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ABSTRACT

Over the past several years, various federated learning (FL) methodologies have
been developed to improve model accuracy, a primary performance metric in ma-
chine learning. However, to utilize FL in practical decision-making scenarios,
beyond considering accuracy, the trained model must also have a reliable con-
fidence in each of its predictions, an aspect that has been largely overlooked in
existing FL research. Motivated by this gap, we propose Non-Uniform Calibra-
tion for Federated Learning (NUCFL), a generic framework that integrates FL with
the concept of model calibration. The inherent data heterogeneity in FL environ-
ments makes model calibration particularly difficult, as it must ensure reliability
across diverse data distributions and client conditions. Our NUCFL addresses this
challenge by dynamically adjusting the model calibration objectives based on sta-
tistical relationships between each client’s local model and the global model in
FL. In particular, NUCFL assesses the similarity between local and global model
relationships, and controls the penalty term for the calibration loss during client-
side local training. By doing so, NUCFL effectively aligns calibration needs for
the global model in heterogeneous FL settings while not sacrificing accuracy. Ex-
tensive experiments show that NUCFL offers flexibility and effectiveness across
various FL algorithms, enhancing accuracy as well as model calibration.

1 INTRODUCTION

Federated learning (FL) has rapidly gained traction as a prominent distributed machine learning ap-
proach, enabling collaborative model training across a network of clients by periodically aggregating
their local models at a central server (Konecny et al.,[2016; |McMahan et al., 2017). Its significance
extends to various critical applications, including medical diagnostics, self-driving cars, and multi-
lingual systems, where data privacy and decentralized training are paramount. FL has been widely
studied with a focus on improving local model updates (Reddi et al.| 2021; Sahu et al.,|2018)), refin-
ing global aggregation methods (Ji et al., 2019;|Wang et al., 2020a)), and enhancing communication
efficiency (Sattler et al., 2019} Diao et al., [2020; [Parasnis et al., 2023). Most of these works in FL
consider accuracy as the main performance metric.

Motivation. However, beyond accuracy, in various decision-making scenarios where an incorrect
prediction may result in high risk (e.g., medical applications or autonomous driving), it is also crucial
for the users to determine whether to rely on the FL. model’s prediction or not for each decision. In
particular, users should rely on the neural network’s decision only when the prediction is likely to
be correct. Otherwise, they may need to consider alternatives such as human decision. To achieve
this, the trained FL. model should have a reliable confidence in each of its predictions, meaning
that the confidence of the neural network matches well with its actual accuracy. In centralized
settings, recent studies including |Guo et al.| (2017)) have uncovered that neural networks are often
miscalibrated, indicating that the prediction confidence of the model does not accurately reflect the
probability of correctness. Handling this miscalibration issue is even more important in many FL
use-cases, where an overconfident global model could lead to misinformed decisions with potentially
severe consequences for each client.

In centralized training settings, research generally follows two paths to address this miscalibration
issue. First, train-time calibration methods (Hebbalaguppe et al.,|2022b;|Liang et al.,|2020; Liu et al.}
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Figure 1: Reliability diagrams and calibration errors for centralized training and non-IID FL (using FedAvg)
trained with various calibration methods on CIFAR-100 dataset. Our method ensures well-calibrated FL, evi-
denced by a notably smaller calibration error and a smaller gap (red region) between confidence and accuracy.

2021; [Mukhoti et al.l [2020; Kumar et al.l 2018} Miiller et al.| [2019; |Lin et al.| [2017) incorporate
explicit regularizers during the training process to adjust neural networks, scaling back over/under-
confident predictions. On the other hand, post-hoc calibration (Guo et al., 2017; [Hendrycks &
Gimpel, 2016 [Hinton et al.,[2015; [Kull et al.,2017)) transforms the network’s output vector to align
the confidence of the predicted label with the actual likelihood of that label for the sample. Post-
hoc calibration methods are applied to the already trained model to improve calibration using an
additional holdout dataset. However, an appropriate holdout dataset may not be available in many
privacy-sensitive applications, making post-hoc calibration strategies often impractical for FL.

Goals and observations. In this paper, we aim to incorporate model calibration into the FL training
process, a problem that has been largely underexplored in existing research. This setting introduces
new challenges to improving model calibration, as the heterogeneous data distributions across dif-
ferent clients must be carefully considered. We first observe whether existing train-time calibration
methods applied during client-side local training can effectively address calibration needs in FL. To
gain insights, in Fig. [I} we report accuracy, confidence, and the expected calibration error (ECE)
of different methods in different settings. Figs.[I{a) to [I|b) illustrate the capability of train-time
calibration methods to narrow the gap between model confidence and accuracy in centralized learn-
ing. A comparison between Figs.[I(a) and [I[c) reveals that FL experiences more significant model
miscalibration than centralized learning. This disparity is likely due to data heterogeneity across
distributed FL clients, causing each client’s local data to have a different impact on calibration per-
formance. When applying auxiliary-based calibration methods, such as DCA (Liang et al., [2020)
and MDCA (Hebbalaguppe et al., [2022b)) — which add a penalty term to the original classification
loss — to FL’s local training (Fig. [1[d)), a better ECE is achieved compared to FL without calibration
(Fig.[T[c)). However, we observe that the model in Fig.[T(d) is still not well-calibrated by neglecting
global calibration needs in heterogeneous FL settings, resulting in overconfident predictions. Given
the fact that train-time calibration methods directly modify confidence during training, potentially
affecting the model’s accuracy—which is also a critical factor—we thus pose the following question:

How can we unlock the potential of model calibration in FL while not sacrificing accuracy?

Contributions. In this paper, we propose Non-Uniform Calibration for Federated Learning
(NUCFL), a versatile and generic model calibration framework for FL that integrates seamlessly
with any existing FL algorithms, such as FedProx (Sahu et al.,|[2018)), Scaffold (Karimireddy et al.,
2019), FedDyn (Acar et al., 2021), and FedNova (Wang et al., 2020b)). Designed to work with any
train-time calibration auxiliary loss, NUCFL is a straightforward yet effective solution that dynam-
ically adjusts calibration penalties based on the relationship between global and local distribution.
Specifically, our intuition is that if each client’s local model closely resembles the global model, it is
likely that the local model and data represent the global calibration needs well. Therefore, our idea is
to choose a large penalty term to improve model calibration for the clients that have a high similarity,
while imposing a small penalty for other clients to prioritize accuracy. This non-uniform calibration
approach considering data heterogeneity across FL clients significantly minimizes calibration errors
without accuracy degradation, as seen in Figure[I[e). Importantly, the flexibility of NUCFL allows
for continuous improvement as new FL algorithms or calibration losses are developed. Our key
contributions are summarized as follows:

* Our work pioneers a systematic study on model calibration in FL. We analyze whether
existing calibration methods can be applied to FL algorithms and study the following ques-
tion: How does model calibration impact the behavior of federated optimization methods?
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* We propose NUCF'L, a non-uniform model calibration approach tailored to FL. Our NUCFL
dynamically adjusts calibration penalties based on the nuanced relationship between each
local model and the global model, effectively capturing data heterogeneity.

» Extensive experiments demonstrate that NUCFL is highly flexible, seamlessly integrating
with 5 different FL algorithms (e.g., FedProx, Scaffold, FedDyn) and various auxiliary-
based train-time calibration methods to improve both calibration performance and accuracy.

2 RELATED WORK

Federated learning. FedAvg (McMabhan et al.| 2017) is the pioneering FL algorithm, with numer-
ous adaptations proposed to mitigate the accuracy drop experienced with non-IID data. Much of the
research has focused on designing better global aggregation methods to enhance model convergence
and performance. Some researchers (He et al) 2020} Lin et al., 2020) replaced weight averaging
with model ensemble and distillation, others (Yurochkin et al., [2019; Wang et al., |2020a) matched
local model weights before averaging, and another group (Ji et al.l |2019) introduced an attention
mechanism to optimize global aggregation. Another significant area has concentrated on optimiz-
ing local training protocols to optimize computation and data usage on clients’ devices. Some re-
searchers (Sahu et al.l 2018} |Acar et al.l [2021) employed regularization toward the global model,
while Karimireddy et al| (2019) utilized server statistics to correct local gradients. Additionally,
various studies have addressed challenges specific to FL, such as ensuring fairness across all partici-
pants (Li et al.|[2020; (Chu et al.|, |2024b} 2022ajb)), enhancing communication efficiency to minimize
bandwidth usage (Ko et al.| 2023} (Chu et al., [2024a; |Chang et al.| 2024} Lan et al.l [2023alb; [Yuan
et al., 2024), and addressing privacy concerns inherent in distributed computations (Truong et al.,
2020). However, the main focus of existing FL research is on improving accuracy. The mismatch
between confidence and actual accuracy in these works leads to overconfident FL models, making
FL inapplicable in high-risk decision-making scenarios. Our work bridges this gap by investigating
an overlooked aspect of federated learning: model calibration.

