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ABSTRACT

Direct Preference Optimization (DPO) has gained attention as an efficient alter-
native to reinforcement learning from human feedback (RLHF) for aligning large
language models (LLMs) with human preferences. Despite its advantages, DPO
suffers from a length bias, generating responses longer than those from the refer-
ence model. Existing solutions like SimPO and SamPO address this issue but uni-
formly treat the contribution of rewards across sequences, overlooking temporal
dynamics. To this end, we propose an enhanced preference optimization method
that incorporates a temporal decay factor controlled by a gamma parameter. This
dynamic weighting mechanism adjusts the influence of each reward based on its
position in the sequence, prioritizing earlier tokens that are more critical for align-
ment. By adaptively focusing on more relevant feedback, our approach mitigates
overfitting to less pertinent data and remains responsive to evolving human pref-
erences. Experimental results on several benchmarks show that our approach con-
sistently outperforms vanilla DPO by 5.9-8.8 points on AlpacaEval 2 and 3.3-9.7
points on Arena-Hard across different model architectures and sizes. Further-
more, additional experiments on mathematical and reasoning benchmarks, such
as MMLU, GSM8K, and Math, confirm that our method enhances performance
without compromising general capabilities.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) has recently emerged as a highly
efficient alternative for aligning large language models (LLMs) with human preferences (Askell
et al., 2021; Ouyang et al., 2022). Unlike reinforcement learning from human feedback (RLHF),
which involves training a reward model followed by iterative policy updates, DPO reframes the
problem as a binary classification task directly over human preference data. Compared to supervised
fine-tuning, DPO enables the model not only to learn what is good but also to be aware of what
is bad. This formulation allows DPO to optimize preference alignment in a single-stage training
process, bypassing the complexities of reinforcement learning, such as policy sampling or extensive
hyperparameter tuning. By leveraging an analytical mapping between reward functions and optimal
policies, DPO fine-tunes LLMs efficiently and stably, offering superior performance in tasks like
sentiment control, summarization, and dialogue generation while reducing computational overhead.

Despite its advantages, DPO suffers from a length bias problem, which is caused by the unbalanced
length preference due to the non-uniform length distribution of chosen and rejected responses. This
leads to generated responses tending to be longer than those of the reference model if the majority
of chosen responses are longer than the rejected ones. To address this, SimPO (Meng et al., 2024)
introduces a more streamlined framework by eliminating the need for a reference model. Instead of
relying on a pre-trained reference model for comparison, SimPO uses the average log probability of a
generated sequence as the implicit reward signal. This innovation reduces computational complexity
and memory usage, making SimPO a more efficient alternative to DPO. However, our experiments
have revealed that SimPO suffers from unexpected performance issues when applied to data not
generated through self-sampling. Similarly, SamPO (Lu et al., 2024) addresses DPO’s length bias by
limiting reward computation to the shorter time-series range between chosen and rejected responses,
thereby the refining preference optimization.
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Figure 1: Visualization of KL divergence of
instruct models and their DPO variants. The
results include three widely used open-source
LLMs: Llama3, Gemma2, and Mistral-NeMo.
Observation here indicates earlier tokens con-
tribute more during alignment.

Both of these studies, however, treat the contri-
bution of each reward across the entire sequence
as uniform. We posit that this uniform treatment
cannot fully capture the nuances of preference op-
timization. Specifically, the temporal dynamics
within a sequence may influence the importance of
certain tokens or segments over others. To validate
this conjecture, we plot the KL divergence between
the instruct models and their DPO variants on three
widely used open-source models, where the results
are shown in Figure 1. We notice that the KL diver-
gence remains larger at earlier tokens but gradually
decreases along the positions, which indicates ear-
lier tokens’ distributions are more likely affected
by DPO. This observation aligns with the findings
of previous studies (Lin et al., 2024; Yang et al.,
2023) that alignment is more critical for earlier to-
kens. This is also consistent with the nature of next-token prediction, where an accurate prefix allows
subsequent tokens to be generated on a more reliable foundation, thereby improving the overall qual-
ity (Edunov et al., 2018). In other words, the uncertainty of earlier tokens is much lower, and the
calibration for more recent tokens is higher than that for earlier ones (Wang et al., 2020).

Building on this observation, we propose an enhanced version of DPO, namely temporal decay
based DPO (short for D2PO ), that integrates a temporal decay factor, controlled by a gamma pa-
rameter, to further refine the influence of preference data during training. Our method introduces a
dynamic weighting mechanism that modulates the contribution of each reward based on its temporal
relevance, allowing the model to prioritize earlier feedback over more recent tokens. To this end,
when the coefficient is slightly less than 1, it gradually reduces the influence of more recent rewards,
which are inherently dependent on past rewards. Surprisingly, this temporal decay strategy has also
been validated in the text-to-image synthesis task (Yang et al., 2024), where they emphasize the ear-
lier steps in the reverse chain of the diffusion process. Our work complements theirs by showcasing
the effectiveness of this approach in an autoregressive context, particularly in standard RLHF tasks.
We provide a theoretical analysis on how earlier tokens can contribute more significantly from a
token-level Markov Decision Process (MDP) perspective. Further discussion on the differences can
be found in Appendix F.

By incorporating this adaptive temporal decay mechanism, D2PO not only facilitates earlier tokens
to contribute more but also maintains the computational efficiency that makes DPO such a com-
pelling approach for preference optimization. Experimental results on several widely used bench-
marks, including AlpacaEval2, Arena-Hard and MT-bench, demonstrate the effectiveness on both
off-policy and on-policy configurations. For example, in on-policy setups, D2PO outperforms DPO
by up to 5.9-8.8 performance gains in terms of win rate on AlpacaEval2 and 3.3-9.7 points on Arena-
Hard, respectively. Similarly, in off-policy setups, our method also demonstrates performance im-
provements. As a bonus of this decay mechanism which helps in reducing the overestimation of
rewards caused by length bias in preference pairs, our method could be easily extended to reference-
free mode, and it also can beat SimPO (Meng et al., 2024) by a big margin. Specifically, our best
reference-free D2PO model can achieve 62.4 LC win rate on AlpacaEval 2 and 63.6 win rate on
Arena Hard, which is competitive with the reference-based model. We also conducted additional
experiments on mathematical and reasoning benchmarks, such as MMLU, GSM8K, and Math, in-
dicating that our method enhances performance without compromising general capabilities.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK(RLHF)

The classical RLHF pipeline (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022)
consists of two distinct stages: The reward modeling phase and the RL phase.

Reward modeling phase. The reward modeling is a binary classification task. Given a prompt,
the comparison pair (y1, y2) is collected by querying the supervised fine-tuning (SFT) model. Then,
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the preference yw ≻ yl is labeled by human which is used to train a reward model. Typically,
Bradley-Terry model (Bradley & Terry, 1952) which quantifies the likelihood of one action being
preferred over another is usually used to modeling the preference relations:

p (y1 ≻ y2 | x) = exp (r (x, y1))

exp (r (x, y1)) + exp (r (x, y2))
= σ (r (x, y1)− r (x, y2)) (1)

Reinforcement learning phase. With the reward model in place, the second phase involves opti-
mizing a policy through reinforcement learning, such as proximal policy optimization (PPO) (Schul-
man et al., 2017), aiming to maximize the learned reward while ensuring the policy remains close
to a predefined reference policy (Korbak et al., 2022). This optimization is crucial for preventing
model drift and maintaining alignment with human judgments, which is typically formulated as:

max
θ

Ex∼D,y∼πθ(·|x) [rϕ(x, y)]− βEx∼D [KL (πθ(· | x)∥πref(· | x))] (2)

2.2 DIRECT ALIGNMENT ALGORITHMS (DAAS)

RLHF has become a cornerstone in the training of LLMs, facilitating their alignment with human
preferences. However, the classical RLHF framework (Ouyang et al., 2022) is characterized by
a two-stage training process, which includes reward modeling, and reinforcement learning. This
complexity introduces several challenges and limitations, including reward over-optimization (Gao
et al., 2022; Dubois et al., 2023) and training instability (Wu et al., 2023). Nowadays, DAAs have
emerged as a promising alternative. The standard DAAs can be divided into two major categories
based on whether to consider a reference model.

