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ABSTRACT

We introduce Einstein Fields, a neural representation designed to compress compu-
tationally intensive four-dimensional numerical relativity simulations into compact
implicit neural network weights. By modeling the metric, the core tensor field of
general relativity, Einstein Fields enable the derivation of physical quantities via
automatic differentiation. Unlike conventional neural fields (e.g., signed distance,
occupancy, or radiance fields), Einstein Fields fall into the class of Neural Tensor
Fields with the key difference that, when encoding the spacetime geometry into
neural field representations, dynamics emerge naturally as a byproduct. Our novel
implicit approach demonstrates remarkable potential, including continuum model-
ing of four-dimensional spacetime, mesh-agnosticity, storage efficiency, derivative
accuracy, and ease of use. It achieves up to a 4, 000-fold reduction in storage
memory compared to discrete representations while retaining a numerical accuracy
of five to seven decimal places. Moreover, in single precision, differentiation of
the Einstein Fields-parameterized metric tensor is up to five orders of magnitude
more accurate compared to naive finite differencing methods. We demonstrate
these properties on several canonical test beds of general relativity and numerical
relativity simulation data, while also releasing an open-source JAX-based library:
https://github.com/AndreiB137/EinFields, taking the first steps to studying the
potential of machine learning in numerical relativity.

1 INTRODUCTION
General relativity (GR) describes gravity as the curvature of four-dimensional spacetime, encoded in
the metric tensor and governed by the Einstein field equations (EFEs), a system of coupled, nonlinear
hyperbolic-elliptic PDEs. Exact solutions are available only for idealized cases, so numerical
relativity (NR) has become essential for accurate modeling of astrophysical events. Notable successes
of NR include the high-precision modeling of black hole mergers (Abbott et al., 2016a;b;c), high-
precision binary neutron star merger simulations (Hayashi et al., 2025), and neutron star–black hole
systems (Abbott et al., 2017). NR has also been central to the confirmation of gravitational waves
(GWs) detected by LIGO and Virgo interferometers, leading to Nobel-prize–winning discoveries.

Nonetheless, state-of-the-art NR is one of the most computationally intensive domains of scientific
computing, requiring massive parallelization on petascale computing infrastructures (Lovelace, 2021;
Huerta et al., 2019). This is due to several computational challenges in NR, including adaptive
high-resolution spatial discretization and finite-difference (FD) methods on these, which, in addition,
are vulnerable to numerical errors in sensitive regions. Moreover, NR simulations are equally storage-
intensive, producing up to petabytes of data per run, prohibiting the storage and distribution of
simulations on HPC systems (Reed & Dongarra, 2015).

Recent progress in machine learning for scientific computing has shown the potential of hybrid
neural-classic workflows (Thuerey et al., 2021; Zhang et al., 2023; Brunton et al., 2020; Li et al.,
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2021; Brandstetter et al., 2022; Bodnar et al., 2025; Brandstetter, 2025). In addition, neural fields
(NeFs) (Park et al., 2019; Müller et al., 2022; Chen & Zhang, 2019) have emerged as a powerful
tool in visual computing for compact and continuous representations of traditionally discrete data,
such as images, shapes, and physical fields, with ease of querying and differentiating. This raises
the question of whether such hybrid approaches can advance next-generation computational GR
workflows, particularly in handling and compressing tensorial quantities and their derivatives defined
on adaptive high-fidelity discretizations.

To this end, we propose and investigate EinFields, which provide the following contributions:

• Neural compression. EinFields encode geometric information in compact neural representa-
tions with typically fewer than two million parameters. They reproduce metric tensor components
with relative precision up to seven decimal digits (and up to nine in favourable coordinate charts).
This yields memory-efficient approximations of complex spacetime geometries, with compression
factors up to 4000× across analytical and numerical solutions.

• Discretization-free representation. EinFields are trained on arbitrary point samples, includ-
ing regular, irregular, and unstructured sets. They provide continuous query access to tensor
fields at any resolution by learning these as continuous functions from discrete samples, which
removes discretization artefacts.

• Enhanced tensor differentiation. As smooth neural functions, EinFields support continuous
evaluation of higher-order geometric quantities such as Christoffel symbols, Riemann tensors,
and curvature invariants via point-wise automatic differentiation (Griewank & Walther, 2008).
Initial results suggest that this approach can outperform high-order finite-difference methods on
uniform grids, with accuracy gains up to 105 in FLOAT32.

• High-fidelity reconstruction of tests of General Relativity. We evaluate the physical fidelity of
EinFields on analytical GR solutions and assess derived observables in addition to standard
ML metrics. The models faithfully reproduce key relativistic phenomena, including orbital
precession in Schwarzschild and Kerr spacetimes, and allow accurate extraction of gravitational-
wave distortions and strain. We further test a BSSN (Baumgarte & Shapiro, 2021) evolution of
an oscillating neutron star. Early results indicate that EinFields scale to realistic numerical
relativity workflows despite the complexity of the solution.

2 BACKGROUND
Our work lies at the intersection of two domains: GR, along with its computational framework of
NR, and NeFs, a ubiquitous tool from computer vision. While a complete introduction to GR and
its mathematical backbone, differential geometry, is beyond the scope of this Section (see detailed
exposition in Appendix A or succinct version in Appendix D), we stress three key properties that
pertain to our work: (i) GR is a field theory of tensor-valued quantities, (ii) GR is intrinsically
coordinate-independent, and (iii) gravitational physics is entirely encapsulated in the metric and its
first two derivatives.

Tensors. A rank (r, s) tensor T at a point x ∈ M is the multilinear map from r covectors and s
vectors to a real number:

T : V∗ × ...× V∗︸ ︷︷ ︸
r−copies

×V × ...× V︸ ︷︷ ︸
s−copies

→ R . (1)

The r vectors and s covectors pair with the respective r covariant and s contravariant components
of the tensor. As such, a tensor is an element that lives in a tensor product of vector and dual
spaces, i.e., T ∈ (V)⊗r ⊗ (V∗)⊗s. A tensor in a particular choice of basis {eαn}1≤n≤r ∈ V and
{ϑβn}1≤n≤s ∈ V∗ is given by T = Tα1α2...αr

β1β2...βs
eα1
⊗ · · · ⊗ eαr

⊗ ϑβ1 ⊗ · · · ⊗ ϑβs , where
Tα1α2...αr

β1β2...βs
≡ T (ϑα1 , · · · , ϑαr , eβs , · · · , eβs) are the components of the tensor in this particular

basis and transforms as shown in Eq. (20). A tensor field assigns to each point x ∈M a multilinear
map, i.e. a tensor, Tx ∈ V⊗p

x ⊗ (V∗)⊗q
x . In appropriate coordinates, its components Tα1...αr

β1...βs
(x) vary

smoothly across the manifold.

General relativity extends Newtonian gravity with a geometric interpretation of gravity, where mass
and energy tell spacetime how to curve, and curved spacetime tells objects how to move (Misner
et al., 2017). This is formalized by the Einstein’s field equations (EFEs)

Gαβ + Λgαβ = 8πG Tαβ . (2)
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EFEs are a set of 10 coupled non-linear, tensor-valued, second-order partial PDEs and can be viewed
as a tensorial generalization of the Newton-Poisson equation for gravity ∇2Φ(r) = −4πGρ(r)
(Misner et al., 2017; Poisson, 2004). In EFEs, Gαβ = Rαβ − 1

2Rgαβ is the Einstein tensor, formed
from the metric tensor field gαβ(x

µ), which are solutions of the EFEs and tensorial generalization of
the gravitational potential Φ(x). The Ricci curvature tensor Rαβ , and the Ricci curvature scalar R
are related by second derivatives gαβ . Thus, the left-hand side of EFEs is entirely described by the
metric and its derivatives, with Λ being the cosmological constant. The right-hand side depends on
the stress-energy tensor Tαβ describing the matter distribution, with G being Newton’s constant.

Metric tensor and its derivatives. The metric tensor is a rank (0, 2) symmetric bilinear form
g : TxM×TxM→ R that generalizes the notion of an inner product on the tangent space TxM of a
differentiable manifoldM (Jost, 2008). It enables the computation of angles between vector fields and
a means to compute distances via the line element: ds2 = gαβ(x

µ) dxαdxβ . In GR, the components
gαβ in a particular coordinate system can be seen as a 4× 4 symmetric matrix with ten independent
components. The metric defines the causal structure and contains all geometric information of
spacetime. Importantly, its partial derivatives ∂ yield the Christoffel symbols Γαβγ(x

µ), which
describe the notion of parallel transport and defines a covariant derivative operation∇α = ∂α + Γα

(all detailed in Appendix A.3.3). In turn, the connection’s derivatives (i.e., metric second-derivatives)
yield the Riemann curvature tensor Rδ

αβγ(x
µ), which encodes tidal forces of gravity. The trace

part of Rδ
αβγ (index contraction w.r.t. metric: Trg – see Eq. (44)) is the Ricci tensor Rαβ , also a

symmetric rank (0, 2) tensor. Its subsequent contraction yields the Ricci scalar R (all detailed in
Appendix A.3.5). This can be summarized schematically as follows (a more detailed pictorial version
is available in Figure 10:

gαβ
∂−→ Γγ

αβ
∇−→ Rδ

αβγ

Trg−−→ Rαβ
Trg−−→ R. (3)

Higer-order methods. FD methods with adaptive mesh refinement (AMR) (Berger & Oliger, 1984)
have long underpinned tensor calculus in NR, discretizing space and time with high-order stencils
(Appendix C). An n-th order stencil yields truncation errors of O(hn), where h is the grid spacing.
Widely used fourth- or sixth-order schemes improve accuracy but incur larger communication costs
due to broader stencil footprints in parallelized settings. In contrast, modern NR increasingly opts for
(pseudo-)spectral methods (Scheel et al., 2025), which represent fields globally through polynomial
bases (Fornberg, 1996), yielding an efficiency of up to 1000−5000× faster on CPUs than FD
approaches on GPUs at comparable accuracy (Rashti et al., 2025).

Neural fields (NeFs), also known as implicit neural representations (INR) or coordinate-based neural
networks, are multi-layer perceptrons (MLP) using very specific activation functions that are memory-
efficient, implicit, continuous, infinitely differentiable maps, capable of capturing high-fidelity detail
across complex domains (Xie et al., 2021; Essakine et al., 2024). Some well known NeFs are SIREN
with sinusoidal activations (Sitzmann et al., 2020), WIRE with Gabor wavelet activations (Saragadam
et al., 2023) for example. These properties have motivated their primary development and adoption in
computer vision domains for representation, generation, and inversion tasks. Considering scientific
computing domains, NeFs, when integrated with physics-informed losses (e.g., constraints and
conservation laws), can be used for solving forward and inverse problems, including spatiotemporal
dynamics governed by PDEs. In these settings, NeFs effectively act as PDE solvers, more commonly
referred to as physics-informed neural networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021;
Wang et al., 2025b).

3 METHOD – PARAMETRIZING TENSOR FIELDS VIA EINFIELDS

Consider the four-dimensional spacetime (M , g) (a manifold equipped with a metric) corresponding
to an exact or numerical solution to the EFEs1: Gαβ = 8πG Tαβ . An EinField models the
10 independent components of the metric tensor field as a compact NeF, ultimately mapping the
spacetime coordinates x ≡ (x0, x1, x2, x3) to the symmetric rank (0, 2) metric tensor field:

ĝ : x ∈M → gαβ(x) ∈ Sym2(T ∗
xM ) . (4)

1From now on, we omit the cosmological constant term Λgαβ .
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Figure 1: A conceptual overview of EinFields training and downstream pipeline. (i) Premise:
The Einstein field equations (EFEs) in Eq. (2) are highly non-linear PDEs defined on a 4D spacetime
manifold, describing the geometric nature of gravitation. Their solutions define the metric tensor
field gαβ(x

µ), which encodes the full spacetime geometry and serves as a tensorial generalization
of the gravitational potential. In this work, we parametrize gαβ(x

µ) using a neural network. (ii)
Training: The training is conducted on the metric tensor fields defined on 4D spacetime points,
such as uniform or hierarchical grids. EinFields instead fit a continuous signal on these discrete
representations, thus modeling 4D spacetime as a continuum, and returning the metric tensor field for
a 4D spacetime query coordinate p ≡ (t, x) ∈M at arbitrary resolution. (iii) Sobolev supervision:
The reconstruction quality of the metric and its derivatives is improved by augmenting Sobolev
losses, i.e., metric Jacobian (neighborhood structure) and Hessian (curvatures). (iv) Validation
and downstream tasks: Sobolev improved EinFields’ AD-based derivatives enable accurate
point-wise retrieval of differential geometric quantities, such as the Levi-Civita connection (covariant
derivative), geodesics, curvature tensors, and their invariants.

We deploy an MLP ĝθ with parameters θ, denoted ĝ for simplicity, to over-fit on the ground truth
tensor field. Methodologically, this enables directly compressing the entire geometric information
into storage-cheap NN weights, yielding continuous access (different from the training points) at
arbitrary resolution of the metric and its non-trivial tensor differentiation (e.g., for Lie derivative or
covariant derivatives) information devoid of mesh (re)construction on curvilinear manifolds. This
generalizes to an arbitrary rank (r, s) tensor field Tα1...αr

β1...βs
(xµ). Thus, EinFields posit a neural

alternative to address one or more of the challenges associated with traditional methods (typically
utilizing higher-order finite differencing schemes) in NR by not relying on costly spatiotemporal
discretizations. Our framework should be considered as a special case of Neural Tensor Fields.
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3.1 DISTORTION

We define the distortion as the algebraic deviation of the spacetime metric from flat space,

∆αβ = gαβ − ηαβ , (5)

with the Minkowski background ηαβ in that particular coordinate system. From a learning perspective,
this decomposition acts as a preprocessing step that removes the offset (fixed background metric).
Flat contributions, that may even dominate numerically (e.g., gtt ∼ 1/r, gθθ ∼ r2), are removed,
leaving only the non-trivial geometric content, such as the curvature. Thus, the network focuses
its representational capacity on meaningful deviations rather than redundantly relearning flat-space
structure. As we show in 4.2, this improves scaling, accelerates convergence, and emphasizes the
dynamic, physically relevant features of the metric during training.

3.2 RETRIEVING PHYSICS VIA NEURAL TENSOR FIELD DERIVATIVES

Higher derivative losses. Beyond the metric tensor itself, its first- and second-order derivatives
are critical to GR, as they govern geodesic motion, tidal forces, and curvature. Accurate trajectory
reconstruction requires point-wise precise evaluation of Christoffel symbols and Riemann tensors.
Such a high-fidelity extraction from EinFields is facilitated by Sobolev training (Czarnecki et al.,
2017; Son et al., 2021), a formulation that explicitly incorporates higher derivative losses (Chetan
et al., 2024; Wang et al., 2025b) – see Section F.4. The supervision on the metric Jacobian ∂µgαβ (40
independent components) and Hessian ∂µ∂νgαβ (100 independent components) rectifies irregulari-
ties in the metric field and its derivatives, yielding substantial accuracy gains and consequentially
improving the precision of point-wise Christoffel symbols Γγ

αβ(x
µ) and Riemann tensors Rσ

αβγ(x
µ)

queries by up to two orders of magnitude. This is given by the modified loss function:

Lg
Sob(θ) = Ex

[
λ0∥gαβ(x)− ĝαβ(x)∥2 +

2∑
j=1

λj

∥∥∥∂(j)
x gαβ(x)− ∂(j)

x ĝαβ(x)
∥∥∥2 ] , (6)

with λj being some coefficients and ∂
(1)
x ≡ ∂µ and ∂

(2)
x ≡ ∂ν∂µ written in a succinct notation.

Instead of implementing higher-order FD stencils, our framework enables access to exact higher-order
tensor derivatives via AD. This is illustrated in the AD workflow for differential geometry in Figure
2.

Reconstructing dynamics. Free-fall trajectories around massive objects follows a geodesic motion
Eq. (56), which depends on Christoffel symbols Γ(g, ∂g). In our workflow (Figure 2), EinFields
reconstruct Γ̂(ĝ, ∂ĝ) with Jacobian supervision, enabling∇α = ∂α+Γ̂α and, thus, accurate modeling
of geodesic path and direct measurement of curvature via curvature tensors become possible.

Characterizing intrinsic geometry. Beyond dynamics, EinFields must reproduce the intrinsic
geometry encoded in curvature tensors and invariants. This constitutes Riemann Rαβγδ tensor and
the associated geodesic deviation Eq. (60), Weyl Cαβγδ , Ricci Rαβ tensors, scalar curvature R, and
invariants such as the Kretschmann scalar K (detailed in A.3.5.2). With Jacobian and Hessian-level
supervision (see tomography plots in Appendix F.8 showcasing improvements due to higher-derivative
loss inclusion), the learned fields achieve strong agreement with analytic solutions across the domain,
except near singularities limr→0

(
1
rn ) ∀n ∈ N, where curvature becomes infinite.

4 EXPERIMENTAL VERIFICATIONS

The performance of EinFields is assessed along two axes: (i) compression, i.e., meaningful
reduction in permanent storage requirements as compared to high-resolution spatiotemporal meshes
utilized in NR simulations which includes the metric (10 independent components) and higher-order
derivatives (20–100 components) across millions of collocation points, and (ii) reconstruction fidelity,
evaluated through key GR benchmarks: geodesic dynamics around compact objects (Appendix D)
and curvature diagnostics such as the curvature scalars. The evaluation criteria used are either mean
absolute error (MAE) or relative ℓ2 (Rel. ℓ2) between the ground truth and NeF parametrized tensors,
which is detailed in Appendix F.1.

4D training and validation data. We overfit the NeFs over synthetic data generated from exact 4D
analytic solutions (see Appendix B explaining each of these use-cases) of the EFEs: (i) Schwarzschild
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Figure 2: The directed-acyclic graph (DAG) for computing the differential geometric quantities from
the metric tensor g in analogy to Figure 10 and Eq. (3) . The transformations include repeated differ-
entiation implemented via forward-mode Jacobian jacfwd operations and tensor index manipulation
using einsum. Tensors are in depicted in teal blue, connection in light-blue, tensor derivatives in
green and conservation laws (Bianchi identities

(
jacfwd+ Γ

)
Riem = 0) in red.

(static, spherically symmetric solution), (ii) Kerr (rotating, with spin parameter a > 0, oblate
spheroidal), and (iii) propagating gravitational waves (GW) (time-varying, linearized gravity metric).
Details regarding training and validation grid resolutions and parameter ranges (e.g., mass M , spin
parameter a, etc) used to generate the distortion part of the metric, as shown in Eq. 5, are described in
Appendix F.2.

Training specifics. For our tasks, the most effective architectures are MLPs with SiLU activa-
tions (Elfwing et al., 2018), which excel under derivative-based supervision. Given the sensitivity of
training dynamics to the choice of optimizer (Wang et al., 2025a), we employ SOAP (Vyas et al.,
2025), a scalable quasi-Newton method shown to enhance gradient alignment in PINNs (Raissi et al.,
2019). We adopt a GradNorm-based scheme (Chen et al., 2018), enforcing unit-norm gradients
mitigating gradient imbalances induced by Sobolev supervision. The explored models span widths
and depths from 64× 3 to 512× 8, totaling less than 1.9× 106 parameters (∼ 7 MiB). The NeF
training ranges between 100s (w/o Sobolev training) to 2000s (Sobolev training including metric
Hessian) on a NVIDIA H200 SXM GPU.

4.1 ACCURACY AND STORAGE EFFICIENCY OF EINFIELDS: METRIC AND ITS DERIVED
QUANTITIES.

Table 1: Performance evaluation (measured in Rel. ℓ2 and MAE metrics) and storage efficiency of
EinFields parametrized metric tensor fields under different representations (i.e., with and w/o
Sobolev trainings). The model with the lowest MAE is selected in each row.

Representation Rel. ℓ2 MAE Storage Compression

EinFields (1.08 ± 0.06)e-6 2.11e-6 ±0.07e-6 85 KiB 4035
EinFields (+ Jac) (3.37 ± 0.84)e-7 (9.49 ± 1.51)e-7 1.1 MiB 311
EinFields (+ Jac + Hess) (1.88 ± 0.16)e-7 (9.07 ± 1.71)e-7 202 KiB 1698
Explicit grid − − 343 MiB −

Accurate reconstruction of higher-rank tensors from neural tensor fields is critical for recovering
geodesics, tidal forces, and related physical quantities. We evaluate EinFields by comparing
accuracy–memory tradeoffs for the metric (Figure 3a) and Christoffel symbols (Figure 3b), us-
ing the evaluation numbers reported in Table 1. Against higher-order FD baselines in FLOAT32,
EinFields achieves systematically lower MAE, avoiding truncation and instability issues that
limit FD stencils at small h. Through AD, we compute different derived quantities listed in Table 2
showing that EinFields outperforms FD stencils by 10−105 in accuracy across these quantities.
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Table 2: Performance evaluation of EinFields reconstructed differential geometric quantities for
the Schwarzschild geometry in spherical coordinates. Columns 2–3 report memory usage for full
and symmetry-reduced components. Columns 4–6 report MAE relative to analytical solutions: FD
stencils for h = 0.01 on the ground-truth (GT (FD)), EinFields via AD, and AD applied directly
to the analytic solution (GT (AD)).