Model calibration. Model calibration techniques can be categorized into post-hoc calibration and
train-time calibration methods. Post-hoc methods adjust the model using a hold-out dataset after
training. Common examples include Temperature Scaling (Guo et al., 2017)), which adjusts logits
by a scalar learned from a hold-out set before softmax, and Dirichlet Calibration (Kull et al.,|2017)),
which modifies log-transformed class probabilities with an extra network layer. However, in FL
applications, the lack of an additional validation set due to privacy concerns often renders post-hoc
calibration methods inapplicable. On the other hand, train-time calibration integrates calibration di-
rectly within the training process. [Miiller et al.[(2019) enhance calibration using label smoothing on
soft targets, while [Lin et al.|(2017) use focal loss to minimize the KL divergence between predicted
and target distributions. Recently, augmenting standard cross-entropy loss with additional penalty
loss terms has become a popular train-time calibration method (Liang et al., 2020; Hebbalaguppe
et al.| 2022b; |Kumar et al.| 2018)). This auxiliary loss penalizes the model when there is a reduction
in cross-entropy loss without a corresponding increase in accuracy, often indicative of overfitting.
However, as seen in Fig.[I] a direct application of these methods still faces limitations, as they are
not able to meet the calibration needs considering data heterogeneity across FL clients. Our work
fills this gap by taking a non-uniform calibration approach considering the characteristics of FL.

Calibration and FL. Peng et al.| (2024)) proposed FedCal, a calibration scaler aggregated solely
from local clients, and, to the best of our knowledge, is the only prior work explicitly addressing
calibration error in FL. However, FedCal does not consider the interaction between global and local
calibration needs, which can lead to a calibration bias towards local heterogeneity. Our calibration
framework addresses this issue by considering the interaction between client and server, thereby
better accommodating broader global calibration requirements. We empirically confirm these ad-
vantages of our approach compared to the existing work in Section[5.2] It is also worth mentioning
thatZhang et al|(2022); Luo et al.|(2021) also use the term “calibration” in the FL setup. However,
we stress that the context of calibration in their work is different from the one in the model cali-
bration literature that considers confidence of the prediction. Zhang et al.|(2022); |Luo et al.| (2021)
focuses on calibrating the classifier to improve the accuracy itself, which can be categorized into
conventional FL works that do not consider the error between model confidence and accuracy.
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Algorithm 1 General FL Framework

1: Input: global model w, local model w, for client m, local epochs E, and rounds 7'.
2: for eachround ¢t = 1,2,...,7 do

3: Server sends w Y to all clients.

4:  for each client m € M do
5: Initialize local model w(t 0 qt=1)
6: for each epoche =1,2,. E do
7: Each client performs local updates via: w'y® + ClientoPT(w'h ™", Lom)
8: end for
9: wt™ denotes the result after performing E epochs of local updates.
10: Client sends 65 = w® D — ") (o the server after local training.
11:  end for

12:  Server computes aggregate update 5 = D meM “Dgl“ 58

13:  Server updates global model w¥ +— serveropT (w1, )
14: end for

3 PRELIMINARIES

3.1 FEDERATED LEARNING

In FL, the training data is gathered from a set of clients M and each client m possesses a training set

D

Dy, = {z4,yi };_7", where x represents the input data and y denotes the corresponding true label.
We consider the following standard optimization formulation of federated training and seek to find
model parameters w that solve the problem:

mlnﬁ Z ‘Dm‘ ), (1)

meM ‘D|

where w represents the model parameter, D = U,,,e D,y denotes the aggregated training set from
all clients, and L,,, measures the average loss of a model on the training data of the m-th client. The
objective is to find a model that fits all clients’ data well on (weighted) average.

FL methods involve parallel local training at clients and global aggregation at a server over mul-
tiple communication rounds to address the aforementioned problem. Most federated optimization
methods fit within a general framework outlined by Reddi et al.|(2020), as shown in Algorithm[I] At
round ¢, the server sends its previous global model w*~1) to all clients as initialization. Each client
m then performs E epochs of local training using C1ient OPT depending on the FL algorithm, and

(t.B) . Then each client communicates the difference 57(7? be-

tween their learned local model and the server model, denoted as (5m = w1 — wﬁf{E). The server
computes a weighted average of the client updates, denoted as 6), and then updates the global
model w® using ServerOPT, which also depends on FL designs. For example, FedAvg employs
standard stochastic gradient descent updates for C1ientOPT, and its ServerOPT is formulated
as w®) = =1 — 5,

subsequently produces a local model wyy,

3.2 MODEL CALIBRATION

In supervised multi-class classification, the input z € X and label y € Y = {1, ..., K'} are random
variables following a ground truth distribution 7(z, y) = w(y|x)7(z). Let s be the confidence score
vector in R¥, with s[y] = f(z) representing the confidence that the model f(-) predicts for a class
y given input z. The predicted class  is computed as: § = argmax, s[y|, with the corresponding
confidence § = max, s[y]. A model is considered perfectly calibrated (Guo et al., 2017) if:

P(g = y[s =p) =p,Vp € [0,1]. (2)

That is to say, we expect the confidence estimate of the prediction to reflect the true probability of
the prediction being accurate. For example, given 100 predictions, each with a confidence of 0.8, we
expect that 80 should be correctly classified. One concept of miscalibration involves the difference
between confidence and accuracy, which can be described as:

Es[|(9 = y|3 =p) — pl]- 3)
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Note that “increasing confidence” refers to adjusting the model’s predicted probabilities to higher
values, but it does not necessarily imply “better model calibration.” Excessively high confidence can
lead to overconfident predictions, potentially misleading users to over-rely on the model even when
its predictions are inaccurate. The primary goal of model calibration, whether via train-time or post-
hoc methods, is to minimize discrepancy (3] to ensure the model’s confidence accurately reflects its
prediction accuracy. This ensures that users can directly know the probability of correctness based
on the model confidence, allowing the model to be applied in various decision-making scenarios.

4 PROPOSED MODEL CALIBRATION FOR FEDERATED LEARNING

4.1 BRIDGING FEDERATED LEARNING AND MODEL CALIBRATION

Our approach aims to implement calibration on each FL client’s local training. Note that in conven-
tional FL algorithms, the loss L, of client m in (1)) can be expressed as follows:

‘D'ml
1
L (w®)) = B > lwhsw,ys), 4)
mioi=1

where w,, is the local model, ¢ the current global round, e the local iteration index, and £(-) the loss
function (e.g., cross-entropy) applied to a data instance. One can also modify the loss in (@), i.e., by
adding a proximal term as in FedProx (Sahu et al.|[2018)). Recent studies on calibration (Liang et al.,
2020; Hebbalaguppe et al.| 2022b) suggest that incorporating an auxiliary loss, which captures the
disparity between accuracy and confidence (as in equation (3)), and penalizing the model accord-
ingly, leads to superior performance compared to direct loss type adjustments (Miiller et al.| 2019
Brier, [1950; [Lin et al.}|2017). These auxiliary loss methods maintain the original classification loss
and seamlessly add a penalty, minimizing interference with FL performance, especially since some
FL algorithms are specifically designed around their classification loss strategies. This makes the
auxiliary loss methods easily applicable and effective across various FL settings.

Proposed framework. Therefore, for client m, we propose to integrate the calibration loss with the
FL loss as follows:

| D |
1
‘Cfgl(wgrtfe)) = W Z {é(wg’e); Ly yi) + ﬁmécal (wgrt;e); T, yi) ) (5)
mli=1

where ., (+) is the auxiliary calibration loss function, and S, is a scalar weight for each client
m. In the centralized calibration case, this scalar weight is manually selected to refine the auxiliary
calibration loss. However, in our design, we automatically determine (,, based on the relation-
ship between the server and clients in a FL setup (without any hyperparameter tuning), taking into
account the heterogeneity as detailed in Section The auxiliary calibration loss ¢.,; can be de-
rived from various calibration designs. For instance, |Liang et al.|(2020) directly adds the difference
between confidence and accuracy (DCA) as an auxiliary loss, which can be represented as:

1 1.
ﬁZchZsi

i=1 i=1

Ecaz<{0i}1§i§N, {§i}1§i§N) =Ldca = , (6)

where IV denotes the total number of training samples, s; represents the confidence score of the
model’s predicted label y; for sample ¢, and ¢; = 1 if §; equals the true label y;; otherwise, ¢; = 0.
On the other hand, [Hebbalaguppe et al| (2022b) provide a more detailed analysis of (6) and propose
a Multi-class DCA (MDCA), which offers a more granular examination by considering all classes
instead of focusing solely on the predicted label. The proposed auxiliary loss can be written as:

N

12 . 1 n
N Ci]]*N;Si[J]

i=1

K
1
Lear ({Ci}1§i§N7 {Si}lgigN) = lmdea = I E 1 ; (7N
J:

where K is the number of classes and N the number of samples. ¢;[j] = 1 shows that label j is the
ground truth for sample ¢, and ¢;[j] gives the confidence score for the j-th class of sample i.

Advantages and challenges. The differentiability of these auxiliary loss terms ((6) and (7)) fa-
cilitates their integration with other application-specific loss functions, allowing them to enhance
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calibration without significantly impacting the primary classification loss, ¢. This minimizes any
adverse effects on performance while correcting calibration errors. For instance, FL algorithms like
FedProx (Sahu et al., |2018) and FedNova (Wang et al.l 2020b)) incorporate custom loss functions
within their local modeling function, C1ientOPT (outlined in Algorithm EI), to address deviations
from the global model due to non-IID data. Despite these enhancements, it is critical to note that
these advanced FL algorithms still fundamentally require a standard classification loss, which they
fine-tune for specific objectives. When integrating calibration into the C1ientOPT of FL algo-
rithms, we will exclusively calibrate the standard classification loss, maintaining the integrity of
other design elements, such as global aggregation, to ensure their original objectives are not com-
promised. Choosing an appropriate /3, tailored to each client m is the remaining challenge.

