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ABSTRACT

Recent self-supervised contrastive learning methods greatly benefit from the
Siamese structure that aims at minimizing distances between positive pairs. For
high performance Siamese representation learning, one of the keys is to design
good contrastive pairs. Most previous works simply apply random sampling to
make different crops of the same image, which overlooks the semantic information
that may degrade the quality of views. In this work, we propose ContrastiveCrop,
which could effectively generate better crops for Siamese representation learning.
Firstly, a semantic-aware object localization strategy is proposed within the train-
ing process in a fully unsupervised manner. This guides us to generate contrastive
views which could avoid most false positives (i.e. object v.s. background). More-
over, we empirically find that views with similar appearances are trivial for the
Siamese model training. Thus, a center-suppressed sampling is further designed
to enlarge the variance of crops. Remarkably, our method takes a careful con-
sideration of positive pairs for contrastive learning with negligible extra training
overhead. As a plug-and-play and framework-agnostic module, ContrastiveCrop
consistently improves SimCLR, MoCo, BYOL, SimSiam by 0.4% ∼ 2.0% clas-
sification accuracy on CIFAR-10, CIFAR-100, Tiny ImageNet and STL-10. Su-
perior results are also achieved on downstream detection and segmentation tasks
when pre-trained on ImageNet-1K.

1 INTRODUCTION

Self-supervised learning (SSL) has attracted much attention in the computer vision community due
to its potential of exploiting large amount of unlabeled data. As a mainstream approach in SSL,
contrastive learning has achieved higher performance on several downstream tasks (e.g., object de-
tection, segmentation and pose estimation (Ren et al. (2015), He et al. (2017), Güler et al. (2018),
Everingham et al. (2010), Lin et al. (2014))) than its supervised counterpart. Such promising results
can be largely attributed to the Siamese structure, which is commonly applied in state-of-the-art
unsupervised methods, including SimCLR (Chen et al. (2020a)), MoCo V1 & V2 (He et al. (2020),
Chen et al. (2020b)), BYOL (Grill et al. (2020)) and SimSiam (Chen & He (2021)). Typically,
the Siamese structure takes two augmented views from an image as input, and minimizes their dis-
tance in the embedding space. With proper views selected, Siamese networks demonstrate a strong
capability to learn generic visual features (Tian et al. (2020)).

One of the key issues of contrastive learning is to design positives selection. Some works generate
different positive views by strong data augmentation, such as color distortion and jigsaw transfor-
mation (Tian et al. (2020), Chen et al. (2021)). Another work (Shen et al. (2020)) applies mixture
in an unsupervised manner to produce positive pairs of multiple samples. Additionally, different
from data augmentation, Zhu et al. (2021) creates hard positives with transformation at the feature
level. Despite different techniques, these works commonly apply RandomCrop to sample multiple
views of an image, and further make the views more diverse. As a basic sampling method, Ran-
domCrop enables all individual crops to be selected equiprobably. However, it fails to look at the
semantic information of paired views, which helps to learn better representations more efficiently
and accurately. As shown in Fig.1(a), random crops are prone to miss the object when no prior of
object (e.g. scale and location) is given. Optimizing the distance between object and background in
the embedding space would mislead the learning of representations. Besides, Fig.1(c) indicates that
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random crops cannot always carry sufficient variances of an object. Such views with large similarity
are trivial for learning discriminative models.

In this paper, we propose ContrastiveCrop, aiming to craft better contrastive pairs for Siamese rep-
resentation learning. False positives indicate that a better sampling strategy for contrastive learning
should consider the content information of the image. Hereby, we propose a semantic-aware local-
ization scheme. The module serves as a guidance to select crops, avoiding most false positives, as
shown in Fig. 1(b). Moreover, we propose a center-suppressed sampling strategy to tackle trivial
positive pairs with large similarity. Fig. 1(d) shows that our crops are more likely to cover different
parts of the object. The semantic-aware localization and center-suppressed sampling scheme can be
gracefully combined to generate better crops for contrastive learning.