Geometric quantity Storage [GiB] MAE

Full Sym. GT (FD) EinFields (AD) GT (AD)

Christoffel symbol 2.6 1.6 5.37e-6 (9.98 ± 2.12)e-7 5.83e-9
Riemann tensor 10.4 0.8 1.78e-2 (1.25 ± 0.30)e-6 2.86e-8
Weyl tensor 10.4 4.0 1.72e-2 (1.67 ± 1.11)e-5 5.89e-8
Ricci tensor 0.6 0.4 4.81e-2 (9.66 ± 2.86)e-6 9.02e-8
Ricci scalar 0.04 0.04 5.35e-2 (3.80 ± 1.72)e-5 1.31e-8
Kretschmann invariant 0.04 0.04 1.33e-2 (1.07 ± 0.46)e-5 3.32e-8
Bianchi identity (II) −− −− 1.68e-2 5.00e-8 4.81e-8
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and O(h7), respectively. Our framework outperforms
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Figure 3: Trendlines of accuracy versus storage memory (KiB) requirement for the met-
ric tensor and Christoffel symbols. For the explicit grid storage this is computed as
num of grid collocation points× 4, with 4 bytes for single precision (FLOAT32). For the NeFs,
this corresponds to the storage memory of the compact implicit NN weights.

Reconstructing seminal tests of GR. As a part of validation, we demonstrate high-fidelity recon-
struction of seminal tests associated with general relativistic dynamics on curved manifolds: (i)
geodesics curves around Schwarzschild black hole – Figs.(4a, 4b, 4c) and its ray-traced rendering –
Fig. 6; (ii) Kerr solutions – Figs.(4d, 4e, 4f); (iii) geodesic deviation describing oscillating ring of test
particles due to GW distortions – Fig. 5 (all detailed within Appendix F.6). Each of these use-cases
shows excellent agreement with the analytic results, although they are subject to accumulated tempo-
ral rollout errors (see Appendix F.6 for specifics) and are heavily affected by floating-point errors
requiring FLOAT64 precision.
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Figure 4: Row 1: Geodesics in Schwarzschild spacetime simulated in spherical coordinates – Eq. (70).
Row 2: Geodesics in Kerr spacetime simulated in Boyer–Lindquist coordinates – Eq. (80). Distinct
regions of the geometry are indicated in solid colors. Green solid lines represent ground-truth
geodesics, while the red dotted lines represent our NeFs reconstructed orbits.
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Figure 5: Spatial deformations (stretching and squeezing) of a circular ring of test particles due
to “+” polarized gravitational wave – Eq. (111). The NeF-reconstructed h+ cos

(
ω(t − z)

)
and

h× cos
(
ω(t− z)

)
show excellent agreement with the analytic geodesic deviation for the linearized

gravity use case. See Table 10 for a quantitative evaluation.

Curvature associated reconstruction. Additionally, we demonstrate high-precision reconstruction
results for other seminal GR phenomena such as gravitational waves extraction via Weyl scalar
Ψ4(r, t), Kerr metric ring-singularity structure (Kretschmann scalar) captured by EinFields.
These are discussed in detail within Appendix F.6.

Oscillating neutron star NR simulation. Beyond analytical solutions, we evaluate EinFields
on a widely used, dynamical test in numerical relativity: the oscillatory evolution of a perturbed
neutron star. Unlike the previous cases, this problem is time-dependent, involves matter-spacetime
coupling, has no analytical solution, and is computed using fixed mesh refinement (FMR), thus
providing a more realistic NR setting for assessing model performance. The details of this setup are
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Figure 6: Neural rendering of a Schwarzschild black-hole in front of a celestial background. The
render is constructed by tracing the geodesics of a EinFields represented metric showcasing its
compatibility with complex downstream tasks.

provided in Appendix G and summarized here. We perform a simulation of a non-rotating neutron
star of gravitational mass M = 1.4M⊙, described by the Tolman–Oppenheimer–Volkoff (TOV)
equations, which is evolved under a small initial perturbation. The coupled evolution of relativistic
hydrodynamics and spacetime produces the characteristic oscillation spectrum of the star. This test
serves as a standard benchmark for general-relativistic simulations in the Einstein Toolkit (Löffler
et al., 2012).

Fixed mesh refined training data. The Einstein Toolkit software performs time-evolution using
the BSSN formulation of Einstein’s equations (Shibata & Nakamura, 1995; Baumgarte & Shapiro,
1998). The spacetime domain is discretized using fixed mesh refinement (FMR) (Schnetter et al.,
2004; Hayashi et al., 2025), in which a hierarchy of nested grids provides higher resolution only
where needed. The simulation employs five refinement levels, {rl0, . . . , rl4} (cf. Fig 7b), with
rl0 covering the full domain and rl4 resolving the stellar interior. The evolution proceeds to a
final time of T = 1000M , with data written every ∆t = 1.0; finer levels use proportionally smaller
timesteps to satisfy the CFL condition (Courant et al., 1967). Training data (detailed in Table 12)
at each time slice are obtained by collecting all spatial points (xi, yi, zi) from the refinement levels
while discarding any duplicate points lying inside finer patches. This produces a single non-uniform
multi-resolution grid.
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(a) Accuracy vs. compression of EinFields trained
on the NR simulation data (w/o Sobolev training). The
trendline indicates a maximum neural compression of
∼ 2000× for Rel.ℓ2 of 3.60e-5, as detailed in Table 3.
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Figure 7: EinFields applied to the NR simulation of an oscillating neutron star evolved numerically
using a BSSN solver on a fixed-mesh refinement (FMR) grid.
Training results. Table 3 and Figure 7a summarize the evaluation for the metric, comprising
of compression and accuracy for the best-performing 6x256 model. The evaluation procedure is
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explained in detail in Appendix G. For completeness, the corresponding Christoffel symbol results
are also reported in Table 13.
Table 3: Performance of EinFields tested on a single stable neutron star numerical relativity simulation.
The table reports the relative ℓ2 error, MAE, storage footprint, and resulting compression ratio
obtained when training EinFields on the coalesced fixed–mesh–refined (FMR) grid constructed from
the simulation. EinFields achieves a compression ratio of approximately 2000× while maintaining
low reconstruction error, as indicated by the reported relative ℓ2 and MAE values.

Representation Rel. ℓ2 MAE Storage Compression

EinFields 3.60e-5 5.98e-5 1.4 MiB 2121
EinFields (+ Jacobian) 6.95e-6 9.88e-6 1.4 MiB 2121
FMR coalesced grid − − 2.9 GiB −

4.2 ABLATION STUDIES

We report ablation results relative to our best-performing baseline configuration, systematically
examining the effects of matrix representations (full metric instead of distortions), activation functions,
optimizers, learning rate schedulers, and Sobolev regularization. All evaluations are conducted in
spherical coordinates.

Table 4: Ablation results for the Schwarzschild metric. Row 2 trains on the full metric (Eq. (70))
instead of its distortion (Eq. (98)). Row 3 and 4 ablate the learning rate schedule and the optimizer,
respectively. Row 5 replaces SiLU with WIRE (Saragadam et al., 2023), a well-performing activation
function for NeFs. Rows 6–7 ablate the derivative supervision, i.e., Sobolev training.

Ablation Rel ℓ2 Wallclock time [s]

Baseline: Metric distortion, Jac + Hes,
SiLU, SOAP, Cosine LR 1.40e-7 1400

Metric distortion ∆αβ →Metric gαβ 2.13e-6 1407
Cosine→ Const. LR 2.37e-5 1397
SOAP→ ADAM 4.16e-6 1150
SiLU→WIRE 4.12e-6 3045
Jac + Hes→ Jac 1.51e-7 509
Jac + Hes→ - 2.37e-7 364

5 CONLUSION

EinFields introduces the first implicit neural framework for compressing four-dimensional rela-
tivity simulations with differentiable modeling. By combining neural tensor fields with automatic
differentiation, it offers a scalable, discretization-free, resolution-invariant alternative to grid-based
methods that preserves physics and is suitable for downstream tasks. Our framework achieves accura-
cies of 1e−7− 1e−9 (see Table 8) with compression factors of 1000− 4000 relative to uniform and
FMR multi-resolution/heterogeneous grids. Derived quantities show up to five orders of magnitude
improvement in tensor derivatives (in FLOAT32) over higher-order FD schemes.

Limitations. Compression with NeFs remains lossy: even with FLOAT64 training, Rel. ℓ2 errors
below 1e−9 are currently unattainable. At present, the framework surpasses FD methods only in
single precision. These errors propagate into Christoffel symbols, causing long-time divergence in
geodesic solvers (see Figures (16a, 16b)) and curvature tensors. Moreover, the query time of these
compressed NeF representations is non-trivial (a few ms for a batch of 105 queries, see Figure 23),
which can be prohibitive in downstream tasks that require repeated sequential evaluation. While
taking the first step toward the integration of ML and NR techniques, our work does not evaluate
advanced NR methods, such as adaptive mesh refinement and (pseudo-)spectral solvers.

Future work. We plan to extend the application of EinFields to other complex large-scale time-
evolving NR simulations (e.g., binary black hole and binary neutron star mergers) and benchmark
against advanced classical techniques such as (pseudo)spectral methods.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The codebase, including
training scripts, neural field models used, and data generation and preprocessing pipelines, will be
made accessible as a zip file in the supplementary material. All experiments can be reproduced using
the instructions provided in the repository’s README.md and How_to_train_EinFields.md,
with detailed specifications of hyperparameters, optimizer settings etc.

For our synthetically generated analytic solutions data, we provide the essential configuration yaml
files with appropriate parameter values in data_generation/configs and the data generation
scripts are within data_generation. Copious example notebooks containing all the validation
problems are contained with the folder example_notebooks. The blackhole render scripts and
visualization can be found within the bh_render folder.

Software dependencies are specified in a requirements.txt file, and we provide Conda virtual
environments for ease of setup, especially with the appropriate CUDA version. All experiments were
run on [specify hardware, e.g., 1× NVIDIA A100 GPUs for prototyping and 1 NVIDIA H200 GPUs
for the main runs], with a training time ranging from 100 - 2200 seconds depending on Jacobian,
Hessian-inclusion in losses and the specific hardware used.
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Appendices

A INTRODUCTION TO GENERAL RELATIVITY

This appendix provides the mathematical background and intuition on differential geometry (covering
every aspect of the paper and the library), and general relativity. We remark that the reader may
appreciate several related works, such as (Jost, 2008; Kobayashi & Nomizu, 1963; Isham, 1999; Lee,
2012) for mathematically rigorous coverage of differential geometry. For more physics-oriented
readers, the following books extensively cover general relativity and numerical relativity (Misner
et al., 2017; Carroll et al., 2004; Poisson, 2004) as alternative resources. Additionally, the Geometric
Deep Learning (GDL) community can also find more ML-centric introduction to differential geometry
in the following work (Bronstein et al., 2021; Weiler et al., 2023).

Table 5: Table of notations

Symbol Description
M Arbitrary manifold
M 4-dimensional spacetime manifold
ηµν Flat Lorentzian metric
xµ Original coordinates
x̄µ Transformed coordinates
eµ Basis set
ϑµ Dual basis set
ēµ Transformed basis set
ϑ̄µ Transformed dual basis set
∂

∂xµ
Coordinate basis (equivalent to partial derivative operator)

TpM Tangent space at point p
T ∗
pM Cotangent space at point p

Ω1(M) Space of one-forms
Γ(TM) Smooth sections of a tangent bundle (collection of vector fields)
Γ(T ∗M) Smooth sections of a cotangent bundle (collection of one-forms)
Φ∗ Pullback operation
Φ∗ Pushforward operation
Riem(M) Set of (pseudo-)Riemannian metrics onM
Diff(M) Set of diffeomorphism maps onM
× Cartesian (tensor) product
⊗ Kronecker (tensor) product
Dv Directional derivative
Lv Lie derivative with respect to vector field v
∇µ Covariant derivative
δµν Kronecker delta (identity matrix)
c Speed of light
G Newton’s constant

A.1 FUNDAMENTAL CONCEPTS OF DIFFERENTIAL GEOMETRY & AND TENSOR CALCULUS

The main concepts covered in this appendix are:

1. Fundamental concepts of differential geometry and tensor calculus: We introduce contravari-
ance and covariance, and further vector and dual vector spaces. This allows us to define
tangent and cotangent spaces.

2. Tensors and tensor fields: Next, we define tensors and tensor fields, operations on tensor
fields, and the Lie derivative as a generalization of the directional derivative for tensor fields.

3. Riemannian and Lorentzian geometry: This is the meat of Appendix A. We introduce
4-dimensional spacetime as a continuous differentiable manifold. Via the metric, we can
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define Riemannian manifolds, and finally Lorentzian manifolds as a pseudo-Riemannian
manifold. Next, we discuss connections, covariant derivatives, and Christoffel symbols. This
is all mathematical background that is required to introduce parallel transport, geodesics,
the Riemann curvature tensor, the Ricci tensor, the Ricci scalar, the Weyl tensor, and finally
curvature invariants and the stress-energy-momentum tensor. We end with Einstein field
equations, reflecting back on the coordinate-independency of GR.

A.1.1 CONTRAVARIANT AND COVARIANT COMPONENTS

Loosely speaking, an n−dimensional vector v ∈ Rn can be expanded in its basis as v = v1e1+v2e2+
. . .+ vnen, or v = viei if we use Einstein sum convention. In general relativity, we write v = vµeµ,
where Greek indices indicate 4− dimensional space-time. Thus, in this non-Euclidean setting, it is
necessary to distinguish objects that carry an upper index (contravariant) versus objects that carry a
lower index (covariant), since they satisfy different geometric properties and transformation laws.

Definition 1 (Contravariance of vector components): Let X ⊂ Rn be a coordinate system (frame)
that is spanned by a coordinate basis set {eµ}1≤µ≤n, i.e., each basis vector can be expressed as
eµ = ∂

∂xµ . A vector v ∈ X can be expanded in its coordinate basis as v = vµ(x)eµ := vµ(x) ∂
∂xµ .

When transforming the vector v to a new coordinate system, spanned by another coordinate basis
set {ēν}1≤ν≤n, i.e., ēν = ∂

∂x̄ν , one can express the vector components in the new coordinate system
v̄ν = v̄ν

(
x̄
)

as

v̄ν(x̄) =
∑
µ

∂x̄ν

∂xµ
vµ(x) . (7)

The ratio of change of the vector components is the inverse of the ratio of the base components.
In other words, vector components transform inversely – or contravariantly – with respect to basis
transformations, i.e., transform in the opposite way to the change in the coordinate system. Most
contravariant objects represent physical quantities like displacement, velocity, and momentum, which
must adjust when the coordinate basis changes.

Definition 2 (Covariance of basis set): Let X ⊂ Rn be a coordinate system (frame) that is spanned
by a coordinate basis set {eµ}1≤µ≤n, i.e., each basis vector can be expressed as eµ = ∂

∂xµ . A vector
v ∈ X can be expanded in its coordinate basis as v = vµ(x)eµ := vµ(x) ∂

∂xµ . When transforming
the vector v to a new coordinate system, spanned by another coordinate basis set {ēν}1≤ν≤n, i.e.,
ēν = ∂

∂x̄ν , then, the basis set itself transforms as,

∂

∂x̄ν
=
∑
µ

∂xµ

∂x̄ν

∂

∂xµ
. (8)

Note that we have introduced the concept of contravariant and covariant transformation by the
example of vector components and the respective basis set. In general, we speak of contravariant w.r.t.
their corresponding basis sets. I.e., contravariant components have covariant basis sets and covariant
components have contravariant basis sets. As we introduce next, an object with covariant components
is an object of the dual space. These covariant vectors, or covectors, typically represent gradients,
such as the gradient of a function. A gradient represents the change w.r.t. an infinitesimal change in a
direction. It is intuitive that if we make the direction larger, the change becomes larger as well. In
other words, if we change the basis vectors in which we measure this change, the gradient transforms
covariantly w.r.t. the basis vectors.

A.1.2 DUAL SPACE

While the concept of a vector space is well known in the machine learning community, there is a
closely associated concept of a dual vector space (succinctly called dual space), which is an algebraic
dual to the vector space itself with the same dimensions.

Definition 2 (Dual vector space): Let
(
V , +, ·

)
be a vector space over a field F (e.g., R,C). The

(algebraic) dual space (V∗, +, ·) is a vector space of linear functionals (maps) V∗ :=
{
v∗|v∗(v) =
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c ∀v ∈ V,∀c ∈ F
}

, satisfying:

(v∗ + w∗)(v) = v∗(v) + w∗(v) (9)
v∗(αv + βw) = αv∗(v) + βw∗(w) (10)

(cv∗)(v) = c(v∗(v)) (11)

for all v∗, w∗ ∈ V∗, v, w ∈ V, α, β, c ∈ F . Elements of the dual space V∗ are sometimes referred
to as covectors or one-forms Bott & Tu (1982).2.

For example, suppose, we are given a basis {e1, . . . , en} of a vector space V . Then, one can
introduce a dual basis set {ϑ1, . . . , ϑn} of the dual space V∗. Let v = (α1e1 + α2e2 + . . . +
αnen) ∈ V, ∀ {αi}1≤i≤n ∈ F . Thus, the action of the linear functionals ϑi on the vector reads:
ϑi(v) = ϑi(α1e1 + α2e2 + . . . + αnen) = αiϑ

i(ei) = αi, i = 1, . . . , n and ϑi(ej) = δij , where
we have used the orthonormality condition, and δij is the Kronecker delta symbol. Conceptually,
the covector ϕ is a (complex-conjugated if F = C) row-vector, which acts on a column vector v to
produce α ∈ F . Colloquially speaking, an element of the dual space V∗ “eats up” an element of the
vector space V and returns a scalar (duality pairing).

A.1.3 TANGENT AND COTANGENT SPACES

Definition 1 (Tangent space): LetM be a smooth (C∞) manifold of dimension n. The tangent
space TpM at point p ∈ M is a set of d-dimensional vectors (called tangent vectors) attached at
point p, defined as TpM := {(p, v) : v ∈ Rd}, and carries the structure of a real vector space.

Every tangent space is spanned by an ordered basis {eµ|p}1≤µ≤n =
{

∂
∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

}
∈ TpM,

and vectors can be expanded in this basis as:

v|p = vµ(x)
∂

∂xµ

∣∣∣
p
, (12)

where vµ(x) are the components of the vector in this basis {eµ|p}1≤µ≤n of the tangent space TpM.

It is worth noting that dim(TpM) = dim(M). With this setup, we can now formally introduce the
definition of tangent vectors.

Definition 2 (Tangent vector): A vector v|p ∈ TpM is called as a tangent vector if it acts as a
derivation, i.e, a linear map acting on smooth functions f ∈ C∞(M) at a point p ∈M. Specifically,
the map v|p : C∞(M,R)→ R satisfies 3:

i) v(f + g) = v(f) + v(g) ∀ f, g ∈ C∞(M,R) (linearity)

ii) v(f) = 0, when f is a constant function, i.e., v acts trivially on constants.

iii) v(fg) = f(p)v(g) + g(p)v(f) ∀f, g ∈ C∞(M,R) (Leibniz product rule)

From the definition above, it follows that tangent vectors should be regarded as derivation maps. This
is equivalent to the notion of a “directional derivative” (Isham, 1999)

(Dvf)(p) :=
d

dt
f(p+ tv|p)

∣∣∣
t=0

= vµ(x)
∂f

∂xµ

∣∣∣
p
, ∀v = vµ(x)

∂

∂xµ

∣∣∣
p
∈ TpM, ∀f ∈ C∞(M,R) .

(13)

Directional derivatives are traditionally defined only for scalar-valued functions. This shall be
revisited rigorously for a more generalized concept called the “Lie-derivatives”, which operates on
general tensors, c.f. Section A.2.3.

2A finite dimensional vector space is isomorphic to its double dual, i.e. V ∼=
(
V∗)∗.

3For sake of ease, we will drop |p whenever possible.
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Thus, TpM is the space of directional derivatives. The disjoint union of all the tangent spaces at
every point p ∈M forms a structure called tangent bundles Isham (1999):

TM =
⊔

p∈M
TpM =

⋃
p∈M

{
(p, v|p) : v|p ∈ TpM

}
. (14)

Tangent vectors as vector fields. In physics, quantities that vary spatiotemporally as a continuum
representation are defined as fields, featuring in domains such as electrodynamics, gravity, fluid
dynamics, or continuum mechanics.

