
1

Complexity Analysis of 2D KD-Tree Construction,
Query and Modification

Based on Master Theorem and Potential Energy
Analysis

Abstract—With the increasing popularity of machine learning
today, high-dimensional space retrieval has become an extremely
important research direction, which has important applications in
classification, clustering and database. Among them, KD-Tree is
a very important and classical high-dimensional spatial retrieval
data structure. This paper introduces the application of master
theorem and potential energy analysis in the complexity analysis
of 2D KD-Tree, discusses the complexity of KD-Tree construction,
nearest neighbor query, deletion and insertion with rebuild, and
focuses on the influence of dimension factors in the region query
in 2D KD-Tree.

Index Terms—Master theorem, KD-Tree, Amortized Analysis,
Potential method

I. INTRODUCTION

KD-Tree is a data structure that organizes points in K-
dimensional Euclidean space. It supports a variety of query
algorithms such as nearest neighbor search and range search,
which has good performance. [1] It plays an important role
in machine learning classification and retrieval of special
databases. In this paper, the master theorem and potential
energy analysis are used to derive the complexity of KD-Tree
operations in two dimensions, and a definite bound is given.

II. RELATED WORKS

We first introduce some of the methods used to prove com-
plexity related to recursion and data structure maintenance,
including the master theorem and potential energy analysis.

A. Time complexity analysis method
1. Master theorem

Consider the complexity of computing the following recur-
sion:

T (n) =

{
O(1), if n = 1

aT (nb) + f(n), otherwise.
(1)

In this recursion, f(n) is a polynomial bounded function,
which means that there exists constant c, k, n0, satisfy ∀n >
n0, f(n) ≤ c× nk.

Theorem 1: Solution to Master therom: [2]

T (n) =

O(nk logb n), if a = bk

O(nlogb a), a > bk

O(f(n)), a < bkand f(n) satisfy
Regularity condition

(2)

Defination 1: Regularity condition:
If a function f(n), for any large enough n, there exists

c ∈ (0, 1) that satisfy af(nb) < cf(n), we say that f(n)
satisfy Regularity condition.

2. Potential energy analysis

Potential energy analysis belongs to the category of amor-
tization analysis. Amortization also analyzes the average time
it takes to perform a particular operation in a sequence of
operations used to solve a data structure. It does not involve
probability, so the analysis results guarantee average perfor-
mance in the worst case.

The core idea of potential energy analysis is to store the cost
of adjusting data structure in the future as potential energy.
Each data structure is mapped to a potential function, so the
amortized cost of each operation can be equivalent to the sum
of its actual cost and the change in potential energy, which
facilitates the analysis of the average cost.

B. A rough time complexity proof

Most existing proofs has proved operations detailly except
range query. [3] For those who mention the complexity of
range query, they just consider the regions that are crossed by
a hyperplane. [4], [5] Actually it’s not only a hyperplane that
determine the query range. Usually it’s a combination of more
than one dimension’s coordinates constrains. So this kind of
proof is neither rigorous nor intuitive at most of the time.

III. ANALYSIS OF COMPLEXITY

A. Build KD-Tree from static point set

The first thing we talked about was how to build a balanced
tree. So before we do that, let’s first define what a balanced
tree is.

Defination 2: Balanced binary tree: If we define height
of a binary tree is the maximum number of edges from root
to any of it’s leaf, a balanced binary tree’s height is Θ(log n).

When the tree is built, the point set is sorted according to
a specified dimension in each round of division, the median
is taken as pivot. Points less than pivot on this dimension
are divided into left subtree, and the other points are divided
into right subtree. The parent node pointer is maintained
simultaneously.

2

But in fact, it does not need to be completely ordered. [6]
Careful thinking, this step only needs: firstly, find the median
as the pivot for division, which is a very famous sequential
order statistics problem. There are quick-select algorithm that
can be implemented in liner time complexityn. Secondly,
divided sequence into two parts through this pivot. This is
another classical problem which can be achieved with the
idea of two-pointers. [7] In C++, these two implementations
have been unified into the STL template library, namely the
nth element function.