(b)(a) (c) (d)

Figure 1: The motivation of our proposed ContrastiveCrop. (a) and (c) are generated by typical
RandomCrop, while (b) and (d) are crops from our method. We address the false positive problem
(object v.s. background) shown in (a) by localizing the object and restricting the crop center within
the bounding box (the black dashed box) in (b). Moreover, we enlarge the variance of crops in (d)
by keeping them away from the center, which avoids the close appearance as shown in (c).

The proposed ContrastiveCrop considers both semantic infomation and maintaining large variance
when making pairs. As a plug-and-play method, it can be easily applied into the Siamese structure.
More importantly, our approach is agnostic to contrastive frameworks, regardless using negative
samples or not. With negligible training overhead, our strategy consistently improves SimCLR,
MoCo, BYOL, SimSiam by 0.4% ∼ 2.0% classification accuracy on CIFAR-10, CIFAR-100, Tiny
ImageNet and STL-10. Superior results are also achieved on downstream detection and segmenta-
tion tasks when pre-trained on ImageNet-1K.

The main contributions of this paper can be summarized as:

• To the best of our knowledge, this is the first work to investigate the problem of commonly
used RandomCrop in contrastive learning. We propose ContrastiveCrop that is customized
to generate better views for this task.

• In ContrastiveCrop, the semantic-aware localization is adopted to avoid most false positives
and the center-suppressed sampling strategy is applied to reduce trivial positive pairs.

• ContrastiveCrop consistently outperforms RandomCrop with popular contrastive methods
on a variety of datasets, showing its effectiveness and generality for Siamese representation
learning.

2 RELATED WORK

In this section, we introduce contrastive learning and positives selection related to this work.

2.1 CONTRASTIVE LEARNING

The core idea of contrastive learning is to pull positive pairs closer while pushing negatives apart
in the embedding space. This methodology has shown great promise in learning visual represen-
tations without annotation (Bachman et al. (2019), Hénaff et al. (2019), Wu et al. (2018), Misra &
Maaten (2020), Oord et al. (2018), Ye et al. (2019)). More recently, contrastive methods based on
the Siamese structure achieve remarkable performance on downstream tasks (Chen et al. (2020a),
He et al. (2020), Chen et al. (2020b), Grill et al. (2020), Chen & He (2021), Xie et al. (2021a), Wang
et al. (2021), Xie et al. (2021b), Dwibedi et al. (2021)), some of which even surpass supervised
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models. The milestone work is SimCLR (Chen et al. (2020a)), which presents a simple framework
for contrastive visual representation learning. It significantly improves the quality of learned repre-
sentations with a non-linear transformation head. Another famous work is MoCo (He et al. (2020)),
which uses a memory bank to store large number of negative samples and smoothly updates it with
momentum for better consistency. Methods that learn useful representations without negative sam-
ples are also proposed. BYOL (Grill et al. (2020)) trains an online network to predict the output of
the target network, with the latter slowly updated with momentum. The authors hypothesize that
the additional projector to the online network and the momentum encoder are important to avoid
collapsed solutions without negative samples. SimSiam (Chen & He (2021)) further explores sim-
ple Siamese networks that can learn meaningful representations without negative sample pairs, large
batches and momentum encoders. The role of stop-gradient is emphasized in preventing collapsing.

2.2 POSITIVES SELECTION

One of the key issues in contrastive learning is the design of positives selection. An intuitive ap-
proach to generating positive pairs is to create different views of a sample. Tian et al. (2020) propose
an InfoMin principle to catch a sweet point of mutual information between views, and accordingly
generate positive pairs with its InfoMin Augmentation. Different from data augmentation, Zhu et al.
(2021) create hard positives by repelling paired representations in the feature space. Additionally,
Dwibedi et al. (2021) apply a support set to search nearest neighbors of positives and use them as
cross-sample positives. These works commonly apply RandomCrop as the basic sampling method to
generate views. We find that it may not be the optimal solution for contrastive learning. Therefore,
we propose ContrastiveCrop that is tailored to make better views for contrastive learning.