A vector field V is a smooth assignment of a tangent vector v|p to each point p ∈M. Thus, a vector
field is a map V : C∞(M)→ C∞(M), and is defined as:(

V (f)
)
(p) = v|p(f) . (15)

Theorem 1 (Cotangent space): LetM be a smooth (C∞)-manifold (differentiable). The cotangent
space T ∗

pM := {(p, v∗|p)|⟨v∗|p, v|p⟩ = κ, ∀ p ∈ M, v|p ∈ TpM, κ ∈ R} at point p ∈ M is the
set of all linear maps v∗|p : TpM→ R, i.e., dual to the tangent space. The cotangent space T ∗

pM is
spanned by an ordered basis set

{
dx1

|p, dx
2
|p, ....., dx

d
|p}. Thus, any v∗|p ∈ T ∗

pM can be expanded
as:

v∗|p = v∗µ(x)dx
µ = v∗µ(x)dx

µ
∣∣∣
p
. (16)

It follows that dxµ
∣∣∣
p

(
∂

∂xν

∣∣∣
p

)
:=

(
∂xµ

∂xν

∣∣∣
p

)
= δµν , and dim T ∗

pM = dim TpM = dimM. The

disjoint union of all the cotangent spaces at every point p ∈M are known as cotangent bundles Isham
(1999):

T ∗M =
⊔

p∈M
TpM =

⋃
p∈M

{
(p, v∗|p) : v∗|p ∈ T ∗

pM
}
. (17)

One can also construct fields of cotangent vectors (cotangent fields) by picking up an element of
T ∗
p (M) ∀ p ∈ M in a smooth manner. I.e., by assigning one cotangent vector smoothly at each

point of the manifold, one obtains a cotangent field (i.e., a smooth section of the cotangent bundle).
These cotangent fields are known in mathematical literature as one-forms. The set of all smooth
one-forms onM is commonly denoted as Ω1(M).

A.2 TENSORS AND TENSOR FIELDS

Definition 3 (Tensors): A rank (r, s) tensor T at a point p ∈M is described as a multilinear map:

T : V∗ × ...× V∗︸ ︷︷ ︸
r−copies

×V × ...× V︸ ︷︷ ︸
s−copies

→ R , (18)

where× denotes the Cartesian product and the resultant tensor has a total rank of r+s. A tensor takes
in r covectors and s vectors, returning a real number, in a multilinear way (linear in each argument
separately). The r and s input vectors and covectors pair with the r and s being the convariant and
contravariant components, respectively. Equivalently, a tensor is an element that lives in a tensor
product of vector and dual spaces, i.e., T ∈ (V)⊗r ⊗ (V∗)⊗s. A tensor in a particular basis choice
{eαn}1≤n≤r ∈ V and {ϑβn}1≤n≤s ∈ V∗ is given by

T = Tα1α2...αr

β1β2...βs
eα1 ⊗ . . .⊗ eαr ⊗ ϑβ1 ⊗ . . .⊗ ϑβs , (19)

where Tα1α2...αr

β1β2...βs
:= T (ϑα1 , . . . , ϑαr , eβs , . . . , eβs) are the coefficients of the tensor w.r.t. the

basis set.
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A.2.1 TENSOR TRANSFORMATION PROPERTIES

A pivotal criterion for an object to be classified as a tensor(field) is that it transforms according to
a well-defined rule under changes of coordinates. Let {eαn

}1≤n≤r ∈ V , {ϑβn}1≤n≤s ∈ V∗, and
{ēαn}1≤n≤r ∈ V , {ϑ̄βn}1≤n≤s ∈ V∗ be two coordinate systems on a smooth manifoldM, related
by a smooth invertible map. Consider a tensor field of type (r, s) with components Tα1...αr

β1...βs
in

the original coordinate system {eαn}1≤n≤r ∈ V , {ϑβn}1≤n≤s ∈ V∗. Under a change of coordinate
systems, the components in the new coordinate system {ēαn

}1≤n≤r ∈ V , {ϑ̄βn}1≤n≤s ∈ V∗

transform according to the following tensor transformation law:

T̄µ1...µr
ν1...νs

(x̄) = J µ1
α1
· · · J µr

αr
Tα1...αr

β1...βs
(x)

(
J−1

)β1

ν1
· · ·
(
J−1

)βs

νs
, (20)

where J µk
αk
≡ ∂x̄µk

∂xαk
and

(
J−1

)βl

νl
≡ ∂xβl

∂x̄νl
are the Jacobian and Jacobian inverse matrices in the

coordinate basis, respectively. J µk
αk

is the contravariant transformation of the contravariant compo-

nents of Tα1...αr

β1...βs
, whereas

(
J−1

)βl

νl
is the covariant transformation of the covariant components

of Tα1...αr

β1...βs
. The indices µk, νl label components in the new coordinates and αk, βl are dummy

indices summed over the old coordinates. A key feature of a tensor is that, if it is zero in one
coordinate system, it is zero in every other coordinate system. This transformation law ensures that
the tensorial nature of the object is preserved independent of the coordinate chart chosen.

Tensor fields. A tensor field is a collection of tensor-valued rank quantities (r, s) such that at each
point p ∈M, the multilinear function associates a value Tp ∈ V⊗r

p ⊗
(
V∗
p

)⊗s
. Thus, the components

Tα1...αr

β1...βs
(p) are functions of the points of the manifold.

By definition, some known examples of tensor fields in physics and machine learning are:

• Rank 0 tensor, e.g., temperature field φ : Rm → R (scalar field)
• Rank (1, 0) tensor, e.g., (velocity, momentum, displacement) vector fields v: Rm → Rn

(contravariant vector field). These rank (1, 0) tensors have one component that transforms
contravariantly, and “eats up” a covariant component, e.g., vT to produce a scalar.

• Rank (0, 1) tensor, e.g., gradient vector fields ∇ : R → Rm (covariant vector field).
These rank (0, 1) tensors have one component that transforms covariantly, and “eat up” a
contravariant component to produce a scalar.

• Rank (0, 2) tensor, e.g., a matrix representing a bilinear form that takes in two vectors
and outputs a scalar. We will see the metric tensor gµν as an example. In continuum and
structural mechanics, a known example is the strain tensor ϵij representing the deformation
of a crystal (body) caused by external forces such as stress.

• Rank (2, 0) tensor, e.g., a matrix as a multilinear map that takes in two covectors and outputs
a scalar. An example for a rank (2, 0) tensor is the outer product of two vectors. An example
is the Cauchy stress tensor σij from structural mechanics, which represents the internal
forces per unit area acting inside a material body. The stress tensor takes in two vectors,
i.e., the normal vector to the surface (describing orientation), and the direction vector along
which the force acts (projection), and returns a scalar (force per unit area in that direction).

A.2.2 OPERATIONS ON TENSOR FIELDS

For multiple tensors of the same type (r, s), the algebraic operations such as addition, subtraction
or multiplication by functions are straightforward. Here, we address multiplication of tensors of
different ranks.

Let T be a rank (r, s) tensor and S a rank (p, q) tensor. One can construct a tensor product T ⊗ S
resulting in a new tensor of rank (r + p, s+ q), defined by

T ⊗ S(eα1 , . . . , eαr , eη1 , . . . , eηp , φ
β1 , . . . , φβs , φδ1 , . . . , φδq ) (21)

= T (eα1 , . . . , eαr , eη1 , . . . , eηp)S(φ
β1 , . . . , φβs , φδ1 , . . . , φδq ) , (22)
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and the components of this composite tensor read,

(T ⊗ S)
α1...αrη1...ηp

β1...βsδ1...δq
:= Tα1...αr

β1...βs
S
η1...ηp

δ1...δq
. (23)

Another useful rule is that of contracting over repeated index/indices each from the vector and dual
space respectively. Consider a rank (r, s) tensor

T
α1...αp...αr

β1...αp...βs
= Tα1...αr

β1...βs
. (24)

I.e., αp is summed-over in the contravariant and covariant indices, and, thus it gets contracted. The
resulting tensor is of rank (r − 1, s− 1) .

A.2.3 LIE DERIVATIVE: GENERALIZING THE NOTION OF DIRECTIONAL DERIVATIVES FOR
TENSOR FIELDS

Directional derivatives are of great importance and often appear in domains such as fluid dynam-
ics, where a scalar field is differentiated with respect to a vector flow field, capturing infinitesimal
dragging of scalar fields along flows generated by a vector field. Flows can be viewed as “diffeomor-
phisms” Poisson (2004) induced by these vector fields.

However, generalizing the notion of directional derivatives require defining derivatives of a set of
tensor fields of arbitrary rank (r, s) w.r.t. a set of vector fields. This is often not possible on arbitrary
manifolds, and requires a concept of differentiating in a tensorial setting. Geometrically, to compare
tensors at infinitesimally separated points on a manifold V , say at points p, q ∈M requires to “drag”
the tensor from p to q (also called parallel transporting, c.f. Section A.3.3.1.

Alternatively, a simpler approach to describe the dragging is via coordinate transformation from p to q.
This is the idea behind the Lie derivative. The Lie derivative along a vector field v|p ∈ TpMmeasures
by how much the changes in a tensor along v differ from a mere infinitesimal passive coordinate
transformation of the tensor generated by v. In other words, the Lie derivative compares the actual
rate of change of the tensor as you move along v against the change you’d get if everything were just
shifted passively via a coordinate transformation. We provide a rough sketch of the derivation, but
detailed explanations can be found here (Lee, 2012; Poisson, 2004).

Consider an infinitesimal coordinate transformation which maps the vector with coordinates xµ|p at
point p to x̄µ|q at point q:

x̄µ|q = xµ|p + δξ vµ(x)|p . (25)

It is to explicitly note that the original coordinates xµ|p and the transformed coordinates x̄µ|q are
components of the same set of basis vectors. Such transformations fall under the category of active
coordinate transformations that map points (or tensors at those points) at old locations to new
locations in the old coordinate system – in this case by “moving” a small amount δξ along the
vector field v|p ∈ TpM. In other words, an active coordinate transformation maps points (and
tensors) to new locations in the old coordinate system keeping the basis set intact. Whereas, passive
transformations assign new coordinates to the old points (and tensors) by transforming the basis set
itself.

Assuming a coordinate basis, one can differentiate the transformation w.r.t. the original coordinates,
which yields

∂x̄µ

∂xν
= δµν + δξ

∂vµ(x)

∂xν
. (26)

The result contains the identity matrix δµν and a small correction due to the flow field vµ(x). To the

first order, the inverse of the above Jacobian is
∂xν

∂x̄µ
= δµν − δξ

∂vµ(x)

∂xν
.

The Lie-derivative of a tensor field Tµ
ν with respect to vµ follows a similar pattern and is defined via

the limes:

LvT
µ
ν = lim

δξ→0

Tµ
ν (x̄)− T̄µ

ν (x̄)

δξ
. (27)
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In this scheme, it is important to distinguish three distinct tensor field evaluations: a) Tµ
ν (x) (original

tensor in untransformed coordinates), b) T̄µ
ν (x̄) (transformed tensor in the transformed coordinates)

and c) Tµ
ν (x̄) (original tensor in transformed coordinates).

In order to compute Eq. (27), we need two important concepts from differential geometry called push-
forward and pull-back operations. We direct the interested readers to more advanced literature Isham
(1999); Lee (2012); Kobayashi & Nomizu (1963)

These three separate tensors fields can be related in the following manner: Firstly, the tensor mapped
to the new set of coordinates T̄µ

ν (x̄) can be obtained via Eq. (20),

T̄µ
ν (x̄) = (J−1)µρ J σ

ν T ρ
σ (x) ≡ Tµ

ν (x) + δξ

(
∂vµ

∂xσ
Tσ
ν (x)−

∂vσ

∂xν
Tµ
σ (x)

)
+O(δξ2) . (28)

Secondly, the original tensor in transformed coordinates Tµ
ν (x̄) can be evaluated at q, by a Taylor

expansion:

Tµ
ν (x̄) = Tµ

ν (x̄
σ) = Tµ

ν (x
σ + δξ vσ) = Tµ

ν (x) + δξ vσ
∂Tµ

ν

∂xσ
+O(δξ2) . (29)

Substituting Eqs. (28, 29) into the Lie-derivative definition of Eq. (27), and δξ → 0 one finds the
following final expression:

LvT
µ
ν = vσ

∂Tµ
ν

∂xσ
− ∂vµ

∂xσ
Tσ
ν (x)︸ ︷︷ ︸

pullback

+
∂vσ

∂xν
Tµ
σ (x)︸ ︷︷ ︸

pushforward

. (30)

The pushforward and pullback operations drag the transformed tensor field onto the original point,
where differences can be computed.

Thus, tensors are being compared in the same tangent/cotangent space. Mathematically, for smooth
maps4 (diffeomorphisms) Φ :M→N the pushforward Φ∗ : TpM→ TΦ(p)N pushes vector fields
forward from one tangent space of a domain TpM to the tangent space of another tangent space
TΦ(p)N . The pullback, a dual linear map to pushforward, drags covectors (one-forms) living in
cotangent spaces (Φ∗)

∗ ≡ Φ∗ : T ∗
Φ(p)N → T ∗

pM in the reverse direction to the domain. Hence, the
contributions from the pushforward on the vector field components and pullback on the covector field
components jointly determine the structure of the Lie derivative of a mixed tensor field, as expressed
in Eq. (30). These operations offer a coherent mathematical framework for transitioning between
tangent and cotangent bundles mapped onto other tangent and cotangent bundles via smooth maps,
acting appropriately on vector fields and one-forms, respectively.

For any arbitrary rank (r, s) tensor, Eq. (30) can be generalized to:

(LvT )
µ1...µr

ν1...νs
= vσ

∂

∂xσ
Tµ1...µr

ν1...νs
−

r∑
i=1

Tµ1...σ...µr
ν1...νs

∂vµi

∂xσ
+

s∑
j=1

Tµ1...µr
ν1...σ...νs

∂vσ

∂xνj
. (31)

Lie-derivatives do not require the notion of a connection. Connections will be introduced in detail in
Section A.3.3 and intuitively stating, connects two distinct Tangent spaces at different points, which
is not to be confused with a pullback operation. Here, is an instructive comparison table for that
compares different differentiation schemes:

Table 6: Comparison between actions of directional, covariant, and Lie derivatives.

Feature Directional
derivative

Covariant
derivative

Lie
derivative

Input function Scalar fields Tensor fields Tensor fields
Connection dependence ✗ ✓(Explicit) ✗
Captures curvature ✗ ✓ ✗
Measures Scalar changes Intrinsic curvature Diffeomorphisms (flows)

4for e.g., dragging of coordinates as in Eq. (25) due to flows induced by vector fields.
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A.3 RIEMANNIAN AND LORENTZIAN GEOMETRY

A.3.1 FOUR DIMENSIONAL SPACETIME AS A CONTINUOUS DIFFERENTIABLE MANIFOLD

The fabric of spacetime according to general relativity is a combination of three-dimensional space
and a strictly positively progressing time direction into a single four-dimensional continuum. Thus,
space and time mix between each other through special orthogonal transformations SO(1, 3) called
the Lorentz transformations. In order to rigorously define the four-dimensional spacetime, it is
necessary to define the following:

Definition 4 (Manifold): A n-dimensional manifoldM is a space, that, locally resembles the n-
dimensional Euclidean space Rn. However, combining these local patches together, globally, the
space deviates from Rn.

Definition 5 (Hausdorff space): Let K be a topological space. Then K is said to be a Hausdorff
space if: For every pair of distinct points x, y ∈ K with x ̸= y, there exist open sets U, V ⊂ K such
that:

x ∈ U, y ∈ V, and U ∩ V = ∅ . (32)

Definition 6 (Differentiable manifold): An n-dimensional differentiable manifold is a Hausdorff
topological space K such that:

i) Locally K is homeomorphic to Rn. Thus, ∀ p ∈ K there is an open set U such that p ∈ U and a
homeomorphism ϕ : U → Z with Z an open subset of Rn.

ii) For two subsets Uα and Uβ with Uα
⋂
Uβ ̸= ∅, the homeomorphisms (topologically isomorphic)

ϕα : Uα → Zα and ϕβ : Uβ → Zβ are compatible, i.e., the map ϕβ ◦ ϕ−1
α : ϕα

(
Uα
⋂
Uβ
)
→

ϕβ

(
Uα
⋂
Uβ
)

is smooth (infinitely differentiable C∞), and so is its inverse map.

The ϕα are often called charts and a collection (union) of them
⋃

α ϕα is called an atlas. These charts
provides a coordinate system, labeling Uα ⊂ K. The coordinate associated to p ∈ Uα is:

ϕα(p) =
(
x1(p), x2(p), ...., xn(p)

)
Mathematically, the spacetime continuum denoted as M, is a differentiable manifold with the
structure of an Hausdorff topological space.

To summarize, a differentiable manifold is a space that may be curved or complicated globally, but
looks like Euclidean space up close, and allows for smooth calculus to be done on it. The Hausdorff
space ensures than one can separate points nicely with open sets. This avoids weird pathological cases
and makes limits and continuity well-behaved. Locally Euclidean means that one can do calculus as
if we were on flat space – even if the whole space is curved. And finally, the compatibility between
overlapping charts ensures that one can do calculus consistently across different charts.

A.3.2 METRIC TENSOR

Definition 7 (Metric): A metric g is a rank (0, 2) tensor field that is defined as a symmetric bilinear
map that assigns to each p ∈M a positive-definite inner product g : TpM× TpM→ R such that

i) g(v|p, w|p) = g(v, w) = g(w, v) ∀v, w ∈ TpM (symmetric)

ii) For any p ∈M, g(v, w) = 0 ∀w|p ∈ TpM implying v|p = 0 (non-degenerate).

Represented in the basis set of the tangent space, the metric components at each point p is given by

gµν = gνµ := gp

(
∂

∂xµ

∣∣∣
p
,

∂

∂xν

∣∣∣
p

)
(33)

and the metric can be expanded as,

g = gµν(x) dx
µ ⊗ dxν . (34)
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Geometrically, the metric defined in Eq. (34) generalizes the notion of distances and induces a norm
||.||p : TpM→ R for generic coordinates such as curvilinear and/or manifolds possessing geometries
that are intrinsically non-Euclidean in nature, for e.g., spaces of constant positive sectional curvature
K = 1 (e.g., a 2-sphere S2 embedded in R3), spaces of constant sectional curvature K = −1 such as
hyperbolic geometry (Bolyai-Lobachevsky spaces H2).

The distance between two points in such cases is called the line element, which is defined as,

ds2 = gµν(x)dx
µdxν . (35)

For an n-dimensional manifoldM, the metric tensor gµν is a n× n symmetric matrix, g(ϕµ, ϕν) :=

⟨ϕµ, ϕν⟩, with n(n+1)
2 independent components (not necessarily expanded in the coordinate basis):

gµν =


⟨ϕ0, ϕ0⟩ ⟨ϕ0, ϕ1⟩ · · · ⟨ϕ0, ϕn−1⟩
⟨ϕ1, ϕ0⟩ ⟨ϕ1, ϕ1⟩ · · · ⟨ϕ1, ϕn−1⟩

...
...

. . .
...

⟨ϕn−1, ϕ0⟩ ⟨ϕn−1, ϕ1⟩ · · · ⟨ϕn−1, ϕn−1⟩

 . (36)

Definition 8 (Metric bundle): LetM be a smooth manifold and (x0, · · · , xn) be local coordinates
on U ⊂ M. The bundle of symmetric (0, 2)-tensors on M is the subbundle Sym2(T ∗M) ⊂
T 0,2M = T ∗M× T ∗M.

In fact, sections of Sym2(T ∗M) contains all the symmetric bilinear forms, i.,e. symmetric (0, 2)-
tensor fields, and includes the pseudo-Riemannian metrics onM.

Riemannian manifolds. A metric g where all diagonal entries of the metric are positive, i.e.,
gµµ > 0, µ = 0, . . . , dim(M)− 1 is called a Riemannian metric. Thus, a manifoldM endowed with
a Riemannian metric g is known as a Riemannian manifold denoted as a tuple

(
M, g

)
(Jost, 2008).

For the the Euclidean space Rn with Cartesian coordinates representation

g = dx1 ⊗ dx1 + ....+ dxn ⊗ dxn (37)

the metric tensor amounts to gij = δij . and boils down to Pythagoras’ theorem. A general Riemannian
metric prescribes a method to measure the norm of a vector v as

√
g(v, v) = ||v|| and also allows

for measuring angles between any two vectors v, w at each point cosϑ = g(v,w)√
g(v,v)g(w,w)

. Like any

other tensor, the components of the metric tensor transform under a coordinate change according to
Eq. (20):

ḡαβ(x̄) =
[
(J−1)µα

]T
gµν(x) (J−1)νβ . (38)

Definition 9 (Arc length): Let γ : [0, 1] → M be a piecewise smooth curve on a differentiable
manifoldM, with γ(0) = p and γ(1) = q. The velocity vector along the curve is denoted by γ̇(t),
which lives in the tangent space Tγ(t)M. If the curve is expressed in local coordinates xµ(t), then
the components of the tangent vector γ̇(t) are given by dxµ(t)

dt . The arc length L(γ) (distance) of the
curve is then defined by

L(γ) =
∫ 1

0

∥γ̇(t)∥γ(t) dt =
∫ 1

0

√
gµν(x(t))

dxµ(t)

dt

dxν(t)

dt
dt . (39)

This arc length5 is reparameterization invariant, i.e., it does not depend on the choice of parameteriza-
tion of the curve γ(t). It is a very important result that every smooth manifold admits a Riemannian
metric.

5It is also called an action in physics.

