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Abstract

Recent advances in text-only “slow-thinking”001
reasoning have prompted efforts to transfer this002
capability to vision-language models (VLMs),003
for training visual reasoning models (VRMs).004
However, such transfer faces critical challenges:005
Effective "slow thinking" in VRMs requires vi-006
sual reflection, the ability to check the rea-007
soning process based on visual information.008
Through quantitative analysis, we observe that009
current VRMs exhibit limited visual reflec-010
tion, as their attention to visual information011
diminishes rapidly with longer generated re-012
sponses. To address this challenge, we propose013
a new VRM Reflection-V, which enhances vi-014
sual reflection based on reasoning data con-015
struction for cold-start and reward design for016
reinforcement learning (RL). Firstly, we con-017
struct vision-centered reasoning data by lever-018
aging an agent that interacts between VLMs019
and reasoning LLMs, enabling cold-start learn-020
ing of visual reflection patterns. Secondly, a vi-021
sual attention based reward model is employed022
during RL to encourage reasoning based on023
visual information. Therefore, Reflection-V024
demonstrates significant improvements across025
multiple visual reasoning benchmarks. Further-026
more, Reflection-V maintains a stronger and027
more consistent reliance on visual information028
during visual reasoning, indicating effective en-029
hancement in visual reflection capabilities.030

1 Introduction031

Recently, "slow-thinking" reasoning has emerged032

as a significant advancement in large language mod-033

els (LLM) domain, demonstrating remarkable ca-034

pabilities in solving complex reasoning tasks, such035

as OpenAI-o1 (Jaech et al., 2024) and DeepSeek-036

R1 (Guo et al., 2025). The superior performance037

of "slow thinking" LLM primarily benefits from038

its ability to perform "reflection" during reason-039

ing (Yan et al., 2024). This reflection mechanism040

allows models to check and revise intermediate041

<Think> Region A lies under the curve from x= -2 to 0, while region B
x=0 to 4. The average value of g(x) over  is ... Let's
verify this calculation again...This calculation is correct. <\Think> 

The final answer is 

Function   is shown in the
figure. The area of region A, B are 

,  respectively. If 
. what is the average value of  on the
interval ?

Question

Textual Reflection

Visual Reflection
<Think> Region A lies under the curve from x= -2 to 0, while region B
x=0 to 4. The average value of  over  is  ...
Let's check the image again, Region A lies below the x-axis, whereas
Region B lies above x-axis...<\Think> 

The final answer is 

Visual
Information
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Figure 1: Existing “slow-thinking” VLMs claimed “aha
moment” is often merely a textual reflection. We instead
highlight visual reflection, where VLM actively verifies
and refines its reasoning based on visual inputs.

steps before generating the final answer, thereby 042

avoiding errors that may arise from short-cut infer- 043

ence (Snell et al., 2024; Yang et al., 2025a; Cheng 044

et al., 2024), which is also called “aha moment”. 045

Inspired by this success, some researchers attempt 046

to integrate "slow thinking" into vision-language 047

models (VLMs), enabling the trained visual reason- 048

ing models (VRMs) to generate more accurate and 049

deliberate solutions (Wang et al., 2025; Chen et al., 050

2025; Tan et al., 2025). Specifically, they leverage 051

"slow thinking" LLMs to reason based on image 052

descriptions generated by VLMs, thereby introduc- 053

ing reflection patterns into reasoning data. These 054

visual reasoning data are often used for supervised 055

fine-tuning (SFT) (Thawakar et al., 2025; Xu et al., 056

2024), providing a cold-start initialization for sub- 057

sequent reinforcement learning (RL) (Huang et al., 058

2025; Tan et al., 2025). 059
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In this paper, we propose that the true “aha mo-060

