℓ(fθ(X + δX), Y )

∥δX∥ω ≤ τ,X + δX ∈ C, rank(δX) ≤ r
(3)

where rank is intended channel-wise, as detailed in Definition A.2. Given the complex geometrical
nature of the rank constraint, in the same spirit of Hu et al. (2022), one simple way to ensure it is
to superimpose a low-rank representation for the perturbation, i.e. find the solution of the following
optimization problem:

(δU∗, δV ∗) ∈ argmax
δU∈RC×N×r,

δV ∈RC×r×M

ℓ(fθ(X + δU ⊗C δV ), Y )

∥δU ⊗C δV ∥ω ≤ τ, X + δU ⊗C δV ∈ C
(4)

with ⊗C denoting the channel-wise tensor multiplication where each channel is the external product
of the corresponding modes in δU and δV . See Definition A.2 for a precise formulation. Given the
large dimension of the optimization problem for typical deep-learning models, an approximation
(δU∗, δV ∗) can be obtained in a PGD-like fashion by computing several steps of gradient ascent with
respect to the smaller variables δU and δV .
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Algorithm 1 Pseudocode of (LoRa-PGD): low-rank gradient attack

Require: X ∈ RB×C×N×M input tensor; Y target vector; r perturbation rank; τ perturbation size.
δU ← normalizeω(init([B,C,N, r]))
δV ← normalizeω(init([B,C, r,M ]))
for step in steps do
X̃ = clamp(X + τ · normalizeω(δU ⊗C δV ), 0, 1)

δU += ∇ω
δU ℓ(fθ(X̃), Y )

δV += ∇ω
δV ℓ(fθ(X̃), Y )

end for
δ = τ · normalizeω(δU ⊗C δV )

X̃ = clamp(X + δ, 0, 1)

In Algorithm 1, we present the pseudocode of the resulting LoRa-PGD ∥ · ∥ω-attack. We specify
that ∇ω refers to the gradient with respect to the norm ∥ · ∥ω as in Definition A.3 and that the clamp
function is the one defined in torch, which is performed entry-wise. Moreover, we specify that the
normalizeω function is just division by the norm, i.e. normalizeω(z) = z/∥z∥ω .

The scheme proposed in Algorithm 1 is a low-rank variation of the standard PGD. In fact, using the
update steps for δU and δV in Algorithm 1, we obtain the analogous of a simple PGD iteration:

δUk+1 = δUk +∇ω
δU ℓ, δVk+1 = δVk +∇ω

δV ℓ (5)

where the gradient is evaluated on the new image, perturbed as follows

X = clamp
(
X + τ normalizeω(δUk+1 ⊗C δVk+1)

)
.

Similar to PGD iteration, clamp is the closed-form projection on the data constraint C \X . In partic-
ular, note that the gradient scheme (5) remains computationally close to a basic PGD computation
since gradients ∇δU ℓ and ∇δV ℓ are one tensor multiplication away from the computation of the
PGD-gradient ∇δXℓ.

Note that an alternative approach to compute low-rank attacks is to perform standard PGD and
then project the resulting perturbation onto the set of rank r matrices at each step (or after a certain
number of steps). This approach is viable but not efficient. Projecting onto the set of rank r matrices
requires computing a truncated SVD, which is expensive and not well-integrated into standard
autodifferentiation libraries. We do not report a numerical comparison with this approach as in our
experiments, the performance obtained by this rank-projected PGD approach was the same as that of
Algorithm 1, while being almost one order of magnitude slower.

Nuclear Norm and Low-Rank Matrices The perturbation budget τ is typically measured in terms
of vector Lp norms, enforcing an upper bound on the size of the perturbation pixel-wise. However,
in order to measure the size of the perturbation from the spectral point of view, we additionally
consider here the nuclear norm, which sums the singular values of the perturbation. Precisely, if we
let R = min (N,M), then we set

∥X∥S1 =
1

C

C∑
i

R∑
j

σj(Xi,:,:) =
1

C

C∑
i

∥Xi,:,:∥S1

where σj(A) denotes the jth largest singular value of A. Notice that this definition coincides (up to a
constant factor) with the L1 norm of the singular value vector, which is known to induce sparsity
in the optimization problem. In particular, it represents a convex relaxation of the L0 Shatten norm,
and its usage is analogous to the use of the L1 norm as a convex surrogate for the L0 norm in
compressed-sensing problems or robust PCA Simon & Holger (2013); Candes et al. (2009).

4 EXPERIMENTS

In order to provide a reproducible comparison, RobustBench Croce et al. (2021) was used for pre-
trained models, adversarial-attacks-pytorch Kim (2020) library was used as a basis for
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Table 1: Comparison of robust accuracy ρ across different datasets, models and algorithms for 50
optimization steps. For each section (each τ ), the best result per column is given in bold, and the
second best is given in gray. AutoAttack is always the best performing one, but it is considerably
slower and is not accounted for when highlighting.

