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Abstract

Diffusion models have transformed the landscape of image generation and now show re-
markable potential for image compression. Most of the recent diffusion-based compression
methods require training and are tailored for a specific bit-rate. In this work, we propose
Posterior Sampling-based Compression (PSC) – a zero-shot compression method that lever-
ages a pre-trained diffusion model as its sole neural network component, thus enabling the
use of diverse, publicly available models without additional training. Our approach is in-
spired by transform coding methods, which encode the image in some pre-chosen transform
domain. However, PSC constructs a transform that is adaptive to the image. This is done
by employing a zero-shot diffusion-based posterior sampler so as to progressively construct
the rows of the transform matrix. Each new chunk of rows is chosen to reduce the uncer-
tainty about the image given the quantized measurements collected thus far. Importantly,
the same adaptive scheme can be replicated at the decoder, thus avoiding the need to encode
the transform itself. We demonstrate that even with basic quantization and entropy coding,
PSC’s performance is comparable to established training-based methods in terms of rate,
distortion, and perceptual quality. This is while providing greater flexibility, allowing to
choose at inference time any desired rate or distortion.

1 Introduction

Diffusion models excel at generating high-quality images (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song
et al., 2020; Dhariwal & Nichol, 2021; Vahdat et al., 2021; Rombach et al., 2022). Their versatility has
enabled solutions for diverse tasks, including inverse problems (Saharia et al., 2021; 2022; Chung et al.,
2023; Kawar et al., 2021; 2022a; Song et al., 2023), image editing (Meng et al., 2021; Brooks et al., 2023;
Kawar et al., 2023; Huberman-Spiegelglas et al., 2023), and uncertainty quantification (Belhasin et al., 2023;
Horwitz & Hoshen, 2022). Conveniently, many of these applications can utilize pre-trained diffusion models
without requiring task-specific training.

Image compression is fundamental for efficient storage and transmission of visual data, attracting significant
research attention over decades. Effective compression schemes preserve essential image information while
discarding less critical components, establishing a lossy compression paradigm that balances image quality
against file size. Traditional compression methods like JPEG (Wallace, 1991) and JPEG2000 (Skodras et al.,
2001) achieve this through fixed whitening transforms and coefficient quantization, allocating bits based on
the coefficients’ importance and applying entropy coding for additional lossless compression. More recently,
neural compression methods have demonstrated improved performance over their classical counterparts, by
incorporating quantization and entropy-coding directly into their training objectives (Ballé et al., 2018;
Minnen et al., 2018; Cheng et al., 2020; Ballé et al., 2016; Theis et al., 2017; Toderici et al., 2015). In this
context, deep generative models, such as GANs (Mentzer et al., 2020) or diffusion models (Yang & Mandt,
2024), can improve the perceptual quality of decompressed images. While some approaches use generative
modeling for post-hoc restoration of existing compression algorithms (Bahat & Michaeli, 2021; Kawar et al.,
2022b; Saharia et al., 2022; Man et al., 2023; Song et al., 2023; Ghouse et al., 2023; Xu et al., 2024), their
performance gains remain limited as they do not modify the encoder. Alternative methods that integrate
neural compression with diffusion model-based decoding (Careil et al., 2023; Yang & Mandt, 2024; Relic
et al., 2024) achieve impressive results but require rate-specific diffusion model training for a single modality,
leading to reduced flexibility.
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Figure 1: Images compressed with latent-PSC at low bit-rates. Latent-PSC leverages pre-trained
latent diffusion models to deliver high perceptual quality at any compression rate, indicated by the bits-
per-pixel (BPP) for each decompressed result. Top: Example at ultra-low rates demonstrates that PSC
maintains high image quality while preserving the original image composition. Bottom: Example at low
rates with zoomed detail highlights PSC’s capacity to maintain fine details, adapting seamlessly to any
compression rate without training.

In this paper, we introduce a lossy compression method that uses a pre-trained diffusion model. This
allows leveraging publicly available models without requiring additional training, and thus enables lossy
compression of any data type on which a diffusion model has been trained. Our paradigm is very different
from recent neural compression literature, and can be considered an adaptive version of classical transform
coding techniques. Specifically, our work draws inspiration from AdaSense (Elata et al., 2024b), which utilizes
a pre-trained diffusion-model to identify an image-specific linear transform, from which the image can be
reconstructed with near-minimal error. Here, we propose to use the same approach but for constructing
an image-specific compression transform. A key challenge in doing so, is that in addition to encoding the
transformed image, this approach seemingly requires encoding also the transform itself, which is completely
impractical. However, our key observation is that the communication of the transform can be bypassed
altogether. This allows our method to perform well at extremely low bit rates, as we illustrate in Fig. 1.