4.2 NON-UNIFORM CALIBRATION FOR FEDERATED LEARNING (NUCFL)

Motivation: Limitation of uniform penalty. In Equation (5, we promote calibration during feder-
ated local training by targeting the confidence-accuracy gap in individual local models via auxiliary
calibration loss. The main aim of FL is to train a global model capable of effectively handling the
global data distribution. Therefore, we aim for calibration to account for the heterogeneity inherent
in FL setups, marking a departure from calibration approaches used in centralized learning. Direct
application of auxiliary loss calibration methods without adapting to FL characteristics would result
in uniform calibration weights, such that 81 = 82 = ... = [,,. This leads to local models being
calibrated solely to their respective datasets D,,,, with uniformly small weights biasing calibration
toward local heterogeneity, and uniformly large weights potentially neglecting accuracy improve-
ments from classification. Such discrepancies can result in a global model that, while comprising
well-calibrated local models, does not achieve optimal performance across the broader distribution.
This fixed calibration penalty approach, therefore, risks neglecting the broader global calibration
needs necessary for optimal performance across the entire global distribution, e.g., as in Fig.[T[d).

Non-uniform penalty design (NUCFL). Given that each client
receives the global model from the previous round as their
starting point for each new federated round, this offers an op-
portunity to indirectly adjust local calibration to mirror global

model characteristics. To leverage this, we propose Non- By 1 @ @ @ B L
Uniform Calibration for Federated Learning (NUCFL), which "™ "
arger NUCFL smaller

provides a dynamic calibration penalty to local models to  caiibration [@ calibration
better reflect global calibration needs. Drawing inspiration  Pena'ty penalty
frlom the concept of similarity characterization in FL tegh— Figure 2: Idea of proposed NUCFL.
niques (Sahu et al., 2018 [Tan et al.l [2023)), we hypothesize

that a local model closely resembling the global model is likely to represent global characteristics
well, suggesting that the penalty appropriately reflects the calibration needs of the global model.
Conversely, a dissimilar/heterogeneous local model suggests a focus on local objectives (e.g., to im-
prove accuracy) at the expense of global alignment. By adjusting penalties at each local epoch based
on the similarity between local and global models, NUCF L ensures that local training enhances both
the calibration and accuracy of the global model. As illustrated in Fig. |2} we specifically set

By = sim(6¢1, 509, (8)

where 6(*~1) is the accumulated gradient from the previous round ¢ — 1, representing the received

global model, while 659 = w®=1 — w{t® calculates the gradient for client m at local epoch e
during round ¢. The function sim(-) measures similarity between local and global models, gener-
ating values between 0 and 1. Specifically, it can use general cosine similarity or more advanced
measures like Centered Kernel Alignment (CKA) (Kornblith et al.,[2019).

For instance, if the local model is similar to the global model, indicating alignment in their char-
acteristics, a higher calibration penalty is applied to the local model to address global calibration
needs. Otherwise, if the similarity score is low, a smaller penalty is applied, focusing on accu-
racy improvement instead. Our non-uniform penalty method tailored to FL, strategically improving
model calibration and accuracy. Additionally, our NUCFL requires no extra hyperparameter tuning,
as f3,, is automatically determined by (8]) based on the given similarity function.

Remark 1. NUCFL can integrate any auxiliary-based calibration loss and adapt to any FL algorithm,
independent of aggregation method or local loss function. To our knowledge, this is the early work
to specifically address model calibration across various FL algorithms. Similar to most calibration
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research (Lin et al., 2017 Miiller et al., [2019; |Brier}, [1950; [Kumar et al., 2018} [Mukhoti et al.| 2020;
Liuetal.,2021;|Liang et al.,|2020; Hebbalaguppe et al., 2022bjal), our work is an empirical study that
explores the practical impacts of our methods. This research area remains challenging, particularly
in providing theoretical guarantees for calibration methods, even in centralized settings; we instead
substantiate the effectiveness of our method through extensive experiments. We will demonstrate
how our strategic approach effectively calibrates FL in Section[5.2]

Remark 2 (Compatibility with post-hoc calibration). Although our NUCFL is a train-time cali-
bration approach that is applied during FL training, the proposed technique complements post-hoc
methods whenever a holdout dataset is available. For example, temperature scaling can be applied
to the trained global FL model for further refinement, as empirically demonstrated in Section[5.2}

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUP

Dataset and model. We conduct experiments using four image classification datasets commonly
utilized in FL research (Caldas et al., [2018; [ McMahan et al., 2017; Mohri et al.,[2019): MNIST (Le-
Cun et al., [1998), FEMNIST (Cohen et al., [2017), CIFAR-10 (Krizhevsky, 2009), and CIFAR-
100 (Krizhevsky} 2009). For the MNIST and FEMNIST datasets, we use a CNN (LeCun & Bengio),
1998)) with two 5x5 convolution layers, each followed by 2x2 max pooling, and fully connected lay-
ers with ReLU activation. We use AlexNet (Krizhevsky et al., 2012) with five convolutional layers
and ResNet-34 (He et al., [2015)) for the CIFAR-10 and CIFAR-100 datasets, respectively.

FL data distribution. In the IID setup, data samples from each class are distributed equally to
M = 50 clients. To simulate non-IID conditions across clients, we follow (Hsu et al., | 2019; Nguyen
et al} 2023 |Chen et al.l |2023) to partition the training set into M = 50 clients using a Dirichlet
distribution with a = 0.5. Results with different « are reported in the Appendix [B.2]

Calibration baselines. We compare our method against models trained using Cross-Entropy (Un-
cal.), representing training without calibration. We adapt centralized train-time calibration methods,
such as Focal Loss (FL) (Lin et al.,|2017), Label Smoothing (LS) (Miiller et al., 2019)), Brier Score
(BS) (Brier, {1950), MMCE (Kumar et al., [2018)), FLSD (Mukhoti et al., 2020), MbLS (Liu et al.,
2021)), DCA (Liang et al., 2020), and MDCA (Hebbalaguppe et al., [2022b)), to the FL setting based
on @) and @ to evaluate their performance. We also compare our method with FedCal (Peng et al.|
2024]), a state-of-the-art method designed for post-hoc calibration in FL. Detailed parameters for
each calibration baseline are provided in Appendix [A.T]

FL algorithms and setups. We conduct model calibration on five well-known FL algorithms, in-
cluding FedAvg (McMahan et al., [2017), FedProx (Sahu et al., 2018), Scaffold (Karimireddy et al.,
2019), FedDyn (Acar et al., 2021}, and FedNova (Wang et al., 2020b). We run each FL algorithm
for 100 rounds, evaluating the final global model, with 5 epochs for each local training. We use
the SGD optimizer with a learning rate of 10~3, weight decay of 10~%, and momentum of 0.9. For
additional details on the training specifics of each algorithm, please see Appendix [A.2]

Auxiliary loss and similarity measures for NUCFL. We implement our framework using two
auxiliary-based calibration losses, /4., and ¢,,4.,. We utilize three similarity measurements—
cosine similarity (COS), linear centered kernel alignment (L-CKA), and RBF-CKA (Kornblith et al.,
2019)—which output a similarity score from O (not similar at all) to 1 (identical) for evaluating the
similarity between the learned local model and the global model. We refer to configurations using
our technique as “NUCFL (x + ®),” where * denotes auxiliary calibration losses £g.q/¢dcq and ®
denotes similarity measurements COS/L-CKA/RBF-CKA, yielding six settings for our methods.

Evaluation metrics. To evaluate performance, we measure the accuracy (%) of the final global
model on the test set and assess calibration using commonly used metrics such as Expected Cal-
ibration Error (ECE%) and Static Calibration Error (SCE%). ECE (Naeini et al., 2015) approx-
imates calibration error (3) by dividing predictions into I bins and calculating a weighted aver-

age of accuracy-confidence discrepancies: ECE = Zi[:l BW A; — C;|, where N represents the
total number of samples, with weighting based on the proportion of samples within each confi-

dence bin/interval. Each i-th bin covers the interval (‘71 ] within the confidence range, with
B; indicating the number of samples in the i-th bin. A; = ﬁ > jen (g5 = y;) calculates

I 1

the accuracy within bin B;, and C; = Flﬂ i B, $; gives the average predicted confidence

J:8;
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Calibration FedAvg FedProx Scaffold FedDyn FedNova

Method Acct ECE| SCE| | Acct ECE| SCE] | Acct ECE] SCE] | Acct ECE| SCE| | AccT ECE| SCE|
Uncal. 6134 1052 361 [ 61.88 937 358 [ 6208 11.42 382 [ 6239 1233 384 [ 6301 11.45 382
Focal (Lin et al.12017) 6059  12.88 374 | 6207 1145 379 | 6139  13.28 488 | 6021 1122 381 61.15 1321 471
LS (Muiller et al. 12019 59.35  15.61 6.28 | 6223  14.37 6.14 | 6215 11.69 405 | 61.34 1519 6.58 | 63.05 16.03 6.89
BS (Brier)| 19507 6120 11.32 3.80 | 60.43 10.15 3.61 60.39  10.92 380 | 62.17 13.81 491 6044 11.39 4.06
MMCE (Kumar et al. 2018 60.00 13.41 4.93 60.11 11.32 3.77 61.03 11.37 3.83 61.35 12.93 3.95 61.28 12.55 3.90
FLSD (Mukhoti et al.}12020] 58.71 1151 3.92 59.28 10.66 3.81 60.49 13.61 5.15 60.94 11.83 4.04 60.49 13.81 4.88
MBLS (Liu et al. [ 20217 59.62 942 3.55 | 6039  11.37 384 | 6138 1199 407 | 6230 14.95 6.50 | 6293  13.66  4.69
DCA (Liang et al.}2020] 6124  7.69 324 [ 6193 874 340 | 62.11 9.25 355 [ 6293 10.17 375 [ 6315 927 355
NUCFL (DCA+COS) 61.88  6.21 3.11 6238 8.5 335 | 62.17  8.88 3.50 | 62.81 9.29 354 | 6324  8.85 3.51
NUCFL (DCA+L-CKA) 62.05  6.14 3.07 | 62.31 8.04 330 | 6225 841 345 | 6294  9.14 352 | 6327 852 343
NUCFL (DCA+RBF-CKA) 6159  6.19 311 | 61.89  8.17 335 | 61.94 852 345 | 6284 921 355 | 63.17  8.01 3.30
MDCA (Hebbalaguppe et al.}2022b] [[ 61.03  7.71 329 [ 6200 821 337 [ 6223 9.04 351 62.84 1024 372 [ 6329 10.00 371
NUCFL (MDCA+COS) 62.00 638 3.14 | 6193 794 329 | 62.17 83l 340 | 6291 9.33 356 | 63.14  9.16 3.58
NUCFL (MDCA+L-CKA) 6217 625 3.11 62.03  7.88 325 | 6222 830 340 | 6288  9.19 353 | 6314 9.03 351
NUCFL (MDCA+RBF-CKA) 6154 620 3.09 | 61.79 8.2 329 | 6215 842 345 | 62.65 9.24 355 | 6322 859 3.47