ment” in visual reasoning arises when a model en-061

gages in visual reflection—that is, when it actively062

verifies and refines its reasoning based on the vi-063

sual input, as shown in Figure 1. However, current064

distillation-based approaches to training VRMs of-065

ten miss this crucial aspect. By transferring su-066

perficial reflective behaviors from LLMs trained067

solely on text, these methods encourage reasoning068

patterns that are detached from the visual modal-069

ity. This is because the cold-start data for these070

VRMs still originates from text-only reasoning on071

visual descriptions, and the RL stage uses rewards072

based solely on textual outputs (Huang et al., 2025;073

Meng et al., 2025). Thus, instead of promoting074

visual insight, these VRMs risk reinforcing tex-075

tual hallucinations and visual neglect (Zhong et al.,076

2024; Favero et al., 2024). As a result, VRMs may077

appear reflective while actually bypassing the vi-078

sual content, undermining both the reliability and079

robustness of their reasoning.080

Consistent with the previous discussion, we081

conducted a detailed analysis of existing VRMs082

and found that they struggle with visual reflec-083

tion. Specifically, experiments observe that exist-084

ing VRMs’ attention to and reliance on visual infor-085

mation decline rapidly as the number of generated086

tokens increases. And VRMs trained by distilling087

text-only reflection data even exhibit lower reliance088

on visual prompts than their backbone VLMs. This089

indicates that existing VRMs struggle to attend to090

and leverage visual information during reflection,091

thereby degrading into text-only reflection models.092

To address the aforementioned challenges, we093

propose a novel two-stage training strategy for094

training VRMs. In the cold-start stage, we focus on095

resolving the limitation of image description-based096

approaches in incorporating visual reflection pat-097

terns within training data. Specifically, we leverage098

a multi-modal agent, where LLMs interact with099

VLMs, to complete reasoning in an LLM-VLM100

interleaved way. This data construction paradigm101

ensures that visual information can be continuously102

accessed and repeatedly utilized during reasoning,103

thereby introducing a visual reflection pattern for104

VRMs to learn. In the RL stage, to further promote105

the visual reflection behavior learned from cold-106

start data, we introduce a visual attention based re-107

ward for group relative policy optimization (GRPO)108

(Shao et al., 2024). This reward encourages VRMs109

to consistently attend to visual information.110

Reflection-V, our VRM trained with the pro-111

posed strategy, achieves significant improvements 112

on benchmarks focusing on mathematical (Lu et al., 113

2023; Wang et al., 2024), multi-disciplinary (Yue 114

et al., 2024a,b), and general reasoning (Chen et al., 115

2024a). At the 7B scale, it is comparable to or even 116

surpasses several widely used very large VLMs, 117

like GPT-4o (Hurst et al., 2024) and InternVL2.5- 118

38B (Chen et al., 2024b). Notably, the aforemen- 119

tioned quantitative analyses and case study further 120

show that compared to the base model, Reflection- 121

V maintains more sustained attention to visual in- 122

formation and actively engages in visual reflection, 123

representing the emergence of the true "aha mo- 124

ment" in visual reasoning. 125

2 VRMs Struggle with Visual Reflection 126

In this section, we claim that existing VRMs strug- 127

gle to perform visual reflection. To support this 128

claim, we analyze the visual tokens’ role during 129

reasoning. Specifically, we quantify visual tokens’ 130

effect using the following metrics: attention weight 131

and a visual dependency measure. This observation 132

later motivates our proposed methodology. 133

2.1 Visual Attention Weight 134

To capture how the contribution of visual tokens 135

varies during reasoning, we track the attention 136

weights from response tokens to visual tokens as 137

more tokens are generated. Let Tres and Tvis denote 138

the sets of response and visual tokens, respectively. 139

For the h-th layer, let a(h)nj represent the attention 140

weight from the n-th response token to the j-th 141

visual token. Thus the total attention from the n-th 142

response token to Tvis is given by 143

Attn(n, Tvis) =

∑
h

∑
j∈Tvis

a
(h)
nj∑

h

∑
j∈Tvis

1
a
(h)
nj >0

. (1) 144

2.2 Visual Dependency Measure 145

Furthermore, after generating several tokens, we 146

drop the visual tokens and assess VRMs’ reliance 147

on the visual token during reasoning by measuring 148

the divergence in subsequent generations, which 149

is quantified based on the divergence between the 150

next-token prediction distributions with and with- 151

out visual tokens. We use the Hellinger distance 152

(Favero et al., 2024), defined as 153

Hdist(p, q) = 2−
1
2

√√√√ k∑
i=1

(
√
pi −

√
qi)

2 (2) 154
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Figure 2: Attention weights on visual tokens and the
visual dependency measure during reasoning on the
MMMU dataset. Both metrics decline sharply as more
tokens are generated, and RL-enhanced models (e.g.,
OpenVLThinker-7B) do not mitigate this decay.

to quantify the divergence between two probabil-155

ity distributions. Therefore, when the number of156

generated response tokens is n, the visual depen-157

dency measure VDM(n|Tvis, Tq) for a given image-158

question pair (Tvis, Tq) is given by159

Hdist
(
p(·|T<n

res , Tq, Tvis), p(·|T<n
res , Tq)

)
. (3)160

2.3 Diminishing Visual Attention and161

Dependency162

As Figure 2 illustrates, both the mean Visual De-163

pendency Measure on MMMU (Yue et al., 2024a)164

and the layer-wise attention from response tokens165

to visual tokens in VRM, decline sharply as gen-166

eration proceeds: after roughly 300 tokens, visual167

attention falls to only 20–30 % of its initial level.168

This analysis reveals that VRMs typically lack vi-169

sual reflection ability in long-chain reasoning, as170

they rarely refer back to visual tokens when per-171

forming reflective checking of reasoning process.172

Although widely used RL boosts VRMs’ rea-173

soning performance, it fails to equip them with174

visual reflection capability. Instead, it further rein-175

forces over-reliance on previously generated text.176

As Figure 2 shows, OpenVLThinker, RL based on177

Qwen2.5-VL, exhibits even lower focus and depen-178

dence on visual tokens during reasoning than the179

base model.180

3 Method 181

In the above analysis, we observe that as the length 182

of reasoning process increases, VRMs rapidly re- 183

duce their reliance on and attention to visual in- 184

formation. This limitation hampers their ability to 185

perform visual reflection and prevents them from 186

fully benefiting from "slow thinking" paradigms 187

like DeepSeek-R1 (Guo et al., 2025). To address 188

this problem, we propose a two-stage strategy for 189

training VRMs. This strategy consists of: (1) cold- 190

start initialization (Yang et al., 2025b) on reasoning 191

data with visual reflection, and (2) reinforcement 192

learning with a visual attention-based reward. In 193

the first stage, we leverage a multi-modal agent, 194

where LLMs interact with VLMs, to construct vi- 195

sual reasoning data exhibiting visual reflection, and 196

use it to perform supervised fine-tuning (SFT) on 197

the base VLM. The second stage applies GRPO 198

with the proposed reward function that explicitly 199

encourages sustained attention to visual tokens. 200

3.1 Reasoning Data with Visual Reflection 201

Construction 202

Existing visual reasoning studies typically rely on 203

LLMs to perform reasoning directly based on im- 204

age captions, thereby constructing visual reasoning 205

data (Liu et al., 2024; Yu et al., 2024; Huang et al., 206

2025). The absence of visual modality during rea- 207

soning makes it impossible for these reasoning data 208

to exhibit the visual reflection we claimed. Inspired 209

by recent advances in visual-language agents (Zhou 210

et al., 2024; Jian et al., 2024), we employ crafted 211

prompts to guide the interaction between the LLM 212

and VLM in completing the reasoning task. This 213

data construction paradigm ensures that visual in- 214

formation is continuously accessible and repeat- 215

edly utilized during reasoning, thereby introducing 216

a visual reflection pattern. The data construction 217

process is detailed in the following sections. 218

Visual Reflection Data Construction Based on 219

LLM-VLM Interaction. As shown in Figure 3, in 220

our data construction process, the LLM and VLM 221

interact by taking on the following three roles: 1) 222

Visual requester, played by the LLM, which deter- 223

mines what visual information is needed to answer 224

the question based on the existing reasoning con- 225

text and proposes a request to the VLM. During this 226

process, the CoT output from the VLM is added as 227

a partial solution to the reasoning context. 2) Vi- 228

sual responder, played by the VLM, replies to the 229

request made by the visual requester, revealing vi- 230
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Correct?