26



Published as a conference paper at ICLR 2026

Lorentzian manifolds. Unlike Riemannian manifolds, spacetime is actually a pseudo-Riemannian
manifold6, that is, the metric is not positive definite. Thus, the underlying metric carries a signature
(−,+,+,+), meaning, gtt < 0. Consequently, spacetime is a Lorentzian manifold M , and, forms
the basis for electromagnetism and special relativity. The simplest example of a Lorentzian manifold
of arbitrary dimension is the Minkowksi metric, which is flat (meaning no curvature):

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + ....+ dxn−1 ⊗ dxn−1 , (40)

where, the components of the Minkowksi metric are ηµν = diag(−1,+1, ...,+1). It is possible to
find an orthonormal basis {eµ} of TpM around a small neighborhood of point p of a Lorentzian
manifold such that, “locally”, the metric resembles the Minkowski metric

gµν |p = ηµν . (41)

In the case of Lorentzian manifolds M , the arc length L(γ) in Eq. (39) is modified due to non
positive-definiteness

τ(σ) =

∫ σ

0

√
−gµν(x)

dxµ(σ′)

dσ′
dxν(σ′)

dσ′ dσ′, (42)

and is sometimes τ is referred to as proper-time. The minus sign under the square root ensures the
integrand is positive for timelike paths, since for timelike intervals, the inner product of the velocity
vector with itself (under the Lorentzian metric) is negative, i.e.,

ds2 = gµνdx
µdxν . (43)

Natural isomorphism between vector spaces and dual spaces. The metric provides a natural
isomorphism between vector spaces and dual spaces and allows the switch between contravariant and
covariant components7. This is done via the following mapping g : TpM→ T ∗

pM, where at each
point p, a one-form (covectors) is obtained via contraction operation of a vector field v|p with the
metric g.

For a vector v|p = vµ ∂
∂xµ and the covector v∗|p = vµdx

µ, the components are related by

vµ = gµνv
ν .

Since g is non-degenerate, it is invertible. We denote the inverse metric as gµν , such that gµσgσν = δµν .
This is a rank (2, 0) tensor of the form ĝ = gµν ∂

∂xµ ⊗ ∂
∂xν . Through the inverse metric indices can

be raised, e.g. xµ = gµνxν .

Such index contraction rules with the metric apply to tensors of rank (r, s) or even quantities that are
not tensors:

Sβ1....βs
α1....αr

=

( s∏
i=1

gβiγi

)( r∏
i=1

gαiδi

)
Sδ1....δr

γ1....γs
. (44)

A.3.3 CONNECTIONS & COVARIANT DERIVATIVE

Transporting vector and tensor fields systematically on manifolds requires mapping vector spaces at
one point to vector spaces at another. While this can be done trivially in the Euclidean setting, for
Riemannian and Lorentzian manifolds this is a non-trivial since these vector fields and tensor fields
live in different vector spaces. This necessitates a geometric object that behaves as a “connector”
between vector spaces. This is achieved via a geometric entity called the affine-connection, which is
a vector-valued one-form.

Definition 10 (Affine connection): LetM be a smooth manifold and Γ(TM) be the space of vector
fields onM, that is the space of smooth sections of the tangent bundle (i.e., the collection of all
tangent spaces). An affine connection is a bilinear map

∇ : Γ(TM)× Γ(TM)→ Γ(TM)

(v, w) 7→ ∇vw .

6In general, a pseudo-Riemannian manifold has a signature (−, ...,−︸ ︷︷ ︸
m

,+, ...,+︸ ︷︷ ︸
n

).

7In the context of numerical relativity the switch between contravariant and covariant components is called
“raising and lowering indices”.
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The differential operator∇v is the covariant derivative satisfying the following for tangent vectors
v, w (short for v|p, w|p):

i) ∇v(w + z) = ∇vw +∇vz

ii) ∇fvw = f∇vw ∀f ∈ C∞(M,R)

iii) ∇v(fw) = (Dvf)w + f∇vw ∀f ∈ C∞(M,R), Dvf = v(f) is the directional derivative.

The affine connection is completely independent of the metric. However, if a manifold is endowed
with a metric, this enables expressing the connection in terms of the metric. In GR, one looks at a
special subclass of affine connections called Levi-Civita connection, due to the symmetry property of
the metric tensor.

Definition 11 (Levi-Civita connection): An affine connection is an Levi-Civita connection for
tangent vectors v, w (short for v|p, w|p) if:

∇vg = 0 ∀v ∈ Γ(TM) (metricity condition) (45a)

∇vw −∇wv = [v, w] ∀v, w ∈ Γ(TM) (torsion-free condition), (45b)

where, [v, w] =
(
vµ∂µw

ν − wµ∂µv
ν
)
∂ν is the Lie-bracket of vector fields Kobayashi & Nomizu

(1963).

Intuition behind the torsion-free condition. Imagine you are moving on a smooth surface (like
walking on a hill), and you have two “directions” v|p and w|p at a point p. Now: First move along
v a tiny bit, then subsequently along w. Alternatively, move along w first, then along v, akin to
constructing a parallelogram. In flat, Euclidean space, doing these two moves would land you at
the same final point, because partial derivatives commute. On a curved surface (a manifoldM),
they don’t generally commute – you end up slightly shifted. The Lie bracket [v, w] measures how
far off (deficit) you are after moving in v and then w, compared to w and then v. It captures the
“non-commutativity” of the vector transport along the two distinct directions, which leads to a non-
closure of the parallelogram. Thus, the Lie bracket is intrinsic to the manifold, and shows how the
transport of v and w interact. In torsion-free connections, the “commutation failure” is purely due to
the manifold’s structure – not any extra “twisting” introduced by the connection itself.

A.3.3.1 Parallel transport

Definition 12 (Parallel transport): Let γ : [0, 1]→M be a smooth curve on the manifold, and let
T be a smooth (r, s)-rank tensor field defined along the curve γ. The parallel transport of T along
the curve γ(τ) is defined by the condition that its directional covariant derivative along the curve’s
tangent vector vanishes:

∇γ̇(τ)T = 0, ∀τ ∈ [0, 1] , γ̇(t) ∈ TpM . (46)

In local coordinates {xµ(τ)}, the parallel transport condition for the components of the tensor field
Tµ1...µr
ν1...νs

(τ) along the curve γ(t) is:

d

dτ
Tµ1...µr
ν1...νs

(τ) +

r∑
i=1

Γµi

λρẋ
ρ(τ)Tµ1...λ...µr

ν1...νs
(τ)−

s∑
j=1

Γλ
νjρẋ

ρ(τ)Tµ1...µr

ν1...λ...νs
(τ) = 0 . (47)

These equations are a set of coupled ODEs, and can be solved uniquely for an initial condition to
find a unique vector at each point along the curve γ(τ). This ensures that as the tensor is transported
along the curve, its components change in such a way that their covariant rate of change along the
curve vanishes.

A.3.3.2 Christoffel symbols The Levi-Civita covariant derivative contains, apart from the partial
derivative term, a correction field that calibrates the deficit between vector (tensor) fields transported
along a path on the manifold. For a basis {eµ} that is transported the covariant derivative is given by,

∇eνeµ(x) = Γσ
µν(x)eσ(x) . (48)
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The covariant derivative, denoted by ∇eν ≡ ∇ν = ∂ν + Γν , defines a “modified” differentiation
operator that preserves tensorial character under general coordinate transformations. The quantities
Γσ
µν , known as the Christoffel symbols, represent the components of the Levi-Civita connection,

which is uniquely determined by the requirement that the connection is torsion-free and compatible
with the metric. Notably, these symbols are symmetric in their lower two indices, i.e., Γσ

µν = Γσ
νµ.

The action of the covariant derivative on a general tensor field of type (r, s) ensures that derivatives
of tensors transform covariantly, thereby extending the notion of differentiation from vector calculus
to curved manifolds.

∇µT
α1...αr

β1...βs
(x) =

∂

∂xµ
Tα1...αr

β1...βs
(x) +

r∑
i=1

Γαi
µσ(x)T

α1...σ...αr

β1...βs
(x) (49)

−
s∑

j=1

Γσ
µβj

(x)Tα1...αr

β1...σ...βs
(x) . (50)

The action of the covariant derivative on a scalar field, simply reduces to a partial derivative

∇µϕ(x) =
∂ϕ(x)

∂xµ
.

Christoffel symbols can be solely expressed in terms of the metric and its partial derivatives:

Γρ
µν(x) :=

1

2
gρσ
(
∂µgσν(x) + ∂νgσµ(x)− ∂σgµν(x)

)
= Γρ

νµ(x) . (51)

A crucial feature of any connection is that it is not a tensorial quantity. Connections don’t obey
the transformation law in Eq. (20) under coordinate changes. This can be easily seen through the
components of the Christoffel symbols in the coordinate basis:

Γ̄ρ
µν(x̄) =

∂x̄ρ

∂xγ

∂xα

∂x̄µ

∂xβ

∂x̄ν
Γγ
αβ(x)︸ ︷︷ ︸

tensorial contribution

+
∂2xσ

∂x̄µ∂x̄ν

∂x̄ρ

∂xσ︸ ︷︷ ︸
non-tensorial contribution

. (52)

Christoffel symbols play a significant role in defining most stationary trajectories (shortest or longest)
in the non-Euclidean setting.

Lie derivatives revisited: Levi-Civita connection included. In case of a nonzero Levi-civita
connection, the partial derivatives of an ordinary Lie derivative in Eq. (31) is replaced by the covariant
derivatives:

(LvT )
µ1...µr

ν1...νs
= vσ∇σT

µ1...µr
ν1...νs

−
r∑

i=1

Tµ1...σ...µr
ν1...νs

∇σv
µi +

s∑
j=1

Tµ1...µr
ν1...σ...νs

∇νj
vσ . (53)

The first term advects (drags) the tensor along the flow of v, i.e., this is the “naive” directional
derivative part. The second and third terms account for how the basis vectors themselves are
changing, due to curvature and due to the vector field v, respectively. It is easy to show that the three
terms lead to pair-wise cancellations between the Christoffel symbols present in the three different
covariant derivative terms of Eq. (53). Due to this, the whole expression boils down to Eq. (31),
thus corroborating the connection independence of this derivative operator. Differently put, in the
covariant derivatives, the Christoffel symbols introduce extra terms. However, the extra Christoffel
terms cancel out between the different contributions (first, second, and third terms). One ends up
getting exactly the same final expression for the Lie derivative as if only partial derivatives had been
used – this is what is meant by “connection independence”.

A.3.4 GEODESIC EQUATION

Geodesics are paths that correspond to the most stationary trajectories (shortest or longest distance)
that connect two points p and q on a manifold. Often, we only consider locally distance minimizing
curves, and refer to them as geodesics. Geodesics are obtained by solving a calculus of variations
problem on the distance metric L(γ) in Eq. (39), i.e.,
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δL(γ) := 0 , (54)

(or alternatively on τ(σ) in the Lorentzian setting of Eq. (42)). Solving the calculus of variations
problem boils down to solving the Euler-Lagrange equations, which mathematically is equivalent to
the condition

∇γ̇(t)γ̇(t) = 0 , (55)

where γ(t) is the curve (path) on the manifold, γ̇(t) the tangent vector (velocity vector), and ∇ the
covariant derivative. Eq. (55) intuitively says that the tangent vector is parallel transported along
itself – meaning, one is moving without “acceleration” relative to the curved space. Thus, parallel
transporting the tangent vector along the curve preserves the tangent vector. In numerical relativity,
these corresponds to the equations of motion, i.e. a generalization of the Newton’s acceleration
equation d2xµ

dτ2 = Fµ/m. For full derivations, we direct the readers to refer to Carroll et al. (2004);
Misner et al. (2017); Poisson (2004).

We shall present the final form of a very central second-order ODE describing motion (acceleration)
of objects executing geodesic paths around heavy gravitating bodies, namely, the geodesic equation

d2xµ

dτ2
+ Γµ

ρσ(x)
dxρ

dτ

dxσ

dτ
= 0 , (56)

where, τ is some affine paramter (typically, chosen to be the proper-time in Eq. (42)), d2xµ/dτ2 is
the four-acceleration vector, dxρ/dτ is the four-velocity and Γµ

ρσ is the Christoffel symbols as seen
in Eq. (51)).

Importantly, Eq. (55) is the geometric statement of the geodesic equation. It’s coordinate-free, i.e., it’s
expressed entirely in terms of geometric objects. Eq. (56) is the coordinate version of the same idea.
Here, one chooses a coordinate system xµ on the manifold, and the covariant derivative ∇ acting on
a vector becomes the partial derivative plus correction terms involving the Christoffel symbols8.

A.3.5 CURVATURE TENSORS AND SCALARS

Curvature tensors arise naturally in differential geometry as tensorial objects that capture the intrinsic
and, where appropriate, extrinsic geometric properties of a manifold. They provide a coordinate-
independent way to quantify the curvature of space or spacetime by encoding how the geometry
deviates from flatness through the second derivatives, constructed out of Hessians of the metric tensor.
Unlike artifacts that may arise from curvilinear coordinate choices on flat manifolds, curvature tensors
reflect the true geometric content of a space. These generalize classical notions such as Gaussian
curvature to higher dimensions and arbitrary signature. Being multilinear objects containing several
tensor components, curvature tensors systematically characterize the variation of the metric across
different directions. We shall introduce the key curvature related quantities, which include the
Riemann relevant ones used in our paper in the following section.

A.3.5.1 Riemann curvature tensor The Riemann curvature tensor Rµ
γαβ(x) eµ⊗ϑγ ⊗ϑα⊗ϑβ

is a rank (1, 3) tensor, which quantifies the measure to which a vector that is transported along a
small loop (also called holonomy) fails to return to its original orientation – due to the effect of the
intrinsic curvature that the vector field picks up during the transport. The Riemann curvature tensor is
defined via the commutators of covariant derivatives acting on components of a vector field v:

[∇α,∇β ]v
δ(x) =

(
∇α∇β −∇β∇α

)
vδ(x) = Rδ

αβγ(x)v
γ(x) . (57)

The components of the Riemann curvature tensor are expressed in terms of the Christoffel symbols

Rδ
αβγ(x) =

∂Γδ
αγ(x)

∂xβ
−

∂Γδ
βγ(x)

∂xα
+ Γσ

γα(x)Γ
δ
βσ(x)− Γσ

βγ(x)Γ
δ
σα(x) . (58)

8Ideally, concepts such as connections, parallel transport and covariant derivatives are metric-independent
formulation
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The Riemann tensor Rαβγδ = gασR
σ
βγδ obeys the following identities:

Rαβγδ = −Rαβδγ ,

Rαβγδ = −Rβαγδ ,

Rαβγδ = −Rγδαβ .

The Riemann tensor in a n-dimensional manifold has n2(n2 − 1)/12 independent components.
Importantly, it satisfies two additional identities, called the Bianchi identities

Rαβγδ +Rαγδβ +Rαδβγ = 0 (Bianchi Identity I) , (59a)

∇αRβγδσ +∇βRγαδσ +∇γRαβδσ = 0 (Bianchi Identity II) . (59b)

Unlike the Christoffel symbols, which may be non-zero purely due to the choice of coordinates –
e.g., when imposing curvilinear coordinates such as polar coordinates (r, ϑ) on the flat Cartesian
plane – the Riemann curvature tensor encapsulates the true geometric curvature of a manifold. Since
Christoffel symbols represent connection coefficients rather than tensorial objects, their non-vanishing
components can give the false impression of intrinsic curvature, even on a flat manifold. In contrast,
the Riemann tensor is a bona fide tensor and its vanishing is a coordinate-invariant statement: if the
Riemann tensor vanishes in one coordinate system, it vanishes in all coordinate systems. Thus, it
provides a definitive criterion for distinguishing truly curved spaces from flat ones, independent of
coordinate artifacts.

Geodesic deviation. An important consequence of the existence of a non-zero Riemann tensor is
that it encapsulates directional information about how geodesics path converge or diverge. Intuitively,
it implies that in Euclidean space Rd, parallel lines always remain parallel, but in the case of spherical
geometry, say Sd−1 (constant positive curvature) the parallel lines converge at a point, while for
hyperbolic spaces Hd , the parallel lines continue diverging. This is captured by the geodesic deviation
equation (sometimes referred to as Jacobi equation) Isham (1999); Jost (2008); Poisson (2004),
which shows how an infinitesimal neighborhood of a given geodesics diverge or converge. Here, we
shall give the equation with a brief sketch.

Theorem 2 (Jacobi equation): Let γs(τ) be a family of closely spaced geodesics indexed by a
smooth one-paramter family s and τ ∈ R the affine parameter. Let xµ(s, τ) be the coordinates
of the geodesics γs(τ), then the tangent vector field is a directional derivative expressed in these
coordinates as Xµ = dxµ(s,τ)

dτ . Let the set of deviation vector fields Sµ = ∂xµ(τ,s)
∂s |τ . Then, the

deviation vector fields that satisfy the acceleration equation are called (Jacobi fields) and read

D2Sµ

Dτ2
= Rµ

αβγX
αXβSγ , (60)

where, D
Dτ = Xα∇α is the directional covariant derivative, i.e., the derivative of a vector field along

a given direction on a manifold, while accounting for the manifold’s curvature.

A.3.5.2 Contracted curvature tensors, scalars and invariants

Ricci tensor. From the rank (1, 3) Riemann tensor, one can construct a traced (contracted) symmet-
ric curvature tensor of rank (0, 2), called the Ricci tensor Rαβ ϑα ⊗ ϑβ ,

Rγ
αγβ = Trg(R

γ
αδβ) := Rαβ . (61)

Mathematically, the Ricci tensor aggregates directional curvature along orthogonal planes. Thus, it
can be considered as a curvature average of the Riemann tensor. It is closely related to the concept of
sectional curvature and reflects how volume deformations occurs as one evolve under geodesic flow.

Ricci scalar. The traced (contracted) Ricci tensor yields a scalar field called the scalar curvature,
also called the Ricci scalar. It is defined as

Rα
α = Trg(Rαβ) := R . (62)
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Mathematically, the scalar curvature corresponds to the sum/average over all sectional curvatures, i.e.,
R(p) =

∑
α̸=β Sec(eα, eβ)|p ∀p ∈ M. For a point p, in an n-dimensional Riemannian manifold

(M, g), it characterizes the volume of an ϵ-radius ball in the manifold to the corresponding ball in
Euclidean space, given by,

Vol
(
Bϵ(p)) ⊂M

)
= Vol

(
Bϵ(0) ⊂ Rn

)(
1− R

6(n+ 2)
ϵ2 +O(ϵ3)

)
.

Weyl tensor. Another important tensor field of rank(0, 4) is the Weyl tensor, which is obtained
as the “trace-free” part of the Riemann tensor. Physically, the Weyl tensor describes the tidal force
experienced by a body when moving along geodesics, and quantifies the shape distortion a body
experiences due to tidal forces (e.g., water tides caused by the gravitational pull of the moon). In an
n-dimensional manifold it is defined as:

Cαβγδ = Rαβγδ −
1

(n− 2)

(
Rαδgβγ −Rαγgβδ +Rβγgαδ −Rβδgαγ

)
(63)

+
1

(n− 1)(n− 2)
R
(
gαγgβδ − gαδgβγ

)
.

Mathematically, the Weyl tensor corresponds to the only non-zero components of the Riemann
tensor when looking at Ricci-flat manifolds, i.e. Rαβ = 0. This become relevant for e.g., vaccum
solutions, a class of exact solutions where Rαβ = 0 of the Einstein equations in the absence of matter
distribution.

Curvature invariants. Curvature invariants play a central role in the analysis of spacetime ge-
ometries in general relativity. These scalar quantities are constructed from contractions of curvature
tensors and are manifestly invariant under general coordinate transformations. As such, they serve as
powerful diagnostic tools for characterizing the local and global geometric and physical properties of
spacetime, which includes the identification of “true” (genuine spacetime singularities) and “false”
singularities (artifact of choice of coordinate charts).

Among the most prominent quadratic curvature invariants that is relevant to our simulations and
features in our paper is the Kretschmann scalar, defined as the full contraction of the Riemann
curvature tensor with itself:

K (x) := Rαβγδ(x)Rαβγδ(x) = gαρ(x)gβσ(x)gγζ(x)gδη(x)Rρσζη(x)Rαβγδ(x) . (64)
The Kretschmann scalar provides a coordinate-independent measure of the magnitude of the cur-
vature of spacetime and the singularity becomes blows-up, due to infinite curvature. Examples are
Kretschmann scalars K for blackholes, and Weyl scalars Ψ4 for gravitational wave astrophysics.
They capture the presence of intrinsic curvatures even when the Ricci tensor itself vanishes. Thus,
the Kretschmann scalar encodes geometric information in a frame-independent manner.

A.3.6 STRESS-ENERGY-MOMENTUM TENSOR

The stress-energy-momentum tensor (or simply called the energy-momentum tensor) is a symmetric
rank (2, 0) tensor

Tαβ = Tαβeα ⊗ eβ . (65)

Physically, Tαβ is a generalization of the stress tensor in continuum and fluid mechanics. It stores
the information of distribution of matter fields, i.e., sources or sinks as a 4 × 4 tensor, such as
energy-density, energy-flux, momentum density, and momentum flux.

These matter fields satisfy the conservation laws, i.e., conservation of mass and energy via the
four-dimensional continuity equation and corresponds to the divergence-free condition of the energy-
momentum tensor

∇αT
αβ(x) = 0 . (66)

The stress-energy-momentum tensor features on the right hand side of the Einstein field equations
(EFEs), and influences spacetime geometry by causing distortions on it.
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A.3.7 EINSTEIN FIELD EQUATIONS

The EFEs are a set of second-order non-linear PDEs containing geometry on the left hand side and
the source on the right hand side. EFEs are obtained by combining all the differential geometric
quantities from Eqs. (36, 61, 62, 65), together with the conservation laws for matter distribution of
Eq. (66), resulting in

Gαβ = 8πG Tαβ . (67)

Here, Gαβ := Rαβ− 1
2gαβR+Λgαβ is called the Einstein tensor and also satisfies the divergence-free

condition ∇αG
αβ = 0, which, is a consequence of the IInd Bianchi identity of Eq. (59b).