3 CONTRASTIVECROP FOR SIAMESE REPRESENTATION LEARNING

In this section, we introduce ContrastiveCrop for Siamese representation learning. Firstly, We
briefly review RandomCrop as preliminary knowledge. Then, we describe semantic-aware localiza-
tion and center-suppressed sampling as two submodules of our ContrastiveCrop. Finally, favorable
properties of our method are further discussed for better understanding.

3.1 PRELIMINARY: RandomCrop

RandomCrop, an efficient data augmentation method, has been widely used in both supervised learn-
ing and self-supervised learning (SSL). Here, we briefly review this technique, using API in Pytorch1

as an example. Given an image, we first determine the scale s and aspect ratio r of the crop from
a pre-defined range. Then, the height and width of the crop can be obtained with s and r. Finally,
the location of the crop is randomly selected, as long as the whole crop lies within the image. The
procedure of RandomCrop can be formulated as

(x, y, h, w) = Rcrop(s, r, I), (1)

where Rcrop(·, ·, ·) is the random sampling function that returns a quaternion (x, y, h, w) represent-
ing the crop. We denote I as the input image, (x, y) as the coordinate of the crop center, and (h, w)
as the height and width of crop. Usually, the scale s and aspect ratio r of crops are set flexibly, so
that crops of variant sizes could be made.

In principle, RandomCrop enables all individual crops to be selected and could provide diverse
views of a sample. However, it performs sampling equiprobably, ignoring the semantic information
of images. As shown in Fig. 1(a), RandomCrop is prone to generate false positives when the scale
of object is small. Given objects with variant scales in contrastive learning, RandomCrop would in-
evitably generate false positives due to lack of the consideration of semantic information. Similarly,
optimizing the false positives in Fig. 3 may mislead the learning of representation. Therefore, de-
signing a semantic-aware sampling strategy for crops is crucial and vital for Siamese representation
learning.

1https://pytorch.org/vision/stable/transforms.html

3



Under review as a conference paper at ICLR 2022

Figure 2: The training dynamic of localization is shown from left to right in each subfigure. We
initialize the localization box as the whole image, and update it at a regular interval using the latest
heatmap. Note that our goal is not to derive precise localization, but to guide generation of crops by
finding the object of interest.

3.2 SEMANTIC-AWARE LOCALIZATION

To tackle the issue of poor content understanding in RandomCrop, we design a semantic-aware lo-
calization module that can effectively reduce false positives in an unsupervised manner. To better
study the process of feature learning in Siamese networks, we visualize the heatmaps generated at
different training stages (e.g., 0th, 20th, 40th, 60th, 80th epoch) in Fig. 2. Note that we derive
the heatmap by summing the features of last convolutional layer across the channel dimension and
normalizing it to [0, 1]. There are several inspirations from visualization: 1) The Siamese represen-
tation learning framework is capable of capturing the location of the object, which can be leveraged
to guide the generation of better crops; 2) Heatmaps can roughly indicate the object, but may need
some warm-up at early stages.

Based on above analyses, we propose to detect the object during the training process using the in-
formation in heatmaps. Specifically, RandomCrop is applied at early stage of training to collect
semantic information of the whole image. Then, we apply an indicator function to obtain the bound-
ing box of object B from heatmaps, which can be written as,

B = L(1[M > k]), (2)

where M represents heatmap, k is the threshold of activations, 1 is the indicator function and L
calculates the rectangular closure of activated positions. After obtaining the bounding box B, the
semantic crops could be generated as follows,

[ẋ, ẏ, ḣ, ẇ] = Rcrop(s, r, B), (3)

where the definitions of ẋ, ẏ, ḣ, ẇ, s, r, and Rcrop are similar to Eq. 1. Considering the coarse
localization, we enlarge the operable region by only constraining center of crops within B. Note
that the bounding box is progressively updated at a regular interval during the training process. We
make comparison between RandomCrop and RandomCrop + Semantic-aware Localization in Fig.
3. One can find that the false positives reduce dramatically when the proposed module is applied.