Table 1: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimization meth-
ods with different calibration methods under non-IID scenario on the CIFAR-100 dataset. Values in boldface
represent the best calibration provided by our method for the auxiliary calibration method, and underlined val-
ues indicate the best calibration across all methods. Averaged performances are reported; complete results with
standard deviation are included in the Appendix.

Calibration FedAvg FedProx Scaffold FedDyn FedNova

Method Acct ECE| SCE| | Acct ECE| SCE] | Acct ECE] SCE] | Acct ECE| SCE| | AccT ECE| SCE|
Uncal. 9095 417 1.66 [ 9145 4.6l 195 [ 9128 502 251 9275 524 260 [ 9222 492 2.44
Focal (Lin et al.12017) 90.63 477 1.96 | 90.00 539 277 | 91.13 538 272 | 9115 584 291 91.13 539 2.63
LS (Miiller et al. 12019 91.07 375 1.62 | 9037 452 190 | 91.33 518 264 | 9308 519 263 | 9204 495 246
BS (Brier] 1950} 91.48 5.19 2.65 90.98 5.42 2.80 88.72 4.19 1.81 91.39 537 2.62 90.38 4.65 1.92
MMCE (Kumar et al./2018] 90.22 4.85 2.30 90.12 4.01 1.79 91.44 5.07 2.55 92.11 4.93 2.49 91.35 5.08 2.49
FLSD (Mukhot et al. ;12020 90.02 4.93 2.95 90.39 4.99 2.04 92.88 5.19 2.58 91.17 5.61 2.84 91.22 5.23 2.63
MbLS {Liu et al.|2021] 90.62 427 199 | 9149 479 1.94 | 92.87 539 260 | 9206 544 275 9039 461 1.92
DCA (Liang et al.}2020] 91.84 361 1.52 9203 425 1.61 92.04 444 1.82 [ 93.08 461 1.92 [ 9237 431 L71
NUCFL (DCA+COS) 91.77 352 149 | 9195 361 1.35 | 9242 439 177 | 9322 420 165 | 9225 413 1.68
NUCFL (DCA+L-CKA) 91.63 352 147 | 92.10  3.60 130 | 9219  4.09 1.60 | 9345 422 1.65 | 9233  4.02 154
NUCFL (DCA+RBF-CKA) 91.74 349 140 | 9199 377 135 | 91.74 415 1.62 | 9295 434 175 | 9241 4.11 1.68
MDCA (Hebbalaguppe et al.|2022b} || 91.64  3.75 153 [ 9217 442 205 [ 9295 4.6l 190 [ 9319 471 193 [ 9205 462 1.82
NUCFL (MDCA+COS) 9129 361 144 | 9195 395 1.77 | 93.07 4.4 162 | 9288 441 1.80 | 9245 432 1.70
NUCFL (MDCA+L-CKA) 9197 328 128 | 9220 3.88 151 | 9277 420 1.80 | 93.11 431 175 | 9199 428 1.67
NUCFL (MDCA+RBF-CKA) 9135 356 140 | 9221  4.00 177 ] 93.04 419 179 | 93.04 440 1.80 | 9239 417 167

Table 2: Average performance of each algorithm under non-IID scenario on the FEMNIST dataset. Complete
results with standard deviation are included in the Appendix.

for samples where 3; € B;. The recently proposed SCE (Nixon et al.l|2019), extending ECE for
multi-class settings, groups predictions into bins by class probability, computes calibration errors
per bin, and averages these across all bins: SCE = + Zle Z]K:1 B](',’j |4; ; — C; |, where K
represents the number of classes, and B; ; denotes the count of j-th class samples in the 4-th bin.
Aij = 1577 Zren,, [ = yx) measures accuracy, while C;; = (51— 3 ycp, . silj] gives the
average confidence for the j-th class in the i-th bin. We set the number of bins, I = 20, for ECE and
SCE, and evaluate the final global model. We performed all the experiments on four random seeds
and reported the average performance along with the standard deviation.

5.2 EXPERIMENTAL RESULTS

Can train-time calibration apply to federated learning? We first compare train-time calibration
in traditional centralized training and non-IID FL. Using the entire CIFAR-100 dataset, we train
models for 100 epochs with various calibration methods, presenting the results in Table [6] of Ap-
pendix [B.T] Most methods effectively maintain accuracy and reduce calibration errors in centralized
settings. Yet, as shown in Table [I] these methods often underperform in calibration and accuracy
when applying to FL. Notably, methods like DCA and MDCA, which include an auxiliary loss,
show robustness in federated settings. They balance classification accuracy and calibration, preserv-
ing confidence while penalizing miscalibration, making them stand out in FL environments.

The effects of confidence calibration on FL. Tables |1| and [2] show accuracy and calibration error
for various calibration methods applied to FL algorithms under non-IID scenarios using CIFAR-100
and FEMNIST datasets. Among these baselines, auxiliary-based methods like DCA and MDCA
show superior performance, with comparable accuracy and lower error. Our method outperforms
them, as evidenced by the superior performance of NUCFL (DCA/MDCA + ®) over DCA/MDCA,
highlighting the importance of our non-uniform penalty, which is specifically tailored to address
global calibration needs during local training. NUCF L’s superior performance, utilizing various sim-
ilarity measures and auxiliary losses, demonstrates its flexibility and effectiveness. Our consistent
improvements across various FL algorithms also highlight its adaptability. See Appendix B.2] for
complete results with standard deviations, as well as other datasets and data distributions. Further
discussion on the trade-off between accuracy and reliability can be found in Appendix [B.6

Mitigating over/under-confidence. The results in Tables [I]and 2] show that our method improves
SCE and ECE over the baselines, but they highlight whether they correct for over-confidence or



Published as a conference paper at ICLR 2025

(a) Uncal. (b) DCA (c) MDCA (d) NUCFL (DCA+L-CKA) (e) NUCFL (MDCA+L-CKA)
2 o 2 2 o 2
=3 Outputs - 3 Outputs T =3 Outputs pY £33 Outputs T =3 Outputs "
= Gap | = Gap = Gap 7 == Gap = Gap
o 0s ) 08 0sf 08
> |ECE= 10.52 > ECE= 7.69 > |ECE= 7.71 > |ECE= 6.14 > ECE= 6.38 .
S os g Q osf S os #f: S osf A Qos
5 5 5 ) 5 and 5
o Q Q g Q o
S oa 8 oe S oa 8 e 8 os
< < < < <
o o
2 os o8 08 10 % o0z os o 08 10 %0 o0z oa o6 o8 1 o o2 os 05 o8 1 0z 04 08 o0
Confidence Confidence Confidence Confidence Confidence

Figure 3: Reliability diagrams for non-IID FedAvg with different calibration methods using the CIFAR-100
dataset. The lower ECE and smaller gap (red region) show the effectiveness of our method.
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Figure 4: Reliability diagrams for non-IID FedAvg using the CIFAR-10 dataset.

under-confidence. To clarify this, we present reliability diagrams (Degroot & Fienberg| |1983}
Niculescu-Mizil & Caruana, 2005), which visually compare predicted probabilities to actual out-
comes, plotting expected accuracy against confidence. If the model is perfectly calibrated (i.e. if
P(g = y*|s[g]) = s[g]), then the diagram should plot the identity function. Any deviation from a
perfect diagonal represents miscalibration. In Fig.[3|and @] we present reliability histograms for non-
IID FL using various calibration methods, where each FL. method yields over-confident predictions.
For example, if a model predicts the probability of a class k from {1, ..., K'} as 0.7, it is expected to
be correct 70 out of 100 cases; if the actual number of correct predictions is less than 70, the model
is considered over-confident. Such over-confidence can be problematic in critical applications like
medical diagnostics, potentially leading to under-treatment and serious health risks. Our method
shows a smaller gap (red region) and lower ECE, effectively mitigating over-confidence. For details
on how our method also tackles under-confidence, please refer to Appendix [B.3]

Effectiveness of our design. We explore model calibration on various FL settings, analyzing the ef-
fects of different non-IID degrees a, numbers of clients M, and percentages of participating clients
per round. Fig. 5]shows the accuracy and calibration results of FedAvg across various configurations
on the CIFAR-100 dataset, where we adjust one variable at a time from the default setting: M = 50,
a = 0.5, 100% participation. Across all settings, our method consistently shows robust calibration.
Notably, NUCF L remains effective under challenging conditions, such as with lower o values (higher
non-IID disparity) or fewer participant per round. Additional results under diverse conditions, in-
cluding an even smaller number of partial participants under various data distributions, are provided
in Appendix [B-4] highlighting the adaptability of our approach in complex FL environments.