A.3.8 COORDINATE-INDEPENDENCE OF GR

Fundamentally, GR posits a deeper symmetry class: diffeomorphism covariance (Misner et al.,
2017). It asserts that the laws of physics are independent of any particular choice of coordinates or
parametrization of the underlying smooth manifold. For example, the metric around the star, say
sun, can be expressed in terms of the Schwarzschild metric (introduced in Section B.1). Here, the
diffeomorphism acts as a gauge transformation (Tao, 2008) between two sets of metrics defined on the
Lorentzian manifold M , in this case an equivalence class of Lorentzian metrics Riem(M ) describing
the same spacetime geometry. This makes sure equations of motion, conservation laws, physical
fields, etc. remain intact, hence, the term “covariance”. In mathematical terms, Let, Φ ∈ Diff(M )

be a smooth, invertible map between M with a smooth inverse, Φ : M
∼=−→M such that:

(
Φ∗g

)
(v, w) := g

(
Φ∗(v),Φ∗(w)

)
. (68)

Here, Φ∗ : TM → TM , is the pushforward map defined on the tangent bundles. This means
under diffeomorphisms the metric transforms via a pullback operation Φ∗g = g′. I.e., ḡαβ(x̄) =
∂xµ

∂x̄α
∂xν

∂x̄β gµν(x) are gauge equivalent. Additionally, GR also admits changes of local frames or bases
(external symmetries) via the general linear group GL(4,R), i.e., invertible linear transformations at
each point p ∈M . Thus, GR enjoys coordinate independence from two symmetry transformations,
i.e., (i) between any particular choice of coordinates or parameterization of the underlying smooth
manifold M , and (ii) general linear group transformations that locally change frames of reference.

B EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATIONS

This Appendix contains a detailed description of the exact solutions of EFEs corresponding to a
class of metrics gµν that are solutions of Eq. (67). While there exist several geometries that satisfy
the EFEs, we shall consider three prominent geometries: the Schwarzschild metric, the Kerr metric,
and gravitational waves. These solutions not only have a high theoretical and historical relevance,
but are also of great interest in computational black hole astrophysics and gravitational wave and
multi-messenger astronomy. From here on, we work in naturalized units by setting c = G = 1.

Our work predominantly uses the exact solutions for generating synthetic training data, which are
analytic expressions for (i) Schwarzschild, (ii) Kerr, and (iii) linearized gravity metrics, on which we
fit the NeFs.

B.1 SCHWARZSCHILD METRIC

The Schwarzschild metric is the simplest non-trivial solution to the EFEs. It describes the geometry
around a non-rotating spherical body, such as a star or a black hole, constituting spherically symmetric
vacuum solutions, i.e., Tµν = 0. A famous result of GR called the Birkhoff’s theorem (Birkhoff &
Langer, 1923) proves that any spherically symmetric vacuum solution corresponds to a static (non-
rotating), time-independent (stationary), and asymptotically flat metric (i.e., for r →∞ the metric
converges to the flat Minkowski spacetime), and must essentially be equivalent to the Schwarzschild
solution.
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B.1.1 COORDINATE SYSTEMS FOR SCHWARZSCHILD METRICS

Spherical polar coordinates. Schwarzschild solution is typically written in the convential spherical
polar coordinates (t, r, θ, ϕ) where t ∈ R, r ∈ R+, θ ∈ (0, π), and ϕ ∈ [0, 2π). The metric can be
written either using the quadratic line element

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)
. (69)

or in the equivalent matrix notation

gSph
µν =


−
(
1− 2M

r

)
0 0 0

0

(
1− 2M

r

)−1

0 0

0 0 r2 0
0 0 0 r2sin2θ

 . (70)

The true singularity of the Schwarzschild metric is at the origin and can be identified from the
divergent Kretschmann scalar (Eq. (64)):

K (r) =
48M2

r6
r→0−−−→∞ . (71)

Although a (fake) coordinate singularity exists at r = rs = 2M , where the Kretschmann scalar is
well defined. This special radius rs is called the Schwarzschild radius. It demarcates the location of
the event horizon of a non-rotating black hole and delineates a region from which no causal signal
can escape to asymptotic infinity, meaning, it is a point of no return for any body (including light)
once it crosses this critical radius.

Cartesian Kerr-Schild coordinates. The Kerr-Schild (KS) form is a beneficial representation for
finding exact solutions to the EFEs. These are perturbative corrections to a spacetime metric only
upto the linear order (Kerr & Schild, 2009). The KS form enables the following simplifications to
the nonlinear field equations : (i) It expresses the resultant metric as a linearized perturbation to the
background metric, and (ii) gets rid of the coordinate singularities, which are mere artifacts of an
unsuitable choice of coordinate systems. The corresponding line element expressed in the KS form
reads

ds2 = (ḡαβ + V (x)ℓαℓβ)dx
αdxβ , (72)

where ḡαβ is some background metric, lα are the components of a null vector ℓ with respect to the
background metric and V (x) is a scalar.

For a spherically symmetric non-rotating blackhole such as Schwarzschild, the Cartesian Kerr-Schild
line element is obtained by setting ḡαβ = ηαβ , ℓ =

(
1, x

r ,
y
r ,

z
r

)
and V = 2M

r :

ds2 = −dt2 + dx2 + dy2 + dz2 +
2M

r

[
dt+

x

r
dx+

y

r
dy +

z

r
dz

]2
. (73)

Unlike the spherical coordinate form in Eq. (69), r = 2M is not singular, hence removing the
coordinate singularities. The metric tensor components read:

gKS
µν =



−1 + 2M/r
2Mx

r2
2My

r2
2Mz

r2

2Mx

r2
1 +

2Mx2

r3
2Mxy

r3
2Mxz

r3

2My

r2
2Mxy

r3
1 +

2My2

r3
2Myz

r3

2Mz

r2
2Mxz

r3
2Myz

r3
1 +

2Mz2

r3


. (74)

(75)
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Ingoing (advanced) Eddington-Finkelstein coordinates The ingoing version of the Eddington-
Finkelstein (EF) coordinates is obtained by replacing time t with an advanced time coordinate
v = t+ r⋆(r), where r⋆ = r+M log

∣∣ r−2M
2M

∣∣. Thus, dt in these transformed coordinates amounts to:

dt = dv − dr∗ = dv −
(
1− 2M

r

)−1

dr

The ingoing EF version of the Schwarzschild metric reads:

ds2 = −
(
1− 2M

r

)
dv2 + 2dv dr + r2

(
dθ2 + sin2θ dϕ2

)
, (76)

With the metric tensor being:

gEF
µν =



−
(
1− 2M

r

)
1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 ϑ


. (77)

This metric is smooth (and non-degenerate), devoid of coordinate singularities at the event horizon
r = rs = 2M , and can be continued down to the curvature singularity at r = 0 (Carroll et al., 2004;
Chandrasekhar, 1984; Frolov & Novikov, 1998).

B.2 KERR METRIC

The Kerr solution describes a massive gravitating body rotating with an angular momentum J . From
the physics perspective, it is not symmetric under time-reversal symmetry, i.e., t → −t, hence
corresponds to a stationary but a non-static solution (Teukolsky, 2015). Due to a finite angular
momentum J , or equivalently, rotation parameter a = J

M > 0, the Kerr metric introduces an
asymmetry, and is oblate. Thus, the Kerr metric corresponds to an oblate spheroid geometry.

B.2.1 COORDINATE SYSTEMS FOR KERR METRIC

Boyer-Lindquist coordinates. The Boyer-Lindquist (BL) coordinates are a special and convenient
representation for the Kerr metric (Boyer & Lindquist, 1967; Visser, 2008; Teukolsky, 2015). The
BL form (t, r, ϑ, ϕ) is described by oblate spheroidal coordinates (Krasiński, 1978):

x =
√
r2 + a2 sinϑ cosϕ (78a)

y =
√
r2 + a2 sinϑ sinϕ (78b)

z = r cosϑ . (78c)

Notice that the zenith angle ϑ ̸= θ differs from the Schwarzschild case, while the azimuthal angle ϕ
is the same in both. As a→ 0, the Kerr metric boils down to the non-rotating spherical case of the
Schwarzschild metric.

ds2 = −
(
1− 2Mr

Σ

)
dt2− 4Marsin2ϑ

Σ
dtdϕ+

Σ

∆
dr2+Σdϑ2+

(
r2+a2+

2Mra2sin2ϑ
Σ

)
sin2ϑdϕ2 ,

(79)
where the length scales are a = J

M (angular momentum per unit mass), Σ ≡ r2 + a2cos2ϑ, and
∆ ≡ r2 − 2Mr + a2. The Kerr curvature singularity occurs at Σ := r2 + a2cos2ϑ = 0, implying
r = 0 and ϑ = π

2 . The metric tensor of Eq. (79) is:
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gBL
µν =



−
(
1− 2Mr

Σ

)
0 0 −2Mar sin2 ϑ

Σ

0
Σ

∆
0 0

0 0 Σ 0

−2Mar sin2 ϑ

Σ
0 0

(
r2 + a2 +

2Ma2r sin2 ϑ

Σ

)
sin2 ϑ


. (80)

In the Boyer-Lindquist form of the metric, there also exist coordinate singularities at ∆ = r2 −
2Mr + a2 = 0. Thus, the roots of ∆ = 0 are r± = M ±

√
M2 − a2, which demarcate the outer

and inner horizons.

It is easy to see the existence of a curvature singularity at r = 0 on the equatorial plane corresponding
to the zenith angle ϑ = π

2 . Thus, unlike Schwarzschild, the singularity in Kerr geometry takes the
form of a ring, also known as a ring singularity.

Cartesian Kerr-Schild coordinates. The Cartesian KS form of the Kerr metric is obtained by
setting in Eq. (72) ℓ =

(
1, rx+ay

r2+a2 ,
ry−ax
r2+a2 ,

z
r

)
and V = mr3

r4+a2z2 in Eq. (72). The Kerr metric in
Kerr coordinates are often used to write initial data for hydro simulations. The line-element in the
Cartesian Kerr-Schild form reads (Teukolsky, 2015):

ds2 = −dt2+dx2+dy2+dz2+
2mr3

r4 + a2z2

[
dt+

r(xdx+ ydy)

a2 + r2
+
a(ydx− xdy)

a2 + r2
+
z

r
dz

]2
. (81)

Here, r ≡ r(x, y, z) is not a coordinate, and is given implicitly by solving the quadratic equation
x2+y2

r2+a2 + z2

r2 = 1: The solution for the implicit function r is given by the discriminant (Visser, 2008):

r2(x, y, z) =
x2 + y2 + z2 − a2

2
+

√
(x2 + y2 + z2 − a2)2 + 4a2z2

4
.

The corresponding Cartesian coordinates are expressed as:

x = (r cosφ− a sinφ)sinϑ =
√
r2 + a2 sinϑ cos

(
φ+ tan−1(a/r)

)
,

y = (r sinφ+ a cosφ)sinϑ =
√
r2 + a2 sinϑ sin

(
φ+ tan−1(a/r)

)
,

z = r cosϑ .

In the BL coordinates the ring singularity for Kerr exists at r = 0 & ϑ = π
2 , translating to z =

0 (equatorial-plane), and the ring occurring at x2 + y2 = a2. In contrast, the KS representation is
devoid of coordinate singularities, making it suitable to work in numerics, especially around the
event-horizons.

Ingoing Eddington-Finkelstein coordinates. In the original formulation, the Kerr metric is written
in the advanced time coordinates/ingoing EF coordinates v. The line element in this representation
reads (Teukolsky, 2015):

ds2 =−
(
1− 2Mr

r2 + a2cos2θ

)
(dv + a sin2θ dϕ̃)2 (82)

+ 2(dv + a sin2θdϕ̃)(dr + a sin2θdϕ̃)

+ (r2 + a2cos2θ)(dθ2 + sin2θdϕ̃2) ,

where the ingoing EF coordinates are related to the Boyer-Lindquist coordinates Eq. (78) by the
following transformation:

v = t+

∫
(r2 + a2)

∆
dr ,

ϕ̃ = ϕ+ a

∫
dr

∆
,
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where, ∆ ≡ r2 − 2Mr + a2. and the metric tensor components corresponding to the line element is
given by

gEF
µν =



−
(
1− 2Mr

Σ

)
1 0

2Mar sin2 θ

Σ

1 0 0 a sin2 θ

0 0 Σ 0

2Mar sin2 θ

Σ
a sin2 θ 0

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ


. (83)

The coordinate (fake) singularities (K < ∞) of the Kerr metric is given by the zeros of ∆ ≡
r2 − 2Mr + a2 = 0. Solving for the zeros, one finds

r± = M ±
√
M2 − a2 ,

where, r+ is the outer event horizon, while r− demarcates the inner event horizon.

Apart from that, rotating metrics also possess a highly interesting region known as the ergosphere,
which fundamentally captures the non-Euclidean and non-inertial nature of general relativistic effects
induced by rotation. This domain is situated outside the outer event horizon r+, and is created owing
to the frame-dragging (Lense-Thirring) effect. Consequently, no physical observer (test body) can
remain static within the ergosphere and is compelled to co-rotate with the black hole depending on
the value of a. The location of the ergosphere is given by

rergo
± (ϑ) = M ±

√
M2 − a2cos2ϑ ,

where, rergo
+ is the outer ergosphere, while rergo

− demarcates the inner ergosphere. In Figure 8, the
following regions of the Kerr metric are demarcated:

Figure 8: Kerr metric 2D slice in the x-z plane (y = 0) for a spin parameter a = 0.99. The following
regions plotted are: i) inner ergosphere rergo

− : red region, ii) inner event-horizon r−: green region, iii)
outer event-horizon r+: blue region and iv) outer Ergosphere rergo

+ : purple region.

B.3 GRAVITATIONAL WAVES

Linearized gravity models the metric as tiny fluctuations or perturbations hαβ of the flat background
metric ηαβ :

gαβ ≈ ηαβ + hαβ +O(hαβ)
2 ,

where |hαβ | ≪ 1. To describe gravitational wave propagation, it is often convenient to reduce the
linearized field equations into a simplified form via two gauge fixing conditions, namely, a) harmonic
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gauge, and b) transverse-traceless (TT) gauge. Thus, the Einstein field equations for gravitational
waves assume a succinct wave equation type form:

□h
(ϵ)

αβ = −16πTαβ . (84)

Here, h
(ϵ)

αβ = h
(ϵ)
αβ −

1
2h

(ϵ)ηαβ and □ ≡ ηαβ∂α∂β is the d’Alembert operator (wave operator). It can
be shown that the PDEs in Eq. (84) produce gravitational wave solutions.

The transverse-traceless (TT) perturbation (we drop the superscript (ϵ) for the sake of ease) satisfies
the following conditions:

Transverse: ∂βhTTαβ = 0, i.e., wave propagates perpendicular to perturbation direction,

Traceless: hTTα
α = 0,

Purely spatial: hTT
0α = 0, i.e., no time components.

Thus, a gravitational wave propagating in the z-direction with frequency ω is given in the TT gauge
as:

hTT
αβ =



0 0 0 0

0 h+ h× 0

0 h× h+ 0

0 0 0 0

 cos
(
ω(t− z)

)
. (85)

h+ and h× are the amplitudes of the “+” (plus) polarization and “×” (cross) polarization.

The complete metric tensor in the linearized gravity setting is given by:

gαβ = ηαβ + hTT
αβ =



−1 0 0 0

0 1 + h+ cos
(
ω(t− z)

)
h× cos

(
ω(t− z)

)
0

0 h× cos
(
ω(t− z)

)
1 + h+ cos

(
ω(t− z)

)
0

0 0 0 1

 . (86)

The corresponding line-element in the linearized gravity setting reads:

ds2 = −dt2 +
[
1 + h+ cos(ω(t− z)

)]
dx2 +

[
1− h+ cos(ω(t− z)

)]
dy2

+ 2h× cos(ω(t− z)
)
dx dy (87)

Spin-weighted spherical harmonics (SWSH) metric representation. We start from the decompo-
sition of the complex gravitational wave strain with the spherical harmonic basis-set expansion (New-
man & Penrose, 1962). With the expansion in mode weights hlm(t, r), one can ignore (remove) the
angular dependence:

h(t, r, θ, ϕ) = h+(t, r, θ, ϕ)− ih×(t, r, θ, ϕ) =
M

r

∞∑
ℓ=|s|

ℓ∑
|m|≤ℓ

hℓm(t)−2Yℓm(θ, ϕ) , (88)

where, h(t, r, θ, ϕ) = h+(t, r, θ, ϕ) − ih×(t, r, θ, ϕ) is the complex strain. Thus, for each orbital
and azimuthal indices (ℓ,m), one can extract the mode hℓm(t) at a fixed radius r, one uses the
orthogonality of the spin-weighted spherical harmonics (SWSHs) elements:

r

M
hℓm(t) =

∫ 2π

0

∫ π

0

h(t, r, θ, ϕ)−2Ȳℓm(θ, ϕ) dΩ (89)

where, dΩ = sin θ dθ dϕ is the spherical volume element and −2Ȳℓm denotes the complex conjugate
of the s = 2 − n = −2 where (n = 4 for Ψ4) spin-weighted spherical harmonics. One typically
carries out the integral over the 2-sphere S2 numerically on a finite angular grid.
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The general formula for SWSHs is:

sYℓm(θ, ϕ) = (−1)l+m−s

[
2ℓ+ 1

4π

(ℓ+m)!(ℓ−m)!

(ℓ+ s)!(ℓ− s)!

]1/2
sin2ℓ

(
θ

2

)
eimϕ (90)

ℓ−s∑
r=0

(−1)r
(
ℓ− s

r

)(
ℓ+ s

r + s−m

)
cot2r+s−m

(
θ

2

)
.

where the parameters ℓ,m are the familiar Laplace spherical harmonics (orbital-angular momentum
and azimuthal indices), while s is the additional spin-weight introduced by some underlying gauge
group such as U(1). We especially plot for the integers s = −2, l = m = 2, since they are relevant
for GWs and are depicted in Figure 9.

Figure 9: Spin weighted spherical harmonics for s = −2, and l = 2 for |m| ≤ l. The dominant
contributions for the Weyl scalar Ψ4 and the associated metric coefficients in the spherical harmonic
basis h2,±2(t) are shown.

B.4 MINKOWKSI METRIC

B.4.1 COORDINATE SYSTEMS FOR MINKOWSKI METRIC

The flat Minkowski metric, which is a spacetime that has no curvature (M → 0) can be expressed in
other coordinate systems as well.

Spherical polar coordinates. In spherical coordinates (t, r, ϑ, φ), the Minkowski metric is de-
scribed by the quadratic line element,

ds2 = −c2dt2 + dr2 + r2(dθ2 + sin2dϕ2) (91)

here, r ∈ R+, θ ∈ (0, π), and, ϕ ∈ [0, 2π) are the usual spherical polar coordinates. Thus, the metric
tensor describing the Schwarzschild solution reads:

ηSph
µν =

−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2sin2θ

 (92)

Boyer-Lindquist coordinates. Setting M → 0 in the Boyer-Lindquist form of the Kerr metric
Eq. (79), the corresponding line element reduces to an unfamiliar “oblate-spheroidal" represtation:

ds2 = −dt2 + r2 + a2cos2ϑ
r2 + a2

dr2 + (r2 + a2cos2ϑ) dϑ2 + (r2 + a2) sin2ϑ dϕ2 , (93)

and the components of the

ηBL
µν =


−1 0 0 0

0 r2+a2cos2ϑ
r2+a2 0 0

0 0 r2 + a2cos2ϑ 0
0 0 0 (r2 + a2) sin2ϑ

 . (94)

The usual Cartesian coordinates can be related to the oblate spheroid ones via:

x =
√
r2 + a2 sin ϑ cos ϕ

y =
√

r2 + a2 sin ϑ sin ϕ

z = r cos ϑ .
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Eddington-Finkelstein coordinates. The Minkowski metric can be written in the ingoing (ad-
vanced) Eddington-Finkelstein form in two different cases, namely for the non-rotating and the
rotating case.