3.3 CENTER-SUPPRESSED SAMPLING

The semantic-aware localization scheme serves as a useful guidance to reduce false positive cases,
but increases the probability of making trivial pairs due to the smaller operable region. In this
subsection, we introduce the center-suppressed sampling that aims to tackle this dilemma. The idea
is to reduce the probability of crops gathering around center. Specifically, we adopt the symmetric
beta distribution β(α, α), which allows to easily control its shape with different α. As the goal is to
enlarge the variance, we set α < 1 which gives a lower probability near center and higher at other

4



Under review as a conference paper at ICLR 2022

RandomCrop + 

Semantic-aware Localization

ContrastiveCrop

RandomCrop

Figure 3: Visualization of RandomCrop, RandomCrop + Semantic-aware Localization and our
ContrastiveCrop. We show the sampling distributions and operable regions for three settings on
the left, and correspondent sampled pairs on the right. Pairs made by RandomCrop include sev-
eral false positives that totally miss the object (marked in yellow box). Using RandomCrop with
Semantic-aware Localization reduces false positives, but introduces easy positive pairs that share
large similarity. Last, our ContrastiveCrop could reduce false positive pairs while increasing vari-
ance at the same time.

positions. In this way, crops are more likely to be scattered within the operable region and large
overlap could be significantly avoided.

Algorithm 1: ContrastiveCrop for Siamese Representation Learning
Input: Image I , Crop Scale s, Crop Ratio r, Threshold of Activations k, Parameter of β Distribution α

1 h =
√
s · r // Height of the crop.

2 w =
√
s/r // Width of the crop.

3 F = Forward(I) // Get the features of last layer by forwarding the image.
4 M = Normalize(F ) // Get the heatmap by normalizing features across channel dimension.
5 B = L(1[M > k]) // Get the bounding box by Eq. 2.
6 x = Bx0 + (Bx1 −Bx0) · u, u ∼ β(α, α) // Sample coordinate x of crop center from β distribution
7 y = By0 + (By1 −By0) · v, v ∼ β(α, α) // Sample coordinate y of crop center from β distribution

Output: Crop C = (x, y, h, w)

Combining center-suppressed sampling with semantic-aware localization, we can finally formulate
our ContrastiveCrop as

(ẋ, ẏ, ḣ, ẇ) = Ccrop(s, r, B), (4)

where Ccrop denotes sampling function that uses a center-suppressed distribution and B is the same
bounding box as in Eq. 3. Note that β distribution with α < 1 is not the only choice for sampling.
Other distributions with similar shape (e.g., quadratic function) could also achieve the same goal.
The effect of our ContrastiveCrop is visualized in Fig. 3. Comparing to RandomCrop, our method
significantly reduces false positive pairs due to the semantic-aware localization. Meanwhile, it in-
troduces larger variance within a pair by applying the center-suppressed distribution. We show the
pipeline for ContrastiveCrop in Algorithm 1. The whole module is agnostic to other transformations
and can be easily integrated into general contrastive learning frameworks.
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3.4 DISCUSSION

To better understand the behavior of ContrativeCrop, we discuss several properties that may con-
tribute to its effectiveness. We first investigate the relation between semantic information and vari-
ance. We calculate the class scores of single crop that may indicate richness of categorized semantic
information. Distance between representations of positive pairs is also obtained to represent vari-
ance. Both the class score and distance are statistical results from a standard supervised model
(i.e., ResNet-50) with large number of trials. Their relation is shown in Fig. 4. ContrastiveCrop
conveys more semantic information than RandomCrop at the same level of variance, showing the
effectiveness of semantic-aware localization. Furthermore, with equal semantic information, Con-
trastiveCrop achieves larger variance than RandomCrop, which can be owed to center-suppressed
sampling.
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Figure 4: The relation between richness
of semantics and variance of crops. Both
scores are statistical results from supervis-
edly trained ResNet-50 with large number of
trials. Our ContrastiveCrop conveys more
semantic information than RandomCrop at
the same level of variance, and yields larger
variance with equal semantic information.
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Figure 5: Similarity of positive pairs in training.
Smaller positives similarity indicates harder positive
samples which may enhance the training (Zhu et al.
(2021)). Take RandomCrop as baseline, adding only
localization results in slightly larger similarity. Our
ContrastiveCrop combines both semantic-aware lo-
calization and center-suppressed sampling, which
effectively reduces similarity of positives.