LLM & VLM Interaction Interation 

CoT: Since ... no circular face, 
it can’t be D. To distinguish 
between A, B, and C, I need to 
check for buttons/keypads 
(for telephones).

Request to Visual Expert: 
Does the image contain a 
keypad or buttons arranged in 
a grid, such as those found on 
a telephone?

Visual Info: The image ... 
However, ... do not resemble a 
keypad or buttons as typically 
found on a telephone. The 
design does not include any ... 
associated with a keypad.

Visual Requester
(LLM)

Visual Expert

Request

Reasoning Context

Question: What does the 
image resemble? Options: 
(A) Television, (B) 
Telephone, (C) Computer 
monitor, (D) Clock 

Interaction Inter 1:
Visual Requester: The most distinguishing... 
A clock typically has a circular clock 
face, .... Asking this will quickly narrow 
down answer.

Visual Expert: The image shows a 
geometric figure composed of orange and 
red squares and triangles. There are no 
circular faces or numbers arranged in a 
clock pattern …

Interaction Inter 2:
(To be expanded)

Visual Question (Input)

Input

Expand

Input

Expand

Summarizer

False

Reasoning Data with 
Visual Reflection

Question: What does the 
image resemble? Options: 
(A) Television, (B) 
Telephone, (C) Computer 
monitor, (D) Clock 

<Think>
To determine ... A clock typically has this 
circle, ...can’t be (D) ... Let's double check 
the image for any signs of buttons or 
keypads associated with a telephone... 
ruling out (B) Telephone. To distinguish 
between (A) and *(C), let’s focus on 
design specifics. ... Wait, the image’s ... 
lines align more with a computer 
monitor’s modern aesthetic. .... To sum up, 
the grid-like structure and lack of TV-
specific traits confirm the answer: (C) 
<\Think>
\boxed{C}

Visual Question 

Parsing

True

Figure 3: A workflow for constructing reasoning data with a visual reflection pattern. LLMs and VLMs perform
reasoning through interaction, ensuring that visual information is continuously acquired and repeatedly utilized,
thereby creating a visual reflection pattern in the reasoning process.

sual information related to the visual question. The231

visual description generated by the visual respon-232

der is added to the reasoning context. 3) Summa-233

rizer, played by the LLM, summarizes the existing234

reasoning context after each round of interaction,235

generating the final answer. If the generated answer236

does not match the ground truth, all outputs from237

the summarizer are discarded, and a new round of238

interaction begins. Otherwise, the output is added239

to the reasoning context, completing the reasoning240

process for the visual question.241

Post-generation processing. After construct-242

ing visual reflection data through LLM and VLM243

interactions, we perform the following steps to en-244

sure data quality: 1) Non-Reflection Filtering. We245

filter out the data where the summarizer produces246

the correct answer just after the first interaction.247

These samples lack sustained reliance on visual248

information, and the reasoning solution does not249

exhibit a visual reflection pattern. 2) Cohesion250

Enhancement. In the previous data construction251

process, the text generated across different VLM-252

LLM interaction rounds may lack coherence. We253

employ the LLM to process and refine the text into254

a cohesive reasoning process. All detailed prompts255

are provided in Appendix B.256

3.2 Visual Attention Based Reward257

Following existing works (Wei et al., 2025; Xiao258

et al., 2025; Zhang et al., 2025), we adopt GRPO,259

a rule-based reinforcement learning algorithm, to260

enhance the reasoning capabilities of VRMs. Build-261

ing on the original reward function, we introduce262

a visual attention–based reward to encourage the263

model to maintain sustained attention to visual to- 264

kens throughout the reasoning process while pre- 265

serving overall performance. 266

Specifically, based on the analyses in Section 2.1 267

that attention weights on visual tokens rapidly de- 268

crease as the number of generated tokens increases, 269

our reward rule follows the principle: For a VRM 270

reasoning process, VRMs receive a higher reward if 271

relatively higher attention to visual tokens is main- 272

tained after generating several tokens. Therefore, 273

the visual attention based reward is given by 274

rv =


∑

n>|Tres|/2
Attn(n,Tvis)∑

n<|Tres|/2
Attn(n,Tvis)

if ra = 1

0 if ra = 0

. (4) 275

Here, ra is the accuracy reward taking values 276

from {0, 1}. Refer to function (2), Attn(n, Tvis) 277

represents the average attention weight of the n-th 278

response token to the visual tokens (averaged over 279

all attention heads). |Tres| denotes the total number 280

of tokens in a VRM’s reasoning process. 281

Based on the observation shown in Figure 2, we 282

calculate the visual attention based reward using 283

the last layer where the attention to visual tokens is 284

most significant. The overall reward ro in GRPO is 285

the weighted sum of the accuracy reward ra, visual 286

attention-based reward rv, and format reward rf 287

(Shao et al., 2024), given by 288

ro = ra + λvrv + λfrf . (5) 289

λv and λf are scaling coefficients set to 0.5 and 290

0.1, respectively. 291
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Model Math-Reasoning Multi-Disciplinary General

MathVision MathVista MMMU MMMU-Pro M3CoT

Closed-Source Vision-Language Models

GPT-4o (Hurst et al., 2024) 30.4 60.0 69.1 51.9 †74.2
GPT-4V (Yang et al., 2023) 22.8 49.9 56.8 41.2 62.6

Open-Source Vision-Language Models

QwenVL2.5-3B (Bai et al., 2025) 21.2 62.3 †51.2 31.6 †55.6
QwenVL2.5-7B (Bai et al., 2025) 25.1 68.2 †54.3 36.9 †60.5
InternVL2.5-8B (Chen et al., 2024b) 19.7 63.6 56.0 30.5 †41.5
InternVL-2.5-38B (Chen et al., 2024b) 32.2 71.9 57.6 46.0 †68.9
LLaVA-OneVision-72B (Li et al., 2024a) 30.1 67.5 56.8 31.0 †61.5
Kimi-VL-16B (Team et al., 2025) 21.4 68.7 55.7 - -