CIFAR-10 ImageNet Ranks
r = ·%RSt. Wa23 Re21 Au20 Ri20 St. Wo20 Li23 En19 Sa20

LoRa-PGD

∥
·∥

2
=

0.
2

0.315 0.928 0.885 0.91 0.838

∥
·∥

2
=

0.
1

0.098 0.737 0.451 0.562 0.556 10%
0.202 0.924 0.883 0.904 0.832 0.052 0.735 0.443 0.559 0.55 20%
0.15 0.922 0.88 0.901 0.828 0.04 0.735 0.441 0.557 0.549 30%

0.134 0.922 0.88 0.9 0.826 0.035 0.734 0.44 0.557 0.548 40%
0.126 0.922 0.88 0.9 0.826 0.032 0.734 0.439 0.557 0.547 50%

Classic PGD 0.163 0.921 0.879 0.9 0.825 0.048 0.733 0.436 0.556 0.546 100%
Autoattack 0.092 0.919 0.876 0.896 0.821 - - - - - 100%

LoRa-PGD

∥
·∥

2
=

0.
3

0.134 0.913 0.871 0.889 0.812

∥
·∥

2
=

0.
1
5

0.029 0.718 0.404 0.521 0.506 10%
0.062 0.905 0.864 0.878 0.798 0.011 0.715 0.393 0.515 0.5 20%
0.039 0.901 0.859 0.874 0.791 0.007 0.714 0.39 0.513 0.497 30%
0.031 0.9 0.858 0.872 0.79 0.006 0.714 0.387 0.51 0.497 40%
0.027 0.9 0.858 0.872 0.789 0.006 0.714 0.387 0.511 0.496 50%

Classic PGD 0.051 0.9 0.855 0.871 0.789 0.012 0.712 0.386 0.511 0.498 100%
Autoattack 0.015 0.896 0.848 0.861 0.78 - - - - - 100%

LoRa-PGD

∥
·∥

2
=

0.
4

0.052 0.897 0.851 0.862 0.777
∥
·∥

2
=

0.
2

0.008 0.7 0.359 0.474 0.453 10%
0.019 0.888 0.839 0.849 0.755 0.003 0.697 0.346 0.465 0.444 20%
0.01 0.882 0.831 0.844 0.746 0.003 0.696 0.34 0.463 0.441 30%

0.007 0.88 0.829 0.841 0.744 0.002 0.696 0.338 0.461 0.443 40%
0.006 0.879 0.829 0.841 0.743 0.002 0.696 0.337 0.461 0.442 50%

Classic PGD 0.018 0.878 0.827 0.842 0.74 0.004 0.695 0.343 0.467 0.448 100%
Autoattack 0.002 0.87 0.817 0.83 0.733 - - - - - 100%

the attack comparison, while the MAIR framework Kim et al. (2024) was used for adversarial training
experiments. Implementation of the experiments is included in the supplementary material.

Datasets We use standard benchmark datasets for attacks on image classifiers. Specifically, CIFAR-
10 Krizhevsky et al. (2009) and ImageNet Deng et al. (2009). The test sets contain 5000 examples in
both cases. The former dataset has 10 classes and the latter 1000 classes. The original resolution
of the images in the two datasets is substantially different: CIFAR-10 contains images whose size
is 3 × 32 × 32, while ImageNet contains images of size 3 × 256 × 256. In practice, as a result of
preprocessing ImageNet, the size is decreased to 3× 224× 224 for all models we used.

Models We tested LoRa-PGD both on different standard (non-robust) models and several adversari-
ally robust models from Robustbench ModelZoo Croce et al. (2021). As non-robust models, we used
WideResNet-28-10 for all CIFAR-10 experiments, and Resnet-50 for all the ImageNet ones.
As robust-models, we used Wang2023 Wang et al. (2023), Rebuffi2021 Rebuffi et al. (2021), Au-
gustin2020 Augustin et al. (2020), Rice2020 Rice et al. (2020) for all CIFAR-10 experiments,
and Liu2023 Liu et al. (2023), Salman2020 Salman et al. (2020), Wong2020 Wong et al. (2020),
Engstrom2019 Engstrom et al. (2019) for all the ImageNet ones.

Methods are compared in terms of robust accuracy ρ, which we recall in Definition A.1. This metric
represents the percentage of dataset images for which the adversarial perturbation leaves unchanged
the model’s output class.

Baselines. In the experimental section, we compare LoRa-PGD with the standard implementation
of the PGD attack Madry et al. (2017) and with AutoAttack Croce & Hein (2020).
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Figure 2: Comparison of different attacks’ time vs robust accuracy for the Standard model on
CIFAR-10 (top row) and ImageNet (bottom row).