Reference-based methods. The reference-based methods in DAAs utilize a pre-existing model,
often a supervised fine-tuned (SFT) model, as a reference point during the optimization process.
This reference model serves as a baseline to which the updated model is compared, ensuring that
updates do not deviate excessively from the initial, presumably safe and aligned, model configu-
ration. DPO (Rafailov et al., 2023) is the most popular reference-based alignment algorithm and
after its appearance, more researchers attempt to modify objective function for better performance.
KTO (Ethayarajh et al., 2024) distinguishes itself by its capability to train from non-paired prefer-
ence data, providing a unique angle on optimization. IPO (Azar et al., 2023) learns directly from
preferences without relying on the Bradley-Terry model assumption that assumes that pairwise pref-
erences can be substituted with pointwise rewards. R-DPO (Park et al., 2024) is an enhanced deriva-
tive of DPO, fortified with an additional regularization term designed to mitigate the tendency to
exploit length biases, thus ensuring more balanced and diverse response generation.

Reference-free methods. In contrast to reference-based methods that depend on a pre-existing
model for guidance, reference-free methods forgo the need for such a reference. They directly
optimize the model parameters in response to human feedback, which can enhance the flexibility of
the optimization process. However, this freedom also presents challenges in controlling the extent
of updates. CPO (Xu et al., 2024) leverages sequence likelihood as a reward signal and is trained
in conjunction with an SFT objective. ORPO (Hong et al., 2024) is a novel alignment method that
integrates an odds ratio-based penalty into the supervised fine-tuning process. SimPO (Meng et al.,
2024) uses an average log probability as an implicit reward and introduces a target reward margin to
enhance performance without relying on a reference model.

3 METHODOLOGY

3.1 DIRECT PREFERENCE OPTIMIZATION (DPO).

Direct Preference Optimization (DPO) is a pivotal advancement in the field of offline preference-
based training for language models. Traditional RLHF involves a complex, multi-stage process that
includes training a reward model to align with human preferences and subsequently optimizing a
policy model to maximize this reward while staying close to the original model’s distribution. DPO
simplifies this process by reparameterizing the reward function directly in terms of the policy model,
eliminating the need for an explicit reward model:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ β logZ(x), (3)

3
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Figure 2: Illustration of coefficients in DPO, SimPO, SamPO, and our D2PO across various posi-
tions. Each box represents a coefficient, and the opacity denotes the magnitude, with darker colors
indicating higher values. (a) For DPO, the coefficients are uniform across different positions. (b) For
SimPO, the coefficients of the chosen yw and the rejected yl are normlaized by their lengths |yw| and
|yl|, respectively. (c) In SamPO, the coefficients are selected based on the minimum length of |yw|
and |yl|. (d) Our method introduces a γ factor controlling the coefficients, which decay according to
γt (e.g., 1, γ, γ2, ..., γT ). Here, we use γ = 0.9 for a clear visualization.

where πθ, πref denotes the policy model and reference model, respectively. Z(x) is the partition
function, and β is a hyperparameter to control the deviation from the reference model. Substituting
this reward into the Bradley-Terry (BT) ranking objective yields the DPO loss:

LDPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x) − β log

πθ (yl | x)
πref (yl | x)

)]
(4)

DPO operates by formulating an implicit reward using the log ratio of the likelihood of a response
between the current policy model and a supervised fine-tuned (SFT) model. This reward is then
incorporated into the Bradley-Terry ranking objective to directly optimize the policy model for pref-
erence data. The effectiveness of DPO lies in its ability to simplify the preference optimization
process, making it more accessible and efficient for practical applications.

3.2 TEMPORAL DECAY MATTERS IN PREFERENCE LEARNING.
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Figure 3: Probability against posi-
tions on 1000 samples.

Motivation. Preference learning plays a pivotal role in op-
timizing large language models (LLMs), especially when
leveraging user feedback to align model outputs with hu-
man preferences. While methods like Direct Preference Opti-
mization (DPO) and its successors have demonstrated signifi-
cant potential in this domain, they exhibit a critical oversight:
the uniform treatment of tokens across a sequence. As illus-
trated in Figure 2, DPO, SimPO, and SamPO assign identical
coefficients to all tokens within the chosen response yw and
the rejected response yl. We argue that optimizing each to-
ken equally, without considering their positional importance,
is suboptimal.

Our observations indicate that earlier tokens receive greater optimization during the preference
learning process compared to later ones (see Figure 1 ). This suggests that the benefits derived
from the alignment phase over SFT are predominantly due to the optimization of initial tokens. Ad-
ditionally, when plotting the prediction probability across different response positions in Figure 3,
we find that more recent tokens have higher probabilities than earlier tokens. This indicates that the
model becomes increasingly confident in predicting tokens as it progresses through the sequence,
likely due to the accumulating contextual information from previous tokens. However, since the
accuracy of these later tokens is already high—reaching up to 0.9, further improvements are more
likely to come from enhancing the accuracy of the earlier tokens. Therefore, a natural approach is to
focus on improving the accuracy of the prefix: the more accurate the earlier tokens are, the better
the overall quality of the sequence will be.

4
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Temporal Decay Mechanism. Inspired by the success of Yang et al. (2024), where earlier steps
are crucial in the reverse chain of the diffusion denoising process, we propose a temporal decay
mechanism to highlight the importance of earlier tokens in LLM scenarios. Considering the original
DPO loss formulation, the most direct way to prioritize earlier tokens is to incorporate a position-
dependent coefficient that decays over time. Multiple decay mechanisms can achieve this, including
linear, polynomial, step, and cosine decay functions. After evaluating these options, we chose expo-
nential decay due to its simplicity and effectiveness.

Exponential decay applies a coefficient that decreases exponentially with the token position, repre-
sented as γt, where γ is the decay rate (0 < γ < 1) and t is the token’s position. This approach
provides a smooth and gradual reduction in the influence of later tokens, ensuring that earlier tokens
have a more significant impact on the loss calculation. To this end, we adapt this concept to the DPO
loss function which defined as:

LD2PO (πθ;πref) = − log σ

(
Tw∑
t=0

γtβ log
πθ (y

t
w | x,y<t

w )

πref (yt
w | x,y<t

w )
−

Tl∑
t=0

γtβ log
πθ

(
yt
l | x,y<t

l

)
πref

(
yt
l | x,y<t

l

))
(5)

In this formulation, the exponential decay factor γt adjusts the contribution of each token based on
its position in the sequence. As is shown in Figure 2 (d), coefficients of each token in D2PO grad-
ually decrease along the position (the color from dark to light), placing greater emphasis on earlier
tokens. This modification aligns the optimization process with the observed pattern of optimization
in preference learning, where initial tokens benefit more from the alignment phase.