Open-Source Vision-Language Reasoning Models

TVC-7B (Sun et al., 2025) 22.7 68.1 - - -
R1-VL-7B (Zhang et al., 2025) 24.7 63.5 44.5 - -
MM-Eureka-7B⋄ (Meng et al., 2025) 26.9 73.0 †51.3 †36.7 †63.5
R1-Onevision-7B⋄ (Yang et al., 2025b) 29.9 64.1 †48.7 21.6 †53.1
OpenVLThinker-7B⋄ (Deng et al., 2025) 25.3 70.2 52.5 37.3 †62.2

Ours (Training strategy emphasizing visual reflection)

Reflection-V-3B 27.9 66.3 56.9 35.7 62.9
Reflection-V-7B 33.9 73.3 61.3 42.7 71.1

Table 1: Performance of Reflection-V across various visual reasoning benchmarks, compared to existing VLMs. † indicates
results reproduced by us. ⋄ denotes vision-language reasoning Models also based on the Qwen2.5-7B series. Bold and underlined
scores represent the best and second-best performance among open-source models for each benchmark.

4 Experiments292

4.1 Experimental Setup293

Implementations. To construct the cold-start data,294

we use the open-source VLM Qwen-2.5-VL-72B295

(Bai et al., 2025) and a reasoning-capable LLM,296

QWQ-32B (Team, 2025), to interactively generate297

data. Our method is evaluated using the Qwen-298

2.5-VL-7B-Instruct as the base model. During299

the cold-start stage, we train for 3 epochs on 2300

NVIDIA H100 GPUs. The model, after cold-start301

initialization, is subsequently trained using GRPO302

with visual attention based reward for 12 epochs303

on 8 NVIDIA H100 GPUs, based on the Verl train-304

ing framework (Sheng et al., 2024; Zheng et al.,305

2025). For GRPO, 16K reasoning samples are306

collected from a diverse multimodal corpus. The307

detailed composition of training data is shown in308

Appendix C. Train details for cold-start initializa-309

tion and GRPO stages is provided in Appendix A.310

Benchmarks for Evaluation. We conduct a311

comprehensive experimental analysis to assess how312

our method improves visual reasoning. To en-313

sure a well-rounded evaluation, we select widely314

recognized visual reasoning benchmarks that em-315

phasize math, multi-disciplinary, and general rea-316

soning skills. For evaluating math reasoning, we 317

use MathVista (Lu et al., 2023) and MathVision 318

(Wang et al., 2024), which are standard tests for 319

visual reasoning models. To evaluate performance 320

across multiple disciplinary such as physics, chem- 321

istry, and computer science, we adopt MMMU and 322

MMMU-Pro (Yue et al., 2024a,b). Furthermore, 323

M3CoT (Chen et al., 2024a) is used to assess gen- 324

eral reasoning ability, as it covers a broad range 325

of knowledge-intensive and commonsense-based 326

reasoning questions. 327

4.2 Main Result 328

We evaluate the performance of our model, 329

Reflection-V, on visual reasoning benchmarks 330

across three categories: math, multi-disciplinary, 331

and general, as shown in Table 1. The results in- 332

dicate that our model significantly outperforms 333

Qwen2.5-VL (Bai et al., 2025) base model and 334

other open-source models of similar scale in rea- 335

soning capability. Even compared to existing 336

vision-language reasoning models based on RL, 337

Reflection-V-7B achieves a notable margin of im- 338

provement. Notably, Reflection-V-7B reaches com- 339

parable or even superior performance compared to 340

some widely used, large-scale closed-source and 341
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Model MathVision MathVista MMMU MMMU-Pro M3CoT

Reflection-V-3B 27.94 66.31 56.89 38.17 62.95
w/o VAR 26.52 65.62 55.79 36.56 61.79
w/o Cold-Start 24.27 64.21 53.98 34.75 59.55
w/o Cold-Start + VAR 23.59 63.90 53.21 33.97 58.81

Reflection-V-7B 33.71 73.58 61.33 42.71 71.07
w/o VAR 32.47 72.40 60.14 41.95 69.28
w/o Cold-Start 29.01 70.41 58.81 39.06 65.87
w/o Cold-Start + VAR 28.53 69.75 58.03 38.24 64.63

Table 2: Ablation results for cold-start based on visual reflection data and visual attention based reward on
performance improvement. VAR denotes visual attention based reward.

Model MathVision MathVista MMMU MMMU-Pro M3CoT

Reflection-V-3B 27.96 66.31 56.89 38.17 62.95
VR SFT → Cap&R SFT 25.00 63.95 54.22 33.59 60.41

Reflection-V-7B 33.88 73.58 61.33 42.71 71.07
VR SFT → Cap&R SFT 29.28 69.01 58.41 37.95 66.25

Table 3: Comparative results of cold-start initialization using data with visual reflection pattern and mage caption-
based reasoning data on visual reasoning performance improvement.