Our compression scheme, which we coin Posterior Sampling-based Compression (PSC), uses a diffusion-based
posterior sampler to progressively transform and quantize the given image. In each step, the next rows of the
transform matrix are chosen in a way that minimizes the uncertainty that remains about the image, given
the code constructed so far. The decoder replicates these calculations (fixing the same seed) such that both
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the encoder and the decoder reproduce exactly the same image-adaptive transform, eliminating the need for
transmitting side-information beyond the quantized coefficients of the image in the transform domain.

PSC can be applied at any rate or distortion level prescribed by the user at inference time, and enables
decompression at high perceptual quality. We evaluate PSC’s effectiveness against established compression
methods on the ImageNet dataset (Deng et al., 2009), comparing both distortion and image quality. We
also explore the compression of general images using state-of-the-art (SOTA) text-to-image latent diffusion
models (Rombach et al., 2022), incorporating textual descriptions within the compressed representation.
We evaluate this latent-PSC variant against high-perceptual-quality compression algorithms (Careil et al.,
2023; Muckley et al., 2023) on the CLIC (Toderici et al., 2020) and DIV2K (Agustsson & Timofte, 2017)
datasets. Our experiments demonstrate that PSC is competitive with established methods, despite using a
pre-trained diffusion model as its sole neural network component. While our preliminary implementation
employs simplified quantization, lacks tailored entropy coding and has high computational complexity, the
results underscore the potential of our approach for flexible compression applications. Future advances
in diffusion-based posterior samplers, combined with our training-free compression framework, have the
potential to yield significant improvements in compression of images as well as other signals of interest.

To summarize, PSC offers the following advantages:

• It provides precise instance-level control over rate and distortion. This is achieved by accumulating
measurements until reaching the desired rate or distortion level.

• For the same compressed code, decoding can aim for either high-quality or low-distortion. This is
done by appropriately choosing the final restoration algorithm.

• As a zero-shot approach, PSC generalizes to any data type supported by diffusion models, extending
beyond image-specific applications.

• Our method will inherently benefit from future advances in generative modeling and posterior sam-
pling, without requiring modifications or re-training.

2 Background

2.1 Posterior Sampling for Linear Inverse Problems

Linear inverse problems are tasks in which a signal x needs to be recovered from linear measurements
y = Hx, where H ∈ Rd×D is a known matrix. One approach to obtaining plausible reconstructions, is to
draw samples from the posterior distribution p(x|y). Recent research demonstrates that pre-trained diffusion
models, which were originally trained to sample from the prior distribution p(x), can be adopted in a zero-
shot manner to approximately sample from the posterior distribution (Kawar et al., 2022a; Chung et al.,
2023; Song et al., 2023). This can be done for any vector of measurements y and any measurement matrix
H, which are provided to the sampler at inference time.

2.2 Adaptive Compressed Sensing

In several important problems, such as single pixel cameras and MRI, there is flexibility in designing the
operator H. This gives rise to a compressed sensing problem (Donoho, 2006), in which the question is
which matrix H (of predefined dimensions) allows reconstructing the signals of interest with minimal error.
Recently, Elata et al. (2024b) introduced AdaSense, a method that utilizes posterior samplers to progressively
construct the sensing matrix H so as to optimally represent the input image.

The algorithm works as follows. At stage k, we have the currently held1 matrix H0:k and measurements
y0:k = H0:kx. The selection of the next row is done by generating samples from the posterior p(x|y0:k, H0:k)
using any posterior sampler and applying principal component analysis (PCA) to identify the principal
direction of the uncertainty that remains in x given the current y0:k. This direction is chosen as the next

1In our notations, the subscript {0 : k} implies that k elements are available, from index 0 to index k − 1.
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row in H, which is used to acquire a new measurement of x. More generally, instead of selecting one new
measurement at a time, it is possible to add r new measurements in each iteration2. This selection of the
new rows of H is optimal in the sense that it allows achieving the minimal possible mean squared error
(MSE) that can be obtained with a linear decoder (even though a more sophisticated reconstruction method
is eventually used).