4.1 RESULTS ON THE EFFECTIVENESS AND EFFICIENCY OF THE ATTACK

In Table 1 and Figure 2, we summarize the adversarial performance of LoRa-PGD against PGD and
AutoAttack. For LoRa-PGD, we tested relative ranks ranging from 10% to 50% of the maximum
rank.

In Table 1 we present results for 3 different choices of L2 norm of the perturbation, for each we
provide a comparison of robust accuracy for LoRa-PGD with different rank choices and using 50
steps, PGD, also with 50 steps, and AutoAttack on both CIFAR-10 and ImageNet and the model
choices described above. Note that AutoAttack results for ImageNet are not provided due to time
and memory constraints being exceeded by this method. We note that our method consistently
outperforms PGD for the standard models, while for robust models, it often outperforms standard
PGD on ImageNet and shows almost equal results for CIFAR-10. While AutoAttack outperforms
both LoRa-PGD and Classic PGD in terms of robust accuracy, it requires significantly more time to
compute the attack, as we discuss next.

Attacks’ Efficiency vs Run Time. In Figure 2, we compare the performance of each attack against
computational time. We run PGD and LoRa-PGD for different steps (5, . . . , 50) as well as AutoAttack.
For each of these implementations, we compute the average run time over 100 images. For both
CIFAR-10 and ImageNet, LoRa-PGD with 30%-50% rank size achieves a stronger robust accuracy
performance as compared to PGD at equal run time budget. While AutoAttack achieves better robust
accuracy, it requires up to almost two orders of magnitude more execution time. For additional figures
with wider range of τ , please refer to Supplementary material Figure 5-6

Nuclear magnitude of adversarial attacks Entrywise Lp norms are the typical choice for mea-
suring adversarial perturbations. However, our observations in Figure 1 suggest that PGD naturally
concentrates the strength of the attack on specific portions of the singular spectrum, which could
therefore be more effective. To investigate the impact that singular values have on the effectiveness of
an attack, we measure the size of PGD attacks on both standard and robust models in terms of their
nuclear norm. Figure 3 shows that, from the perspective of singular values, PGD generates larger
attacks on standard models, while the nuclear norm of the computed attacks is smaller when applied
to adversarially robust models. This observation aligns with recent analyses of the frequency profiles
of PGD attacks measured under Fourier and cosine transforms (Yin et al., 2019; Maiya et al., 2021).

In order to assess the capacity of LoRa-PGD to effectively concentrate the attack on relevant portions
of the singular spectrum, in Table 2 we compare PGD and LoRa-PGD, while allocating to each of the
perturbations the same nuclear norm budget. The results shown there demonstrate that LoRa-PGD
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Figure 3: Nuclear norms of PGD attacks (10 steps) averaged over 5000 images from CIFAR-10 (left)
and ImageNet (right) datasets.

Table 2: Comparison of robust accuracy ρ across different datasets, models and algorithms. All
attacks are computed with ∥δX∥2 = 0.5 for CIFAR-10 and ∥δX∥2 = 0.25 for ImageNet for classic
PGD and ∥δU ⊗C δV ∥S1 = ∥δX∥S1 for LoRa-PGD with 10 optimization steps. The best result per
column is given in bold, and the second best is given in gray.

CIFAR-10 ImageNet Rank
r = ·%RStandard Wa23 Re21 Au20 Ri20 Standard Wo20 Li23 En19 Sa20

∥∥
L

R
S

1
=
∥∥

PG
D

S
1

LoRa-PGD

0.002 0.718 0.679 0.675 0.508 0.001 0.146 0.568 0.265 0.237 10%
0.002 0.776 0.738 0.726 0.588 0.001 0.181 0.604 0.3 0.278 20%
0.002 0.808 0.765 0.753 0.63 0.001 0.194 0.616 0.314 0.29 30%
0.002 0.816 0.774 0.764 0.643 0.001 0.203 0.621 0.318 0.297 40%
0.001 0.822 0.779 0.771 0.651 0.001 0.208 0.624 0.322 0.296 50%

Classic PGD 0.018 0.85 0.801 0.813 0.698 0.004 0.304 0.675 0.425 0.399 100%

significantly outperforms the full-rank PGD baseline across all models and datasets when the size of
the perturbation is measured using the nuclear norm.

Ablation Study on Initialization The results shown above are obtained using a warm-up initial-
ization strategy where a single step of full PGD is initially computed and the resulting perturbation
is used to initialize the methods. To initialize the PGD attack, the initializing perturbation is taken
as is, while for LoRa-PGD, we perform an SVD decomposition and thus obtain U, V initializations
by truncating the decomposition to the desired rank. To assess the extent of the impact that the
initialization has on the performance of the approach, we report and compare in Table 2 the robust
performance for two additional initialization strategies. Specifically,

• Random Initialization. This approach follows a similar procedure to LoRA Hu et al. (2022).
Specifically, one of the matrices in the factorization is initialized from a Gaussian distribution,
while the other is initialized with zeros.