3.3 DERIVATION OF D2PO

In the reinforcement learning scenario, two fundamental concepts are the state-value function V
and the action-value function Q. The former represents the expected cumulative reward from taking
action a in state s, meanwhile the latter represents the reward under state s. We extend the rela-
tion between the Q-function and the V-function under a KL divergence constraint, as proposed in
Rafailov et al. (2024), by incorporating the temporal decay mechanism:

Q∗ (st,at) =

{
r (st,at) + β log πref (at | st) + γV ∗ (st+1) , if st+1 is not terminal
r (st,at) + β log πref (at | st) , if st+1 is terminal

(6)

where γ ∈ (0, 1] represents the discount factor. In the assumption of DPO and its subsequent
variants, γ is typically set to 1 which indicates long-term returns do not need to decay. However,
in auto-regressive scenarios such as language models, the longer the context provided, the lower the
uncertainty of the model’s predictions (see Figure 3). Therefore, the tokens at the beginning of the
response make greater contributions to the total return. Based on this assumption, we can get the
formulation of the reward over a trajectory τ = {s1, a1, ..., aT−1, sT }:

T−1∑
t=0

γtr(st, at) =

T−1∑
t=0

γtQ∗(st, at)− γtβ log πref (at, st)− γt+1V ∗(st+1) (7)

Noting that, in the general maximum entropy RL setting (Ziebart et al., 2008; Ziebart, 2010), the
optimal policy is given by Boltzmann probability distribution as:

π∗ (at | st) = e(Q
∗(st,at)−V ∗(st))/β (8)

By taking the logarithm of the Eq. (8), we can simplified Eq. (7):
T−1∑
t=0

γtr(st, at) = Q∗(s0, a0)− β log πref (a0, s0) +

T−1∑
t=1

(γtβ log
πθ(at, st)

πref (at, st)
) (9)

= V ∗(s0) +

T−1∑
t=1

(γtβ log
πθ(at, st)

πref (at, st)
) (10)

We can then plug Eq. (10) into the Bradley-Terry ranking objective, which yields our final loss
formation as discussed in Eq. (5). This is similar to the standard DPO objective, except for an
additional temporay decay term γ. We empirically set γ < 1 to focus more on short term return
rather than long term return.

5
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3.4 REFERENCE-FREE IS CONSISTENT WITH ON-POLICY SETUPS.
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Figure 4: Reference margin of DPO.

Reference-based methods often incorporate a KL diver-
gence constraint to prevent the policy model from deviat-
ing significantly from its initial state, which adds compu-
tational and memory overhead. In the context of DPO, this
constraint appears as an adaptive margin term log πref(yl|x)

πref(yw|x)
in the pairwise loss function. This term quantifies the refer-
ence model’s preference difference between less-preferred
(yl) and preferred (yw) responses. We note that the DPO
loss can be viewed as a specific case of contrastive loss,
where log πθ(y) measures the relevance between the prompt x and the response y. The adaptive
margin ensures that loss values remain moderate, contributing to training stability. However, if the
reference model assigns similar probabilities to both yw and yl (i.e., the margin approaches zero),
the impact of the reference model diminishes, suggesting that it can be easily excluded.

To validate this, we analyze the margin distributions in the UltraFeedback dataset under off-policy
and on-policy settings. In the off-policy setting, we use original responses, while in the on-policy
setting, responses are regenerated by the same model. As illustrated in Figure 4, the on-policy
dataset exhibits smaller variance in margins and an average closer to zero compared to the off-
policy dataset. This indicates a higher proportion of semi-hard samples in the on-policy data. From
this perspective, we can discard the KL divergence constraint under on-policy settings and easily
derive the reference-free version loss function:

LD2PO (πθ) = − log σ

(
Tw∑
t=0

γtβ log πθ

(
yt
w | x,y<t

w

)
−

Tl∑
t=0

γtβ log πθ

(
yt
l | x,y<t

l

))
(11)

4 THEORETICAL ANALYSIS

We analyze the influence of the discount factor γ on the performance of our method compared to
DPO. Both DPO and our method can be considered as a token-level MDP that satisfy the Bellman
equation. Here, we define the suboptimality as the performance difference between the optimal
policy π∗ and a given policy π under specific discount factors, which has been widely discussed in
offline RL (Rashidinejad et al., 2021; Jin et al., 2021).

4.1 SUBOPTIMALITY DECOMPOSITION

Definition 1 (Suboptimality). The suboptimality of a policy π with respect to the optimal policy
π∗, starting from an initial state s under discount factor γ, is defined as:

SubOpt(π, s; γ) = V π∗

γ (s)− V π
γ (s), (12)

where V π
γ (s) = Eπ

[∑H−1
t=0 γtr(st, at) | s0 = s

]
is the expected return of policy π under discount

factor γ, and H is the finite horizon. To analyze the influence of the discount factor γ, we consider
the suboptimality of our method evaluated with an evaluation discount factor γe = 1.0. We decom-
pose the suboptimality into three terms that separately capture the differences due to the discount
factors and the policy discrepancies. In this way, we can rewrite the suboptimality as below:

SubOpt(π, s; γe) = V π∗

γe
(s)− V π

γe
(s)

=
[
V π∗

γe
(s)− V π∗

γ (s)
]

︸ ︷︷ ︸
∆1

+
[
V π∗

γ (s)− V π
γ (s)

]
︸ ︷︷ ︸

∆2

+
[
V π
γ (s)− V π

γe
(s)
]︸ ︷︷ ︸

∆3

(13)

This decomposition allows us to separately analyze the impact of the discount factors and the policy
differences.

4.2 SUBOPTIMALITY ANALYSIS

Theorem 1(Suboptimality Upper Bound). Let π∗ denote the optimal policy, and π be the policy
under a discount factor γ ∈ [0, 1). Assume that rewards are bounded such that |r(s, a)| ≤ R for all

6
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Table 1: We report AlpacaEval 2 (Li et al., 2023) (denoted by AE2), Arena-Hard (Li et al., 2024)
(denoted by AH), and MT-Bench (Zheng et al., 2023) (denoted by MB) results under three settings
using standard provided samples. Note that LC and WR denote length-controlled and raw win rate,
respectively. We used off-the-shelf models as the SFT model. And our judge model is GPT-4-Turbo.

Method
Llama3-Instruct (8B) Gemma2-Instruct (9B) Mistral-NeMo-Instruct (12B)

AE2 AH MB AE2 AH MB AE2 AH MB

WR (%) LC (%) WR (%) G4-T WR (%) LC (%) WR (%) G4-T WR (%) LC (%) WR (%) G4-T

SFT 39.1 40.1 27.6 7.5 37.6 47.2 44.1 8.3 44.6 47.7 46.5 8.1

DPO 37.4 40.3 27.7 7.7 38.8 48.8 42.5 8.1 44.4 49.3 48.5 8.3
KTO 33.3 38.1 21.0 7.5 39.1 50.0 43.8 8.3 37.4 48.7 35.8 8.2
IPO 42.2 45.7 31.9 7.6 41.0 50.0 48.2 8.0 39.8 48.9 39.8 8.2
SamPO 40.7 43.1 26.1 7.5 39.9 50.1 46.9 8.2 43.5 49.5 50.1 8.1
D2PO (ours) 43.5 43.0 37.0 7.7 45.5 51.0 50.2 8.3 51.3 54.4 51.8 8.4

ORPO 10.6 15.3 6.8 6.3 11.3 21.6 10.2 7.1 9.6 17.0 9.8 6.9
SimPO 0.3∗ 0.8∗ 1.4∗ 1.6∗ 38.8 50.0 31.6 8.0 46.8 53.3 46.6 8.0

Table 2: Following the setting in Meng et al. (2024), we used the on-policy data to obtain the chosen
and rejected and applied a stronger reward model. † denotes our reference-free version.