Algorithm 1 A single iterative step of row selection
Denoted as SelectNewRows (H0:k, y0:k, r)
Require: Previous sensing rows H0:k, corresponding mea-

surements y0:k, number of new measurements r
1: {xi}s

i=1 ∼ p(x|y0:k, H0:k)
2: {xi}s

i=1 ← {xi − 1
s

∑s
j=1 xj}s

i=1

3: H̃ ← Append top r singular vectors of
(
x1, . . . , xs

)⊤

4: return H̃

A single iteration of the method is detailed in
Alg. 1. The process repeats until H reaches
the desired dimensions. It is important to
note that AdaSense produces an image-specific
sensing matrix H and corresponding measure-
ments y. These can be used for obtaining a
candidate reconstruction x̂ by leveraging the
final posterior, p(x|y, H), where H is the final
matrix (obtained at the last step). This final
reconstruction may employ a different, more
accurate (and possibly more computational demanding) posterior sampler, as it executes only once. Please
see (Elata et al., 2024b) for further details.

2.3 Transform Coding

Image compression algorithms based on the transform coding paradigm, like the widely used JPEG (Wallace,
1991), apply a pre-chosen, fixed and orthonormal3 transform on the input image, x ∈ RD, obtaining its
representation coefficients. These coefficients go through a quantization stage, in which portions of the
transform coefficients are discarded entirely, and other portions are replaced by finite precision versions,
with a bit-allocation that depends on their importance for the image being compressed. As some of the
transform coefficients are discarded, this scheme can be effectively described as using a partial transform
matrix H ∈ Rd×D with orthogonal rows, and applying the quantization function Q(·) to each of elements of
the remaining measurements y = Hx. Image compression algorithms include an entropy coding stage that
takes the created bit-stream and passes it through a lossless coding block (e.g. Huffman coding, arithmetic
coding, etc.) for a further gain in the resulting file-size.

The decoder has knowledge of the transform used, H. Therefore, given the encoded signal, Q(y), the decoder
can generate a reconstructed image e.g. by using H†Q(y), where H† is the Moore–Penrose pseudo-inverse
of H. In practice, more sophisticated restoration methods are often used, some of which make use of neural
networks.

When a compression algorithm is said to be progressive, this means that the elements of y are sorted based
on their importance, and transmitted in their quantized form sequentially, enabling a decompression of the
image at any stage based on the received coefficients so far. Progressive compression algorithms are highly
desirable, since they induce a low latency in decompressing the image. Note that the progressive strategy
effectively implies that the rows of H have been sorted as well based on their importance, as each row gives
birth to the corresponding element in y. Adopting this view, at step k we consider the sorted portions of
H and y, denoted by H0:k ∈ Rk×D and y0:k = H0:kx ∈ Rk. As the decoder gets Q(y0:k), it may produce
H†

0:kQ(y0:k) as a temporary output image. It is important to note that in this paradigm H is fixed, and
therefore the sorting of its rows is determined only once. This chosen order is used for compressing every
image x.

2This algorithm presents a strategy of choosing the r leading eigenvectors of the PCA at every stage instead of a single one,
getting a substantial speedup in the measurements’ collection process at a minimal cost to adaptability.

3Having orthogonal rows has two desirable effects – easy-inversion and a whitening effect. Using a biorthogonal system as
in JPEG2000 (Skodras et al., 2001) has similar benefits.
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Algorithm 2 PSC Encoder
Require: Image x, number of steps N , number of

measurements per step r.
1: initialize y0:0, H0:0 as an empty vector/matrix
2: for n ∈ {0 : N − 1} do
3: Hnr:nr+r ← SelectNewRows (H0:nr, y0:nr, r)
4: y0:nr+r ← Append [y0:nr, Q(Hnr:nr+rx)]
5: H0:nr+r ← Append [H0:nr, Hnr:nr+r]
6: end for
7: return Entropy Encode(y0:Nr)

Algorithm 3 PSC Decoder
Require: compressed representation y, number of

steps N , number of measurements per step r.
1: initialize y0:Nr ← Entropy Decode(y)
2: initialize H0:0 as an empty matrix
3: for n ∈ {0 : N − 1} do
4: Hnr:nr+r ← SelectNewRows (H0:nr, y0:nr, r)
5: H0:nr+r ← Append [H0:nr, Hnr:nr+r]
6: end for
7: return x̂ = f(y0:Nr, H0:Nr)

3 Method

In this section, we present how our proposed compression scheme builds upon the framework of transform
coding by leveraging the learned prior of diffusion models to determine an image-specific transform. By
adapting the compressed sensing algorithm detailed in Sec. 2.1 to compression, PSC implements a progressive
approach to select the most informative partial measurements, effectively reducing reconstruction error by
progressively increasing the bit-stream length. We solve the conundrum created by using an image-specific
transform, by demonstrating that both the encoder and the decoder can synchronize the transform without
any use of side-information.