We further visualize the similarity of positive pairs in the training process. As shown in Fig. 5,
adding only semantic-aware localization to RandomCrop slightly increases similarity, as localization
restrains crops in a smaller operable region. Our ContrastiveCrop incorporates center-suppressed
sampling, showing smaller positives similarity than the other two. This indicates positive pairs sam-
pled by ours are harder ones, which could help learning more view-invariant features as suggested
in FT (Zhu et al. (2021)). However, different from FT that reduces positives similarity in the fea-
ture space, we directly sample harder crops from raw data, while taking a careful consideration of
semantic information.

4 EXPERIMENTS

In this section, we conduct extensive experiments with popular contrastive methods on a variety
of datasets, to demonstrate the effectiveness and generality of our method. We first introduce the
datasets and contrastive methods in Sec. 4.1. Sec. 4.2 describes the implementation details. We then
evaluate our method with the common linear evaluation protocol in Sec. 4.3. Results of ablation
experiments are shown in Sec. 4.4. Finally, Sec. 4.5 presents transfer performance on object
detection and segmentation tasks.
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4.1 DATASETS & BASELINE APPROACHES

We perform evaluation of our method with state-of-the-art unsupervised contrastive methods, on a
wide range of datasets. The datasets include CIFAR-10/CIAFR-100 (Krizhevsky et al. (2009)),
Tiny ImageNet, STL-10 (Coates et al. (2011)) and ImageNet (Russakovsky et al. (2015)). Gen-
erally, these datasets are built for object recognition and the images contain iconic view of objects.
The baseline contrastive methods include SimCLR, MoCo V1 & V2, BYOL and SimSiam.

4.2 IMPLEMENTATION DETAILS

Our ContrastiveCrop aims to make better views for contrastive learning, which is agnostic to unsu-
pervised learning frameworks. We strictly keep the same training setting when making comparison.
Larger gains could be expected with further hyper-parameter tuning, which is not the focus of this
work.

For small datasets (i.e., CIFAR-10/100, Tiny ImageNet and STL-10), we use the same training setup
in all experiments. At the pre-train stage, we train ResNet-18 (He et al. (2016)) for 500 epochs with
a batch size of 512 and a cosine-annealed learning rate of 0.5. In our method, we set k = 0.1 for the
threshold of activations and α = 0.1 for sampling. Localization boxes are updated at a frequency of
every 100 epochs, which adds negligible extra training overhead. The linear classifier is trained for
100 epochs with initial learning rate of 10.0 multiplied by 0.1 at 60th and 80th epochs.

For experiments on ImageNet, we adopt ResNet-50 as the base model. Pre-train settings of MoCo
and SimSiam exactly follow their original works. We reproduce SimCLR with a smaller batch size
of 512 and cosine-annealed learning rate of 0.05. We set the k = 0.1, α = 0.6 for all experiments
with 100 epochs and 200 epochs. ContrastiveCrop starts from the 20th epoch, after which boxes
are updated every 10 epochs. We adopt the same setting as (He et al. (2020)) for training the linear
classifier for all baseline methods.

All the experiments are conducted on an 8-GPU server. We use SGD optimizer with momentum of
0.9, weight decay of 10−4 and 0 for pre-train and linear evaluation respectively.