open-source VLMs. For instance, on MathVision342

and MathVista, Reflection-V-7B outperforms GPT-343

4o and InternVL-2.5-38B (Chen et al., 2024b). On344

MMMU and M3CoT, Reflection-V-7B surpasses345

InternVL-2.5-38B and LLaVA-OneVision-72B (Li346

et al., 2024a), and is comparable to GPT-4o (Hurst347

et al., 2024). On MMMU-Pro, Reflection-V-7B348

outperforms LLaVA-OneVision-72B and GPT-4V349

(Yang et al., 2023), while being comparable to350

InternVL-2.5-38B. In contrast to existing vision-351

language reasoning models, which show improved352

math reasoning but a decline in multi-disciplinary353

and general reasoning capabilities, Reflection-V354

demonstrates improvements across all three cat-355

egories. Additionally, experimental results show356

that the proposed method is effective across models357

of different scales.358

4.3 Ablation Study359

We ablate the cold-start and visual attention based360

reward components of our method to evaluate the361

impact of each design on enhancing visual reason-362

ing capabilities of VRMs. Experimental results in363

Table 2 demonstrate that both components signifi-364

cantly improve VRM’s performance. Notably, cold-365

start yields a particularly substantial performance366

gain. This indicates that emphasizing the continu-367

ous reliance and repeated utilization of visual infor-368

mation in SFT data significantly improves visual369

reasoning performance. Furthermore, with cold-370

start, the performance improvement from visual371

attention based reward becomes more pronounced. 372

We believe this occurs because cold-start, based 373

on visual reflection data, guides VRMs in how to 374

increase their attention to visual information. 375

We conduct a further ablation to validate the su- 376

periority of emphasizing visual reflection pattern 377

in cold-start data. Specifically, we replace the rea- 378

soning data containing visual reflection patterns 379

with image caption-based reasoning data (derived 380

from the same origin data) during cold-start ini- 381

tialization, then compare their performance across 382

benchmarks. As shown in Table 3, our method 383

outperforms the "caption then reasoning" data con- 384

struction paradigm by a significant margin. This 385

result also illustrates that the improved visual rea- 386

soning performance originates not from distilling 387

high-quality data from larger models but rather 388

from the intentional incorporation of visual reflec- 389

tion patterns in constructed data. 390

To further validate that the proposed method 391

improves performance by achieving the claimed 392

visual reflection, we present further analyses below. 393

4.4 Analyses 394

In Section 2, we demonstrate that existing VRMs 395

struggle with visual reflection through three met- 396

rics: visual attention weight, and visual dependency 397

measure. Based on these metrics, in this subsection, 398

we analyze whether the performance improvement 399

of Reflection-V genuinely stems from the training 400

strategy that emphasizes visual reflection. 401
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Figure 4: Attention weights (last layer) on visual tokens and visual dependency measure of Reflection-V-7B on
MMMU benchmark, compared to OpenVLThinker-7B and Qwen2.5VL-7B. The shown attention weights represent
the mean value across all samples. Visual dependency measure quantifies the difference in probability distributions
for next token prediction based on generated tokens, before and after discarding visual tokens. The light-green,
light-blue, and light-red bands represent the confidence intervals of the visual dependency measure for Reflection-V-
7B, Qwen 2.5-VL-7B, and OpenVLThinker-7B, respectively.

Our method leads to more sustained visual402

attention and dependence. We compare the at-403

tention weight of response tokens to visual tokens404

for Reflection-V and OpenVLThinker-7B of the405

same scale, at different generated tokens. We find406

that, in the middle and deep transformer layers,407

Reflection-V exhibits significantly higher attention408

weights to visual tokens than OpenVLThinker, the409

model also trained through SFT cold-start initializa-410

tion and GRPO, based on Qwen2.5-VL, as shown411

in Figure 4. As the number of generated tokens412

increases, the decrease in attention weight to vi-413

sual tokens is slower in Reflection-V-7B than in414

OpenVLThinker-7B. Furthermore, to investigate415

whether the proposed method enhances VRMs’ re-416

liance on visual information, we compare the visual417

dependency measure, as referred to in equation (3),418

of Reflection-V and OpenVLThinker at different419

generated tokens, as shown in Figure 4. The re-420

sults indicate that, benefiting from the emphasis on421

visual reflection, Reflection-V significantly miti-422

gates the diminishing of dependence on visual in-423

formation as generated tokens increase, compared424

to OpenVLThinker. To sum up, Reflection-V ex-425

hibits more sustained reliance on visual informa-426

tion. Experimental results also show that this fea-427

ture enhances visual reasoning accuracy.428

Better performance, sustained visual atten-429

tion, and reliance all originate from visual re-430

flection. As discussed earlier, the proposed method431

improves visual reasoning performance while main-432

taining visual attention and dependency during rea- 433

soning. Figure 5 presents a comprehensive example 434

demonstrating that these gains are indeed due to 435

the model’s visual reflection ability. In this exam- 436

ple, Reflection-V actively verifies and refines its 437

reasoning by rechecking the visual input. When 438

textual “Aha moments” like “Let’s check the im- 439

age again” appear, the visual attention weight rises 440

sharply during next-token prediction, representing 441

the true “aha moment” in visual reasoning. As 442

Figure 5 shows, visual reflection capacity enables 443

Reflection-V to reveal critical visual information 444

absent from the reasoning context, thereby infer- 445

ring the correct answer. Additionally, Figure 4 446

shows that the upper bound of the confidence inter- 447

val for visual dependency measure shows virtually 448

no decline with increasing generated tokens. This 449

suggests that during reasoning, as the number of 450

generated tokens increases, Reflection-V maintains 451

consistent dependency on visual tokens throughout 452

the generation process. The observed decline in av- 453

erage visual dependency measure stems from the re- 454

duced frequency of visual reflection as the number 455

of generated tokens increases. This phenomenon 456

aligns with the re-emergent, image-focused atten- 457

tion derived from visual reflection, which is ob- 458

served in Figure 4. These results demonstrate that, 459

when Reflection-V engages in visual reflection, it 460

maintains the same level of focus and reliance on 461

visual tokens as at the start of reasoning. 462
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Question: Find the Fourier series for the
sawtooth waveform shown in the image.
Options:

(A) 

(B) 

(C) 

(D) 

<think>\n The sawtooth waveform can be represented as a Fourier series, which is a sum of sine waves. The general form of the

Fourier series for a function f(t)  is given by:    For a sawtooth wave, the

coefficients  are zero because the wave is an odd function, and coefficients  can be calculated using the  formula

for Fourier series coefficients for an odd function:   For the sawtooth wave, the period ,

and the function  is:   ... </think> <Answer>D</Answer>

OpenVLThinker-7B

Reflection-V-7B
<think>\n To determine the correct Fourier series, we first analyze its periodicity. The image shows the waveform repeating
every . The Fourier series for a periodic function  with period  is given by:  where  . 
For a sawtooth waveform, the fundamental frequency is , so . The coefficients  are determined

by the function integral over one period. The Fourier series starting at  with a slope of  is: 

 Let's check the image again. The image shows a sawtooth waveform with a period of , as indicated by the
horizontal axis labels ( , , , , ...). The waveform starts at  and increases linearly to  at \(t = \pi\), then decreases
back to   at , and repeats ... </think> \boxed{C} 

Input

0

5

20

10

25
Visual A

ttention W
eight (

)

15

Visual Aha Moment!