So the pseudo code can be showed as follows.

Algorithm 1 Build KD-Tree

Input: A set of N points in 2-dimension
Output: A well-built KD-Tree

BUILD(Node, Dimension, Points)
if (Points is empty) then

return
end if
divide Points on variable Dimension
Total← Points.Size
Middle← ⌊Total+1

2 ⌋
LSet← NullSet
RSet← NullSet
for (i = 1; i ≤Middle− 1; i = i+ 1) do

LSet.Insert(Pointsi)
end for
for (i = Middle+ 1; i ≤ Total; i = i+ 1) do

RSet.Insert(Pointsi)
end for
Node← PointsMiddle

Dimension← x if Dimsension is y else y
BUILD(Node.LeftSon, Dimension, LSet)
BUILD(Node.RightSon, Dimension, RSet)

Let’s prove the correctness of build tree from the aspect of
tree’s height.

Theorem 2: Balanced binary tree: Using the median as
the pivot, the height of the KD-Tree with n nodes is built at
a time complexity of O(log n).

Proof: If define H(n) as height of a balanced binary tree
with n nodes, we get recursive formula immediately:

H(n) =

{
O(1), if n = 1

H(n2) + 1, otherwise.
(3)

By using master theorem, it’s easy to find H(n) = log2 n+
1. So the KD-Tree is balance if built by the method below.
At the same time, we get complexity in the same way: (If not
specifically mentioned, we use T (n) as time complexity.)

T (n) =

{
O(1), if n = 1

2 T (n2) +O(n), otherwise.
(4)

This recursive formula is so classic that it appears in many
algorithms’ time complexity’s proof, such as quick-sort, divide
and conquer. The solution to it is T (n) = O(n log n).

B. Nearest neighbor search

The goal of nearest neighbor search is to query the distance
between a given point and the Euclidean closest point in a
given static point set in a KD-Tree.

The nearest neighbor search of KD-Tree uses a heuristic
algorithm to find the nearest distance. First, the distance
between the current node and the query point is compared to
update the answer, then the two sub-nodes are compared. If the
point is closer to the left sub-node, the left subtree is searched
first, otherwise the right subtree is searched first. When a
subtree finishs search, if there is no point in the region formed
by each dimensiona’s upper and lower bound of the point set
in another subtree, where the distance between point and the
query point is less than the answer, the program can directly
prune. Otherwise it needs to recurse into another subtree.

The pseudo code is showed as follows.

Algorithm 2 Adjacent Query

Input: A KD-Tree and a query point
Output: Minimum euclidean distance between query point
and points in KD-Tree

MD(Node, Point)
Range ← Node.Range
return min dist among Point and all points in Range

ADJACENT-QUERY(Node, Point)
if (Node is Null) then

return
end if
Answer ← MIN{Answer, DIST(Node.point, Point)}
DistL← DIST(Node.LeftSon.point, Point)
DistR← DIST(Node.RightSon.point, Point)
if (DistL ≤ DistR) then

ADJACENT-QUERY(Node.LeftSon, Point)
if (MD(Node.RightSon, Point)≥Answer) then

return
else

ADJACENT-QUERY(Node.RightSon, Point)
end if

else
ADJACENT-QUERY(Node.RightSon, Point)
if (MD(Node.LeftSon, Point)≥Answer) then

return
else

ADJACENT-QUERY(Node.LeftSon, Point)
end if

end if

It is not difficult to find that this process is actually con-
stantly pruning optimization according to the current retrieved
answer. The running time will have a lot to do with the data. In
the worst case, the program will traverse the entire KD-Tree,
so the complexity of the upper bound is O(n). If fortunate
enouth, the program gets answer by traverse only a chain from
root to any of it’s leaf. The lower bound is O(log n). However,

3

the actual data distribution is more random. Based on this fact,
its performance is also relatively good.