• i) non-rotating, a→ 0 (Schwarzschild): :
ds2 = −dv2 + 2 dv dr + r2(dθ2 + sin2ϑ dϕ2) ,

and the metric tensor reads:

ηEF
µν =

−1 1 0 0
1 0 0 0
0 0 r2 0
0 0 0 r2 sin2θ

 . (95)

• ii) rotating: a > 0 (Kerr):
ds2 = −(dv + a sin2ϑdϕ)2 + 2(dv + a sin2ϑdϕ)(dr + asin2ϑdϕ)

+ (r2 + a2 cos2ϑ)(dθ2 + sin2dϕ2) , (96)
and the metric tensor reads:

ηEF
µν =


−1 1 0 0
1 0 0 asin2ϑ
0 0 Σ 0
0 asin2ϑ 0 (r2 + a2) sin2ϑ

 . (97)

B.5 TRAINING ON NON-TRIVIAL METRIC FIELDS (DISTORTIONS)

Distortion part of Schwarzschild geometry in spherical coordinates:

• Spherical coordinates: obtained by subtracting Eq. (92) from Eq. (70):

gSph
µν − ηSph

µν =



rs
r

0 0 0

0
rs

(r − rs)
0 0

0 0 0 0

0 0 0 0


. (98)

• Kerr-Schild coordinates obtained by subtracting ηµν = diag(−1,+1,+1,+1) from
Eq. (74):

gKS
µν − ηµν =



2M

r

2Mx

r2
2My

r2
2Mz

r2

2Mx

r2
2Mx2

r3
2Mxy

r3
2Mxz

r3

2My

r2
2Mxy

r3
2My2

r3
2Myz

r3

2Mz

r2
2Mxz

r3
2Myz

r3
2Mz2

r3


. (99)

• Ingoing Eddington-Finkelstein coordinates obtained by subtracting Eq. (95) from
Eq. (77):

gEF
µν − ηEF

µν =



rs
r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (100)
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Distortion part of Kerr geometry:

• Boyer-Lindquist coordinates: obtained by subtracting Eq. (94) from Eq. (80):

gBL
µν − ηBL

µν =



2Mr

Σ
0 0

2Mar sin2 θ

Σ

0
2MΣ

r∆
0 0

0 0 0 0

2Mar sin2 θ

Σ
0 0

2Ma2r sin4 ϑ

Σ


. (101)

• Kerr-Schild coordinates: obtained by subtracting η = diag (−1,+1,+1,+1) from
Eq. (81):

• Eddington-Finkelstein coordinates: obtained by subtracting Eq. (97) from Eq. (83):

gEF
µν − ηEF

µν =



2Mr

Σ
0 0

2Mar sin2 θ

Σ

0 0 0 0

0 0 0 0

2Mar sin2 θ

Σ
0 0

2Ma2r sin4 ϑ

Σ


. (102)

C FINITE-DIFFERENCE METHOD (FDM) FOR TENSOR DIFFERENTIATION

The main concept in this appendix section details numerical differentiation methods for tensor-valued
quantities, focusing on the practical use of higher-order finite-difference schemes (in particular,
sixth-order stencils). We outline the treatment of discretization errors and the use of neighboring grid
collocation points as part of a numerical tensor calculus toolbox.

To compare the performance against automatic differentiation on tensor fields defined on the four
dimensional spacetime, throughout the paper we opt for the highly accurate sixth-order order forward
difference (n = 6 accuracy). This scheme queries six neighboring points per evaluation and the
general formula of the differential operators are given by:[

∂xif(x)
]
≈ − 49

20h
f(x) +

6

h
f(x+ h)− 15

2h
f(x+ 2h) +

20

3h
f(x+ 3h)

− 15

4h
f(x+ 4h) +

6

5h
f(x+ 5h)− 1

6h
f(x+ 6h) +O(h7) (103)

Here, x = (x1, ..., xd) ∈ Rd and the h = hei, s.t. ei = (0, ..,
i-th index

h︸︷︷︸ , .., 0), depending with respect

to the variable xi the partial derivative is performed over. Thus, this is accurate upto O(h6), and the
truncation error occurs at seventh-order.

In general, for an n-th order finite-difference approximation, the stencil is constructed by querying n
neighboring collocation points on the voxel grid. The resulting truncation error on function evaluated
on the grid (gridfunctions) scales as follows (Ruchlin et al., 2018):

E n
FD[f ] = O

(
hn|∂n+1

x f |
)
.

Thus, higher order stencils enable larger step size h choices since the error scales exponential to
the stencil order, i.e, E ∝ hn. This results in not only better accuracy, but also lesser memory
consumption due to lower grid resolution.
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Finite-difference method bottlenecks in NR

• Higher-order finite-difference stencils require a collection of padded grid points exterior to
the cube as boundary handling. These are often called ghost cells (zones). For e.g., if ng

ghost cells are required for the n-th order forward difference stencil, the grid size increases
of a 3D spatial voxel grid (Ruchlin et al., 2018), Nx × Ny × Nz → (Nx + ng)× (Ny + ng)×
(Nz + ng).

• Sensitive to numerical noise especially for tensor-valued functions defined on multidimen-
sional voxel grids.

D SUCCINCT INTRODUCTION TO GENERAL RELATIVITY, EQUATIONS OF
MOTION AND EXACT SOLUTIONS

Derivative operators. The metric and its partial derivatives can be used to construct the Christoffel
symbols

Γρ
µν(x) :=

1

2
gρσ
(
∂µgσν(x) + ∂νgσµ(x)− ∂σgµν(x)

)
.

The Christoffel symbols denote how the metric varies across spacetime and define a parallel transport
machinery to translate tensor fields around the manifold. With these, it is possible to construct two
pivotal modified tensor differentiation operators, namely: (i) The covariant derivative (also called the
Levi-Civita connection), which can be seen as a “calibration” of the partial derivative operator for
parallel transportation in the curvilinear setting:

∇µT
α1...αr

β1...βs
=

∂

∂xµ
Tα1...αr

β1...βs
+

r∑
i=1

Γαi
µσT

α1...σ...αr
β1...βs

−
s∑

j=1

Γσ
µβj

Tα1...αr
β1...σ...βs

,

(ii) The Lie derivative, which generalizes the notion of a directional derivative that is connection
independent (cf. Appendix A.3.3.2). The Lie derivative captures infinitesimal dragging of the tensor
field along the flow generated by the vector field ξ:

(LξT )
α1...αr

β1...βs
= ξµ∂µT

α1...αr

β1...βs
−

r∑
i=1

Tα1...µ...αr

β1...βs
∂µξ

ai +

s∑
j=1

Tα1...αr

β1...µ...βs
∂βj

ξµ .

Differential geometric objects. Using the modified derivatives, we can construct a hierarchy of
higher-rank differential geometric quantities, such as the Riemannian curvature tensor Rδ

αβγ or the
Ricci tensor Rαβ , via a series of derivatives ∂, covariant derivatives ∇ := ∂ + Γ, and tensor index
contractions C : Vr+1

s+1 → Vr
s (typically, Trg).

gαβ Γγ
αβ Rδ

αβγ Rαβ R

∂ ∇ CCC CCC

∇α

LX

Cαβγδ

R[αβγ]σ = 0

∇[σRαβ]γδ = 0

Figure 10: Differential geometry workflow in general relativity (only lhs of the EFEs – Eq. (2)):
We describe each quantity starting left: The metric tensor gαβ defines the spacetime geometry. Its
partial derivatives ∂ yield the Christoffel symbols Γγ

αβ , which describe the notion of parallel transport
and defines a covariant derivative operation ∇α = ∂α + Γα. The connection also defines the Lie
derivative Lv along vector fields v. The connection’s derivatives∇ give the Riemann curvature tensor
Rδ

αβγ , which encodes tidal forces. The contraction operator C = Trg contracts with the metric,
producing the trace part, i.e., the Ricci tensor Rαβ . Its subsequent contraction yields the Ricci scalar
R. The Riemann tensor further splits into the Weyl tensor Cαβγδ (trace-free curvature part) and
satisfies the algebraic and differential Bianchi identities R[αβγ]σ = 0 and ∇[σRαβ]γδ = 0. Together,
these geometric objects form the backbone of general relativity, ultimately entering the Einstein field
equations through the Einstein tensor Gαβ .

42



Published as a conference paper at ICLR 2026

Conservation laws. It follows from the contracted Bianchi identities, i.e., cyclic sum of Riemann
curvature tensor covariant derivatives (II Bianchi identity – see Eq. (59b)) vanishes identically:

∇αRβγδσ +∇βRγαδσ +∇γRαβδσ = 0 .

This is a geometric identity that holds for any (torsion-free) connection compatible with the metric.
The identity above consequently leads to the covariant derivative of the stress-energy tensor vanishing,
that is, ∇βT

αβ := 0 (see Eq. (66)), which corresponds to the energy-momentum conservation in
general relativity. If required, conservation laws typically feature as soft constraints in PDEs, and are
relevant especially when matter distribution/fields are considered.

Equations of motion. The geodesic equation is a central second-order ODE that describes the
motion of objects following geodesic paths in the curved spacetime background

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
= 0 .

Here, τ ∈ R is some affine parameter (often the proper time; not to be confused with the coordinate
time t). The geodesic equation is the general relativistic analogue of Newton’s second law and
generalizes the concept of a “straight line” to curved spacetime by describing the trajectories of
bodies under the influence of a gravitational field. Related, the geodesic deviation equation describes
how nearby geodesics diverge or converge due to the intrinsic curvature of the manifold, quantified
by the separation vector Sµ(τ):

D2Sµ

Dτ2
= Rµ

αβγX
αXβSγ ,

where, Xα is a vector field and D
Dτ = Xα∇α denotes the directional covariant derivative (see

Definition 2). Thus, it encodes information about the tidal forces of gravitation.

D.0.1 ANALYTICAL (EXACT) SOLUTIONS

Exact solutions of the EFEs are metric tensor fields gαβ that satisfy Eq. (2). Many exact solutions
are known, which can be classified into exterior (vacuum) solutions and interior solutions (Misner
et al., 2017). While there exist several geometries that satisfy the EFEs, we shall focus on three
prominent vacuum solutions: the Schwarzschild metric, the Kerr metric, and gravitational waves.
These geometries not only have a high theoretical and historical relevance, but are also of great interest
in computational black hole astrophysics and gravitational wave and multi-messenger astronomy.
Appendix B discusses these solutions in more detail, including other prominent coordinates, as well
as real and fake (coordinate) singularities. From here on, we work in naturalized units by setting
c = G = 1.

Schwarzschild metric It is the simplest non-trivial solution to the EFEs and describes a static
spherically symmetric geometry around spherical non-rotating gravitating bodies, such as stars or
black-holes. Although simple, the Schwarzschild metric predicts many phenomena beyond Newtonian
gravity, most notably the precession of elliptical orbits and the bending of light rays. Both of these
predictions have been experimentally verified in the Solar system, using the motion of Mercury
perihelion and in the Eddington experiment during the 1919 Solar eclipse, respectively. The metric
is typically written in spherical polar coordinates (t, r, θ, ϕ) where t ∈ R, r ∈ R+, θ ∈ (0, π), and
ϕ ∈ [0, 2π):

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)
.

Kerr metric generalizes the Schwarzschild solution to rotating bodies with the angular momentum
J or, equivalently, the rotation parameter a = J

M . The solution forms a rotating, stationary (but
not static) geometry, which is oblate around the rotation axis that breaks spherical symmetry. This
geometry again permits new phenomena, notably the geodetic effect and frame dragging, both of
which have been experimentally verified in the Earth’s orbit by the Gravity Probe B.

The metric can be described in the corresponding oblate spheroidal coordinates also known as the
Boyer-Lidquist (BL) coordinates (t, r, ϑ, ϕ) – see Eq. (78) (Boyer & Lindquist, 1967):
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ds2 = −
(
1− 2Mr

Σ

)
dt2− 4Marsin2ϑ

Σ
dtdϕ+

Σ

∆
dr2+Σdϑ2+

(
r2+a2+

2Mra2sin2ϑ
Σ

)
sin2ϑdϕ2.

Linearized gravity models the metric as tiny fluctuations or perturbations hαβ , |hαβ | ≪ 1 of the
flat background metric ηαβ :

gαβ ≈ ηαβ + hαβ +O(hαβ)
2 .

Famously, this model can describe GW propagation using a periodic time-dependent perturbation,
which has served as the theoretical basis for the Nobel-prize winning detection of GWs generated
by binary black hole mergers (Abbott et al., 2016c). As detailed in Appendix B.3, the choice of
a certain gauge essentially transforms the vacuum EFEs into the wave equation □h

(ϵ)

αβ = 0 where

□ ≡ ηαβ∂α∂β is the d’Alembert or wave operator and h
(ϵ)

αβ = h
(ϵ)
αβ −

1
2h

(ϵ)ηαβ . This equation admits
a family of GW solutions: we will use the plane wave propagating in the z-direction with the angular
frequency ω expressed in the Cartesian coordinates:

hTT
αβ =

0 0 0 0
0 h+ h× 0
0 h× h+ 0
0 0 0 0

 cos
(
ω(t− z)

)
.

Here, h+ and h× are the amplitudes of the “+” (plus) polarization and “×” (cross) polarization

E RELATED WORK CONTINUED

Compression techniques in scientific computing. classical compression strategies have been a
versatile tool in reducing data sizes of large-scale numerical simulation data, which constitute storage
memory-intensive domain. Simulation runs can range between petabytes to exabytes of data, thus
requiring compression strategies to be integrated within the simulation pipeline, for efficient data
volume reduction. These range from lossless and lossy compression techiques (Lindstrom & Isenburg,
2006; Di & Cappello, 2016; ISO Central Secretary, 2024) for multidimensional weather modeling
tasks (Huang et al., 2016; 2025), discrete wavelet tranform (DWT)–based compression (Rho et al.,
2023) or multidimensional data via tensor decomposition (Ballester-Ripoll et al., 2020).

Recently increasing works have leveraged implicit neural representations for a lossy neural com-
pression (Dupont et al., 2021) by embedding high-dimensional (explicit grids), time-dependent
physical simulations into compact, differentiable network weights. Such representations achieve
compression factors of several orders of magnitude while retaining physical accuracy and offering
efficient gradient access for downstream analysis or control. Applications include multidimensional
weather and climate modeling (Huang & Hoefler, 2023) or even hybrid compression techniques using
turbulent plasma–based simulations (Galletti et al., 2025).

ML applied to gravitational physics. Gravitational wave modeling and numerical relativity
problems have been tackled by state-of-the-art deep learning methods. These include DINGO
– a rapid gravitational wave parameter estimation toolkit using NNs as surrogates for Bayesian
posterior distributions (Dax et al., 2021). They show orders of magnitude reduction in inference time,
bringing it down from O(day) to 20s. Similar lines of work include DINGO-BNS that performs
real-time inference for binary neutron star (BNS) mergers and applicable for multi-messenger
astronomy (Dax et al., 2025). On the other hand, physics informed neural networks (PINNs) (Raissi
et al., 2019), have found applications in general relativistic phenomena and NR, such as solving
the Tekoulsky equation inorder to compute the first quasinormal modes of the blackholes, for e.g.,
Kerr geometry (Luna et al., 2023; Cornell et al., 2022). Some other works explore physics informed
neural operators (PINO) (Rosofsky & Huerta, 2023) for magnetohydrodynamics, or solving vaccum
Einstein equations (Hirst et al., 2025)

Physics-informed neural networks, neural operators and neural fields. Physics-Informed Neural
Networks (PINNs) augment neural network training with physical constraints derived from governing
differential equations (Karniadakis et al., 2021). This is typically achieved by adding loss terms that
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penalize violations of the residuals of the underlying PDEs or ODEs (Raissi et al., 2019), together
with constraints from boundary conditions and conservation laws. PINNs are primarily data-free
approaches and have been especially effective for solving forward and inverse problems. While PINNs
share with neural fields the use of coordinate-based neural networks, their purpose is fundamentally
different: PINNs solve a physical equation by enforcing its residual during optimization, whereas
neural fields represent a given physical field directly from data without solving the governing
equations. In this sense PINNs can be considered as a special case of neural fields (Xie et al., 2021),
that satisfy the govering physical equations at each step.

Neural operators, in contrast, aim to learn mappings between infinite-dimensional function (Banach)
spaces (Kovachki et al., 2023), providing a data-driven approach to approximate solution operators for
entire families of PDEs. They prioritize generalization across different input functions, geometries,
or forcing conditions, typically requiring large training sets covering many PDE instances.

Implicit neural representations (Müller et al., 2022) occupy a distinct position relative to both
paradigms. Rather than enforcing a PDE residual (as in PINNs) or learning an operator over
families of solutions (as in neural operators), neural fields provide a compact, continuous, and fully
differentiable representation of a single high-dimensional physical field. This makes them especially
well suited for encoding scientific data with high fidelity, enabling continuous spatial (and temporal)
query access, implicit compression, and differentiable downstream analysis. In this sense, neural
fields are not a competing method for PDE solution or operator learning, but a complementary
representation framework for capturing and reconstructing complex physical domains.nstructing the
dynamics with high fidelity, setting them apart from PINNs and neural operators in general.

F EXPERIMENTAL DETAILS

This appendix provides detailed experimental specifics, including: (i) AD as a superior differentiation
framework for tensor fields compared to higher-order finite-differencing methods; (ii) Effectivity of
higher derivative losses for retrieving high-precision dynamics and higher-order curvature tensors &
invariants; (iii) setup – data preparation (iv) gradient alignment aspects relevant to SOAP optimizers;
(v) Component-wise tomography of compression error on the implicit metric and its derived higher-
rank differential geometric quantities; (vi) training across varied coordinate systems to illustrate the
coordinate-choice flexibility of NeFs; (vii) hyperparameter configurations employed; and (viii) the
hardware and software environments used for these experiments.

F.1 EVALUATION CRITERIA

We flatten the ground truth tensor at point p ∈ M with its components indexed by k be denoted
by fk(p) ∈ Rn, with 1 ≤ k ≤ n and the corresponding EinFields parametrized tensors are
denoted by f̂k(p). The dimensionality n depends on the tensor under consideration. For instance,
for a symmetric metric tensor n = 10, corresponding to its independent components, while for
the Riemann curvature tensor, n = 256 when considering all components explicitly, or n = 20
when accounting only for the independent components under the symmetries inherent to the tensor,
respectively.

We evaluated these quantities over a set of m ≈ 125, 000 validation collocation points D =
{pi}1≤i≤m and use standard error criteria in discretized form, which includes double sums: one over
the total number of tensor components {fk}1≤k≤n, while the other for the total number of collocation
points {pi}1≤i≤m:

Mean-absolute error (MAE) =
1

mn

m∑
i=1

n∑
k=1

|f̂k(pi)− fk(pi)| (104a)

Relative ℓ2 error (Rel. ℓ2) =

√∑m
i=1

∑n
k=1 |f̂k(pi)− fk(pi)|2∑m

i=1

∑n
k=1 |fk(pi)|2

. (104b)

These are applied to the metric tenors and their derived quantities, illustrated in Figures 10 and 2.
Recall that the tensor components are coordinate-dependent (and even more so, the metric Jacobian,
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metric Hessian, and Christoffel symbols are not even tensors), and, hence, these errors lack an
immediate physical meaning. This is improved with the consideration of scalar quantities such
as the Ricci scalar, Kretschmann invariants, and Weyl scalars, which by definition are coordinate-
independent quantities.

F.2 DATA GENERATION

Our use cases are exact analytic solutions to the EFEs, i.e., the set of metrics gαβ that satisfy
the Eq. (2). These solutions describe the exterior (vacuum) solutions around massive gravitating
objects. For our main set of experiments, we fit a NeF against the analytic solutions introduced in
Section D.0.1, each having different features and spatio-temporal symmetries:

• Schwarzschild metric in spherical coordinates – Eq. (98),
• Kerr metric in Boyer-Lindquist and Kerr-Schild coordinates – Eqs. (101, 81),
• gravitational waves metric (TT gauge) in Cartesian coordinates – Eq. (110).

For each, we compute the distortion after subtracting the flat background metric in that particular
coordinate chart. Detailed information on data specifications is provided in Table 7.

Additionally, we train each geometry in different coordinate systems to investigate how the choice of
coordinates impacts NeFs (recall: the physical laws do not depend on the coordinate system).

Table 7: Training data generation specifications: spacetime metric, coordinate system, domain extent,
grid resolution, and physical parameters.

Metric Coordinates Domain Resolution Parameters

Schwarzschild Spherical
(t, r, θ, ϕ)

t = 0
r ∈ [2.5,150]
θ ∈ (0, π)
ϕ ∈ [0, 2π)

1
128
128
128

M = 1

Kerr Boyer-
Lindquist
(t, r, ϑ, ϕ)

t = 0
r ∈ [3,14]
ϑ ∈ (0, π)
ϕ ∈ [0, 2π)

1
128
128
128

M = 1
a ∈ [0.628,0.95]

Kerr-Schild
(t, x, y, z)

t = 0
x ∈ [-3, 3]
y ∈ [-3, 3]
z ∈ [0.1, 3]

1
128
128
128

M = 1
a = 0.7

Linearized gravity Cartesian
(t, x, y, z)

t ∈ [0, 10]
x ∈ [0, 10]
y ∈ [0, 10]
z ∈ [0, 10]

140
10
10
140

ω = 1
ϵ = 10−6
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F.3 COMPARING AD VS FD BASED METHODS.