Method
Llama3-Instruct (8B) Gemma2-Instruct (9B) Mistral-NeMo-Instruct (12B)

AE2 AH MB AE2 AH MB AE2 AH MB

WR (%) LC (%) WR (%) G4-T WR (%) LC (%) WR (%) G4-T WR (%) LC (%) WR (%) G4-T

SFT 39.1 40.1 27.6 7.5 37.6 47.2 44.1 8.3 44.6 47.7 46.5 8.1

DPO 46.2 47.6 42.4 7.8 47.0 53.4 56.7 8.4 53.5 53.3 59.0 8.4
KTO 42.4 44.8 32.1 7.7 48.3 53.4 57.1 8.3 48.9 51.9 53.2 8.4
IPO 42.9 46.0 34.5 7.9 50.9 50.0 59.7 8.3 53.6 54.4 59.7 8.4
SamPO 44.4 47.2 35.8 8.0 45.8 55.2 55.2 8.2 51.1 53.0 58.3 8.3
D2PO (ours) 47.4 53.5 47.3 7.8 57.2 59.7 66.4 8.3 57.3 62.1 62.3 8.6

ORPO 37.8 39.3 25.5 7.7 41.9 51.1 45.3 8.2 43.8 47.5 46.0 8.2
SimPO 44.4 50.3 41.9 7.8 54.5 58.4 65.0 8.3 51.3 55.0 61.9 8.3
D2PO† (ours) 48.0 53.9 46.1 7.7 56.7 60.8 65.7 8.3 58.3 62.4 63.6 8.3

states s and actions a, and consider a finite horizon H . Then, the suboptimality of π compared to
π∗ when evaluated with an evaluation discount factor γe = 1.0 satisfies the following upper bound:

SubOpt(π, s; γe) ≤ 2(H − 1− γH

1− γ
)R+

2(1− γH)2

(1− γ)2
Es∼dπ∗ [TV(π∗(a|s)||π(a|s)]R (14)

The complete proof is included in Appendix E. This upper bound reveals that the suboptimality
depends on both the discount factor γ and the mismatch between π and π∗. Specifically, the first

term H − 1−γH

1−γ decreases as γ increases, while the second term
(

1−γH

1−γ

)2
increases, highlighting

a trade-off in the choice of γ. As both terms vary monotonically with the discount factor γ but in
opposing directions, there exists an optimal value γ∗ within the interval (0, 1) that balances these
effects to minimize the overall suboptimality.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Due to page limitations, we provide details regarding the training data, hyperparameters, evaluation
benchmarks, and the baselines used for comparison in Appendix A.

7
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Figure 5: Performance against different γ choices of three open-source models on three benchmarks.

5.2 EXPERIMENTAL RESULTS

In our experiments, we provide a comprehensive comparison of our proposed method against DPO
and its variants on both off-policy and on-policy data respectively, along with the baselines intro-
duced in Section 5.1. The baselines are categorized into two broad paradigms: reference-based and
reference-free (SimPO and ORPO). Notably, as discussed in Section 3.4, our method can be seam-
lessly integrated into the reference-free paradigm using on-policy data. We ensure fair comparisons
by maintaining consistency in the codebase and experimental settings across all methods evaluated.

Off-policy Setups. Table 1 clearly demonstrates that our method delivers significant improve-
ments in win rates across all configurations. Specifically, when applied to the Llama3, our method
outperforms DPO by margins of 6.1% and 2.9% in standard and length-controlled evaluation sce-
narios, respectively. Similarly, for the Mistral-NeMo model, our method surpasses DPO by mar-
gins of 6.9% and 5.1% in standard and length-controlled scenarios, respectively. We observed that
reference-free methods exhibited instability when applied to off-policy data, often leading to a degra-
dation in model performance. This issue is particularly evident with SimPO, where previous work
observed similar findings (Lu et al., 2024). This phenomenon highlights the challenges associated
with reference-free methods in preference optimization on off-policy data.

On-policy Setups. As shown in Table 2, our proposed method, along with all baselines, achieves
better results compared to off-policy settings. Notably, our method consistently demonstrates im-
provements across different setups. Due to the reward model’s length preference when selecting
on-policy data, models trained on this data are more prone to verbosity. A critical observation in
standard evaluations is the inherent bias favoring models that generate longer responses, which tend
to achieve higher win rates. However, our method not only achieves superior win rates but also
produces significantly shorter responses, showcasing its efficiency in generating concise and rele-
vant outputs. Additionally, when the reference model is omitted, our method outperforms SimPO
by 2.4–7.4 in LC win rate and 0.7–4.2 in win rate on AlpacaEval 2 and Arena-Hard, respectively.
These findings further underscore the robustness and effectiveness of our approach. This superiority
in both reference-based and reference-free contexts emphasizes the versatility and reliability of our
method in preference optimization.

6 ANALYSES

γ plays an important role. The temporal decay is one of the main technical contributions of this
work, and we would like to show how the γ affects the performance. We conducted ablation studies
on three open-source models for robust conclusions. Through results as shown in Figure 5, we see
that nearly all variants with γ lower than 1.0 consistently outperform DPO1. Also, γ = 0.98 achieves
the highest performance across three benchmarks for these strong open-source models. This indi-
cates that our method is robust to the choice of γ, reducing the need for extensive hyperparameter
tuning.

γ larger than 1 is harmful. As highlighted in the previous section, we prioritize earlier feedback
over more recent feedback, aligning with the next-token prediction paradigm. We conducted an

1DPO is a special case of ours where γ equals to 1.0.
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Table 3: Results on OpenLLM Benchmark, including reasoning and mathematical testsets. Note
that Hella. denotes Hellaswag, Truth. denotes TruthfulQA and Wino. denotes Winogrande.

Method MMLU GSM8K Math IFEval ARC-C Hella. Truth. Wino.

0-shot 0-shot 0-shot 0-shot 25-shot 10-shot 0-shot 5-shot

(a) Llama3-Instruct (8B)
SFT 61.7 78.5 7.9 68.6 62.0 78.8 51.6 75.5

DPO 56.7 70.5 7.8 65.1 65.1 79.9 56.4 74.5
SimPO 55.2 57.5 5.3 60.8 67.6 78.8 63.8 74.3
D2PO (ours) 61.4 72.0 8.5 65.6 65.8 79.0 57.6 75.1

(b) Gemma2-Instruct (9B)
SFT 72.8 87.4 19.4 71.9 71.8 81.7 60.2 77.9

DPO 72.2 88.5 19.4 60.1 69.9 71.5 57.7 72.7
SimPO 72.4 88.2 19.0 71.5 68.3 66.5 58.9 73.7
D2PO (ours) 72.7 88.9 21.2 71.2 71.4 81.0 61.3 76.0

experiment where the decay factor γ was set to slightly greater than 1.0 to observe the effects. The
results could also be observed in Figure 5. When γ exceeds 1.0, rewards linked to later tokens in
the sequence receive larger coefficients than those for earlier tokens. However, this adjustment was
detrimental to preference optimization, resulting in performance that lagged behind the standard
DPO on both the AlpacaEval 2 and Arena-Hard benchmarks. This finding demonstrates the crucial
role of earlier tokens in the alignment process and indicates that overemphasizing later tokens can
degrade model performance.

Evaluations on OpenLLM Benchmark. To verify whether the improvements of D2PO on the
aforementioned RLHF benchmarks, such as Alpaca Eval2, Arena Hard, and MT-bench, come at
the expense of general language modeling ability, we conducted a comprehensive evaluation of
downstream tasks on the Open LLM leaderboard2. Specifically, we employed zero-shot evalua-
tions on MMLU (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021), IFEval (Zhou et al., 2023), and TruthfulQA (Lin et al., 2022). Additionally, we performed
few-shot evaluations on ARC-C (Clark et al., 2018), Hellaswag (Zellers et al., 2019), and Wino-
grande (Levesque et al., 2012) according to the official settings in the Open LLM leaderboard. The
results are summarized in Table 3, and we observe that:

• In the Llama3-8B configuration, our D2PO method significantly outperforms both DPO and
SimPO, particularly on the MMLU and Math benchmarks. Notably, D2PO exhibits less perfor-
mance degradation on GSM8K compared to SimPO, despite both methods effectively controlling
output length. D2PO achieves substantial performance gains on the Math dataset, surpassing the
Instruct model by 0.55 points, while the other two methods show a noticeable decline.