C. Range query

In a given static point set, query the information of the point
set that satisfies that each dimension coordinate is within a
given range. This is the classic range query problem on KD-
Tree.

For instance, we count how many points (x, y) satisify
the limitation that x ∈ [x1, x2] and y ∈ [y1, y2], in which
x1, y1, x2, y2 are given in each distinct query.

Therefore, on each KD-Tree node, the maximum and mini-
mum value of each dimension of the hypercube corresponding
to the subtree should be recorded, that is, the boundary of the
hypercube should be maintained before all queries.

The query operation needs to recursively backtrack on the
KD-Tree, and return directly when a subtree is completely
included or has no intersection at all. Otherwise continue
recursively to the two subtrees.

The pseudo code is showed as follows.

Algorithm 3 Range Query

Input: A KD-Tree and a range
Output: Number of points in this range

RANGE-QUERY(Node, Range)
if (Node is Null) then

return 0
end if
if (Node.Range is in Range) then

return Node.SubtreeSize
end if
if (Node.Range has no intersection with Range) then

return 0
end if
Sum← 0
Sum+ = RANGE-QUERY(Node.LeftSon, Range)
Sum+ = RANGE-QUERY(Node.RightSon, Range)
return Sum

This complexity may seem surprising at first glance, and
may become worst-case linear like nearest neighbor search,
but it can actually be proven to be O(

√
n).

Theorem 3: Range query’s complexity: The RangeQuery
complexity of a balanced two-dimensional KD-Tree with n
nodes is O(

√
n).

Proof: Let’s prove it in three cases. We just need to weaken
the condition limitation.

1. Only one dimension has one way limitation.

For example, we just count points whose coordinate (x, y)
satisfied x ≤ x′. This is a kind of query case 1. Similarly,
replace the x to y, or replace less than to greater than, which
is also included in this case.

To prove it intuitively, we draw the region divide by KD-
Tree’s node. But we don’t draw them all, just 4 regions are
needed. They are a single node’s son’s subtree.

Fig. 1: Samples of only one dimension has one way
limitation.

Fig. 2: Samples of two dimensions both has one way
limitation, 2 regions have intersection.

Due to all pictures’ captions are the same, we explain it
here. Black lines form the region, and grey stands for the query
range. We use Fig. 1 as the common cases to demonstrate it’s
time complexity.

Consider that there are at least two regions that do not need
to be recursed, either by the restriction on the abscess or the
restriction on the ordinate. They are contained by the query
region, or do not intersect with it.

We define T1(n) as the complexity of range query of this
case on a KD-Tree with n nodes. Obviously, in each of the
4 regions, thers is less than n

4 points. Therefore, it’s good to
use n

4 as approximate estimation of number. And for process
a single node’s infomation, it costs constant time, which is
O(1). The way we describe T1(n) is as follows:

T1(n) =

{
O(1), if n = 1

2 T1(
n
4) +O(1), otherwise.

(5)

By using master theorem, the solution is T1(n) = O(
√
n).

2. Two dimensions both has one way limitation.

In this case, we consider the number of intersection regions
of query range and 4 regions. Also, we define T2(n) as time
complexity in case 2.

If there are 2 regions has intersection, the behavior is more
likely to be showed in Fig. 2.

There is just one region satisfy case 1. Another one can be
calcuated recursively. Now we get the T2(n)’s first expression:

T2(n) =

{
O(1), if n = 1

T2(
n
4) + T1(

n
4) +O(1), subcase 1.

(6)

If there are 3 regions has intersection, the behavior is
showed in Fig. 3.

4

Fig. 3: Samples of two dimensions both has one way
limitation, 3 regions have intersection.

Fig. 4: Samples of two dimensions both has one way
limitation, 4 regions all have intersection.