Figure 5: Our model, Reflection-V, exhibits the visual reflection capacity that we claim, in contrast to other RL-based
visual reasoning models. The background color of tokens in the figure indicates the magnitude of the visual attention
weight. This visual reflection capacity is demonstrated by the recheck and attention to visual tokens again that
appear alongside "Aha moment", like "Let’s check the image again".

5 Related Works463

Large language model reasoning. Simulating464

human-like thought and stepwise reasoning en-465

hances large language model (LLM) performance.466

Techniques like chain-of-thought (CoT) prompt-467

ing (Wei et al., 2022; Yao et al., 2023), process468

rewards (Lightman et al., 2023), and search-based469

algorithms (Wan et al., 2024; Trinh et al., 2024), as470

well as crafted SFT datasets (Muennighoff et al.,471

2025), are commonly used. DeepSeek-R1 (Guo472

et al., 2025) recently demonstrated that large-scale473

RL with specific rewards can autonomously de-474

velop LLMs’ human-like reasoning, significantly475

improving complex task performance. However, its476

applicability to VLMs is still under investigation.477

Visual Reasoning model. Large VLMs typi-478

cally project inputs from non-text modalities into479

textual representations that LLMs can process,480

achieving strong performance in vision understand-481

ing (Li et al., 2023a; Liu et al., 2024; Bai et al.,482

2025; Chen et al., 2024b). Motivated by recent483

advances in LLM domain, researchers enhance484

Large VLMs reasoning with step-level reasoning485

SFT datasets (Xu et al., 2024) and RL (Yang486

et al., 2025b). However, as discussed earlier, these487

trained VRMs typically struggle with visual re-488

flection, leading VRMs to reason without visual489

grounding after many tokens are generated.490

Visual forgetting alleviation. Consistent with491

visual reflection that we claim, some recent studies492

emphasize alleviating forgetting visual cues dur-493

ing long-chain inference. M3ID (Favero et al.,494

2024) employs mutual information decoding to495

amplify image influence while weakening linguis- 496

tic priors, thereby promoting continuous reliance 497

on visual cues. But diminishing linguistic priors 498

lowers performance on complex reasoning tasks 499

(Bitton Guetta et al., 2024; Zhang et al., 2024). 500

TVC (Sun et al., 2025), a concurrent work, periodi- 501

cally replays visual tokens during inference to reuse 502

visual cues, but it cannot flexibly invoke visual re- 503

flection when required. Distinct from these works, 504

we embed visual reflection capability into VRMs 505

based on data generated by LLM-VLM interaction, 506

and reinforce this capability during RL. As a result, 507

the trained VRMs can actively refine their reason- 508

ing based on the visual input when needed. 509

6 Conclusion 510

In this paper, we propose that the true “aha mo- 511

ment” in visual reasoning arises when a model 512

engages in visual reflection—that is, when it ac- 513

tively verifies and refines its reasoning based on 514

the visual input. Through quantitative studies, we 515

reveal that existing VRMs struggle with such vi- 516

sual reflection. Therefore, to address this critical 517

challenge, we propose a two-stage training strategy 518

combining LLM-VLM interaction-driven reflective 519

reasoning patterns with visual attention based RL. 520

This training strategy significantly improves perfor- 521

mance across multiple benchmarks. Experiments 522

confirm that such improvement is derived from sus- 523

tained visual attention and reliance, demonstrating 524

the effectiveness of visual reflection. This work 525

establishes a foundation for integrating visual re- 526

flection into VRMs, narrowing the gap between 527

visual and text-only reasoning on complex tasks. 528
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Limitations529

Firstly, due to computational constraints, we could530

not conduct experiments like GRPO with models531

larger than 7B parameters. Thus, we limited our532

exploration to the 3B and 7B parameter scales. Sec-533

ondly, our cold-start initialization (based on con-534

structed reasoning data with visual reflection pat-535

tern), reinforcement learning (with visual attention536

based reward), and evaluation presently involve537

relatively limited categories of visual-language538

datasets. In future work, we plan to include a wider539

range of visual-language datasets covering diverse540

problem types to further evaluate the generalization541

ability of the proposed method.542
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Hyper-parameters Value
Epoches 3

Batch size 8
Warmup ratio 0.1

Gradient accumulation 4
Learning rate scheduler Cosine

GPUs 2
Optimizer AdamW

Table 4: The hyperparameters used during cold-start
initialization using the constructed data with visual re-
flection pattern.

Hyper-parameters Value
Hyper-parameters 12

Batch size 512
Micro Batch size 8

Warmup False
Rollout 16

Rollout Temperature 1.0
Rollout Top-P 0.99

Freeze Vision Tower True
KL divergence coefficient 1× 10−2

Learning rate 5× 10−6

Weight Decay 1× 10−2

GPUs 8
Optimizer AdamW

Framework Verl

Table 5: The hyper-parameters used during GRPO with
visual attention based reward.

A Implementation Details and871

Hyperparameters872

During supervised fine-tuning (SFT), we set the873

learning rate to 1e−5, apply a cosine scheduler with874

a 0.1 warm-up ratio, use BF16 mixed precision,875

adopt a batch size of 8, and train for 3 epochs. In876

the reinforcement-learning (RL) phase, we limit877

both prompts and responses to 2048 tokens and878

apply KL divergence with a coefficient of 1e−2.879

Each training step processes 512 questions with880

16 rollouts per question; rollout sampling uses a881

temperature of 1.0 and a top-p of 0.99. For valida-882

tion, we evaluate with the pass@1 metric and set883

the sampling temperature to 0.5. Detailed hyperpa-884

rameters are shown in Table 4 and Table 4.885

B Prompts 886

887

Prompt Templates of Visual Requester

You currently need to address the
following question: <question>
The information you need is in
an image, but you can’t see the
image right now. At the same time,
you’re not capable of complex
reasoning.