• In the Gemma2-9B configuration, we observe a similar pattern, with D²PO demonstrating a signif-
icant performance advantage on the Math benchmark. These results suggest that D²PO effectively
enhances reasoning and mathematical problem-solving abilities in LLMs across different models.
Furthermore, these additional evaluations on specialized datasets confirm that D²PO maintains its
effectiveness across various contexts and task types.

Comparisons of Various Decay Strategies We have proven the importance of temporal decay.
Following the classic Markov Decision Process, we use exponential decay as our default decay
strategy. Meanwhile, We also consider several variants of decay strategies, including Head decay,
Linear decay and Power-Law decay. The detailed decay mechanism are summarized in Table 4. We
observe 1-0 decay and Linear Deacy show inferior results to the tenporal decay, and even underper-
forms with the vanilla DPO. While though Power-Law method also shows promising results, but it
cannot properly control the response length competitive results with exponential decay.

Lengthy Debias. Previous studies (Park et al., 2024; Lu et al., 2024; Meng et al., 2024) have
demonstrated that DPO is susceptible to length exploitation, as it tends to amplify verbosity biases

2Open LLM leaderboard is created by huggingface to provide a standardized evaluation setup for LLMs,
which includes several popular benchmarks encompassing a wide range of capabilities across multiple domains.
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Table 4: Comparison of different decay mechanisms in terms of performance and response length.

Decay Strategy Rewards AE2 AH MB

WR (%) LC (%) Len. WR (%) Len. G4-T

Exponential
T∑

t=0

γtβ log pθ(yt|x,y<t)
pref (yt|x,y<t)

57.2 59.7 1950 66.4 724 8.3

Head
γT∑
t=0

β log pθ(yt|x,y<t)
pref (yt|x,y<t)

48.6 54.7 1762 57.4 680 8.2

Linear
γT∑
t=0

(
1− t

γT

)
β log pθ(yt|x,y<t)

pref (yt|x,y<t)
48.3 54.5 1713 59.4 661 8.3

Power-Law
T∑

t=0

1
tγ
β log pθ(yt|x,y<t)

pref (yt|x,y<t)
56.8 57.7 2011 71.2 823 8.5

present in the preference datasets. This propensity can lead to suboptimal outcomes where the
model’s decisions are disproportionately influenced by the length of the responses rather than their
quality or relevance. To investigate the relationship between the length bias of training data and the
output length of the model, we visualized the DPO and D2PO loss of 1000 random samples based
on the length gap between the chosen and rejected responses. For simplicity, verbosity-biased data
refers to pairs in which the chosen response must be longer than the reject response and brevity-
biased data refers to the opposite type of data.

−400 −300 −200 −100 0 100 200 300 400

|yw| − |yl|

0.0

0.5

1.0

1.5

2.0

2.5

L
os
s

D2PO

DPO

Figure 6: Loss vs. length diff.

From Figure 6, we can see that during the DPO train-
ing process, the loss of verbosity-biased data is large,
while the loss of brevity-biased data is small. Conse-
quently, DPO prioritizes the optimization of verbosity-
biased data, increasing likelihood of longer chosen re-
sponses and decreasing likelihood of shorter ones. This
kind of imbalance loss can easily cause model verbosity.
Meanwhile, D2PO reduce the loss imbalance between
verbosity-biased data and brevity-biased data, thereby
controlling the output length of the model.

Table 5: Human evaluation results
on two benchmarks.

Benchmark Win Tie Lose

AlpacaEval 2 116 36 48
Arena-Hard 107 62 31

Human Evaluations To further validate our results, we
conducted human evaluations on the AlpacaEval2 and Arena-
Hard datasets using the Gemma2-9B model. We enlisted four
evaluators, with each person evaluating 50 samples for each
benchmark. For each instruction, we randomized the order of
the outputs from DPO and D2PO to prevent bias. The evalu-
ators assessed the responses based on three criteria: accuracy,
completeness, and relevance, determining which response was better for each sample. If both re-
sponses were equally correct or incorrect, the result was considered a tie. As shown in Table 5, our
comparison between D²PO and DPO indicates that D²PO achieved a significantly higher win rate
than DPO, with an overall win rate of 67% in Arena-Hard and 69% in AlpacaEval 2 (calculated as
(win + tie/2) / total).

7 CONCLUSIONS

In this work, we revisited the loss objectives of DPO and its variants, introducing a temporal decay
mechanism governed by a parameter γ. Motivated by the observation that earlier tokens contribute
more significantly during preference optimization, our dynamic weighting scheme prioritizes these
initial tokens, aligning naturally with the next-token prediction paradigm. Extensive experiments
demonstrate that our approach consistently outperforms vanilla DPO, achieving notable improve-
ments across diverse benchmarks and model architectures. By enabling DPO to focus more on
short-term rewards while retaining its simplicity and stability, our method offers a compelling so-
lution for preference-based fine-tuning of large-scale models. Furthermore, we showed that our
method can be extended to a reference-free, on-policy setting, outperforming existing approaches.
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A EXPERIMENTAL SETUPS

Model Setting. We conducted preference optimization experiments using three model families:
Llama3-8B (AI@Meta, 2024), Gemma2-9B (Team et al., 2024) and Mistral-12B (Jiang et al., 2023).
Here, we mainly focused on building our systems upon the instruct models. Thus, we utilized pre-
trained instruction-tuned models (e.g., meta-llama/Meta-Llama-3-8B-Instruct, google/gemma-2-9b-
it, and nvidia/Mistral-NeMo-12B-Instruct) as the SFT models.3

Training Data Our experiments were carried out using the UltraFeedback dataset. Specifically,
We categorize the preference data into two types: 1) off-policy data (original response pairs from
the UltraFeedback dataset), and 2) on-policy data generated using the SFT models. Similar to
SimPO (Meng et al., 2024), for each prompt x, we generated 5 responses using the SFT model
with a sampling temperature of 0.8. To validate these responses, we employed RLHFlow/ArmoRM-
Llama3-8B-v0.1 (Wang et al., 2024) to assign scores to each response, allowing us to select the
highest-scoring response as yw and the lowest-scoring one as yl.

Hyperparameters For all models, we set the maximum response length to 2,048 tokens and used
a batch size of 128. Optimization was performed using the AdamW optimizer (Kingma & Ba, 2014)
with a learning rate of 5e − 7 and a cosine learning rate schedule featuring a 10% warmup period.
In preference optimization methods, including DPO and its variants such as our method D2PO and
SamPO, we set β to 0.1 to ensure a fair comparison.

Evaluation Benchmarks. We primarily evaluated our models using three widely used open-ended
instruction-following benchmarks: MT-Bench (Zheng et al., 2023), AlpacaEval 2 (Li et al., 2023)4,
and Arena-Hard v0.1 (Li et al., 2024). These benchmarks assess the models’ versatile conversa-
tional capabilities across a diverse set of queries and are widely adopted by the research com-
munity. Concretely, AlpacaEval 2 comprises 805 questions from 5 datasets, while MT-Bench
encompasses 8 categories with 80 questions. Arena-Hard, an enhanced version of MT-Bench5,
includes 500 rigorously defined technical problem-solving queries. For AlpacaEval 2, we used
alpaca eval gpt4 turbo fn as the annotator which has a higher human agreement and re-
port both the raw win rate (WR) and the length-controlled win rate (LC) (Dubois et al., 2024),
with the LC metric designed to be robust against model verbosity. For Arena-Hard, we reported
the WR against the baseline model. For MT-Bench, we report the average MT-Bench score, using
GPT-4-Turbo-2024-04-09 as the judge model6.