We quantify the performance of automatic-differentiation operations on the ground truth metric against
the 6-th order finite difference stencils. We test it against the Kretschmann scalar K = RαβγδR

αβγδ ,
which is prone to errors, especially due to floating point errors accumulated in the Riemann curvature
tensor:

0 100
x

0

50

100

y

Absolute error: analytic− AD

10−16

10−15

10−14

Figure 11: Absolute error |Kanalytic − KAD| profile plotted for z = 0.3 between the analytic
Kretschmann scalar and the ground truth Kretschmann scalar obtained via AD implemented on
the ground truth (analytic) metric.
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F.4 HIGHER TENSOR DERIVATIVE LOSSES – SOBOLEV TRAINING

Sobolev training (Czarnecki et al., 2017) refers to a class of learning paradigms where NNs are
trained not only to match target function values but also additionally its derivatives. Formally, given
a target function f : X → R, and a NN approximation f̂θ, Sobolev training minimizes a joint loss
involving the functional and its derivatives:

LSob(θ) = Ex

λ0∥f(x)− f̂θ(x)∥2 +
N∑
j=1

λj

∥∥∥D(j)f(x)−D(j)f̂θ(x)
∥∥∥2
 , (105)

where D(j) denotes the jth derivative operator, which in our case could be the partial derivatives
∂j or covariant derivatives ∇j , and λj are weighting coefficients. This loss promotes alignment
not only in function space but also in the Sobolev space WN,2(X ), which encodes both value and
derivative information. Sobolev training enhances generalization, stability, and accuracy of NeF
derivatives (Chetan et al., 2024).

Algorithm 1: EinField training scheme

1: Input: Training dataset {
(
xi, g(xi), ∂

(1)
x g(xi), ∂

(2)
x g(xi)

)
}mi=1, number of epochs Nepochs,

learning rate η, optimizer O, Sobolev order N ∈ {0, 1, 2}
2: Initialize neural field parameters θ on device D (e.g., GPU) in single (FLOAT32) precision
3: for epoch = 1 to Nepochs do
4: for each mini-batch (xbatch, gbatch, ∂

(1)
x gbatch, ∂

(2)
x gbatch) in dataset do

5: Move (xbatch, gbatch) to device D
6: ĝbatch ← EinFields(xbatch; θ)
7: loss← L(gbatch, ĝbatch)
8: if N ≥ 1 then {Jacobian supervision}
9: Compute ∂

(1)
x ĝbatch through AD

10: loss← loss + λ1 · L(∂(1)
x gbatch, ∂

(1)
x ĝbatch)

11: end if
12: if N ≥ 2 then {Hessian supervision}
13: Compute ∂

(2)
x ĝbatch through AD

14: loss← loss + λ2 · L(∂(2)
x gbatch, ∂

(2)
x ĝbatch)

15: end if
16: Compute gradients: ∂θ ← ∂θ loss
17: Update parameters: θ ← O(θ, ∂θ, η)
18: Optionally: synchronize gradients across devices if using distributed training
19: end for
20: Optionally: evaluate on validation set, log MAE and memory usage for monitoring
21: Optionally: checkpoint θ for fault tolerance and reproducibility
22: end for
23: return optimized parameters θ

The expected losses L
(
∂
(j)
x g, ∂

(j)
x ĝ

)
put-forth in Algorithm 1 is a short-hand notation for

Ex

∥∥∥∂(j)
x gαβ(x)− ∂

(j)
x ĝαβ(x)

∥∥∥2.
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F.5 GRADIENT ALIGNMENT

Competing tasks is a well-known problem in multi-objective learning (Yu et al. (2020), Liu et al.
(2021), Shi et al. (2023)), the gradients of the loss functions pull the weights in different directions.
In Scientific Machine Learning (SciML), a lot of work emerged in analyzing and mitigating gradient
conflicts in the context of PINNs (Wang et al. (2025a), Lui et al. (2025), Hwang & Lim (2025)).
Although Sobolev training differs from PINNs, particularly from a supervision perspective, it exhibits
the same problem where some loss terms dominate others. In PINNs, the training is highly dependent
on first satisfying the initial/boundary conditions, which provide uniqueness to the solution. The
different levels of complexity between these and the residual loss create different optimization priori-
ties, but both losses are equally important. Similarly, Sobolev training faces analogous challenges
with competing loss components. The Jacobian data serve to constrain the model’s derivatives, while
the target function outputs determine the integration "constant", both components being equally
valuable. However, the sources of complexity differ between these approaches. In PINNs, the
primary challenge stems from determining a solution through unsupervised learning on PDE losses,
whereas in our Sobolev training specifically, the complexity arises from managing optimization
stability in high-dimensional spaces: a 16-dimensional output space, 64-dimensional Jacobian, and
256-dimensional Hessian. Moreover, this complexity is accompanied by the challenge of handling
gradient imbalances. Depending on the point in spacetime, the metric or its derivatives dominate in
the loss. Generally speaking, an analogy is to think gµν ∝ 1

r ,∂ρgµν ∝ 1
r2 and ∂σρgµν ∝ 1

r3 , making
it clear how gradient magnitudes differ depending on the radius.

Mitigating gradient conflicts does not necessarily result in better accuracy, but it explains a possible
reason why the loss does not improve further, the optimization being stuck in the local minimum
of one of the objectives. The intra-step gradient alignment scores presented in Wang et al. (2025a)
demonstrate SOAP as a far superior alternative compared to other well-established optimizers, or at
least for the experiments considered in that study. To provide a direct comparison using the same
methodology as in Wang et al. (2025a), we evaluated both ADAM and SOAP on the Cartesian KS
representation of the Kerr metric, chosen as the most complex metric investigated in this work. The
Sobolev training contains only two objectives: metric and Jacobian supervision. For our experimental
setup, we employed an MLP architecture with 5 hidden layers, 190 hidden units per layer, and SILU
activation function to compare gradient conflicts between the two optimizers. The training utilized
a cosine decay learning rate schedule, starting from an initial learning rate of 1E−2 and decaying
to a final rate of 1e−8 over 200 epochs. For weighting the losses, gradient normalization was used
with and without an exponential moving average. As shown in Figure 15, even though Adam is
providing twice as much gradient alignment score in almost all epochs, SOAP’s second-order and
preconditioning capabilities allow for a 100x training loss improvement.
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Figure 12: Average gradient alignment per epoch (left) and MSE loss during training for Adam
and Soap optimizers (right). The shaded light color in the alignment plot represents a minimum
and maximum deviation compared to using an exponential moving average or not for the weights
multiplying the gradients.
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F.6 RECONSTRUCTING GENERAL RELATIVISTIC DYNAMICS AND CURVATURE SCALARS

We use synthetic data generated from analytical solutions to validate and characterize EinFields.
We primarily focus on two interesting aspects of general relativity: (i) general relativistic dynamics,
particularly geodesic motion around massive gravitating objects (see Section D) and (ii) global
curvature structures encoded in tensorial invariants.

F.6.1 FLOATING POINT PRECISION CAVEAT.

NR simulations are inherently high-precision endeavors, with the accurate modeling of complex
gravitational phenomena critically reliant on high-fidelity numerical computations. In contrast
to traditional machine learning domains, such as large language models (LLMs), where reduced-
precision arithmetic (FLOAT16 or BFLOAT16) yields strong results in both training accuracy and
memory efficiency (Dean et al., 2012), this paradigm does not extend to NR workflows, where
floating-point precision is a dominant factor influencing the fidelity of the results.

EinField-based geodesics. To compute geodesic motion, we numerically integrate the trajecto-
ries using a fifth-order explicit singly diagonally implicit Runge-Kutta (ESDIRK) solver. Specifically,
we evolve Eq. (56) with respect to the affine parameter τ (proper time)9, generating ground-truth
geodesics from the analytic Christoffel symbols for the Schwarzschild and Kerr spacetimes. These are
then compared against the rollouts obtained using the EinField-reconstructed Christoffel symbols.

To accurately retrace geodesic orbits, it is essential to incorporate Jacobian supervision within the
Sobolev training framework. In contrast, additional Hessian supervision results in only marginal
improvements for geodesic simulations and is not required in practice. Following Section F.6.1,
all geodesic solvers are executed in double precision to ensure numerical stability and high-fidelity
trajectory reconstruction.

Following the strategy presented in Section 3.2, we leverage EinFields’ ability to yield high-
precision derivatives of the spacetime metric, which includes Christoffel symbols, Riemann curvature
tensors, and scalar invariants. In this section, we demonstrate how to accurately model particle
trajectories derived from geodesic integration with our implicit parameterizations.

F.6.2 SCHWARZSCHILD METRIC GEODESIC SETUP

Geodesics in the Schwarzschild spacetime are of fundamental interest, as they underlie phenomena
such as gravitational lensing and the perihelion precession of Mercury, as well as the motion of
planets in the solar system more generally.

The initial conditions of the trajectories chosen in the experiments are fully specified by the initial
position

(t, r, θ, ϕ)(t = 0) =
(
0, a0rs, π/2, 0

)
(106)

and the initial four-velocity

(vt, vr, vθ, vϕ)(t = 0) =
( 1√

(1− rs/r0)(1− v20)
, 0, 0, v0

cosϕ0√
r20(1− v20)

)
, (107)

Where v0 = b0
√

1/(r0 − rs) and a0, b0 ∈ R can be chosen freely to select the desired orbit in the
θ = π/2 plane. The geodesics in Figure 4 demonstrate a good qualitative agreement over several
orbits. The error is quantified and discussed further in Section F.7.2.

F.6.3 SCHWARZSCHILD BLACKHOLE RENDER

Being able to compute geodesics is sufficient to perform rendering. We use the Schwarzschild
EinFields metric to render a black-hole on a celestial background. This requires propagating
geodesics from the camera observer via the spacetime terminating at the distant background. The re-
sulting ray-traced image as shown in the main text provides visual evidence for the global consistency
and quality of the metric and the derived Christoffel symbols.

9Not to be confused with the coordinate time t.
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F.6.4 KERR METRIC GEODESIC SETUP

Geodesics in a Kerr spacetime around a rotating body (see details in Appendix B.2) play a central role
in several key astrophysical observations and experimental tests of GR. Notably, photon geodesics
determine the black hole shadow images captured by the Event Horizon Telescope (Fuerst, S. V. &
Wu, K., 2004), and frame-dragging (Lense-Thirring) effects (Misner et al., 2017) are a hallmark of the
Kerr geometry. These have been measured experimentally by the Gravity Probe B mission (Everitt
et al., 2011) and recently via radio pulses arriving from pulsars (Krishnan et al., 2020).

While, the mathematical description of geodesics around Kerr metric is beyond scope for this work
(see Teo (2003) for detailed exposition), we consider solving three different cases numerically. These
include Zackiger orbits (retrograde geodesics – stable geodesics with larger radii), prograde orbits
(stable geodesics with smaller radii), and arbitrary eccentric orbits, which depend on the initial
conditions, including choice of energy E and angular momentum Lz of the test particle.

F.6.5 KERR KRETSCHMANN INVARIANT

The Kretschmann invariant (scalar), K = Rαβγδ(xµ)Rαβγδ(x
µ), is a key curvature invariant

distinguishing true (curvature) singularities from coordinate (apparent) singularities. The nontrivial
part of the Kretschmann invariant for the Kerr metric reads:

RαβγδR
αβγδ = CαβγδC

αβγδ =
48M2(r2 − a2cos2ϑ)

[
(r2 + a2cos2ϑ)2 − 16r2a2cos2ϑ

]
(r2 + a2cos2ϑ)6

.

(108)

This guarantees that the curvature singularity (K →∞) occurs at the ring Σ ≡ r2 + a2cos2ϑ = 0,
with zeros at:

r = 0 , and, ϑ =
π

2
.

Thus, the rotation a induces a ring singularity at radius a on the equatorial plane θ = π/2, where the
curvature diverges. Accurately capturing this geometric structure requires isolating true singularities
from coordinate artifacts, which can otherwise lead to incorrect classification of singularities.

We perform training in Cartesian KS coordinates (see Eq. (81)) to eliminate coordinate singularities
that would otherwise impede convergence. We first train EinFields (+Jac + Hess) on Cartesian
KS coordinates, subsequently constructing the Riemann tensor – see Section A.3.5.1 via successive
automatic differentiation steps and raising indices using the parametrized metric ĝ (see Eq. (108)).
The NeF reconstructed K̂ Figure 13b captures the ring singularity structure and agrees well with
the analytical solution, as shown in Figures 13a. However, the reconstruction remains sensitive to
floating-point errors and requires high NeF accuracy for stability as seen from Figure 13c.

(a) Analytic form K (b) EinFields reconstructed K̂ (c) Absolute error |K − K̂ |

Figure 13: The Kretschmann scalar K of the Kerr metric computed in Cartesian Kerr-Schild form
(Eq. (81)) in the x-y plane for z = 0.3.

51



Published as a conference paper at ICLR 2026

F.7 TRAINING ON VARIED COORDINATE SYSTEMS

Table 8: Relative L2 error considered on a grid of validation collocation points (i) EinFields, (ii)
EinFields (+Jac) and, (iii) EinFields (+Jac + Hess) supervision. As described above in the text,
we quantify the effect of inputs queries in varied coordinate charts and how EinFields training
generalizes over these different metric (geometry) representations.

Metric Representation Coordinate Rel. L2

Schwarzschild

EinFields
Spherical 2.26e-7
Cartesian Kerr-Schild 1.37e-5
Eddington-Finkelstein 9.21e-9

EinFields (+ Jac)
Spherical 1.37e-7
Cartesian Kerr-Schild 3.00e-6
Eddington-Finkelstein 6.47e-9

EinFields (+ Jac + Hess)
Spherical 1.20e-7
Cartesian Kerr-Schild 1.53e-6
Eddington-Finkelstein 9.08e-9

Kerr

EinFields
Boyer-Lindquist 6.95e-8
Cartesian Kerr-Schild 4.47e-6
Eddington-Finkelstein 6.44e-8

EinFields (+ Jac)
Boyer-Lindquist 4.72e-8
Cartesian Kerr-Schild 8.83e-7
Eddington-Finkelstein 4.95e-8

EinFields (+ Jac + Hess)
Boyer-Lindquist 4.69e-8
Cartesian Kerr-Schild 4.95e-7
Eddington-Finkelstein 4.72e-8

Results reported in Table 8 suggest that the choice of coordinates has a strong impact on the metric
up to three orders of magnitude. This aspect should be investigated further in future work.

NeFs take physical coordinates as inputs and map them directly to field values. Unlike traditional
machine learning architectures that ingest abstract learned feature spaces (such as token embeddings
or extracted features), INRs operate directly on the physical coordinate space, enabling them to
represent continuous signals in a domain-agnostic manner.

In the context of GR, this implies that a four-dimensional representation of metric tensor fields
by an INR explicitly depends on the input coordinate system, or more generally, on the chosen
frame of reference. Despite this apparent dependency, GR possesses the fundamental property of
diffeomorphism covariance (see Section A.3.8), which asserts that the laws of gravitation remain
invariant under smooth coordinate transformations. However, the choice of coordinate system remains
an essential practical tool for simplifying the form of the metric tensor. For example, while the
Schwarzschild metric is diagonal in spherical coordinates (albeit with a coordinate singularity at
the event horizon), transforming to Cartesian KS coordinates produces a dense, off-diagonal metric
representation, or, for that matter, moving to Eddington-Finkelstein coordinates, which both remove
coordinate-related artifacts (see Paragraph A.3.5.2).

Understanding this behavior is essential for developing robust INR-based frameworks for represent-
ing geometric quantities in numerical relativity, while respecting the underlying diffeomorphism
invariance of general relativity. For the Schwarzschild case, we initiate the training by sampling
query spacetime coordinates in spherical representation (t, r, θ, ϕ). These sampled collocation points
are then transformed into their corresponding collocation points in Cartesian coordinates (t, x, y, z)
and ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ̃) (see Section B.1.1 for explicit transfor-
mation details). Subsequently, EinFields outputs the metric tensors corresponding to these
coordinate systems, yielding Eqs. (70, 74, 77). For the Kerr metric, which is characterized by its
oblate spheroidal geometry, we sample query collocation points in the Boyer-Lindquist coordinates
(t, r, ϑ, ϕ), followed by the collocation points transformed into Cartesian (t, x, y, z) and ingoing
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Eddington-Finkelstein coordinates (t, r, θ, ϕ̃). EinFields then outputs the Kerr metric tensors in
these respective coordinate systems, resulting in Eqs. (80, 81, 83).

Table 9: Col. 1 lists the spacetime metrics (Schwarzschild and Kerr). Cols. 2–4 indicate the
coordinate charts used for NeF training: spherical-like, Cartesian-like, and lightcone-like. For
Schwarzschild, these correspond to spherical coordinates (t, r, θ, ϕ), Cartesian Kerr-Schild (KS)
coordinates (t, x, y, z), and ingoing Eddington-Finkelstein (EF) coordinates (v, r, θ, ϕ), trained on the
metrics described in Eqs. (98–100) respectively. For Kerr, these correspond to Boyer-Lindquist (BL)
coordinates (t, r, ϑ, ϕ), Cartesian KS coordinates (t, x, y, z), and ingoing EF coordinates (v, r, θ, ϕ̃),
trained on the metrics in described in Eqs. (101–102) respectively.

Metric Spherical-like Cartesian-like Lightcone-like

Schwarzschild ✓ ✓ ✓
Kerr ✓ ✓ ✓

This multi coordinate training strategy ensures that the neural tensor field learns consistent repre-
sentations across coordinate systems while maintaining geometric and physical consistency under
diffeomorphisms, facilitating generalization and stability in downstream geometric learning tasks.
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F.7.1 LINEARIZED GRAVITY: GEODESIC DEVIATION, GRAVITATIONAL-WAVE STRAINS AND
WEYL SCALARS

Linearized gravity models the solution of the EFEs via periodic perturbations on a fixed background
metric. These linearized solutions are highly relevant in numerical relativity, as they describe the
groundbreaking, experimentally verified discovery of gravitational waves generated by binary black
hole mergers (Abbott et al., 2016c). The metric tensor can be written as

gαβ ≈ ηαβ + hαβ +O(hαβ)
2 , (109)

where |hαβ | ≪ 1 is the perturbation term. As detailed in Section B.3, a plane gravitational wave
propagating in the z-direction with angular frequency ω can be described in the tranverse-traceless
(TT) gauge as

hTT
αβ =

0 0 0 0
0 h+ h× 0
0 h× h+ 0
0 0 0 0

 cos
(
ω(t− z)

)
. (110)

Here, h+ and h× are the amplitudes of the “+” (plus) polarization and “×” (cross) polarization.

Validation problems for GW metric and derivatives quality. Compared to Schwarzschild and
Kerr metrics, a key distinction of the linearized gravity setting describing gravitational waves is its
time dependence – see Eq. (110). Although it does not depend on x and y, the temporal dependence
motivates us to consider our model trained on a full spacetime grid of size Nt × Nx × Ny × Nz.

Distortion of ring of test-particles. When the described gravitational wave interacts with a ring of
freely falling test particles initially at rest in the x-y plane, it induces periodic deformations of the
ring. For a purely + polarized wave, the resulting motion causes the ring to stretch and squeeze along
the x- and y-axes, leading to a characteristic “plus” deformation pattern.

The motion of the test particles under the influence of this gravitational wave is obtained by solving
the geodesic deviation equation, up to leading order in the strain amplitude h+. As a result, the
particle trajectories in the TT gauge are

x(t) =

(
1 +

1

2
h+ cos

(
ω(t− z)

))
x(0) , y(t) =

(
1− 1

2
h+ cos

(
ω(t− z)

))
y(0) . (111)

Here, x(0) and y(0) denote the initial coordinates of a test particle, and the time-dependent pertur-
bations reflect the tidal nature of gravitational waves. The cosine dependence captures the periodic
stretching and squeezing of spacetime caused by the wave as it traverses the particle ring. Figure 5
and Table 10 show how the famous ring oscillation experiment can be reproduced with EinFields.
This is done by parametrizing the perturbation hTT

αβ and captures the famous stretching and squeezing
effect.

Weyl scalars of gravitational radiation field. The Weyl scalars are five complex quantities
Ψ0,Ψ1,Ψ2,Ψ3,Ψ4 that arise in the Newman–Penrose formalism of GR (Newman & Penrose, 1962).
They encode all the independent components of the Weyl tensor Cαβγδ (see Eq. (63)), representing
the “free” gravitational field – the part of spacetime curvature that can propagate as gravitational
waves, distinct from the curvature directly caused by matter. In NR and GW modeling, Ψ4(t) is the
primary scalar quantity used to extract observable GW signals from simulations. It is defined as

Ψ4 := Cαβγδn
αk̄βnγ k̄δ (112)

with n, k being a particular choice of Newman–Penrose tetrads and k̄ its complex conjugate 10. The
central relation in an asymptotically flat spacetime (cf. Boyle et al. (2019) for details) is that Ψ4(t) is
equivalent to the second coordinate-time derivative of the strain h(t) = h+(t) + ih×(t):

Ψ4 ≡ −ḧ+ + iḧ× . (113)

We compute Ψ4 from the NeF-parameterized strain hαβ in two distinct ways:
10Note that the Weyl scalars are not invariant and depend on a particular choice of the tetrad fields.
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1. indirectly via the Weyl tensor obtained with the differential-geometric chain (see also Figures

10 and 2): hTT
αβ

+ηαβ−−−→ gαβ
∂−→ Γγ

αβ
∇−→ Rδ

αβγ −→ Cαβγδ
Eq. (112)−−−−−→ Ψ4;

2. directly via the second time-derivative: hTT
αβ

Eq. (113)−−−−−→ Ψ4.