• Transfer Initialization. This initialization tests the ability of LoRa-PGD to function as a transfer
learner for adversarial attacks. To do this, we first compute a one-step full-rank PGD attack on
the standard model and use it as the starting point for both full PGD and LoRa-PGD on the other
models. For LoRa-PGD, we additionally compute the SVD on the attack to match the desired
initialization rank.

We do not report the performance of full-rank PGD as its robust accuracy was essentially not affected
by the choice of the initialization strategy.

4.2 RESULTS ON THE ADVERSARIAL TRAINING CAPABILITY

The results on adversarial performance in Table 1 for standard models indicate that LoRa-PGD can
be particularly competitive in adversarial training when used to produce a more robust model against
the specific choice of an attack. To show that, we conducted experiments to compare the effectiveness
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Table 3: Comparison of robust accuracy ρ across different datasets, models for LoRa-PGD. Each
block corresponds to a different initialization strategy. All attacks are computed with ∥δX∥2 = 0.5
for CIFAR-10 and ∥δX∥2 = 0.25 for ImageNet wit 10 steps. For each section (each initialization)
best result per column is highlighted.

CIFAR-10 IMAGENET RANK
r = ·%RSTANDARD WA23 RE21 AU20 RI20 STANDARD WO20 LI23 EN19 SA20

R
A

N
D

O
M

LORA-PGD

0.08 0.886 0.836 0.847 0.752 0.017 0.355 0.696 0.472 0.455 10%
0.042 0.871 0.821 0.831 0.729 0.01 0.349 0.692 0.464 0.445 20%
0.025 0.864 0.816 0.824 0.719 0.007 0.344 0.689 0.461 0.442 30%
0.02 0.862 0.813 0.822 0.716 0.006 0.342 0.689 0.462 0.441 40%

0.017 0.861 0.813 0.821 0.717 0.006 0.342 0.69 0.46 0.438 50%

T
R

A
N

S
F

E
R

LORA-PGD

0.07 0.887 0.836 0.846 0.75 0.014 0.356 0.695 0.469 0.449 10%
0.03 0.869 0.82 0.829 0.726 0.006 0.342 0.69 0.459 0.438 20%

0.015 0.861 0.814 0.821 0.716 0.004 0.338 0.687 0.454 0.433 30%
0.013 0.859 0.812 0.818 0.715 0.003 0.336 0.687 0.454 0.432 40%
0.009 0.858 0.81 0.817 0.714 0.003 0.335 0.686 0.453 0.43 50%

W
A

R
M

-U
P

LORA-PGD

0.07 0.883 0.833 0.844 0.747 0.014 0.347 0.692 0.46 0.44 10%
0.031 0.867 0.819 0.828 0.724 0.007 0.336 0.688 0.452 0.432 20%
0.015 0.862 0.812 0.82 0.713 0.004 0.33 0.688 0.447 0.427 30%
0.013 0.858 0.81 0.817 0.712 0.003 0.329 0.686 0.444 0.427 40%
0.01 0.857 0.809 0.816 0.711 0.003 0.326 0.686 0.446 0.426 50%

Table 4: Comparison of adversarial training results for ResNet18 and WRN28-10 models and CIFAR-
10 dataset. All attacks are computed with ∥δX∥2 = 0.5. Best results per column are highlighted.

ResNet18 WRN28-10

Rank
r = ·%R

Random Warm-up Random Warm-up

Cleanρ std Robustρ std Cleanρ std Robustρ std Cleanρ std Robustρ std Cleanρ std Robustρ std

L
oR

a-
PG

D 30% 84.75 0.08 61.24 0.12 83.88 1.4 61.46 0.19 85.95 0.68 65.16 0.2 86.82 1.04 65.46 0.1

40% 82.57 1.89 60.78 0.83 84.53 0.26 61.68 0.13 86.47 1.3 65.82 0.52 85.71 1.38 65.64 0.67

50% 83.22 1.94 61.59 0.44 84.32 0.29 61.68 0.14 86.59 1.3 65.91 0.26 86.52 1.17 66.15 0.32

Classic PGD 80.6 1.0 61.37 0.51 84.22 0.26 60.70 0.29 85.14 0.95 64.53 0.54 85.56 0.72 65.98 0.42

of adversarial training using LoRa-PGD against PGD given the same L2 norm budget. We provide
comparison on ResNet18 and WRN28-10 on CIFAR-10 in this subsection. We ran the experiment
5 times for each attack-initialization pairing and computed the average and standard deviation for
standard and robust accuracy. Robust accuracy is tested against a PGD attack computed with 10 steps.
For warm-up initialization, we use a pre-trained version of the corresponding model architecture that
was provided in the MAIR framework and computed one-step PGD attack to be used as initialization
for both PGD and LoRa-PGD. Remarkably, the results of these experiments show that adversarial
training with LoRa-PGD produces a more robust model against PGD attack than PGD attack itself,
despite using ranks that range from 30 to 40% of the maximal ones.