However, you can can consult
the following two Vision Expert
for help. You can ask him a single
question for information in the
picture, for example, you could
ask him, "What color is the bird
in the picture?"

Use the following format:
{’Thought’: ’analyze the problem
here.’, ’Question’:’Questions you
want to ask the Vision EXPERT’}

<split>
And the information you know
currently is as follows:
<info>

888

Prompt Templates of Visual Responder

Please answer my question in
a tone that provides a concise
description of the image. If it
is a yes/no question, focus on
describing the relevant visual
information, avoiding answering
with yes/no.

Question:
<question>

889

Prompt Templates of Summarizer

The following is the available
information:
<info>

890
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Please solve the following
problems step by step:
<question>

Use the following format:
Thought: Conduct an analysis
before you give me an answer.
Final Answer: "The final answer
you get when you have finished
reasoning."

891

Prompt Templates of Cohesion Enhance-
ment

Below is the reasoning steps for
the question <Question>, but there
are some disjointed parts marked
with "...". Please fill in the
gaps to improve coherence. You can
use some connecting phrases such
as "Let’s double check," "Let’s
check the image again," and "To
sum up," and "Wait".

Use the following format:
’Thought’: ’Reasoning steps’,
’Final answer’:’\boxed{...}’
The final answer (only choice
like A, B, C, D) MUST BE put in
\boxed{}.

The reasoning steps is:
"""
<Reasoning>
"""

892

Prompt Templates of RL Training and
Evaluation

You FIRST think about the
reasoning process as an internal
monologue and then provide the
final answer.
The reasoning process MUST BE
enclosed within <think> </think>
tags. The final answer MUST BE put
in \boxed{}.
Qustion:

893

Table 6: Detailed composition of the datasets used to
construct reasoning data with visual-reflection pattern
for cold-start initialization.

Datasets Samples

AI2D (Kembhavi et al., 2016) ∼ 0.5K
A-OKVQA (Marino et al., 2019) ∼ 0.5K
ScienceQA (Lu et al., 2022) ∼ 1.0K
CLEVR-Math (Johnson et al., 2017) ∼ 0.5K
ChartQA (Masry et al., 2022) ∼ 0.5K
TextVQA (Singh et al., 2019) ∼ 0.2K

Table 7: Detailed composition of the datasets used to
conduct GRPO.

Datasets Samples

Geo3K (Lu et al., 2021) ∼ 2.1K
AI2D (Kembhavi et al., 2016) ∼ 1.5K
TextVQA (Singh et al., 2019) ∼ 0.8K
ScienceQA (Lu et al., 2022) ∼ 3.0K
CLEVR-Math (Johnson et al., 2017) ∼ 0.5K
Super-CLEVR (Li et al., 2023b) ∼ 0.5K
MathV360K (Shi et al., 2024) ∼ 3.0K
A-OKVQA (Marino et al., 2019) ∼ 0.5K
OKVQA (Schwenk et al., 2022) ∼ 0.5K
ChartQA (Masry et al., 2022) ∼ 1.0K
ArxivQA (Li et al., 2024b) ∼ 1.0K
EMMA (Hao et al., 2025) ∼ 1.6K

C Data Resources 894

We collect data from a large multimodal corpus for 895

(1) constructing reasoning data with visual reflec- 896

tion pattern (cold-start initialization stage) and (2) 897

GRPO training, as summarized in Tables X and Y. 898

D Supplementary Experiments 899

Beyond the MMMU results reported in the main 900

text, Figures 6 and 7 evaluate Reflection-V-7B on 901

three additional visual-reasoning benchmarks span- 902

ning mathematical, multi-disciplinary, and gen- 903

eral domains. Figure 6 traces last-layer attention 904

from response tokens to visual tokens over 500 905

generated tokens: Reflection-V-7B consistently 906

launches with higher visual-attention strength than 907

Qwen2.5VL-7B and—crucially—decays far more 908

slowly, retaining about 30%–40% of its initial level 909

where baselines sink below 10%. This advantage 910

extends to other VRMs such as OpenVLThinker- 911

7B, whose cold-start and RL stages, as noted ear- 912

lier, further erode visual attention and dependency; 913

14



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

2

4

6

8

1 0

1 2

At
ten

tio
n W

eig
ht

 on
 M

MM
U 

(x1
0-3

)

G e n e r a t e d  T o k e n s

 2 8 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 1 5 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 2 8 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V
 1 5 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

2

4

6

8

1 0

1 2

1 4

At
ten

tio
n W

eig
ht

 on
 M

3C
oT

 (x
10

-3
)

G e n e r a t e d  T o k e n s

 2 8 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 1 5 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 2 8 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V
 1 5 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

2

4

6

8

1 0

1 2

1 4
At

ten
tio

n W
eig

ht
 on

 M
MM

U 
(x1

0-3
)

G e n e r a t e d  T o k e n s

 2 8 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 1 5 - t h  L a y e r  A t t e n t i o n  Q w e n 2 . 5 - V L
 2 8 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V
 1 5 - t h  L a y e r  A t t e n t i o n  R e f l e c t i o n - V

Figure 6: Attention weights (last layer) on visual tokens of Reflection-V-7B on multiple benchmarks, compared to
OpenVLThinker-7B and Qwen2.5VL-7B. The shown attention weights represent the mean value across all samples.
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Figure 7: Visual dependency measur of Reflection-V-7B on multiple benchmarks, compared to OpenVLThinker-7B
and Qwen2.5VL-7B. Visual dependency measure quantifies the difference in probability distributions for next token
prediction based on generated tokens, before and after discarding visual tokens.