The difference between subcase 1 and subcase 2 is that,
one more region satisfy case 1. If one region is fully covered,
like the subpicture of left one in Fig. 3, has the same time
complexity as subcase 1. To calcuate the right case in Fig.3,
the T2(n) adds a new condition baseed on subcase 1:

T2(n) =

{
O(1), if n = 1

T2(
n
4) + 2T1(

n
4) +O(1), subcase 2.

(7)

Then we discuss the subcase that 4 regions all have inter-
section. The possible figure is in Fig. 4.

The T2(n) can be easily get. It’s exactly the same as subcase
2. We don’t detaily discuss only one resion has intersection
because it’s ordinary. Comprehensively, the final expression is
like below.

T2(n) =

O(1), if n = 1

T2(
n
4) +O(1), one resion intersects.

T2(
n
4) + T1(

n
4) +O(1), subcase 1.

T2(
n
4) + 2T1(

n
4) +O(1), subcase 2 and 3.

(8)
Because of T1(n) = O(

√
n) has been proved before, we

replace it and simplify the formula. Then we get:

T2(n) =

{
O(1), if n = 1

T2(
n
4) +O(

√
n), otherwise.

(9)

The reason why we get this is because of asymptotic
expression’s properties. O(

√
n) always dominates O(1), so

that all subcases finally integrates into one expression. The
solution to it is T2(n) = O(

√
n) by using master therom.

3. Two dimensions both has no special limitation.

We still prove it from the aspect of number of regions that
intersect. Let T (n) be the time complexity of range query.

Fig. 5: Samples of 3 regions have intersection.

If number of intersections less than 3, we immediately get:

T (n) =

O(1), if n = 1

T (n4) +O(1), only 1 region intersects.
2T (n4) +O(1), 2 region intersects.

(10)

When there are exactly 3 regions have intersection, the
figure is nothing else than it shows in Fig. 5.

In Fig. 5, there are exactly 2 regions satisfy case 2. The last
region is a sub problem, which can be described by recursion.

When all 4 regions have intersection, there is only one case.
It is showed in Fig. 6.

All things considered, the T (n)’s recursive formula is:

T (n) =

O(1), if n = 1

T (n4) +O(1), only 1 intersects.
2T (n4) +O(1), 2 region intersects.
T (n4) + 2T2(

n
4) +O(1), 3 intersects.

4T2(
n
4) +O(1), all 4 intersects.

(11)
Simplify it with the same method as we use in case 2:

T (n) =

O(1), if n = 1

T (n4) +O(1), only 1 region intersects.
2T (n4) +O(1), 2 region intersects.
T (n4) +O(

√
n), 3 intersects.

O(
√
n), all 4 intersects.

(12)

Then we demonstrate the initial therom: Range query’s
complexity is O(

√
n).

If we assume that in the resursion, each O(f(n)) satiscify:
0 < O(1) < c1

0 < O(
√
n) < c2

√
n

0 < T (n) ≤ c3
√
n− c4

(13)

According to properties of asymptotic notation, we just need
to scale each inequation and find the solution to parameter
c3 c4:

c3 − c4 ≥ c1

c3
√
n− c4 ≥ 1

2c3
√
n− c4 + c1

c3
√
n− c4 ≥ c3

√
n− 2c4 + c1

c3
√
n− c4 ≥ 1

2c3
√
n− c4 + c2

√
n

c3
√
n− c4 ≥ c2

√
n

(14)

5

Fig. 6: Samples of all 4 regions have intersection.

Notice that n can be regarded as a very large number. The
implicit condition in this is c1, c2 > 0. So we just select a
simple but correct solution: c3 = 2c2 + 2c1, c4 = 2c1, which
can be easily verified.

D. Delete a single point

After the analysis of range query, we are intended to
maintain a dynamic point set. Delete operation’s task is easy:
in a given set of points, delete an existing point. This point is
uniquely specified by its Euclidean space coordinates.