5 DISCUSSION AND LIMITATIONS

In this work, we observe that the classical PGD attack tends to generate perturbations that are
numerically low-rank. Thus, we introduced LoRa-PGD, a simple low-rank variation of the PGD
algorithm that efficiently generates adversarial attacks with a prescribed rank structure. At parity of
run time and perturbation norm, LoRa-PGD outperforms standard PGD in terms of robust accuracy
across a range of models and two image classification datasets. Furthermore, LoRa-PGD demonstrates
superior performance in adversarial training, yielding improvements in both clean and robust accuracy.
Finally, since LoRa-PGD shares some common features with the classical PGD attack, it also inherits
certain limitations. In particular, gradient-based methods are generally ill-suited for black-box settings.
Additionally, from a timing perspective, the computation of gradients imposes a lower bound on the
potential speed improvements.
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A NOTATION AND USEFUL DEFINITIONS

Definition A.1. (ρbust accuracy) We define the robust accuracy ρ through the use of the hard class
function

C(δX) = arg max
j=1,...,d

f j
θ (X + δX)

as follows:

ρ =
1

ND

ND∑
i=1

1C(0)(C(δXi))

Definition A.2. (Channelwise product, channelwise rank and channelwise norm)

Let A ∈ RC×N×K , B ∈ RC×K×M . We define the channelwise product of A,B, denoted by
A⊗C B ∈ RC×N×M as

(A⊗C B)cij :=

K∑
k=1

AcikBckj

We define the channelwise rank of the tensor as:

rank(A) := max
c=1,...,C

rank(Ac,:,:)

Moreover, for any matrix norm ∥ · ∥ω : RN×K → R+ denote with ∥A∥ω the channelwise norm, i.e.

∥A∥ω :=
1

C

C∑
c=1

∥Ac,:,:∥ω

Finally, we denote the transpose of a A⊤ the tensor A⊤ ∈ RC×K×N defined as:

A⊤
cij = Acji

Definition A.3. (Gradient direction induced by a norm) Consider a function ϕ : U ⊆ H → R defined
on a finite-dimensional real Hilbert space H with inner product h, U is an open subset of H , and let
∥ · ∥ be a norm on H . We say that a vector field G : U → H is the gradient of ϕ with respect to the
norm ∥ · ∥ if:

G(x) =

{
argmaxy∈H,∥y∥≤1 h(∇ϕ(x), y), if ∇ϕ(x) ̸= 0

0, otherwise
∀x ∈ U

where ∇ϕ(x) is the gradient induced by the inner product h, i.e. the only vector field that satisfies

h(∇ϕ(x), v) = Dϕ(x)[v], ∀v ∈ H

We denote G by ∇̂∥·∥ϕ when there can be confusion, or if ∥ · ∥ is an Lp norm, we will simply indicate
G = ∇̂Lp

ϕ.

Remark A.4. (Existence and uniqueness of ∇̂∥·∥) Since H is finite dimensional, the ball B∥·∥(0, 1]
is compact (and convex), and the functional y 7→ h(∇ϕ(x), y) is continuous and linear (therefore
convex). A minimizer exists because of the Weierstrass theorem. Moreover, if∇ϕ(x) = 0 then we
have uniqueness, and if ∇ϕ(x) ̸= 0, then ∇̂∥·∥ϕ(x) is unique because y 7→ h(∇ϕ(x), y) is strictly
convex.

We also observe that the minimum value of the optimization problem is the dual norm

min
y∈H,∥y∥≤1

h(∇ϕ(x), y) =: ∥∇ϕ∥∗.

Therefore, one even has a notion of magnitude for the gradient, which can be used in any optimization
algorithm as scaling for the learning rate. Moreover, for Lp norms, the dual is the usual Lq with
conjugate exponent.

In Appendix B, we will characterize entrywise-Lp gradients of functions defined on matrix spaces
H = RC×N×M with the Frobenius inner product h(X,Y ) = Tr(XY ⊤).
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B OPTIMAL Lp ASCENT DIRECTIONS: ∇̂Lp
GRADIENT IN TENSOR SPACES

Proposition B.1. (Optimal ascent direction in Lp spaces). Consider the optimization problem
Equation (1) where ℓ is substituted by its first order approximation around δX = 0, i.e.{

δX∗ ∈ argmax
δX∈RC×N×M

⟨∇Xℓ(fθ(X), Y ), δX⟩

∥δX∥Lp ≤ τ
, (6)

where ⟨·, ·⟩ represents the Frobenius inner product and∇X is the gradient with respect the Frobenius
metric.