Baselines. We selected several advanced preference optimization baselines, including: IPO (Azar
et al., 2023) is a theoretically grounded method that avoids DPO’s assumption that pairwise prefer-
ences can be replaced with pointwise rewards. KTO (Ethayarajh et al., 2024) learns from non-paired
preference data. ORPO (Hong et al., 2024) introduces a reference-model-free odds ratio term to di-
rectly contrast winning and losing responses with the policy model, jointly training with the SFT
objective. SimPO (Meng et al., 2024) and SamPO (Lu et al., 2024) are both designed to address
the issue of model verbosity by applying length normalization. We report details of the experiments
in Appendix B. We meticulously tune the hyperparameters for each baseline and report the best
performance. We observe that many DPO variants do not empirically outperform standard DPO.

AlpacaEval 2 annotator choice AlpacaEval 2 provides various evaluation templates and in
the official readme recommends using weighted alpaca eval gpt4 turbo as well as
alpaca eval gpt4 turbo fn. The former is the default annotator in AlpacaEval 2 with a
human agreement rate of 65.7% and much cheaper price. In all of our evaluations, we used the latter
as the annotator which has a higher agreement rate of 68.1% with human annotation data.

3The exact nature of the instruction-tuning (whether it includes SFT or the complete RLHF pipeline) of
these models is not fully disclosed. For simplicity, we refer to these as SFT models.

4https://tatsu-lab.github.io/alpaca_eval/
5Adler et al. (2024) discussed the existence of incorrect reference answers in MT-Bench, therefore a cor-

rected version of MT-Bench was used.
6GPT-4-Turbo-2024-04-09 provides more accurate reference answers and judgments compared to

GPT-4.
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Figure 7: Visualization of the LC Win Rate (%) on three models under different decay mechanisms
(answer-based and prompt-based decay) in the AlpacaEval 2 and Arena-Hard benchmarks.

B EXPERIMENTAL DETAILS

Considering DPO is a special case of D2PO when γ = 1.0, to compare the effects of different
decay coefficients, we conduct experiments with β fixed at 0.1. In addition, we follow the optimal
hyperparameters claimed in SimPO and our code is built on LlamaFactory (Zheng et al., 2024).
Across all DAAs run, the models were trained on 32 A100 with a global batch size of 128 (4
gradient accumulation steps). The hyperparameter search range of all methods are displayed in the
Table 6.

Table 6: Various preference optimization objectives and hyperparameter search range.

Method Objective Hyperparameter

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.1]

IPO (Azar et al., 2023)
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

− 1
2τ

)2
τ ∈ [0.01, 0.1, 0.5, 1.0]

KTO (Ethayarajh et al., 2024) −λwσ
(
β log πθ(yw|x)

πref(yw|x) − zref

)
+ λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
, λl = λw = 1.0

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))] β ∈ [0.01, 0.05, 0.1]

SamPO (Lu et al., 2024) − log σ

(
Tm∑
t=0

β log
πθ(yt

w|x,y<t
w )

πref(yt
w|x,y<t

w )
−

Tm∑
t=0

β log
πθ(yt

l |x,y
<t
l )

πref(yt
l
|x,y<t

l )

)
β ∈ [0.01, 0.1]

where Tm = min(Tw, Tl), y
t ∼ Uniform(Tm, yT )

ORPO (Hong et al., 2024) − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

λ ∈ [0.1, 0.5, 1.0, 2.0]
where pθ(y|x) = exp

(
1
|y| log πθ(y|x)

)

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

)
β ∈ [2.5, 10]
γ ∈ [0.3, 0.5, 1.0]

D2PO − log σ

(
Tw∑
t=0

γtβ log
πθ(yt

w|x,y<t
w )

πref(yt
w|x,y<t

w )
−

Tl∑
t=0

γtβ log
πθ(yt

l |x,y
<t
l )

πref(yt
l
|x,y<t

l )

)
β ∈ [0.1]

γ ∈ [0.95, 0.97, 0.98, 0.99]

C MORE ANALYSES

When to Decay In our default setting, we apply decay from the beginning of the prompt rather
than from the first generated tokens. Here, we investigate the implications of these two approaches.
Theoretically, during the loss computation, both the chosen token yw and the rejected token yl share
the same prompt prefix, which results in distinct initial scaling coefficients for the reward at the first
generated position. For illustration, if the prompt length is l, then in our default setting, the reward
for the first generated token is scaled by yl while in the alternate setting, the scaling factor would be
1. Through results in Figure 7, we can see that both two settings achieve better results than DPO,
and our default setting is much better than the other one. This indicates that proper scaling factor is
very important during preference optimization.
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Table 7: Three benchmarks results with on-policy setups, using gpt-4-1106-preview as the judge
model. † denotes our reference-free version.

Method
Llama3-Instruct (8B) Gemma2-Instruct (9B) Mistral-NeMo-Instruct (12B)

AE2 AH AE2 AH AE2 AH

WR (%) LC (%) WR (%) WR (%) LC (%) WR (%) WR (%) LC (%) WR (%)

SFT 31.6 31.7 19.7 37.7 48.2 39.9 40.8 44.2 39.7

DPO 41.7 42.9 31.2 46.4 53.1 47.4 53.4 52.6 47.4
KTO 35.7 37.7 25.2 46.5 52.3 49.2 45.9 49.7 45.4
IPO 40.1 43.2 25.2 49.1 48.3 49.5 51.7 52.9 51.8
SamPO 39.4 41.9 28.7 46.9 56.7 50.4 49.8 52.5 50.4
D2PO (ours) 44.5 50.1 34.1 59.3 62.3 58.4 55.0 60.6 50.6

ORPO 31.5 32.5 20.9 39.8 48.2 41.3 40.1 44.5 41.2
SimPO 44.5 49.1 33.1 55.1 59.4 56.5 50.7 53.8 51.0
D2PO† (ours) 45.0 51.9 33.0 58.0 61.5 56.9 56.8 59.9 49.4

Effect of Different Judge Models Here, we mainly evaluated our generated results via
GPT-4-Turbo-0409, while previous work mainly used GPT-4-preview-1106 instead. Re-
sults in Table 7 show that D2PO delivers consistent performance gains in both two judge models.

Full evaluation results We present the full evaluation of AlpacaEval 2, Arena-Hard and MT-
Bench in Table 9 and Table 10. The former is an off-policy setup, while the latter is an on-policy
setup. For on-policy setups, we found that DPO can achieve better performance when beta = 0.01
and reported this result for fair comparison. Specifically, “-” indicates that the model suffered a
collapse during training.

Table 8: Style Control evaluation on the Arena-
Hard benchmark.

Model AH AH (Style-Control)

D2PO 66.4 67.2
DPO (β = 0.1) 56.7 57.2
DPO (β = 0.01) 65.2 66.4
SimPO 65.0 66.3

Arena-Hard Style Control Evaluation We
have conducted evaluations using the Arena-
Hard benchmark, focusing on style control ca-
pabilities based on Gemma2-9B. Through re-
sults in Table 8, we can see that D2PO con-
sistently achieves superior performance, even
when style control is a key factor, highlighting
our method’s effectiveness in style-controlled
settings.
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Table 9: Full results on benchmarks under off-policy setups.