Method CIFAR-10 CIFAR-100 Tiny ImageNet STL-10
R-Crop C-Crop R-Crop C-Crop R-Crop C-Crop R-Crop C-Crop

SimCLR (Chen et al. (2020a)) 89.63 90.08 60.30 61.91 45.19 46.21 88.95 89.53
MoCo (He et al. (2020)) 86.73 88.78 56.10 57.65 47.09 47.98 89.17 89.81
BYOL (Grill et al. (2020)) 91.96 92.54 63.75 64.62 46.08 47.23 91.84 92.42
SimSiam (Chen & He (2021)) 90.96 91.48 64.79 65.82 43.03 44.54 89.39 89.83

Table 1: Linear classification results for different contrastive methods and datasets. R-Crop and C-
Crop mean RandomCrop and ContrastiveCrop respectively. We adopt ResNet-18 as the base model
and reproduce all the methods with a unified training setup as described in Sec. 4.2.

4.3 LINEAR CLASSIFICATION

In this section, we verify our method with linear classification following the common protocol. We
freeze pre-trained weights of the encoder and train a supervised linear classifier on top of it. Top-1
classification accuracy results on the validation set are reported.

Results on CIFAR-10/100, Tiny ImageNet and STL-10. Our results on these small datasets are
shown in Tab. 1. With the same training setup for all experiments, ContrastiveCrop consistently
improves baseline methods by at least 0.4%. Results show that the proposed method is generic and
does not require heavy parameter tuning. The localization boxes are updated 5 times in the whole
training of 500 epochs, adding negligible training overhead.

Results on ImageNet. The results of ImageNet are two-part: 1) standard ImageNet-1K (IN-1K),
which is used for pre-training. 2) IN-200, which consists of 200 random classes of IN-1K and is
used for ablation experiments. As shown in Tab. 2, our method outperforms RandomCrop with
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SimCLR, MoCo V1, MoCo V2, SimSiam on IN-1K by 0.25%, 1.09%, 0.49% and 0.33% respec-
tively. A larger improvement is seen on IN-200. The consistent gain over baseline methods shows
the effectiveness and generality of ContrastiveCrop for contrastive methods.

4.4 ABLATION STUDIES
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Figure 6: Ablation results on IN-200 w.r.t. k and α. Subfigure (a) compares RandomCrop +
Semantic-aware Localization (blue plot) with the RandomCrop baseline (black plot). In subfig-
ure (b), we fix the best k = 0.1 for localization (blue plot) and compare it with ContrastiveCrop to
study the influence of different α.

In ablation studies, we investigate the semantic-aware localization module and center-suppressed
sampling independently. We also study the effect of ContrastiveCrop when it is combined with dif-
ferent transformations. We conduct experiments with ResNet-50 and report the linear classification
results on IN-200.

Semantic-aware Localization. In this work, the unsupervised semantic-aware localization serves
as a guidance to make crops. We study the influence of k that determines the size of the localization
box, and compare it to RandomCrop that does not use localization (i.e., k = 0). Experimental results
are shown in Fig. 6(a). One can find that the localization box can slightly outperforms RandomCrop
baseline (black plot) when k is kept at a low level from 0.05 to 0.2. This shows the effectiveness
of largely removing false positives. However, as k increases over 0.2, the performance starts to fall
quickly. We argue that smaller bounding box dramatically reduces variance of views, making it
trivial to learn discriminative features.

Center-suppressed Sampling. We use β distribution for the center-suppressed sampling, which
allows to control its variance with different α. Here we investigate the impact of different variance
by iterating over multiple α. Results are shown in Fig. 6 (b) with k = 0.1 for localization. When
α < 1, our ContrastiveCrop consistently outperforms RandomCrop with localization, showing the
effect of center-suppressed sampling. We also study α > 1 that has a smaller variance than uniform
distribution (i.e., α = 1). A drop in accuracy is observed with α > 1. This indicates that larger
variance of crops is required for better contrast.