Then the solution of Equation (6) is given by

δX∗ = τ
sign(∇Xℓ(fθ(X), Y ))⊙ |∇Xℓ(fθ(X), Y )|p−1

∥|∇Xℓ|p−1∥Lp

where ⊙ represents the entrywise product and the power is entrywise.

Proof. We use the Holder inequality, with 1
p + 1

q = 1:

⟨∇Xℓ(fθ(X), Y ), δX⟩ ≤|⟨∇Xℓ(fθ(X), Y ), δX⟩| ≤
∑
c,i,j

|∂Xcij
ℓ(δX)cij | ≤

≤
∑
c

∥∇Xℓ(fθ(X), Y )c,:,:∥Lq∥δXc,:,:∥Lp

and equality is obtained for
|δXcij |q = |∂Xcij

ℓ|p, ∀c, i, j
which implies that the optimal perturbation has the form

δX∗
cij = τ

sign(∂Xcij ℓ)|∂Xcij ℓ|p/q

∥|∇Xℓ|p/q∥Lp

By substituting the conjugate exponent q = p
p−1 , we get the claimed result.

Remark B.2. (Common cases, L2 and L∞ based attacks) We remark two particularly useful (and
used) cases of Proposition B.1 are the ones in which p = 2, p =∞. Given that the exponents are p, q
are conjugate, we have q = p

p−1 . Therefore

δX∗ = τ
sign(∇Xℓ(fθ(X), Y ))⊙ |∇Xℓ(fθ(X), Y )|(p−1)

∥|∇Xℓ|(p−1)∥Lp

which for p = 2 gives:

δX∗ = τ
∇Xℓ

∥∇Xℓ∥L2

,

which is the classical L2 based attack.

For p =∞, we have instead:

lim
p→+∞

|v|p−1

(
∑

i |vi|p(p−1))1/p
=

{
1, if |vi| = maxj |vj |
0, otherwise

Therefore, for p =∞, the optimal perturbation is:

δX∗ = τ sign(∇Xℓ(fθ(X), Y )),

which is the classical FGSM attack Goodfellow et al. (2014).

Moreover, for τ = 1, Proposition B.1 can be seen as a characterization of Lp gradient. In fact, in
view of Definition A.3, we have that

∇̂Lp

X ℓ(fθ(X), Y ) =
sign(∇Xℓ(fθ(X), Y ))⊙ |∇Xℓ(fθ(X), Y )|(p−1)

∥|∇Xℓ|(p−1)∥Lp
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Corollary B.3. (Optimal low-rank ascent direction). Consider the optimization problem Equation (1)
where ℓ is substituted by its first order approximation around δX = 0, i.e.{

δU∗ ∈ argmax
δU∈RC×N×r

⟨∇Xℓ(fθ(X̄), Y ), δU ⊗C δV ⟩

∥δU∥Lp ≤ τ
, (7)

where ⟨·, ·⟩ represents the Frobenius inner product and∇X is the gradient with respect the Frobenius
metric.

Then the solution of Equation (6) is given by

δU∗ = τ
sign(∇Xℓ(fθ(X̄), Y )⊗C δV ⊤)⊙ |∇Xℓ(fθ(X̄), Y )⊗C δV ⊤|p−1

∥|∇Xℓ⊗C δV ⊤|p−1∥Lp

where ⊙ represents the entrywise product and the power is entrywise.

Moreover, for X̄ = X + δU ⊗C δV , we have by the chain rule that

δU∗ = τ
sign(∇δU ℓ(fθ(X̄), Y ))⊙ |∇δU ℓ(fθ(X̄), Y )|p−1

∥|∇δU ℓ|p−1∥Lp

Proof. Immediate from Proposition B.1 and the chain rule.

Remark B.4. We remark that an analogous result holds for δU fixed and maximizing on δV .

C ADDITIONAL RESULTS

Additional information on perturbations In Table 5, we provide comparison of LoRa-PGD,
Classic PGD and AutoAttack for 5 choices of attack magnitude for both CIFAR-10 and ImageNet
with 5 models for each dataset. In Table 6, we show the changes of robust accuracy for Standard
model for different amounts of steps taken by either LoRa-PGD or Classic PGD. To provide additional
information on the time aspect we also provide Figure 6 and Figure 6 to show dynamic change of
robust accuracy with time (average time for 100 images). We remark that we cannot compare our
results with the ones given by Carlini-Wagner’s attack Carlini & Wagner (2017), since the size of the
maximal perturbation cannot be exactly enforced for every sample in the original formulation.