Diffusion
Model

Input Image

Samples from
the Posterior

First Principal
Component

PCA
Previous

Measurements
and Rows

Posterior Mean

Figure 2: A diagram of how PSC zeros in on
the input image by progressively tightening the
posterior. The diagram shows a single step, where
the new rows and matching measurements are com-
puted based on the direction of largest uncertainty
in the posterior distribution. The posterior mean is
shown to visualize the information captured by previ-
ous iterations.

During each step of the compression phase, our
system dynamically estimates the posterior prob-
ability distribution p(x|y0:k, H0:k), which is con-
ditioned on the previously extracted H0:k and
the corresponding quantized partial measurements
y0:k. This estimation utilizes samples generated
by a posterior sampler. Importantly, the zero-shot
methods listed in Sec. 2.1 can solve any inverse
problem of the form y = Q(Hx), enabling the
utilization of pre-trained diffusion models without
training. In practice, we use posterior samplers de-
signed for linear inverse problems (without quan-
tization). This allows using efficient samplers and
leads to sufficiently accurate results.

The selection of the next row of H, denoted as
hk ∈ R1×D, is determined by identifying the eigen-
vector corresponding to the largest eigenvalue of
the posterior covariance. This method ensures the
projection of x occurs along the most informa-
tive direction, maximizing the value of incremen-
tal information gathered. The resulting measure-
ment, yk = Q(hkx), is then appended to the previ-
ous compressed representation y0:k to form y0:k+1.
This process effectively reduces the uncertainty of
candidate images within the posterior distribution
p(x|y0:k, H0:k) in a nearly optimal manner. In-
terestingly, as a by-product of the algorithm, the
obtained sensing matrix H has orthogonal rows,
disentangling the measurements, as expected from
a compression algorithm. A single step of this pro-
cess is described in Fig. 2.
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Figure 3: PSC diagram: Both encoder and decoder construct an image-specific transform H through an
adaptive compressed sensing algorithm, progressively adding rows based on posterior sample covariance. The
transmission of quantized measurements y ensures identical inputs at each progressive step, while a shared
random seed guarantees deterministic outputs on both sides. Together, these factors enable the construction
of identical transforms on both sides – eliminating the need to transmit the transform as side information.

This approach might appear counterintuitive for a transform coding, as it raises questions about the de-
coder’s ability to determine the appropriate transform for image recovery. The naive approach of directly
communicating the transform would be impractical, as it would require more bits than a lossless transmission
of the image itself (the transform can be any matrix in Rd×D). However, we present an elegant solution
that circumvents this challenge through our progressive compression structure, which eliminates the need to
communicate the transform entirely.

More specifically, PSC maintains a synchronized and identical state between encoder and decoder throughout
its operation. The system relies on an agreed-upon seed, ensuring all random sampling operations produce
deterministic and reproducible outputs. PSC initiates both encoder and decoder algorithms from the same
empty matrix H0:0 and empty vector of previous quantized projections y0:0. Assuming that the previous
steps were completed successfully – i.e. the accumulated matrix H0:k and quantized measurements y0:k
are identical in both the encoder and decoder, we proceed to construct the next row of H0:k. During this
computation, all posterior samples {xi}s

i=1 ∼ p(x|y0:k, H0:k) are identical in both encoder and decoder,
ensuring the synchronization of the newly computed row hk. The encoder then evaluates and quantizes
the new measurements yk = Q(hkx), incorporating them into the compressed representation transmitted
to the decoder. Using the compressed representation, the decoder can utilize all measurements y0:k+1
directly in subsequent steps without requiring access to the input image. This ensures that the inputs to
the next iteration, H0:k+1 and y0:k+1, remain synchronized. This novel approach to synchronized transform
reconstruction is illustrated in Fig. 3. The complete procedures for compression and decompression with
PSC, including the optimization of selecting r rows from matrix H for improved efficiency, are detailed in
Alg. 2 and Alg. 3 respectively.