Calibration strategy validation. Our calibration Calibrat Non-IID FedAvg
. . Jo alibration Method
strategy assigns higher auxiliary penalty loss to Acct ECE| SCE|
local models that deviat £ the elobal NUCFL (DCA+L-CKA) 6205 614 3.7
ocal models thal deviate more Irom the globa NUCFL (MDCA+L-CKA) 6217 625 3.1
model, addressing global calibration needs dur- Reversed NUCFL (DCA+L-CKA) | 6036 1389 498
Reversed NUCFL (MDCA+L-CKA) | 6177 1611 687

ing local training. To validate our design, we
test an opposite logic, applying higher penalties  Table 3: Destructive experiment for our method.
to clients more similar to the global model. We

adjust the weight (3,,, for each client m to sim(§(t’1), 57(,2’6))*1. We conducted this experiment to
assess whether reversing our calibration logic affects FL performance and to validate our original de-
sign. In Table[3] we applied a reverse penalty strategy to optimal configurations of our method (i.e.,
NUCFL (DCA/MDCA + L-CKA)) on the CIFAR-100 dataset. The results show that reversed logic
degrades performance by biasing calibration towards local heterogeneity while neglecting global
needs, even performing worse than uncalibrated FL (Table [I). This confirms the soundness of our
design, which strategically prioritizes global calibration needs during local training.

Comparison with FedCal (Peng et al.,2024). We now conduct comparisons with the only existing
model calibration framework for FL, FedCal (Peng et al., 2024). FedCal bases its algorithm on
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Figure 5: Comparison of confidence calibration across different FL settings using the CIFAR-100 dataset.

FedAvg; thus, we display the calibration results of our method alongside the baseline using FedAvg
under non-IID conditions (o = 0.5) on CIFAR-100 datatset in Table 4]

For the scaler used in their work, we adhered to their de- Non-IID FedAvg

Calibration Method

. . . : Py Acct ECE| SCE|
sign, employing an MLP with layer sizes of 100-64 §4 — Acel DL SCE
100. We see that our proposed NUCFL shows superior FedCal (Peng ctal]2024] || 61.34 880 349

62.05
61.54

6.14
6.20

NUCFL (DCA+L-CKA)
NUCFL (MDCA+RBF-CKA)

3.07
3.09

performance compared to FedCal. While using a scaler
aggregated from local clients can reduce global ECE, it
may neglects the interactions between global and local Table 4: Comparison with FedCal.
calibration needs. Our method considers these interactions, minimizing local biases and better meet-
ing global calibration requirements. More comparisons using other datasets and data distribution
are available in Appendix The superiority of our method in both accuracy and calibration error
shows NUCFL’s effectiveness in complex FL environments.

Compatibility with post-hoc calibration. Temper-

: . Calibration Method Non-IID FedAvg
ature scaling (TS) (Guo et al., [2017) is one of the Acct ECE| SCE|
most effective post-hoc calibration methods, which %“ég‘- g};ﬁ 1706592 ggi
adjusts a model’s logits by a scaling factor to cali- MDCA 6103 771 329
brate confidence scores without affecting accuracy. NUCFL (DCA+L-CKA) 6205 614 3.7
Like all h thods. TS . hold-off NUCFL (MDCA+L-CKA) | 62.17 625  3.11

1ke all post-hoc methods, requires a hold-o TS (Guo et al.|2017] 6134 822 343
dataset to tune the model and learn the calibration DCAFTS 6124 700  3.03
. . MDCA+TS 61.03 729 3.1

pararpeter .(1.e., temperat}lre). H(?\yever, this need NUCFL (DCASL-CKAMTS | 6205 591 297
conflicts with the data privacy policies of FL, mak-  NUCFL (MDCA+L-CKA)+TS | 62.17 603  3.00

ing TS impractical in such settings. For this analysis,
we set aside these privacy concerns to compare with
TS, assuming that data from each client is available
at the server. Under these assumptions, we conduct
non-1ID (o = 0.5) FedAvg and sample five images
from each client to create a server dataset for post-hoc calibration. Table [5| compares train-time
and post-hoc calibration methods using the CIFAR-100 dataset. Results show TS outperforming
some train-time methods, like MDCA, while our method still provides superiority in both accuracy
and calibration error. Recall from Remark 2 that our NUCFL can also be complemented by post-
hoc methods when a holdout dataset is available for refining the global model. We apply post-hoc
calibration on the global model using TS after train-time calibration during local training. This com-
bined approach shows improved performance over train-time calibration alone. Notably, integrating
TS with NUCFL yields the best results, significantly reducing error.

Table 5: Comparison and integration with post-
hoc calibration. The results demonstrate our
method’s compatibility with post-hoc calibration.

6 CONCLUSION

We conducted one of the earliest systematic study on model calibration for FL and introduced a
novel framework, NUCFL, designed to ensure a well-calibrated global model. NUCFL measures
the similarity between client and server models and dynamically adjusts calibration penalties for
each client, addressing both heterogeneity and global calibration needs effectively. Through exten-
sive experiments, NUCF L demonstrated significant improvements over existing calibration methods,
proving its adaptability with various types of auxiliary calibration penalties and compatibility across
different FL algorithms. Our research seeks to deepen understanding of the underlying effects of
model calibration on FL, enhancing the trustworthiness of standard FL systems. Future work could
explore calibration for personalized FL settings with personalized layers, unsupervised FL settings
with dynamically adjusted calibration weighting for domain adaptation, and the use of similarity-
based weighting for other auxiliary losses to enhance FL.
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A  DETAILED SETTINGS FOR CALIBRATION BASELINES AND FEDERATED
ALGORITHMS

A.1 CALIBRATION BASELINES

We offer an overview of each compared calibration method, including the hyperparameter settings

utilized during training. Focal loss (Lin et al., 2017) is defined as FL. = — Z;N:l(l — Diy;))

log(pi,y; ), where p; ,,, is the predicted confidence score for sample ¢ and - is a hyper-parameter. We
trained models with v € {1,2}. Label Smoothing (LS) (Miiller et al.| 2019) is defined as LS =
— Zf\il Z]K:1 ¢i,; - log(pi,;), where p; ; is the predicted confidence score for class j of sample ¢,
and ¢, is the soft target vector for sample 4, such that ¢; ; = %5 if j # ys, else ¢; j = (1 —). aisa
hyperparameter set at 0.1, following established literature settings (Hebbalaguppe et al.,[2022b)). For
the Brier Score (BS) (Brier, |1950), we train using a loss defined as the squared difference between
the predicted probability vector and the one-hot target vector. For Maximum Mean Calibration
Error (MMCE) (Kumar et al., 2018)), we use the weighted MMCE, with A selected from {2, 4}, as
a regularization term along with cross-entropy. For FLSD (Mukhoti et al., 2020), we use v = 3,
reported as the best configuration in their paper. For Margin-based Label Smoothing (MbLS) (Liu
et al.l |2021), we set the margin at 10 and © = 0.1, configurations reported as optimal in their
paper. For DCA (Liang et al,|2020), we train using a loss composed of cross-entropy plus 3 - £gcq,
where (3 is a hyperparameter selected from {1, 5,10} as demonstrated in their paper. Similarly, for
MDCA (Hebbalaguppe et al., [2022b)), we apply the cross-entropy loss enhanced by 5 - £,,,4cq, With
B also chosen from {1,5, 10} as well. For all baselines, we report results that show the lowest ECE
among their hyperparameter settings in our paper.

A.2 FEDERATED ALGORITHMS

For all FL algorithms, we distributed the training data across M = 50 clients and performed 100
rounds of training. Each client conducted 5 local training epochs per round. The batch size was set at
64, and we explored learning rates within the range [1e-2, 5e-3, 1e-3, 5e-4]. For FedAvg (McMahan
et al.,|2017), clients perform standard stochastic gradient descent (SGD) updates as ClientOPT
and upload their gradients to the central server. On the server side, the global model is updated us-
ing SGD as ServerOPT with the received gradients from the clients. FedProx (Sahu et al., [2018)
introduces a proximal term during local client training as their C1ientOPT, to address data het-
erogeneity issues by preventing significant drifts in client model updates. It employs a weighted
average for aggregation and updates the global model using SGD, similar to ServerOPT in Fe-
dAvg. We set the proximal term coefficient parameter . = 1 for the proximal term coefficient in
FedProx. Scaffold (Karimireddy et al., 2019) employs client-variance reduction as its C1ientOPT
and corrects model drifts in local updates by introducing control variates. For ServerOPT, Scaf-
fold incorporates the clients’ gradients and control variates for aggregation, and updates the global
model using SGD. FedDyn (Acar et al., 2021) dynamically adjusts the local objectives by incorpo-
rating two regularizers as C1ientOPT to ensure that the local optimum aligns asymptotically with
the stationary points of the global objective. We set the parameter « = 0.1 as commonly used in
the literature, and the local model is updated using SGD. Additionally, they introduce their server
update as ServerOPT through the use of server state vectors. FedNova (Wang et al., [2020b)) uses
normalized stochastic gradients as ClientOPT to compensate for data imbalances across clients,
and then introduces a weighted rescaling process as their ServerOPT. For applying NUCFL to FL
algorthms, we provide a detail framework of our NUCFL in Algorithm[2] We run all experiments on
a 3-GPU cluster of Tesla V100 GPUs, with each GPU having 32GB of memory.