Visual comparison To further explore the differences between full-rank PGD and LoRa-PGD
attacks, we present a visual comparison in Figure 4 using images from the CIFAR-10 dataset.
Specifically, we compare the original unperturbed image with versions perturbed by PGD where
the L2 norm of the attack is fixed as ∥δX∥L2 = 0.5; LoRa-PGD with the same L2 norm ∥δU ⊗C

δV ∥L2 = 0.5, and for both rank=10%R and rank=50%R; LoRa-PGD with the nuclear norm adjusted
to match that of the full PGD attack, i.e ∥δU ⊗C δV ∥S1 = ∥δX∥S1 . All methods employ 10 gradient
steps on the CIFAR-10 dataset.
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Figure 4: Perceivability examples, CIFAR-10 dataset, Wang23 model

Figure 5: Comparison of different attacks’ time vs robust accuracy for the Standard model on
CIFAR-10.
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Figure 6: Comparison of different attacks’ time vs robust accuracy for the Standard model on
ImageNet.
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Table 5: Comparison of robust accuracy ρ across different datasets, models and algorithms, Steps=50

CIFAR-10 ImageNet Ranks
r = ·%RSt. Wa23 Re21 Au20 Ri20 St. Wo20 Li23 En19 Sa20

LoRa-PGD

∥
·∥

2
=

0.
1

0.662 0.941 0.9 0.926 0.862

∥
·∥

2
=

0.
0
5

0.334 0.757 0.489 0.599 0.598 10%
0.578 0.939 0.898 0.924 0.859 0.255 0.757 0.487 0.596 0.595 20%
0.526 0.939 0.897 0.923 0.858 0.226 0.756 0.485 0.595 0.594 30%
0.509 0.939 0.897 0.922 0.858 0.211 0.756 0.484 0.594 0.594 40%
0.5 0.939 0.897 0.922 0.858 0.205 0.756 0.484 0.595 0.594 50%

Classic PGD 0.514 0.938 0.896 0.922 0.857 0.23 0.756 0.482 0.594 0.593 100%
Autoattack 0.461 0.937 0.894 0.921 0.855 - - - - - -

LoRa-PGD

∥
·∥

2
=

0.
2

0.315 0.928 0.885 0.91 0.838
∥
·∥

2
=

0.
1

0.098 0.737 0.451 0.562 0.556 10%
0.202 0.924 0.883 0.904 0.832 0.052 0.735 0.443 0.559 0.55 20%
0.15 0.922 0.88 0.901 0.828 0.04 0.735 0.441 0.557 0.549 30%
0.134 0.922 0.88 0.9 0.826 0.035 0.734 0.44 0.557 0.548 40%
0.126 0.922 0.88 0.9 0.826 0.032 0.734 0.439 0.557 0.547 50%

Classic PGD 0.163 0.921 0.879 0.9 0.825 0.048 0.733 0.436 0.556 0.546 100%
Autoattack 0.092 0.919 0.876 0.896 0.821 - - - - - -

LoRa-PGD

∥
·∥

2
=

0.
3

0.134 0.913 0.871 0.889 0.812

∥
·∥

2
=

0.
15

0.029 0.718 0.404 0.521 0.506 10%
0.062 0.905 0.864 0.878 0.798 0.011 0.715 0.393 0.515 0.5 20%
0.039 0.901 0.859 0.874 0.791 0.007 0.714 0.39 0.513 0.497 30%
0.031 0.9 0.858 0.872 0.79 0.006 0.714 0.387 0.51 0.497 40%
0.027 0.9 0.858 0.872 0.789 0.006 0.714 0.387 0.511 0.496 50%

Classic PGD 0.051 0.9 0.855 0.871 0.789 0.012 0.712 0.386 0.511 0.498 100%
Autoattack 0.015 0.896 0.848 0.861 0.78 - - - - - -

LoRa-PGD

∥
·∥

2
=

0.
4

0.052 0.897 0.851 0.862 0.777

∥
·∥

2
=

0.
2

0.008 0.7 0.359 0.474 0.453 10%
0.019 0.888 0.839 0.849 0.755 0.003 0.697 0.346 0.465 0.444 20%
0.01 0.882 0.831 0.844 0.746 0.003 0.696 0.34 0.463 0.441 30%
0.007 0.88 0.829 0.841 0.744 0.002 0.696 0.338 0.461 0.443 40%
0.006 0.879 0.829 0.841 0.743 0.002 0.696 0.337 0.461 0.442 50%

Classic PGD 0.018 0.878 0.827 0.842 0.74 0.004 0.695 0.343 0.467 0.448 100%
Autoattack 0.002 0.87 0.817 0.83 0.733 - - - - - -

LoRa-PGD

∥
·∥

2
=

0.
5 0.021 0.879 0.827 0.835 0.739

∥
·∥

2
=

0.
25

0.003 0.681 0.32 0.428 0.405 10%
0.006 0.861 0.812 0.817 0.713 0.002 0.675 0.304 0.415 0.391 20%
0.002 0.853 0.805 0.808 0.703 0.001 0.672 0.297 0.41 0.386 30%
0.001 0.851 0.803 0.806 0.7 0.001 0.672 0.293 0.409 0.385 40%
0.001 0.849 0.802 0.805 0.699 0.001 0.672 0.294 0.409 0.384 50%

Classic PGD 0.006 0.85 0.8 0.811 0.696 0.002 0.674 0.297 0.422 0.394 100%
Autoattack 0. 0.835 0.785 0.786 0.681 - - - - - -
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Table 6: Comparison of robust accuracy ρ across different step quantity and perturbation sizes, τ for
Standard model.