Although the form of KD-Tree is a binary tree, but it is
different from the binary search tree, there is no fixed keyword,
so that the order of the traversal according to the keyword
ranking increments, so it’s not sensible to use the binary search
tree deletion technique directly.

Here static deletion is used to maintain information, also
known as lazy deletion, that is, each KD-Tree node maintains
a Boolean type tag(in pseudo code, it’s ’exist’ parameter),
indicating whether the point in the space represented by this
node has been deleted, if it has not been deleted, its value is
true, otherwise it is false.

Since the essence of the KD-Tree is that the node of each
tree represents a hyperplane partition in space, we compare
the position of the hyperplane and the insertion point for each
point to determine which subtree to recursively enter.

Algorithm 4 Delete

Input: A KD-Tree and a point’s coordinate
Output: None

DELETE(Node, Point, Dimension)
if (Node is Null) then

return
end if
if (Node.Point equals Point) then

Node.exist ← False
return

end if
Next ← x if Dimension is y else y
if (Node.point ≤ Point on Dimension) then

DELETE(Node.LeftSon, Point, Next)
else

DELETE(Node.RightSon, Point, Next)
end if

Obviously, the complexity is proportional to the depth of
recursion, which is not higher than the height of the tree.

According to therom 1, in a balanced KD-Tree with n nodes,
the height is Θ(log n).

Since a large number of nodes that have been deleted will
still occupy space in the KD-Tree, a garbage node recycling
should be carried out at an appropriate time, the specific
method will be mentioned in the following.

E. Insert a single point
The task of point insertion is to insert a new point into a

given set of points.
In the point deletion section, we mentioned that KD-Tree is

not exactly equivalent to binary search trees, so the insertion
of KD-Tree cannot exactly copy the algorithm of binary search
trees.

Like the way of delete a node, if we meet a null node when
recursing, just attach a new node with information initialize
by the point’s coordinate to it.

The above statement is actually a simple binary search tree
insertion method, without maintenance. So in extreme cases
the tree height will reach O(n), which will have a serious
performance impact on the nearest neighbor search and stack
space in the actual recursion. So we need to find a feasible
means to maintain the height of the tree.

Here, we introduce the scapegoat tree maintenance method:
Periodically refactoring maintenance complexity. If a node’s
subtree is out of balance too much, we simply rebuild this
subtree. The binary tree is now reduced to a balanced binary
tree with a balance coefficient α.

Defination 3: α-balanced binary tree
For each node in a α-balanced binary tree, it must satisfy:

both son node’s subtree size not greater than that node’s
subtree size ×α. Obviously α ∈ (0.5, 1).

Rebuild the imbalanced subtree just need to traverse the
subtree and get all point’s coordinate, then execute build.
During traverse, nodes with exist tag equals false will be
recycled. After rebuild, the whole tree is still α-balanced.

Algorithm 5 Insert

Input: A KD-Tree and a point’s coordinate
Output: None

INSERT(Node, Point, Dimension)
if (Node is Null) then

Initialize by using Point’s infomation
return

end if
Next ← x if Dimension is y else y
if (Node.point ≤ Point on Dimension) then

INSERT(Node.LeftSon, Point, Next)
else

INSERT(Node.RightSon, Point, Next)
end if
Maintain balance infomation from subtree
if (Node’s subtree is not balance) then

Rebuild Node’s subtree
return

end if
Maintain infomation from subtree

6

Theorem 4: An α-balanced binary tree’s height: A α-
balanced binary tree’s height is O(log n).

Proof: We consider a recursion on binary tree. In each step,
the node’s subtree’s size multiplies a constant between (1 −
α, α), the size becomes to 1 in no more than − logα n steps,
which means it’s a leaf node. The height is no more than
− logα n, which is O(log n).

Theorem 5: Insertion with rebuild on a α-balanced KD-
Tree’s average cost: A α-balanced KD-Tree’s insertion with
rebuild is O((log n)2).