Method AlpacaEval 2 Arena Hard MT-Bench

Win Rate (%) LC Win Rate (%) Len. Win Rate (%) Len. G4-Turbo

Llama3-Instruct (8B)

SFT 39.05 40.13 1971 27.6 581 7.5
DPO 37.38 40.28 1880 27.7 546 7.7
KTO 33.29 38.06 1765 21.0 525 7.5
IPO 42.16 45.66 1845 31.9 542 7.6
SamPO 40.68 43.11 1891 26.1 550 7.5
D2PO (γ=0.95) 45.90 44.78 2113 40.0 636 8.0
D2PO (γ=0.97) 43.46 43.04 1994 37.0 602 7.7
D2PO (γ=0.98) 42.73 44.10 1954 35.1 578 7.9
D2PO (γ=0.99) 41.74 44.03 1912 30.4 560 8.0
D2PO (γ=1.01) 38.50 40.21 1928 26.1 569 7.5
D2PO (γ=1.02) 37.69 38.63 1955 26.8 572 7.4

ORPO 10.62 15.32 1386 6.8 764 6.3
SimPO 0.25 0.80 27 1.4 15 1.6

Gemma2-Instruct (9B)

SFT 37.58 47.23 1566 44.1 608 8.3
DPO 38.81 48.83 1546 42.5 595 8.1
KTO 39.07 50.00 1530 43.8 540 8.3
IPO 41.04 50.03 1630 48.2 608 8.1
SamPO 39.86 50.06 1574 46.9 596 8.2
D2PO (γ=0.95) 48.07 50.05 1929 53.4 657 8.5
D2PO (γ=0.97) 45.34 49.70 1824 50.7 636 8.3
D2PO (γ=0.98) 45.46 50.99 1746 50.2 625 8.3
D2PO (γ=0.99) 42.10 50.05 1636 50.2 609 8.4
D2PO (γ=1.01) 38.57 47.45 1577 43.7 612 8.3
D2PO (γ=1.02) - - - - - -

ORPO 11.30 21.55 1182 10.2 641 7.1
SimPO 38.76 50.00 1508 31.6 475 8.0

Mistral-NeMo-Instruct (12B)

SFT 44.60 47.71 1879 46.5 575 8.1
DPO 44.41 49.25 1821 48.5 569 8.3
KTO 37.39 48.68 1620 35.8 501 8.2
IPO 39.75 48.85 1634 39.8 506 8.2
SamPO 43.54 49.47 1784 50.1 562 8.1
D2PO (γ=0.95) 52.17 52.42 2017 54.2 590 8.3
D2PO (γ=0.97) 51.30 54.43 1879 51.8 562 8.4
D2PO (γ=0.98) 49.57 55.43 1778 47.8 534 8.3
D2PO (γ=0.99) 46.96 53.86 1770 45.9 538 8.0
D2PO (γ=1.01) 43.65 47.60 1829 46.8 564 8.1
D2PO (γ=1.02) 43.84 47.91 1840 45.6 572 8.0

ORPO 9.64 17.00 1185 9.8 640 6.9
SimPO 46.77 53.28 1704 46.6 500 8.0
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Table 10: Full results on benchmarks under on-policy setups. † denotes our reference-free version.

Method
AlpacaEval2 Arena Hard MT-Bench

Win Rate (%) LC Win Rate (%) Len. Win Rate (%) Len. G4-Turbo

Llama3-Instruct (8B)

SFT 39.05 40.13 1971 27.6 581 7.5
DPO (β=0.01) 48.26 49.93 1937 45.2 568 7.8
KTO 42.36 44.77 1901 32.1 545 7.7
IPO 42.92 45.99 1889 34.5 553 7.9
SamPO 44.35 47.17 1890 35.8 536 8.0
D2PO (γ=0.95) 48.13 51.53 1832 42.5 578 7.7
D2PO (γ=0.97) 46.15 50.52 1739 41.6 549 7.7
D2PO (γ=0.98) 47.39 53.54 1705 47.3 518 7.8
D2PO (γ=0.99) 48.01 52.97 1739 44.0 514 7.8
DPO (β=0.1) 46.21 47.60 1971 42.4 627 7.9
D2PO (γ=1.01) 37.25 38.32 1948 28.1 578 7.6
D2PO (γ=1.02) 37.75 39.30 1942 26.2 566 7.6

ORPO 37.75 39.29 1934 25.5 615 7.7
SimPO 44.41 50.34 1704 41.9 477 7.8
D2PO† (γ=0.98) 48.01 53.87 1726 46.1 526 7.7

Gemma2-Instruct (9B)

SFT 37.58 47.23 1566 44.1 608 8.3
DPO (β=0.01) 54.53 57.05 1948 65.2 768 8.3
KTO 48.26 53.39 1775 57.1 705 8.3
IPO 50.86 50.00 2129 59.7 759 8.3
SamPO 45.78 55.21 1662 55.2 668 8.2
D2PO (γ=0.95) 58.39 59.03 2034 65.5 739 8.5
D2PO (γ=0.97) 56.83 59.25 1949 64.8 715 8.3
D2PO (γ=0.98) 57.20 59.71 1950 66.4 724 8.3
D2PO (γ=0.99) 53.98 57.38 1843 63.9 693 8.2
DPO (β=0.1) 47.02 53.43 1737 56.7 682 8.3
D2PO (γ=1.01) 38.70 48.06 1592 43.7 610 8.2
D2PO (γ=1.02) - - - - - -

ORPO 41.93 51.14 1647 45.3 641 8.2
SimPO 54.47 58.42 1871 65.0 744 8.3
D2PO† (γ=0.98) 56.71 60.76 1894 65.7 687 8.3

Mistral-Nemo-Instruct (12B)

SFT 44.60 47.71 1879 46.5 575 8.1
DPO (β=0.01) 58.76 57.29 2160 63.6 659 8.3
KTO 48.26 53.39 1775 57.1 705 8.3
IPO 50.86 50.00 2129 59.7 759 8.3
SamPO 45.78 55.21 1662 55.2 668 8.2
D2PO (γ=0.95) 59.25 57.85 2167 60.7 665 8.6
D2PO (γ=0.97) 56.77 58.65 1969 57.5 586 8.6
D2PO (γ=0.98) 57.34 62.07 1853 62.3 546 8.6
D2PO (γ=0.99) 54.29 58.83 1816 59.3 532 8.4
DPO (β=0.1) 53.48 53.32 2081 59.0 624 8.4
D2PO (γ=1.01) 45.34 48.06 1908 44.2 581 8.0
D2PO (γ=1.02) - - - - - -

ORPO 41.93 51.14 1647 45.3 641 8.2
SimPO 54.47 58.42 1871 65.0 744 8.3
D2PO† (γ=0.98) 56.71 60.76 1894 65.7 687 8.3
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Stronger Instruct model To verify the robustness properties of our method, we conducted exper-
iments under on-policy setups based on a stronger Instruct model, Gemma2-Instruct (27B). Con-
sidering the limited computing resources, we only compared D2PO with DPO and SimPO. Table
11 shows the evaluation results on three benchmarks, demonstrating that our method maintains a
certain advantage over stronger models.

Table 11: Gemma2-Instruct (27B) results under on-policy setups

Method
AlpacaEval2 Arena Hard MT-Bench

Win Rate (%) LC Win Rate (%) Len. Win Rate (%) Len. G4-Turbo

SFT 39.68 48.13 1633 60.7 648 8.5
DPO (β=0.1) 48.45 53.66 1786 71.2 715 8.5
DPO (β=0.01) 57.39 59.05 1990 78.6 811 8.6
SimPO 54.29 61.30 1748 75.3 682 8.5
D2PO (γ=0.98) 57.52 60.52 1893 79.8 708 8.6

D CASE ANALYSIS

We list two concrete cases from AlpacaEval2 to compare D2PO with DPO. Regarding the first case
in Figure 8, the DPO model’s output overthinks and mistakenly assumes that the stopover time is
already included in the total travel time in the second step of its analysis, resulting in the omission
of this time in the final calculation. In contrast, the model trained with our method succinctly lists
the times and correctly sums them to obtain the total travel time. Figure 9 shows the second case:
given the question, “What is the largest ocean in the world?”, the DPO model provides a response
without explanation. In contrast, the D2PO model produces a well-structured answer with detailed
explanations, making the answer more credible.