CIFAR-10 IMAGENET RANKS
r = ·%R

τ = 0.1 0.2 0.3 0.4 0.5 0.05 0.1 0.15 0.2 0.25

S
T

E
P

S
=

5

LORA-PGD

0.73 0.482 0.312 0.21 0.144 0.425 0.199 0.096 0.052 0.029 10%
0.667 0.371 0.215 0.126 0.078 0.353 0.131 0.053 0.025 0.012 20%
0.627 0.315 0.162 0.087 0.05 0.321 0.104 0.039 0.016 0.008 30%
0.609 0.287 0.141 0.074 0.04 0.303 0.091 0.034 0.013 0.006 40%
0.602 0.274 0.127 0.065 0.032 0.292 0.084 0.03 0.012 0.006 50%

CLASSIC PGD 0.544 0.246 0.123 0.069 0.04 0.265 0.072 0.023 0.011 0.006 100%

S
T

E
P

S
=

10

LORA-PGD

0.699 0.41 0.229 0.127 0.069 0.391 0.154 0.061 0.028 0.013 10%
0.632 0.298 0.138 0.063 0.031 0.315 0.096 0.032 0.012 0.006 20%
0.588 0.24 0.093 0.04 0.015 0.285 0.075 0.023 0.009 0.004 30%
0.567 0.219 0.08 0.031 0.014 0.269 0.066 0.018 0.006 0.003 40%
0.557 0.206 0.07 0.026 0.01 0.259 0.06 0.016 0.006 0.003 50%

CLASSIC PGD 0.525 0.202 0.081 0.039 0.018 0.242 0.056 0.015 0.006 0.003 100%

S
T

E
P

S
=

25

LORA-PGD

0.674 0.345 0.158 0.07 0.033 0.353 0.117 0.037 0.011 0.005 10%
0.595 0.228 0.08 0.026 0.011 0.28 0.065 0.017 0.005 0.002 20%
0.544 0.176 0.049 0.014 0.004 0.247 0.05 0.011 0.004 0.002 30%
0.526 0.157 0.043 0.012 0.003 0.23 0.042 0.009 0.003 0.002 40%
0.518 0.146 0.038 0.01 0.002 0.222 0.04 0.009 0.002 0.001 50%

CLASSIC PGD 0.516 0.174 0.058 0.024 0.01 0.232 0.049 0.013 0.005 0.002 100%

S
T

E
P

S
=

40

LORA-PGD

0.663 0.322 0.138 0.057 0.023 0.339 0.102 0.031 0.008 0.003 10%
0.579 0.208 0.066 0.021 0.008 0.262 0.055 0.012 0.004 0.002 20%
0.529 0.157 0.041 0.011 0.002 0.232 0.043 0.008 0.003 0.001 30%
0.512 0.138 0.034 0.008 0.001 0.216 0.037 0.007 0.002 0.001 40%
0.503 0.128 0.029 0.007 0.001 0.211 0.034 0.006 0.002 0.001 50%

CLASSIC PGD 0.514 0.165 0.052 0.019 0.007 0.232 0.049 0.013 0.005 0.002 100%

S
T

E
P

S
=

50

LORA-PGD

0.661 0.314 0.131 0.051 0.02 0.334 0.098 0.029 0.008 0.003 10%
0.576 0.202 0.063 0.018 0.006 0.255 0.052 0.011 0.003 0.002 20%
0.524 0.149 0.039 0.009 0.001 0.226 0.04 0.007 0.003 0.001 30%
0.507 0.131 0.031 0.007 0.001 0.211 0.035 0.006 0.002 0.001 40%
0.498 0.123 0.027 0.007 0.001 0.205 0.032 0.006 0.002 0.001 50%

CLASSIC PGD 0.514 0.163 0.051 0.018 0.006 0.23 0.048 0.012 0.004 0.002 100%

21


	Motivation and contributions
	Related Work
	Low-Rank PGD-style attack
	The singular spectrum of PGD attacks
	LoRa-PGD: Low-rank PGD attack

	Experiments
	Results on the Effectiveness and Efficiency of the Attack
	Results on the Adversarial Training Capability

	Discussion and Limitations
	Notation and useful definitions
	Optimal Lp ascent directions: "0362Lp gradient in tensor spaces
	Additional results