B ADDITIONAL EXPERIMENTS AND ANALYSES

B.1 CALIBRATION ON CENTRALIZED LEARNING

We present train-time calibration methods for traditional centralized training in Table [§] We train
ResNet-34 using the SGD optimizer on the entire CIFAR-100 training dataset for 100 epochs with
various train-time calibration methods. We found that most of these methods effectively calibrate in
centralized settings, maintaining accuracy and exhibiting lower calibration errors.
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Calibration MNIST (CNN) FEMNIST (CNN) CIFAR-10 (AlexNet) | CIFAR-100 (ResNet-34)
Method Acct ECE| SCE| || Acct ECE] SCE| | Acct ECE| SCEJ | Acct ECE| SCE.|
Uncal. 9713 074 026 || 9429 307 158 | 8419 553 255 || 6833 580  3.00
Focal (Lin et aL.|[2017) 97.00 070 025 || 9433 298 155 | 84.17 501 243 || 6842 566  2.88
LS (Miiller et al.J|2019} 9722 061 023 || 9451 289 153 || 8469 527 246 | 68.19 559  2.85
BS (Brier][1950 9699 070 024 | 9502 300 159 || 8423 544 253 || 6859 560  2.87
MMCE (Kumar et al.| 2018} 9723 055 020 || 9431 271 150 || 8433 487 235 | 6869 544 255
FLSD (Mukhoti et al.] 2020} 97.11 070 024 | 9411 295 154 || 8411 288 154 || 6844 569  2.88
MbLS (Liu et al.|[2021] 9755 054 020 | 9430 2.66 141 || 8429 3.66 204 || 6871 414 196
DCA (Liang et al.|[2020} 9729 052 020 | 9433 259 139 || 8420 371 205 || 6845 429 198
MDCA (Hebbalaguppe et al.|2022b) || 9422 055 020 | 9437 270 143 | 8422 382 208 | 6844 419 198

Table 6: Performance of centralized training with various calibration methods across different datasets. Train-
time calibration methods demonstrate improvements in calibration error compared to the uncalibrated (Uncal.)
model.
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Figure 6: Reliability diagrams for non-IID FedAvg (o« = 0.5) with different calibration methods
using the MNIST dataset. The lower ECE and smaller gap show the effectiveness of our method.

B.2 ADDITIONAL RESULTS OF CALIBRATION ON FL

This section explores the performance of each calibration method on different datasets and data
distributions for various FL algorithms. To ensure consistency in our experiments, most of the
configuration remains unchanged. Specifically, we set the number of clients (M) to 50 and the
total number of federated rounds (7") to 100, with each client performing 2 = 5 epochs of local
training. Additionally, the hyperparameter search space and the details for each FL algorithm are
consistent, as detailed in Appendix[A] Tables[7] [8] [9] and[T0|display the performance and calibration
metrics of various FL algorithms on the MNIST dataset across IID and non-IID conditions, with «
values of 0.5, 0.1, and 0.05, respectively. Tables [IT} [I2] [T3] and [I4] show the performance using
FEMNIST dataset across IID and non-IID conditions. Similarly, Tables[I5] [16] and [I8]present
the performance and calibration metrics of different FL algorithms on the CIFAR-10 dataset under
IID and non-IID conditions, with corresponding « values of 0.5, 0.1, and 0.05, respectively. Finally,
Tables[T9] [20] 21} and [22]show the performance using CIFAR-100 dataset across IID and non-IID
conditions. Table [26 shows the calibration results with different local epoch numbers for non-IID
(o = 0.5) FedAvg using CIFAR-100 dataset. Across these experimental results, which consider
various data distribution setups and different datasets, our generic framework NUCFL consistently
demonstrates superiority over the baseline by achieving lower calibration error. The performance
improvements of NUCFL with different configurations, such as various similarity measurements and
different auxiliary calibration losses, highlight the effectiveness and flexibility of our method.

In addition to the widely used FL algorithms introduced in Section[3} we conducted additional ex-
periments using FedSpeed (Sun et al., [2023), FedSAM (Qu et al., 2022), FedMR (Hu et al., |2023),
and FedCross (Hu et al., |2022) which are considered as the SOTA FL optimization methods. We
conducted our experiments using the CIFAR-100 dataset under a non-IID (a = 0.5) data distribu-
tion, following a setup similar to that in Table[T} For the hyperparameter of FedSpeed, we selected
A = 0.1 as the default value provided by the authors, and we selected o = 0.99 for FedCross. In
Table 25] we see that in the absence of any calibration, these advanced FL algorithms do improve
accuracy compared to FedAvg (ACC: 61.34; ECE: 10.52). However, they also introduce higher
calibration errors. By applying NUCFL to these advanced FL algorithms, we find that our approach
effectively reduces calibration error and even outperforms the SOTA calibration method in terms of
calibration results. These results also demonstrate the adaptability of our method, showing that it
can be applied to any FL algorithm to improve calibration while maintaining accuracy.
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Calibration FedAvg 1McMa.hzm et al.] 2017‘ FedProx 1Sahu et al.] 2018 Scaffold 1Ka{imireddy et al.] 2019!
Method Acc T 1 Acc T CE | Acc T 1

Uncal. 96.20 £0.41 0.88+0.15 029+0.08 | 96.17£0.52 1.04 £0.14 0.51+£0.08 | 96.41 £1.02 1.89+0.24 0.66 £0.10
Focal (Lin et al. 9523+£0.52 2714+0.18 0.66+0.10 | 97.10£0.77 485+£1.10 1.11£095 | 9628 +122 285+095 0.81+044
96.30 £0.29 8.66+ 1.88 331+0.32 | 95.11£095 749+£092 295+0.24 | 97.00+1.02 688+ 1.61 2.67+0.14
95294098 2744027 0.67+0.10 | 95.14 £033 3.71£0.10 0.76+£0.59 | 9543 +0.61 2.18+043 0.51+£0.12

MMCE 2 .12018 97.61 £0.62 4.88+020 1.14+0.11 | 9723 +£053 5.60+033 1.18+0.11 | 9477 +£1.22 1219+£0.19 3.79+£0.10
FLSD ( . 9523 +0.33 8.64+0.17 330+0.09 | 9544 +£052 9.02+023 342+0.11 | 95524024 10.60£0.25 2.08 +0.14
MBbLS . 9550+ 1.02 3.01+130 1.104+0.29 | 9561 £0.66 4.114+044 1.104+0.25 | 9631 £0.85 3.054+047 077 +0.11
DCA g;lang et al.; 2020 9643 £0.45 052+£0.08 020+£0.06 | 97.02+£0.50 0.68+£0.10 022£0.07 | 9771 £1.02 0.70£0.1T  0.23 £0.07
NUI + IUS'T] 97.10£0.52  0.49+£0.08 0.18+0.05 | 96.94 £0.77 0.59+0.09 0.1940.06 | 97.00 £ 122 0.6940.10 0.23 £ 0.07
NUCFL (DCA+L-CKA) 96.90 £0.41 044+021 0.16+0.10 | 97.07 £0.52 045+0.07 0.15+0.11 | 96.84 £1.02 0.56+0.09  0.20 + 0.06
NUCFL (DCA+RBF-CKA) 96.01 £0.52 044 +0.07 0.17+0.05 | 96.91 £0.77 043+020 0.16+0.13 | 96.93 +£122 0.53+0.08 0.21 +0.06
MDCA ‘Hebbalaguppe et al.!2022b 96.87 £0.41 0.61£0.09 024%0.07 [ 97.04 £052 085+0.13 030+£0.08 | 97.04 £1.02 092+0.14 033 £0.09
N + 97.11 £0.64 0.54+0.10 0.20+0.09 | 96.95+£022 0.56+£0.10 0.19+£0.09 | 9697 +1.00 0.61+£0.83 0.22+0.20
NUCFL (MDCA+L-CKA) 96.89 +£0.85 0.52+0.27 0.20+0.09 | 97.02+025 055+049 020+0.10 | 97.11 £1.04 0.55+0.08 0.20 £+ 0.02
NUCFL (MDCA+RBF-CKA) 97.01 £095 0554011 0.214+0.06 | 96.97 £0.57 0.64£0.14 023£0.06 | 97.54+£0.83 0.70£0.25 0.24 4+ 0.07
Calibration FedDyn char et al.] 2021 FedNova 1Wang et al.] 2020b
Method Acc T CE | Acc E |

Uncal. 9723 +£122 140+£0.69 055+0.13 | 9642+1.04 089+049 028 £0.11

Focal (Lin et al.|2017] 97.61 £0.54 4374085 1.09+0.10 | 9523+£0.92 382+094 0.80+0.09

LS (Miiller et al. ) 95.11£0.59 502+1.02 2504020 | 96.61 £0.99 1042+ 1.31 3.62+0.81

92.63 £ 1.04 8494044 0.88+0.09 | 96.10£1.00 3.13+0.17 0.70 £ 0.07

MMCE (Kumar 97.10£0.79 3.04£026 0.79+0.07 | 96.10£0.82 544 +041 1.12+£0.15

9541 £039 329+£031 072£0.11 | 9544 +041 7.63+£0.52 281£0.15

MDLS (Liu et al.. 95224092 3.09+033 0.794+0.10 | 97.07 +£085 4.17+042 1.06+0.17

DCA !Llang et al.! 2020. 9739 +£1.22 057+0.09 030+£0.08 | 97.11 £1.04 0.64+0.10 0.27 £0.07

NU + 97.61 £0.54 0.54+0.08 025+0.07 | 97.42+£0.92 0.57+0.09 0.29+0.08
NUCFL (DCA+L-CKA) 9753 £1.22 046+£0.07 0.17£0.09 | 97.18 £ 1.04 026 +0.13  0.16 + 0.05
NUCFL (DCA+RBF-CKA) 96.75 £0.54 044 +£0.07 0.7 £0.09 | 97.63+£092 029+0.05 0.17 £0.05
MDCA !Hebbalaguppe et al.!2022b 9741 £122 0.65+£0.10 028+£0.08 | 97.04+1.04 0.75+0.11 0.28 £0.08
N + 96.93 £025 051£1.00 025+£0.09 | 9699+ 1.11  0.62+022 026 +£0.10
NUCFL (MDCA+L-CKA) 97.09£025 0.50+£0.33 026+£006 | 97.14+1.00 0.54 £0.38  0.24 £ 0.09
NUCFL (MDCA+RBF-CKA) 9786 £0.61 0.55+£0.09 0.26£0.06 | 97.58£0.52  0.60 +£0.23  0.26 £ 0.10

Table 7: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under IID scenario on the MNIST dataset.