Figure 8: A case examples of AlpacaEval2, generated by Gemma2-Instruct (9B).

Input → Q: What is the largest ocean in the world?

Gemma2-9b-it DPO → The largest ocean in the world is the Pacific
Ocean.

Gemma2-9b-it D2PO → The Pacific Ocean is the largest ocean in the
world.

Here’s why:

* Surface Area: It covers over 30% of the Earth’s
surface, roughly 63.8 million square miles (165.25
million square kilometers).
* Volume: It holds about half of the Earth’s total
water.
* Depth: The Pacific Ocean boasts the deepest
point on Earth, the Challenger Deep in the Mariana
Trench, which plunges over 36,000 feet (10,900
meters) below sea level.

Let me know if you’d like to know more about the
Pacific Ocean or other oceans!
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Figure 9: A case examples of AlpacaEval2, generated by Mistral-Nemo-Instruct (12B).

Input → Q: if it takes 8 hours to fly to Singapore, stop
over for an hour and a half and then fly 14 hours
to London then what is the total travel time if the
plane is delayed in Singapore?

Mistral-Nemo DPO → To calculate the total travel time including the
delay in Singapore, we need to add up all the
components of the journey:
1. Flight to Singapore: 8 hours
2. Stopover in Singapore: 1.5 hours (which is
already included in the total time as it’s part of
the journey, not a delay)
3. Delay in Singapore: Let’s assume the delay is
’D’ hours.
4. Flight from Singapore to London: 14 hours

The total travel time including the delay would be:

Total travel time = Flight to Singapore + Delay in
Singapore + Flight to London
Total travel time = 8 hours + D hours + 14 hours
Without knowing the exact duration of the delay
(D), we can express the total travel time as:
Total travel time = 22 hours + D

For example, if the delay in Singapore is 2 hours,
the total travel time would be:

Total travel time = 22 hours + 2 hours = 24 hours
So, the total travel time including the delay is 22
hours plus the duration of the delay (D).

Mistral-Nemo D2PO → To calculate the total travel time including the
delay in Singapore, let’s break down the journey
and add the delay:

Total initial travel time without delay:
- Flight to Singapore: 8 hours
- Stopover in Singapore: 1.5 hours
- Flight from Singapore to London: 14 hours

Total without delay = 8 + 1.5 + 14 = 23.5 hours

Now, let’s assume the plane is delayed in Singapore
by ’D’ hours. The delay will only affect the
stopover time, so we add ’D’ to the stopover
duration:

Adjusted stopover time with delay = 1.5 hours + D
hours
Now, the total travel time with the delay is:
Total with delay = 8 hours (flight to Singapore)
+ (1.5 + D) hours (stopover with delay) + 14 hours
(flight to London)
Total with delay = 8 + (1.5 + D) + 14
Total with delay = 23.5 + D hours
Without knowing the specific duration of the delay
(D), we can express the total travel time with the
delay as:
Total travel time with delay = 23.5 hours + Delay
in Singapore (D hours)
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E THEORETICAL ANALYSIS

In this section, we provide detailed derivation of the upper bound for

SubOpt(π, s; γe) = V π∗

γe
(s)− V π

γe
(s)

=
[
V π∗

γe
(s)− V π∗

γ (s)
]

︸ ︷︷ ︸
∆1

+
[
V π∗

γ (s)− V π
γ (s)

]
︸ ︷︷ ︸

∆2

+
[
V π
γ (s)− V π

γe
(s)
]︸ ︷︷ ︸

∆3

E.1 THE UPPER BOUND OF ∆1 AND ∆3

Noting that ∆1 and ∆3 both capture the difference in the expected returns of the same policy when
evaluated under different γ, we can analyze the upper bound of these two items together.

The term ∆1 is given by with γe = 1.0:

∆1 = V π∗

γe
(s)− V π∗

γ (s)

= Eπ∗

[
H−1∑
t=0

γt
er(st, at)−

H−1∑
t=0

γtr(st, at)

]

= Eπ∗

[
H−1∑
t=0

(1− γt)r(st, at)

]
.

Assuming the rewards are bounded, i.e., |r(s, a)| ≤ R, we have:

∆1 ≤
H−1∑
t=0

(1− γt)R = (H − 1− γH

1− γ
)R. (15)

Similarly, we can obtain the upper bound of ∆3:

∆3 ≤
H−1∑
t=0

(1− γt)R = (H − 1− γH

1− γ
)R. (16)

E.2 THE UPPER BOUND OF ∆2

Lemma 1 Performance Difference Lemma with finite horizon H (Kakade & Langford, 2002)

V π∗

γ (s)− V π
γ (s) =

1− γH

1− γ
Es∼dπ∗ [Σa∈A(π

∗(a | s)− π(a | s))Qπ(s, a)] (17)

where π∗ represents optimal policy and π represents policy.

Based on the assumption that the rewards are bounded, i.e., |r(s, a)| ≤ R, we have:

Qπ(s, a) ≤
H−1∑
t=0

γtR =
1− γH

1− γ
R (18)

Finally, we can get

∆2 = V π∗

γ (s)− V π
γ (s) (19)

≤ (1− γH)2

(1− γ)2
Es∼dπ∗

[∑
a∈A

(π∗(a | s)− π(a | s)
]
R (20)

=
2(1− γH)2

(1− γ)2
Es∼dπ∗ [TV(π∗(a|s)||π(a|s)]R (21)
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E.3 SUBOPTIMAL ANALYSIS

Adding the bounds on ∆1, ∆2, and ∆3, we obtain:

SubOpt(π, s; γe) ≤ 2(H − 1− γH

1− γ
)R+

2(1− γH)2

(1− γ)2
Es∼dπ∗ [TV(π∗(a|s)||π(a|s)]R (22)

Since both terms vary monotonically with the temporary decay factor γ but in opposing directions,
this implies the existence of an optimal trade-off value, denoted as γ∗, within the interval (0, 1).

F COMPARISON WITH STRONGLY RELATED WORK

We noticed that Yang et al. (2024) also emphasized the importance of focusing on the contribution
of earlier steps, but within the reverse chain of a diffusion denoising process, rather than in an
autoregressive LLM scenario. They employed a γ parameter to control the contribution of earlier
steps, ensuring the quality of generation. We would like to highlight how our approach differs from
previous studies in the following perspectives:

• Different Perspectives and Tasks: While our work and the referenced prior work both in-
volve preference optimization, they are derived from fundamentally different perspectives
and are applied to different downstream tasks. The prior work focuses on text-to-image
tasks, which involve fixed-length generation through a non-autoregressive diffusion pro-
cess. In contrast, our research is centered on LLMs in an autoregressive context, where
sequence generation dynamics are inherently different.

• Motivation Differences: As illustrated in Figures 1 and 3, our motivation diverges signif-
icantly from prior work. Our temporal decay mechanism is designed to address specific
challenges in LLMs, such as length bias and the need for alignment with human prefer-
ences across varying sequence lengths.

• Flexible Decay Mechanism: Our approach is not limited to exponential decay. As shown in
Table 4, we explore multiple decay strategies, demonstrating the flexibility and adaptability
of our method to different scenarios and tasks.

• Theoretical Insights: We have provided a theoretical analysis based on the token-level
MDP, suggesting the existence of an optimal gamma value for enhancing preference opti-
mization. This theoretical foundation supports the practical effectiveness of our approach.

• Extension and Complementarity: Our work serves as both an extension and a complement
to the referenced study. While the prior work has not validated its approach on standard
RLHF benchmarks, our method has been tested and shown to be effective in these contexts,
as detailed in our experimental results.
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