Reflection-V therefore surpasses these models as914

well. Figure 7 reports the Visual Dependency Mea-915

sure (VDM): the upper bound of Reflection-V’s916

confidence interval remains nearly flat across all917

tasks, indicating sustained reliance on visual evi-918

dence, while the baselines exhibit a pronounced919

downward trend. These supplementary findings920

demonstrate that Reflection-V maintains robust vi-921

sual attention and dependency across diverse rea-922

soning scenarios, substantiating its superior visual-923

reflection capability.924

E Case Study925
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<think>
To determine the correct answer, I need to identify the location of the Sun (likely one
of the labeled points) in the elliptical orbit diagram. The Sun must be at one of the
ellipse’s foci. The diagram shows an ellipse with labeled points A, B, C, D, and E. The foci
of an ellipse are two fixed points inside the ellipse such that the sum of the distances
from any point on the ellipse to the two foci is constant. In the diagram:

- Point **A** is located on the ellipse.
- Points **B**, **C**, and **D** are inside the ellipse.
- Point **E** is outside the ellipse.

Let’s check the image again. The image show that point **B** is on the major axis of the
ellipse. For an ellipse, the foci are always located along the major axis, and the major axis
is the longest diameter of the ellipse. The major axis passes through the center of the
ellipse and connects the two farthest points on the ellipse.

To sum up, the Sun must be at one of the ellipse’s foci. Since the major axis passes
through both foci and the major axis is indicated by points A and B, the foci must lie
along this axis. Point **B** is on the major axis but inside the ellipse, so it cannot be a
focus. Points **C** and **D** are also inside the ellipse and not on the major axis, so
they cannot be foci. Point **A** is on the ellipse and on the major axis, but if it were a
focus, the ellipse would degenerate, which is impossible. Thus, the foci must be at points
**B**’s mirror image positions on the major axis, which are not explicitly labeled but
implied to exist at the ellipse’s ends along the major axis. Since the question asks for the
location of the Sun, which must be at one of the foci, and the diagram’s major axis
passes through point **B** (even though it is not a focus), the correct answer is the
labeled point **B**, as it lies on the major axis where the foci are located.
</think>

\boxed{E}

Question: The elliptical orbit of a planet around the
Sun is shown on the diagram. Which of the following
statements is true? 

Choices: 
(A) the eccentricity of the orbit is less thatn zero
(B) the eccentricity of the orbit is greater than 1
(C) the sun might be at point C
(D) the sun might be at point D
(E) the sun might be at point B

Visual
Information

Aha
Moment

Final
Answer

Figure 8: Case study 1 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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<think>
To determine where dopamine has its effect, I need to identify the receptor sites on the
postsynaptic neuron, which are likely labeled in the figure. In the image:

- **E** is shown as black structures on the surface of the postsynaptic neuron.
- These structures are likely dopamine receptors, as they are the sites where
neurotransmitters bind to initiate the effect

Thus, the label **E** represents the receptor sites on the postsynaptic neuron.

Wait, let me confirm the labels again to ensure accuracy. To determine where dopamine
has its effect, I need to confirm which label corresponds to the receptor sites on the
postsynaptic neuron where neurotransmitters bind.

The label **E** in the figure is shown on the surface of the postsynaptic neuron. These
labels are depicted as black structures, which likely represent receptor sites. The synaptic
cleft, labeled **D**, is filled with neurotransmitters (indicated by the black dots), ...

To sum up, the receptor sites (E) are the final point of action for dopamine.The
neurotransmitter dopamine binds to receptor sites on the postsynaptic neuron to produce
its effect. From the information provided, label E is described as black structures on the
postsynaptic neuron that face the synaptic cleft (labeled D). Neurotransmitters (likely
dopamine) are shown in the synaptic cleft (D), and their binding to the receptor sites on
the postsynaptic neuron (labeled E) is implied. Since dopamine binds to these receptor
sites to initiate the effect, E represents the site of action for dopamine. The other labels
(A, B, C, D) are associated with structural or functional elements of the synaptic region
but are not explicitly described as receptor sites. 

Final Answer:The neurotransmitter dopamine has its effect at label **E**.
</think>
\boxed{E}

Question: In the figure above, where does the
neurotransmitter dopamine have its effect?

Choices: (A) A, (B) B, (C) C, (D) D, (E) E

Visual
Information

Aha
Moment

Final
Answer

Figure 9: Case study 2 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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<think>
To determine the extent of the Han dynasty as shown in the image, key factors include
the geographic reach, urban centers, or territorial expansions compared to previous
dynasties... The image depicts a map of ancient China, showing the extent of the Han
dynasty. The map includes several key features:

1. **Cities and Capitals**: The map highlights major cities such as Chang'an (the capital
of the Western Han dynasty) and Luoyang (the capital of the Eastern Han dynasty).
These cities are marked with labels, indicating their significance during the Han period.

2. **Geographical Features**: The map shows major rivers, including the Huang He
(Yellow River) and the Chang Jiang (Yangtze River). These rivers are marked with labels,
providing context for the geographical layout of the Han dynasty.

3. **Borders and Territorial Expansion**: The map indicates the approximate territorial
limits of the Han dynasty, showing significant expansion compared to earlier Chinese
dynasties. 

4. **Place Names**: The map includes various place names, such as Yan, Taiyuan, and Yan,
which correspond to important regions or administrative centers during the Han dynasty.

Overall, the map visually represents the territorial expansion and administrative centers
of the Han dynasty, highlighting significant geographical and political changes compared
to previous Chinese dynasties...

Let’s double check the image again to confirm if there are explicit labels or markers
indicating political unity or territorial comparisons to earlier dynasties.

The map do not explicit labels comparing the Han dynasty’s extent to previous dynasties.
The Great Wall is marked, indicating northern borders, but no text explicitly states
"borders of previous Chinese dynasties." ...Final Answer:C
</think>

\boxed{C}

Question: Which of the following best explains the
extent of the Han dynasty as shown in this picture?

Choices: 
(A) The Han dynasty faced few geographical
challenges, which allowed for rapid expansion.
(B) The Han dynasty established cities as centers
for religious rituals and sacrificial ceremonies.
(C) The Han dynasty imposed political unity where
there had previously been competing states.
(D) The Han dynasty failed to expand borders of
previous Chinese dynasties.

Visual
Information

Aha
Moment

Final
Answer

Figure 10: Case study 3 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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