ContrasitveCrop with Other Transformations. To further compare the effect of ContrastiveCrop
and RandomCrop, we study other image transformations used in MoCo V2 (Chen et al. (2020b)),
including Flip, ColorJitter, Grayscale and Blur. The ablation results are shown in Tab. 3. In case
all other transformations are removed, ContrastiveCrop is 0.4% higher than RandomCrop, which is
a direct evidence of our superiority. Moreover, with only one extra transformation, ContrastiveCrop
outperforms RandomCrop by 0.3% ∼ 0.8%. The largest gap of 1.2% is achieved when all of the
transformations are incorporated. These results show that our ContrastiveCrop is compatible and
orthogonal to other transformations.
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Method IN-200 IN-1K
R-Crop C-Crop R-Crop C-Crop

SimCLR 62.14 63.08 61.60 61.85
MoCo V1 64.52 65.80 57.25 58.34
MoCo V2 63.43 64.61 64.40 64.89
SimSiam 62.89 63.54 65.62 65.95

Table 2: Linear classification results (100
epochs) on IN-200 and IN-1K. We use ex-
actly the same training setup for comparison
of a method.

Flip ColorJitter + Grayscale Blur R-Crop C-Crop

X X X 63.4 64.6
X 50.4 50.9

X 60.6 61.4
X 44.9 45.2

45.5 45.9

Table 3: Ablation of other transformations used in
MoCo V2. We combine ColorJitter and Grayscale
as one color transformation. The results are from
ResNet-50 pre-trained on IN-200 for 100 epochs.

pre-train IN-1K VOC detection COCO instance seg. COCO detection
Top-1 AP AP50 AP75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75

random init - 33.8 60.2 33.1 29.3 46.9 30.8 26.4 44.0 27.8
supervised 76.1 53.5 81.3 58.8 33.3 54.7 35.2 38.2 58.2 41.2
infomin 70.1 57.6 82.7 64.6 34.1 55.2 36.3 39.0 58.5 42.0

MoCoV1 (He et al. (2020)) 60.6 55.9 81.5 62.6 33.6 54.8 35.6 38.5 58.3 41.6
MoCoV1 + ContrastiveCrop 61.1 56.3 82.1 62.6 33.9 55.2 36.1 38.6 58.2 41.6

Table 4: Fine-tuning results on PASCAL VOC detection and COCO detection and instance seg-
mentation. All models are pre-trained for 200 epochs on ImageNet-1K. On VOC, the training and
evaluation sets are trainval2007+2012 and test2007, on COCO are the train2017 and
val2017. All models are fine-tuned for 24K iterations on VOC and 90K on COCO.

4.5 DOWNSTREAM TASKS

In this section, we measure the transferability of our method on the object detection and instance
segmentation task. Following previous works (He et al. (2020), Zhu et al. (2021), we pre-train
ResNet-50 on IN-1K for 200 epochs. For downstream tasks, we use PASCAL VOC (Everingham
et al. (2010)) and COCO (Lin et al. (2014)) as our benchmarks and we adopt the same setups as in
MoCo’s detectron2 codebase2. All layers of pre-trained models are fine-tuned end-to-end at target
datasets.

PASVAL VOC Object Detection. The detector is Faster R-CNN (Ren et al. (2015)) with a back-
bone of R50-C4 (He et al. (2017)). We fine-tune the model on the trainval2007+2012 split
and evaluate on the VOC test2007. The results are present in Tab. 4. Compared with MoCo V1
baseline, our method achieves improvement of +0.4AP and +0.5AP50.

COCO Object Detection/Segmentation. The model is Mask R-CNN (He et al. (2017)) with R50-
C4 backbone. We fine-tune 90K iterations on the train2017 set and evaluate on val2017. As
shown in Tab. 4, the proposed ContrastiveCrop achieved superior performance in most metrics.

5 CONCLUSION

In this work, we propose ContrastiveCrop, that is tailored to make better contrastive views for
Siamese representation learning. ContrastiveCrop adopts semantic-aware localization to avoid most
false positives and applies the center-suppressed sampling to reduce trivial positive pairs. We inno-
vatively take semantic information into account when transforming a sample, and thoroughly inves-
tigate the suitable variance for contrastive learning. We have shown the effectiveness and generality
of our method through extensive experiments with state-of-the-art contrastive methods including
SimCLR, MoCo, BYOL and SimSiam. Finally, we hope this work could inspire future research in
designing positives selection to further exploit the potential of contrastive learning.

2https://github.com/facebookresearch/detectron2
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