Calibration FedAvg 1McMa.han et aLI 2017‘ FedProx 1Sahu et al.] 2018 Scaffold QKarimireddy et al.] 2019
Method Acc T 1 Acc T CE | Acc T 1

Uncal. 95.02£0.41 189£0.15 0.65+008 [ 9455+£0.52 2.04£0.14 065+£008 [ 9415£1.02 454£024 1.I1£0.10
Focal (Lin et al. 9438 £0.52 4.46+0.18 125%0.10 | 93.44£0.77 417110 1204095 | 93.51 £1.22 7.65+£095 1524044
LS (Miller et al. 12019 94.53£029 800+1.88 330+0.32 | 9515+£095 391+£092 120024 | 9525+1.02 566+ 131 450+0.14
9 93.26+0.98 4.02+0.27 1.17+0.10 | 9258 £0.33 478 £0.10 1.26+0.59 | 9277 +£0.61 4.44+043 1.10£0.12
MMCE t al.[2018 9543 +£0.62 7.824+020 261+0.11 | 93.74£053 6.56+033 1.95+0.11 | 8848 +122 7.88+0.19 1.58£0.10
FLSD ( t al. 9395+0.33 846+0.17 348009 | 9229+0.52 8814023 3.88+0.11 | 9241 £0.24 738+£0.25 1.53+0.14
MbL! ] 9422+1.02 599+130 1.834+029 | 9346 +0.66 4.84+044 1254025 | 9555+0.85 620+047 241+0.11
DCA (Liang et al.}2020 9594+040 1.09+0.10 049+0.05 | 95.04 £050 1.87+£0.12 0.59+0.06 | 9542+0.60 3.75+0.08 1.08 £0.07
NUCFL (DC K+lIUST] 96.16 £0.35 0.81£0.05 034003 | 9516 +045 1.66+0.04 056+0.05 | 9570 +£0.55 291+£0.06 0.8540.08
NUCFL (DCA+L-CKA) 9597 £0.35 0.78£0.04 0314002 | 9558 £0.45 1.69+£0.05 0564003 | 9543 +£0.55 2.78+£0.07 0.8140.08
NUCFL (DCA+RBF-CKA) 96.07 £0.37  0.74+0.04 0.30+0.02 | 9567 £0.45 1.66+0.04 0.55+0.03 | 9585 +£0.55 3.05+0.06 0.87 4 0.08
MDCA ‘Hebbalaguppe et al,!2022b 9592 +£0.41 138£0.12 055006 | 9469 £0.52 193£0.14 0.62+0.08 | 9482 £1.02 326£0.15 1.04+0.09
Ni + 9580 £0.40 0.88+0.05 042+0.03 | 95.18+£0.50 1.69+0.04 057+0.04 | 9517 +0.60 3.01£0.06 0.87=+0.07
NUCFL (MDCA+L-CKA) 95.95+0.47 0.82+0.09 043+0.02 | 9561 £0.50 1.64+005 0.55+0.03 | 9499 £0.54 2.74+0.06 0.80+0.08
NUCFL (MDCA+RBF-CKA) 95.94+041 085+0.05 042+0.03 | 9458 +0.58 1.67+0.10 0.58+0.10 | 95.08 £0.75 2.83+0.06 0.68 & 0.08
Calibration FedDyn (Acar et al.| 2021 FedNova (Wang et al.2020b|
Method Acc 1 LECEH CE | Acc 1 LECEJ_II_SK]JE 0
Uncal. 96.87 =122 1.78+0.69 0.61+0.13 | 9505+1.04 154+049 0.54£0.11

Focal (Lin et z 96.78 £0.54 221+£0.85 0.77£0.10 | 9456092 4.38+094 1.10+0.09
97.80£0.59 565+ 1.02 296+020 | 9648 +£0.99 341+£131 1.94£0.81
93.68 £ 1.04 581+£044 293+£0.09 | 9296+ 1.00 3.65+0.17 1.9840.07
9648 £0.79 2.08+£0.26 0.74£0.07 | 9630 £0.82 6.75+0.41 2.57+0.15
9484 £0.39 2494031 074£0.11 | 93.93+041 557+0.52 245+0.15
95.71£0.92 3954033 1.06£0.10 | 9424 £ 085 567+042 2.8240.17
9647 £0.70 1.44£0.09 047£0.03 | 95.13£0.50 0.94 £0.08 0.48 +£0.05
96.93 £0.65 1.24+£0.07 043+£0.04 | 96.01 £0.55 0.78 £0.05 0.45+0.03

NUCFL (DCA+L-CKA) 97.07 £0.65 123+£0.06 043+£0.02 | 96.05+0.55 0.77+0.05 0.44+0.03
NUCFL (DCA+RBF-CKA) 97.03+£0.65 1314+£0.05 04740.02 | 96.00£0.55 0.85+£0.06 0.45+0.03
MDCA 1Hebbalaguppe et al.!ZOZZb 9700+ 1.22 140+0.16 047+£0.04 | 95.10£1.04 1.30£0.18 0.50 £0.07
N + 96.64 £0.70 1.334+£0.08 0.45+0.04 | 96.02£0.60 0.82+£0.06 0.47+£0.03
NUCFL (MDCA+L-CKA) 97.10+£0.77 130 £022 0.44+£0.08 | 96.50 £ 0.65 0.80+0.10 0.45+0.09
NUCFL (MDCA+RBF-CKA) 96.66 £0.70 148 4£0.05 049 £0.02 | 96.194+0.56 0.854+0.11 0.47 4+ 0.10

Table 8: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under non-IID (o« = 0.5) scenario on the MNIST
dataset. Underlined values indicate the best calibration across all methods.

(@) Uncal. (b) DCA (c) MDCA (d) NUCFL (DCA+L-CKA) (e) NUCFL (MDCA+L-CKA)
2 . 10 . B . B a B -
3 Outputs 3 Outputs 3 Outputs 3 Outputs 3 Outputs
= Gap = Gap = Gap B Gap
o8 o o o
> | ECE= 5.58 > ECE= 4.79 > |ECE= 4.88 > |ECE= 4.49 > | ECE= 4.39
O o6 Q 06 ¥ O 06 Q 6 9 6
g g g g o
3 3 3 3 3
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Figure 7: Reliability diagrams for non-IID FedAvg (o = 0.5) using the FEMNIST dataset.
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Calibration FedAvg 1McMahan et al.] 2017 FedProx QSahu et al.] 2018 Scaffold qKarimireddy et al.] 2019|
Method Acc T E | Acc T CE | Acc T 1
Uncal. 92.68 £0.35 2.96 £0.22 1.04 £0.14 | 91.26 £ 0.63 421+028 1.20+0.11 | 9200+ 1.18 6.03£0.37 1.92+£0.18
Focal (Lin et al. 90.25+0.68 7.02+£0.27 25840.15 | 91.11£095 693+£135 199+0.55 | 88.244+082 649+1.10 1.9240.35
LS (Muller et 9251 £028 428 +£2.10 2334048 | 9026 £0.85 548 +145 1.62+£0.38 | 90.84+125 926+225 4.844+0.50
90.09 £0.85 6.06+032 249+0.17 | 89.50 £ 048 558+0.25 1.68+0.75 | 90.06 +£1.05 845+0.55 3.03+0.20
MMCE 90.22+0.75 10204+035 5164022 | 9098 £0.70 828 £0.50 3.00£0.17 | 89.87 £ 1.15 7.494+028 2.61 +0.20
FLSD ( 90.57 £0.55 826024 3.0140.16 | 88.65+£0.75 6.00£040 1.70£0.20 | 90.37 £ 1.00 7.66 +0.45 2.65+0.24
MbL. 93.00£ 120 522+£1.60 1.5840.38 | 91.47+£0.90 9.60 £0.70 4.86+0.30 | 89.824+0.75 9.294+0.60 4.80 4 0.22
DCA Lmng eta 9299 £035 206018 081 £022 | 91.95£0.60 3.62+045 1.04+033[9284+£080 449+070 1.52+0.40
NUI 93.00£0.40 1454020 070£0.12 | 9207 +048 2814050 1.00+0.18 | 92.88+0.70 4.43+0.65 1.52+0.30
NUCFL (DCA+L CKA) 9241030 1.324+0.15 0.66 +0.14 | 92.12+0.55 283+0.35 1.06+020 | 9244+ 0.85 4.34+0.55 1.48+0.28
NUCFL (DCA+RBF-CKA) 93.11 £0.51 140 £022 071 £0.10 | 91.96 £0.65 2.834+0.28 1.0540.15 | 92.18 £0.75 426 £0.70 1.40 +0.35
MDCA 1Hsbbdldguppe etal. !2022b 9294 +043 253£035 0.89+025|9131£0.70 378+050 1.08+£0.28 [ 91.88+0.90 4.39+0.65 1.53+0.30
92.89+£0.38 2.00+£0.18 082+0.15| 91.28+0.60 3.05+040 1.03+0.22 | 92.04 £0.80 4.22+0.60 1.50+0.28
NUCFL (MDCA+L-CKA) 93.86 + 0.33 195+020 0.81+0.12 | 92.09£0.75 3.40+£030 1.05+0.18 | 92.17+0.85 4.13+0.50 1.37+0.25
NUCFL (MDCA+RBF-CKA) 9335+040 1.88+025 0.79+0.14 | 92.19+0.55 3574035 1.08+0.17 | 91.68 £0.95 413+0.60 1.40+0.28
Calibration FedDyn 1Acar et al.] 2021| FedNova 1V__V|ang et al.] 2020b!
Method Acc SCE | Acc T El