3.1 Implementation Choices

We use DDRM (Kawar et al., 2022a) as a zero-shot posterior sampler for the selection of H, due to it’s
relative low computational complexity. Due to the repeated sampling from different posteriors, PSC retains a
high computational complexity, requiring approximately 10,000 NFEs for both compression and decompres-
sion. Nevertheless, we expect advances in diffusion models and posterior sampling to significantly expedite
future versions. In our implementation we focus on an unsophisticated quantization approach, reducing the
precision of y from float32 to float8 (Micikevicius et al., 2022). We employ Range Encoding implemented
using (Bamler, 2022) as an entropy coding on the quantized measurements. The quantization, the poste-
rior sampler and the entropy coding could all be improved, posing promising directions for future work.
Finally, after reproducing H on the decoder side, PSC may use a different final posterior sampler during
decompression, in an attempt to further boost perceptual quality for the very same measurements y.
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Figure 4: Qualitative examples for compression with PSC, compared to other compression
algorithms. BPP and PSNR are reported per example. Our method can be used for both low-distortion
or high perceptual quality using the same compressed representation.

4 Experiments

We begin with an evaluation of PSC on 256 × 256 color images from the ImageNet (Deng et al., 2009)
dataset, using the unconditional diffusion models from (Dhariwal & Nichol, 2021) as an image prior. We
compare distortion (PSNR) and bits-per-pixel (BPP) averaged on a subset of validation images, using one
image from each of the 1000 classes, following (Pan et al., 2021). We apply PSC to progressively decode at
higher rates, as detailed in App. A.

A key advantage of PSC is its ability to prioritize perceptual quality during decompression by changing
the final reconstruction algorithm. However, this flexibility comes with a caveat: using a high-quality
reconstruction algorithm will inevitably lead to higher distortion (Blau & Michaeli, 2019). Despite this, using
PSC, the same compressed representation can be decoded using either a low-distortion or high perceptual
quality approach with minimal additional computational cost. Specifically, we find that ΠGDM (Song et al.,
2023) produces images with highest photorealism, while DDRM (Kawar et al., 2022a) leads to the lowest
distortion. We present both restoration solutions as PSC - Perception and PSC - Distortion accordingly.
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Figure 5: Rate-Distortion (left) and Rate-Perception (right) curves for ImageNet256 compres-
sion. Distortion is measured as average PSNR of images for the same desired rate or specified compression
quality, while Perception (photorealism) is measured by FID.

Figure 5 presents the rate-distortion and rate-perception curves of PSC compared to several established
methods: classic compression techniques like JPEG (Wallace, 1991), JPEG2000 (Skodras et al., 2001), and
BPG (Bellard, 2018). We also compare to neural compression methods, such as ELIC (He et al., 2022) and
its diffusion-based derivative IPIC (Xu et al., 2024), as well as HiFiC (Mentzer et al., 2020), a prominent
GAN-based neural compression method. Distortion is measured by averaging the PSNR across different
algorithms for a given compression rate. Image quality is quantified using FID (Heusel et al., 2017), estimated
on 50 random 128×128 crops from each image (inspired by the evaluation in (Mentzer et al., 2020)), and
compared to the same set of baselines. The graphs demonstrate that PSC achieves comparable performance,
particularly at low BPP regimes, when considering both distortion and image quality. Figure 4 showcases
qualitative image samples compressed using different algorithms at the same rate, further supporting our
findings. Notably, PSC achieves exceptional image quality despite the fact that it does not require any
compression-specific training.

4.1 Latent PSC

Latent Text-to-Image diffusion models have gained popularity due to their ease-of-use and low computational
requirements. These models employ a VAE (Kingma & Welling, 2013) to conduct the diffusion process in
a lower-dimensional latent space (Vahdat et al., 2021; Rombach et al., 2022). In this work we also explore
the integration of PSC with Stable Diffusion (Rombach et al., 2022), a publicly available latent Text-to-
Image diffusion model. This variant, named latent-PSC, operates in the latent space of the diffusion model.
Both compression and decompression occur within this latent space, leveraging the model’s VAE decoder to
reconstruct the image from the decompressed latent representation. Additionally, we condition all posterior
sampling steps on a textual description, which must be given along with the original image or inferred using
an image captioning module (Vinyals et al., 2016; Li et al., 2022; 2023). The text prompt must be added to
the compressed representation to avoid side-information. A detailed diagram of latent-PSC is presented in
App. A.