Proof: Define a node’s potential function:

∆(node) = |LeftSon.size−RightSon.size| (15)
ϕ(node) = c(2α− 1)∆(node) log node.size (16)

And the whole binary tree(described as ’T ’)’s potential
function is just to sum them up, which means Φ(T) =∑

node∈T ϕ(node).
If we just insert the node into the tree, the complexity

is no more than height of this tree, which is O(log n)
Consider the insertion operation’s effect on T ’s potential
function. Insert a node will increase Φ(T) at most height ×∑

node∈path ∆ϕ(node). We apply scaling on the expression of
potential function, in which we use log n to replace log size to
make the upper bound more loose. Then ∆ϕ(node) < log n
is get easily. Therefore, the increment in Φ(T) is less than
height×O(log n), which is O((log n)2).

The maintaince of a KD-Tree uses potential energy stored
in potential function to cover the time cost. If a node’s subtree
is rebuilt, the potential function’s value will decrease at least
2(α− 1)size log size. And because rebuild’s time complexity
is size log size, we just need to adjust constant c so that
∆Φ(T) is able to cover the cost of rebuild.

Above all, we have proved that insertion with rebuild’s
average cost is O((log n)2).

IV. THE INFLUENCE OF DIMENSION

Operations’ complexity are not relevant to dimension except
range query is easily got after proofs above. We focus on
dimension’s influence on range query’s complexity.

In order to prove range query’s complexity in 2-d, 4 regions
are showd in each figure. Why we choose 4 as the number of
regions? It’s because after 2 rounds’ division, the standard of
division in each round is the same as 2 rounds before, which
forms the structure of resursion.

Like our analysis of complexity, in k-d space, 2k regions are
needed to be considerd. We discuss the case that if a dimension
has limitation, and in which it’s one or both ends. The final
conclusion is that in k-d space, range query on KD-Tree’s
complexity is O(n1− 1

k) [5]. In 2-d Euclidean space, we have
proved it to be true. In high-dimemsion’s space, our jub just
provided a clear and feasible method. Readers can try it if
interested.

V. CONCLUSION

Each operation’s complexity on KD-Tree are listed in tabel
1. One thing to note is that operations except insert and delete
are based on a strictly balanced KD-tree.

TABLE I: Operation’s complexity on KD-Tree

Operation Complexity Method of analysis

Build tree Θ(n logn) Master theorem
NN Query O(n) (worst case)

Range Query O(
√
n) Master theorem

Delete O(logn)
Insert with Rebuild Ø((logn)2) (average) Potential energy analysis

When we extend the dimension to k, then the range query’s
complexity will change to O(n1− 1

k).

ACKNOWLEDGMENTS

This paper not only reflects my years of learning and
research results, but also more condensed the support and help
of family, teachers, classmates and friends. Here I would like
to express my heartfelt thanks to them.

REFERENCES

[1] Chandran, Sharat. Introduction to kd-trees. University of Maryland De-
partment of Computer Science.

[2] Thomas H. Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein.
Introduction to Algorithms. 3rd Edition. China Machine Press.

[3] Bentley, J. L. Multidimensional binary search trees used for associative
searching. Communications of the ACM, vol. 18, no.9, pp. 509-517. 1975.

[4] Rosenberg, J. B. Geographical data structures compared: A study of data
structures supporting region queries. IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 4, no. 1, pp. 53-67.
1985.

[5] Lee, D. T., & Wong, C. K. Worst-case analysis for region and partial
region searches in multidimensional binary search trees and balanced
quad trees. Acta Informatica, vol. 9, no. 1, pp. 23-29. 1977.

[6] Wald, I., & Havran, V. On building fast kd-trees for ray tracing, and on
doing that in O(N logN). In 2006 IEEE Symposium on Interactive Ray
Tracing pp. 61-69. Sept, 2006.

[7] Hoare, C. A. R. (1961). ”Algorithm 65: Find”. Comm. ACM. vol. 4, no.
7, pp. 321–322. doi:10.1145/366622.366647.