Spin-weighted spherical harmonic representation for GW extraction. A quantity of central
interest in gravitational waveform construction is the mode decomposition of the GW strain into
its angular components. The complex strain h(t, r, θ, ϕ) ≡ h+(t, r, θ, ϕ) − i h×(t, r, θ, ϕ) can be
expanded in terms of spin-weighted spherical harmonics (SWSHs) as

h(t, r, θ, ϕ) =
M

r

∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓ,m(t)−2Yℓm(θ, ϕ) , (114)

where −2Yℓm(θ, ϕ) are the SWSHs (see Eq. (90)) with spin-weight s = −2 reflecting the helicity of
GWs in the TT gauge (see Eqs. (88 and 89). In practice, the dominant contributions to the strain arise
from the quadrupole (ℓ = 2,m = ±2) modes, denoted by h2,±2(t), which capture the leading-order
gravitational radiation (detailed in Section B.3).
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Figure 14: The absolute error of the amplitude between the EinFields and analytic values
|R/Mh2,±2(t)| (see Eq. (89)) at a fixed radial distance R = 1 plotted against t/M . The amplitudes
agree to 1E-8, indicating that EinFields can capture the complex strain h and subsequently
h2,±2(t) GW signals.

55



Published as a conference paper at ICLR 2026

Radiated power of GWs. Another important physical observable for GWs is the radiated power
loss given by the famous quadrupole formula (Carroll et al., 2004). The time-averaged power or
luminosity radiated by GWs is given by

dE

dt
=

r2

32π

∫
dΩ⟨ḣTT

ij ḣTT ij⟩ = 1

4
⟨ḣ2

+ + ḣ2
×⟩ . (115)

The particular perturbation metric in the above experiments (see Eq. (110)) has equal amplitude
A = h+ = h× for both + and × polarizations. As a consequence, the radiated power loss simplifies
to

dE

dt
=

ω2A2

4
. (116)

(a) Absolute error in the (z, t) plane, averaged over x–y
slices.
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Figure 15: Comparison of the real part of the Weyl scalar ℜ(Ψ4) (Eq. (112)) computed from the
EinFields and the analytic metric. The errors are on the order of E-10 and E-11, respectively,
indicating highly accurate gravitational waveform reconstruction capacities of EinFields.
Table 10: Rel. ℓ2 for key quantities in the linearized gravity case with two different NeF architectures:
(i) perturbation metric, (ii) perturbation metric trained with Sobolev loss and gradient normalization,
(iii) reconstructed Ricci scalar, and (iv) reconstructed real part of the Weyl scalar Ψ4, where Ψ4 ∝
ḧ+(t,x). The final column reports the absolute difference in the predicted gravitational radiation
energy loss, integrated over the unit sphere.

Model hTT
αβ (+Jac + Hess)

(GradNorm)
Ricci scalar

R
Weyl scalar
ℜ(Ψ4)

Luminosity
dE/dt

SiLU 8.56e-4 5.90e-13 2.53e-5 2.71e-4
SIREN 3.78e-2 1.08e-12 9.56e-5 3.34e-4
WIRE 1.68e-2 1.55e-13 1.81e-5 3.69e-4
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F.7.2 ACCUMULATION OF ROLLOUT ERRORS FOR GEODESICS

Minute floating-point inaccuracies (around 1E-5 to 1E-6) arising from Christoffel symbols retrieved
via EinFields autoregressively accumulate when evolving the equations of motion for test particles
along geodesics.

To quantify the inaccuracies between the ground truth and NeF-evolved geodesics, we compute
the deviation between the position vectors r(τ) ∈ R3 as a function of the affine parameter (proper
time) τ in Cartesian coordinates. Specifically, for the ground truth trajectory, the spatial coordinates
corresponding to the position vector are given by r(τ) =

(
x(τ), y(τ), z(τ)

)
, while for the NeF-

evolved trajectory, we denote r̂(τ) =
(
x̂(τ), ŷ(τ), ẑ(τ)

)
. The deviation at each proper time τ is then

computed as the Euclidean norm,

δr(τ) = ∥r(τ)− r̂(τ)∥2 =

√(
x(τ)− x̂(τ)

)2
+
(
y(τ)− ŷ(τ)

)2
+
(
z(τ)− ẑ(τ)

)2
. (117)

In practice, the geodesic trajectories are computed in (r, ϑ, ϕ) (e.g., Boyer–Lindquist) coordinates
and subsequently transformed into Cartesian coordinates before evaluating the deviation using the
above expression.

While single-precision (FLOAT32) arithmetic is sufficient for training EinFields in most ex-
periments and downstream tasks presented, geodesic simulations indicate the need for FLOAT64
precision results in MAE and relative ℓ2 error for the reconstructed metric and its derivatives. Only
FLOAT64 ensures the mitigation of error accumulation during temporal rollout, preserving the
accuracy necessary for reliable scientific inference in gravitational physics.

Given the high sensitivity of time-stepped trajectories to such numerical inaccuracies, we quantify
this error accumulation by explicitly presenting the deviation as a function of the affine parameter
τ , especially for eccentric orbits for both Schwarzschild and Kerr metric for a = 0.628. These
are reported for the Schwarzschild use case in Figure 16a, and Figure 16b for the Kerr metric use
case, respectively. For Schwarzschild, the error accumulates stably, while for Kerr it is erratic. We
hypothesize this is likely due to the stable versus chaotic nature of orbits in the respective spacetimes.
Eventually, orbits diverge significantly, especially when leaving the NeF training domain.
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(a) Schwarzschild eccentric orbits.
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(b) Kerr eccentric orbits for a = 0.628.

Figure 16: Geodesic rollout deviation δr over proper time τ .
The results suggest that incorporating the Hessian supervision into training may introduce noise
that can hinder convergence, performing worse than using metric Jacobian supervision or, for that
matter, metric alone. For geodesic equations, supervising second derivatives is often unnecessary, and
Jacobians alone provide significant improvements in trajectory reconstruction. However, Hessians
become essential when computing Riemann tensors and curvature-related quantities, and are required
in applications such as numerically solving the geodesic deviation equation (see Eq. (60)), which are
typically encountered for solving for the test ring oscillation in linearized gravity use cases.
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F.8 TOMOGRAPHY: METRIC, METRIC JACOBIAN AND METRIC HESSIAN COMPONENTS

Here, we demonstrate the quality of EinFields parametrized metric tensor fields for the Kerr
metric with spin parameter a = 0.711, we report the mean absolute error (MAE) between the ground
truth and the NeF-fitted metric tensors in Figure 17. The evaluation is performed on a validation grid
with collocation points sampled arbitrarily within the training range but distinct from the training
collocation points. Using a model configured with SiLU activations, SOAP optimizer, GradNorm,
and without Sobolev regularization, we observe agreement with the ground truth up to six decimal
places, achieving an MAE on the order of 1E−6. The effect of introducing losses pertaining to metric

gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz
0.2

0.4

0.6

0.8

1.0

1e−5

X
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Figure 17: Kerr metric absolute error between ground truth (analytic) metric and the EinFields
parametrized metric. The metrics are depicted in the Cartesian Kerr-Schild (KS) representation as
presented in Eq. (81). The 2D slice of all the metric components captured in the x-y plane at fixed
z = 1.4 for a spin parameter value a = 0.7.
Jacobian and Hessian supervision, apart from the metric loss that EinFields predominantly uses, can
be quantified and visualized with the following plots below. Here, for the sake of visualization, we do
a tomography (2D cuts) of different metric components along a particular axis for the Kerr metric in
Cartesian KS coordinates (Eq. (81)).

The first, second, and third columns in each figure correspond to EinFields training without
Sobolev supervision, EinFields (+Jac), and EinFields (+Jac + Hess) trained, respectively, for
randomly sampled components of differential geometric quantities.

11Cartesian Kerr-Schild coordinates are chosen to avoid coordinate singularities, enabling tomography over
larger coordinate ranges.
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Figure 18: 2D Tomography of Kerr metric Jacobian components in Cartesian KS representation.

−1 0 1
−10

0

10

[2,3,1,0] component

−1 0 1

−10

−5

0

[2,3,1,0] component

−1 0 1

−10

−5

0

[2,3,1,0] component

−1 0 1

0

5

10
[2,2,1,3] component

−1 0 1
−2

−1

0

1

2
[2,2,1,3] component

−1 0 1
−2

−1

0

1

2
[2,2,1,3] component

−1 0 1
−5

0

5

10

[2,2,1,2] component

−1 0 1
0

2

4

6

[2,2,1,2] component

−1 0 1
0

2

4

6

[2,2,1,2] component

x coordinate

H
es

si
an

 v
al

ue

Ground truth EinFields 100.0x Error EinFields (+Jac) EinFields (+Jac + Hess)

Figure 19: 2D Tomography of Kerr metric Hessian components in Cartesian KS representation.
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Figure 20: 2D Tomography of Kerr Christoffel symbols components in Cartesian KS representation.
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Figure 21: 2D Tomography of Kerr Riemann tensor components in Cartesian KS representation.
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Figure 22: 2D Tomography of Kerr Kretschmann invariant in Cartesian KS representation.
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F.9 TRAINING HYPERPARAMETERS

Table 11: Training configurations for Schwarzschild, Kerr, and GWs used in the geodesics,
Kretschmann plots, Table 8, and linearized gravity section.

Parameter Schwarzschild Kerr GWs
Architecture MLP

Depth 3 / 3 / 5 / 7 5 5
Width 64 / 128 / 256 / 512 190 128 / 128 / 90
Activation SiLU SiLU SiLU / SIREN / WIRE
Input dimension 4 4 4
Output dimension 10 / 16 16 16
# Parameters 13.5K / 50K / 332K / 1.5M 185K 85K

Optimizer SOAP

β1 0.95
β2 0.95
Precondition frequency 1

Learning rate schedule
Initial learning rate E-2 / E-3
Decay steps 104 6× 103 / 2, 4, 6 × 104 4× 103 / 4× 104

Final learning rate E-5 / E-6 E-7 / E-8 E-9

Training
Epochs 100 200 200
Number of batches 100 30 / 100 / 200 / 300 20 / 200
Gradient weighting scheme None / GradNorm

F.10 HARDWARE & LICENSES

For our primary computational work, we utilize a high-performance CPU system equipped with
2×32-core Intel® Xeon® Platinum 8452Y+ processors, each operating at 4.1 GHz, and 2048 GiB of
RAM. All NeF-related training is performed on a single NVIDIA H200 SXM GPU with 144 GiB of
HBM3e memory. For prototyping and preliminary experiments, we employ a single NVIDIA Tesla
A100 GPU with 40 GiB of memory.

This work would not have been possible without the open-source software ecosystem. Our implemen-
tation is built upon multiple community-maintained libraries, and we gratefully acknowledge their
licenses below. The core computations were performed using JAX[cuda12] (Bradbury et al., 2018)
with CUDA support, licensed under the Apache 2.0 License. For model definition and training, we
relied on Equinox (Kidger & Garcia, 2021) and Flax.Linen (Heek et al., 2024), both also under
Apache 2.0. For solving differential equations, we employed Diffrax (Kidger, 2021), distributed
under the Apache 2.0 License. All libraries used are permissively licensed, enabling free academic
and non-commercial research.

G ADDITIONAL EXPERIMENTS

G.1 OSCILLATING NEUTRON STAR NR SIMULATION SPECIFICATIONS

Simulator setup and solver. The system is evolved using the Baum-
garte–Shapiro–Shibata–Nakamura (BSSN) formulation of Einstein’s equations (Shibata &
Nakamura, 1995; Baumgarte & Shapiro, 1998) as implemented in the McLachlan code, together
with general-relativistic hydrodynamics provided by GRHydro of EinsteinToolkit (Löffler et al.,
2012). Reconstructing the full 4D spacetime metric gαβ around the neutron star from the numerical
BSSN solver output variables is done by collecting the ADM variables (Arnowitt et al., 1959) (via
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the ADMBase Thorn in EinsteinToolkit) in the following manner:

gµν =

(
−α2 + βiβ

i βi

βi γij

)
. (118)

where α corresponds to the lapse function, βi := {βx, βy, βz} is the shift-vector and the 3-metric
γij := {γxx, γxy, · · · , γzz}. The simulation employs fixed mesh refinement (FMR) (Schnetter et al.,
2004), i.e., grid patches of non-uniform resolution. The coarsest grid usually encloses the whole
simulation domain. Successively finer grids overlay the coarse grid at those locations where a higher
resolutions is needed. This is done by the Carpet infrastructure (Löffler et al., 2012). Four distinct,
static grid configurations are used, namely low, medium, high, and highest resolutions, which differ
only by their number of collocation points per refinement level. FMR requires far less resources
than globally increasing the resolution. No dynamic or adaptive regridding is performed during the
evolution; instead, each run is performed independently at a fixed resolution to assess convergence
and scalability. into a unigrid application with minimal changes to its structure. Instead of only one
grid, there are several grids or grid patches with different resolutions12.

Training data generation. The training data are obtained by aggregating all spatial collocation
points (xi, yi, zi) from the refinement levels {rl0, rl1, . . . , rl4} at a single time slice t. The NeFs
are trained on this coalesced hierarchy, resembling an effective multiresolution representation, while
discarding any duplicate points, yielding a single non-uniform grid.

Table 12: Grid refinement hierarchy and resolution parameters for the fixed mesh refinement
(FMR) configuration used in the TOV benchmark. The spatial resolution ∆x and number of time
slices Nt increase with refinement level, while the physical domain shrinks correspondingly. The
last column lists the full 4D grid shape (Nt, Nx, Ny, Nz) for each refinement level. Apart from the
medium resolution simulation grid, all other grids don’t contain the ghost zones.

NR Simulation Dataset Refinement level Spatial domain ∆x
4D grid shape

(Nt,Nx,Ny,Nz)

Medium resolution
(simulation grid)

rl0 [−38.4, 345.6]3 12.8 (313, 31, 31, 31)
rl1 [−19.2, 217.6]3 6.4 (626, 38, 38, 38)
rl2 [−9.6, 108.8]3 3.2 (1251, 38, 38, 38)
rl3 [−4.8, 52.8]3 1.6 (2501, 37, 37, 37)
rl4 [−2.4, 24.8]3 0.8 (5001, 35, 35, 35)

Medium resolution
(training grid)

rl0 [0.0, 307.2]3 12.8 (313, 25, 25, 25)
rl1 [0.0, 198.4]3 6.4 (626, 32, 32, 32)
rl2 [0.0, 99.2]3 3.2 (626, 32, 32, 32)
rl3 [0.0, 48.0]3 1.6 (626, 31, 31, 31)
rl4 [0.0, 22.4]3 0.8 (626, 29, 29, 29)

High resolution
(evaluation grid)

rl0 [0.0, 307.2]3 8.0 (501, 40, 40, 40)
rl1 [0.0, 198.4]3 4.0 (1001, 40, 40, 40)
rl2 [0.0, 99.2]3 2.0 (2001, 40, 40, 40)
rl3 [0.0, 48.0]3 1.0 (4001, 40, 40, 40)
rl4 [0.0, 22.4]3 0.5 (8001, 40, 40, 40)

Tensor differentiation on NR grids. Numerical relativity solvers augment the primary computational
domain with ghost zones (Thornburg, 2004), which provide additional layers of points surrounding
the grid. These zones support high-order finite difference stencils, ensure that boundary conditions
are applied consistently, and help manage coordinate singularities. The simulations used here employ
three ghost zones in each spatial direction. Tensor derivatives are evaluated using a sixth-order central
finite difference stencil applied to the metric tensor grid functions:

f ′(x) ≈ −f(x+ 3h) + 9f(x+ 2h)− 45f(x+ h) + 45f(x− h)− 9f(x− 2h) + f(x− 3h)

60h
.

12See https://einsteintoolkit.org/gallery/ns/index.html for details
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The three ghost zones are required because this stencil accesses three neighbouring points on both
sides of each evaluated location.

Training specifics. The full four-dimensional numerical relativity dataset contains approximately
160 million collocation points, including contributions from the refinement hierarchy. This scale
necessitates hyperparameters distinct from those used for the analytic benchmarks in EinFields. We
retain SiLU activations and the SOAP optimizer, and introduce the following modifications: (i) a
Fourier embedding layer of size 256 for input normalization with embedding frequency scale of 0.01,
(ii) a cosine learning-rate schedule with initial learning rate 10−3 annealed upto 10−5, (iii) a batch
size of 105, and (iv) 200 training epochs with 71666 decay steps.

Evaluation procedure. EinFields is trained on the medium-resolution coalesced FMR grid (see
Table 12). As no analytical solution exists for the oscillating TOV configuration, we adopt the
highest-resolution BSSN simulation (Table 12) as our ground truth metric field values. Although
this evaluation grid features finer spatial (and temporal) resolution at every refinement level rlx, its
spatial domain is restricted to the same coordinate ranges corresponding to the medium-resolution
training grid data. We therefore evaluate EinFields on this high-resolution grid within the identical
domain range, enabling a direct comparison against the ground truth solution. This procedure yields
the results reported in Table 3 and assesses the ability of the implicit representations to provide
continuous query access of the metric tensor field values at coordinates not present in the training
grid.

Run-time tradeoffs and query speed. We plot the query speeds of EinFields and its AD-derived
Jacobian values over the collocation points.

2 3 4 5 6 7 8
NN Depth

10 3

10 2

Q
ue

ry
 T

im
e 

[s
]

Metric
Width 64
Width 128
Width 256
Width 512

2 3 4 5 6 7 8
NN Depth

10 3

10 2

Jacobian
Width 64
Width 128
Width 256
Width 512

Figure 23: The time to query EinFields on a 105 batch of points. The model is trained on the neutron
star numerical relativity simulation containing approximately 71 million collocation points. There is
a clear trend of increasing query time as the MLP model size increases. Shaded regions indicate a
small uncertainty (only visible when zoomed in). Timings are performed on an NVIDIA H200 GPU
with jAX.JIT.

Retrieving higher derivative quantities. To extend our analysis to the differentiation of tensorial
quantities, we additionally evaluate the Christoffel symbols. Specifically, we compare the Christoffel
symbols obtained by our automatic differentiation–based EinFields pipeline with those computed
using a fourth-order central finite-difference stencil applied to the reconstructed four-metric on this
multi-resolution coalesced mesh. The finite-difference operator acts on metric data that include three
padded ghost zones and are generated from the BSSN formulation. We use a fourth-order stencil
rather than a sixth-order one to maintain numerical stability. All comparisons are carried out at
high resolution, using the simulation configurations listed in Table 12, and as done for the metric
tensor field. The accuracy results for the NR simulation Christoffel symbols are reported in Table 13.
Additionally we report the compression ratio obtained for storing such quantities in explicit form as
compared to our implicit machinery.
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Table 13: Performance and compression for oscillating neutron star: EinFields retrieved Christoffel
symbols as compared to FD methods applied on the multi-resolution coalesced FMR grids.

Geometric quantity Storage [GiB] MAE Compression factor (Sym.)

Full Sym. EinFields (AD)

Christoffel symbol 17.0 10.6 8.61e-4 7753×

Static mesh refinement evaluation. In the previous set of numerical relativity experiments, both
the simulation and training grids preserved a fixed block structure over the full BSSN time evolution.
Each refinement level was pre-defined and spatially static, with no patch motion or regridding.
However, a technical inconsistency arises from the fact that coalesced FMR grids, as commonly
used, contain coarse-level cells embedded inside regions where finer patches are available. As a
result, multiple grid resolutions represent the same physical region simultaneously. Retaining all
levels produces redundant sampling density, and therefore does not reflect a strictly hierarchical
representation of the spacetime domain.

A more consistent procedure is to remove coarse-level grid points that fall within the bounding
region of any finer-level patch. In practice, we retain only the highest-resolution data available at
each spatial location. This construction yields what is effectively a static mesh refinement (SMR)
hierarchy, analogous to a static octree, in which the resolution is high only near the neutron star
and decreases smoothly with distance. Unlike adaptive mesh refinement (AMR), SMR does not
dynamically move patches, perform tagging, or trigger online mesh adaptation. Nonetheless, this
setting forms a strong and meaningful test of implicit field models, since the resulting sampling
distribution is highly non-uniform and reflects true octree-like scaling.

Formally, the refinement bounding boxes satisfy:

BBox(rl4) ⊂ BBox(rl3) ⊂ · · · ⊂ BBox(rl0), (119)

where BBox(rlk) denotes the spatial extent of refinement level rlk, with rl4 the finest and rl0
the coarsest. Coarse-level points inside the domain of any finer box are removed, eliminating
multi-resolution overlap. The result for this strategy are also detailed in Table 14.

Table 14: Evaluation of EinFields (best model 6× 256) on a single stable neutron star simulation
under static octree/static mesh refinement (SMR). We remove coarse-level samples that lie inside the
regions covered by finer patches (Eq. 119), retaining only the highest available resolution at each
spatial location. The table reports the relative ℓ2 error, MAE, storage footprint, and the resulting
compression ratio. Under SMR reduction, EinFields attains a compression ratio of approximately
1900× while preserving low reconstruction error, suggesting that eliminating overlapping coarse-
resolution points improves metric fidelity in high-resolution regions.

Representation Rel. ℓ2 MAE Storage Compression

EinFields 1.09e-5 4.4e-5 1.4 MiB 1901
EinFields (+ Jacobian) 6.82e-6 9.24e-6 1.4 MiB 1901
SMR grid − − 2.6 GiB −

This benchmark provides a representative NR workflow in which matter and spacetime are tightly
coupled. It therefore offers an ideal context for assessing the robustness and efficiency of EINFIELDS
when applied to high-resolution simulations of relativistic astrophysical systems.
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