Due to the use of the VAE decoder, we expect a significant drop in PSNR. Thus, we develop latent-PSC
as an extension of PSC - Perception, maintaining high perceptual quality at low bit-rates. We find that
the posterior sampler outlined in Nested Diffusion (Elata et al., 2024a) works best in this setting. We
use images from the CLIC (Toderici et al., 2020) and DIV2K (Agustsson & Timofte, 2017) to compare
Latent-PSC to PerCo (Careil et al., 2023), a recent work which also utilizes latent diffusion for low-rate
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Figure 6: Rate-Distortion and Rate-Perception curves demonstrating PSC with latent-diffusion
compared to similar methods. Left: CLIC dataset, Right: DIV2K dataset. Distortion is measured as
average PSNR, while Perception (photorealism) is measured by KID.

image compression. Using the same base diffusion model, image captioning model, and text compression
as PerCo, we demonstrate in Fig. 1 and Fig. 6 that we are comparable in terms of both distortion (PSNR)
and photorealism (KID (Bińkowski et al., 2018)) on all bit-rates despite not adding any training. We also
compare to MS-ILLM (Muckley et al., 2023), another compression method that focuses on high perceptual
quality, as well as BPG, as a classical baseline. While the results of MS-ILLM do not suffer from the VAE-
induced drop in PSNR, they do not reach the image quality of PerCo or Latent-PSC, especially at very low
rates.

5 Related Work

Diffusion models have enhanced classical compression algorithms by providing data-driven decompression
for high-perceptual quality reconstruction (Ghouse et al., 2023; Saharia et al., 2022). Several approaches
implement zero-shot diffusion-based reconstruction (Kawar et al., 2022b; Song et al., 2023), offering training-
free decompression, but remain constrained to specific compression algorithms, which may be found lacking.
Notably, recent work by Xu et al. (2024) attempts to utilize general diffusion-based posterior samplers ro
increase the image quality using a leading neural compression method. While this work employs pre-trained
diffusion-based posterior samplers similar to our method, they focus on traversing the RDP trade-off (Blau &
Michaeli, 2019) of existing neural compression schemes rather than developing a comprehensive compression
solution.

Recent developments integrate neural compression with diffusion models for decompression. Some approaches
employ separate (Hoogeboom et al., 2023) or joint (Yang & Mandt, 2024) neural compression and diffusion
training to create compact representations with conditional diffusion models for high-quality decompression.
Specifically, Careil et al. (2023); Relic et al. (2024) utilize latent diffusion (Rombach et al., 2022) and text-
conditioned models for efficient training. Despite their promise, these methods require complex rate-specific
training, limiting flexibility. While work by Gao et al. (2022) addresses this through training-free post-hoc
rate reconfiguration, they incur high computational costs and performance penalties.

The concept of leveraging pre-trained diffusion models for compression originated in the DDPM publica-
tion (Ho et al., 2020), though it focused on theoretical compression limits rather than practical implementa-
tion. Similarly, Theis et al. (2022) analyzes theoretical limits using reverse channel coding techniques (Li &
El Gamal, 2018), but their implementation’s high computational complexity and lack of public code prevents
direct comparison with our approach.
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6 Limitation, Discussion and Conclusion

While PSC introduces a novel approach to generative model-based compression, several limitations warrant
discussion. The method’s primary constraint is its substantial computational overhead due to iterative diffu-
sion model sampling. This computational burden is intrinsically linked to the zero-shot posterior sampler’s
quality, though ongoing advances in diffusion models and posterior sampling techniques may significantly
reduce this limitation. The current implementation’s simplified quantization strategy for measurements
presents another constraint. Implementation of more sophisticated quantization methods could yield signif-
icant improvements in compression rates. Furthermore, PSC’s restriction to linear measurements, imposed
by both existing posterior sampler capabilities and the complexity of non-linear measurement optimization,
indicates potential for enhancement through the exploration of non-linear measurements and correspond-
ing inverse problem solvers. Notwithstanding these limitations, PSC represents a significant advancement
in zero-shot diffusion-based image compression through several distinct advantages. The method progres-
sively acquires informative measurements to create compressed representations, with decompression faith-
fully reconstructing the original image by replicating the compression algorithm’s steps. Its implementation
simplicity, independence from training data, and cross-domain flexibility underscore its potential impact.
Future developments promise to further advance this approach to both image compression and compression
in general.
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