9424 £090 4284072 1.084+0.09 | 9430£1.12 295+035 0.89+0.13

95.03£045 7384065 261011 | 93.00£1.15 932+£0.55 4.8240.13

95.16 £1.05 10.86+1.65 5204030 | 93.15£1.18 9.00£1.70  4.80 4095

9526+0.70 9.20+047 4.83+0.13 | 89.59+0.95 423+030 1.1940.16

9336060 595+038 1.74+£0.14 | 93.88+1.05 8.89+055 4.77+0.22

N 93.37 £0.50 5.67 £0.43 1.70 £0.12 | 92.13+0.85 1097 £0.65 5.21 £0.27

F 021 9152+0.85 4.16+050 1.06+0.14 | 94.84 4+ 130 4.21+0.75 1.12 £0.25

DCA !Ll‘mg et dl ! 2020' 9525+£0.50 3.18 £0.28 1.02£0.15 | 93.84 £0.95 187 +£0.38 0.79+0.18

95.08 £0.65 2574033 0874022 | 94854+080 1.61+028 0.75+0.14

NUCFL (DCA+L-CKA) 9430+ 045 241+025 0.86+0.17 | 94.00+090 140+022 070 +0.12

NUCFL (DCA+RBF-CKA) 95.69 £0.55 2.50+030 0.89+0.14 | 93.37 £ 0.85 1.52+025 0.734+0.13

MDCA 1chbalaguppc et al,i2022b| 9508 £0.65 3.13£038 1.024+020 | 9374 £1.00 277+£042 0.86+0.24

N + 9437 £0.55 2854035 1.00+0.18 | 9523 £0.90 245+£0.30 0.82+0.13

NUCFL (MDCA+L-CKA) 9433 £045 2.84+£028 1.01£0.15 | 9436 £095 239+£0.25 0.80+0.14

NUCFL (MDCA+RBF-CKA) 94.824+0.60 2514040 0.83+£022 | 93.68+1.05 243+028 0.80+0.12

Table 9: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under non-IID (o = 0.1) scenario on the MNIST
dataset. Underlined values indicate the best calibration across all methods.

Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold (Karimireddy et al.] 2019
Method Acc E | Acc CE | Acc 1
8751 +£045 622+022 1.83+0.15]87.02£060 6.60+030 222+025] 8820+0.80 1096050 3.53£035
8795+ 155 10434+0.35 3.50+020 | 84224+0.70 11.26+£095 3.73+£025 | 83.504+0.85 837+1.65 3.04+0.88
8648 £191 11.62+1.15 391 +£092 | 83.52+0.69 749+1.77 268+088 | 8489+ 1.11 1457+ 1.85 4.64+0.79
8336 +£0.85 5654056 1.72+035 | 87.96 £ 1.15 1044+ 1.61 3.64 £0.99 | 8821 +1.55 19.55+£292 7.53+1.05
88.99 £ 1.65 1218+ 143 4.04+0.77 | 8632+ 1.83 11.74+096 3.75+£0.72 | 86.48 +1.29 14.33£238 4.61 £0.67
8542+0.77 9284106 348+045 | 8552+1.05 10.11£185 3.60+055 | 8673+1.35 11.03+1.11 3.69+0.78
68.96 £ 1.81 1327+ 1.55 451£040 | 8766+ 1.19 11.59+157 3.75+0.89 | 89.734+£2.25 18.66+279 7.05+1.25
8848 £ 1.15 583+0.80 1.75+022 | 87.30+0.99 5.68+0.35 1.72+0.28 | 88.69 = 1.01 922+£0.72 344£037
88.00+0.71 538 +£0.25 1.69 £028 | 8800+ 1.11 5.03+022 141+077 | 8882+1.33 8.69+0.77 3.29+037
NUCFL (DCA+L CKA) 87.70 £ 1.14 520+0.72 1594022 | 87.33+1.05 5.05+0.17 141+024 | 88.71+1.13 855+035 3.23+0.20
NUCFL (DCA+RBF-CKA) 88.79 £ 1.03 520+ 1.22 1.61 £0.87 | 88.14+1.19 511+020 147+0.79 | 89.01 £1.03 8.52+0.61 3.23+0.61
MDCA (Hebbalaguppe et al.{2022b 8836+ 1.60 5.41+0.79 1.72+£025 | 88.13+1.95 5.84+0.81 1.77+0.67 | 8852+ 1.15 9.51+£0.75 3.47+030
l]( FL (MDCA+C Ué 8820+ 121 5304071 1.67+£029 | 8829+ 121 521+0.67 1.60+£029 | 88.64+1.09 8.67+082 3.28+0.29
NUCFL (MDCA+L-CKA) 8733 £1.03 5334064 1.68+£039 | 8751140 511+£032 149+£0.09 | 8860+ 1.10 8.52+035 3.224+0.22
NUCFL (MDCA+RBF-CKA) 88.15+£0.96 5274032 1.66 +£0.15 | 88.00+1.03 538+020 1.70+£0.12 | 8843 +1.00 8.69+£0.61 327+0.18
Calibration FedDyn char et al.] 2021 FedNova 1Wang et al.] 2020b;
Method Acc T CE | Acc T - E |

8851 +£0.70 7.52+0.40 2.67+028 [ 8.11+090 9.68+0.18 3.49+0.22

8749+ 165 924+0.77 346+093 | 87.23+0.81 10.74£0.50 3.50 £0.27

8695+ 185 720+038 265+032 | 8584+120 831+0.77 327+0.92

84.05+£095 685+055 235+£033 | 87.29+1.70 9.79+128 349044

87494+ 1.74 948 +122 3504092 | 8848 £1.10 11.904+0.65 3.84+0.69

8586+ 1.10 6.97+044 2374031 | 86.00+£139 10394+280 3.46=+1.50

88.404+0.95 9.05+140 3434092 | 8747+143 10.62+1.55 3.51+0.82

8852+ 083 6.95+£039 237+£025|8.97+1.00 8.09+£039 3.09+0.13

89.00+0.99 648+028 230+£0.18 | 8929+ 1.11  7.66 £0.20 2.66 4+ 0.73

NUCFL (DCA+L CKA) 8871 +1.23 639+1.03 2274082 | 89.50+0.61 7.79+1.02 272+0.68

NUCFL (DCA+RBF-CKA) 88.90+0.99 6.23+£0.73 2254048 | 88.92+0.61 697+072 245+0.17

MDCA QHebbalaguppe et al.!2022b 80.03 £ 125 626+0.77 221+£049 [ 8860+123 8I2£1.05 3.09+0.49

Ni + 88.90 £1.29 591+0.68 179+0.39 | 89.76 £1.29 7.61 £0.68 2.67+0.23

NUCFL (MDCA+L-CKA) 89.09 £124 588+049 179+0.18 | 90.07 = 1.15 755+0.66 2.64+0.37

NUCFL (MDCA+RBF-CKA) 88.76 £ 0.67 5.88+1.28 1.80+044 | 89.73+133 741+0.76  2.60 +0.09

Table 10: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under non-IID (a¢ = 0.05) scenario on the MNIST
dataset. Underlined values indicate the best calibration across all methods.
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Calibration FedAvg (McMahan et al. 201 7‘ FedProx (Sahu et al.{2018] Scaffold (Karimireddy et al./2019
Method Acc T 1 Acc T CE | Acc T 1

Uncal. 9248 £0.23 4.10+0.15 1.66+0.08 | 93.07£027 449+0.16 1.77£0.07 [ 91.77+032 428 £0.19 1.66£0.10

Focal (Lin et al. 91.06 £0.28 4.734+0.17 1.98+0.11 | 91.51 £0.44 5.18£0.14 255+0.07 | 90.854+0.24 564 +0.04 2.73£0.05
LS (Miiller et al. 90.39+£0.32 398+£0.17 1.65+£0.19 | 9296 +0.26 6.33£0.22 3.16£0.17 | 90.61 £0.66 4224+ 0.61 1.66+0.29
9211 +£031 511+£030 2554029 | 93.01£0.32 6284032 3.17£0.19 | 90.00 £0.19 6.08 +0.44 3.00 +0.29

MMCE . 92.15+£0.30 498+£029 252+0.17 | 91.16£0.38 3.894+0.29 1.65+0.11 | 92.75+£0.27 690+0.19 3.52+0.11

FLSD (Mukhotr et 91.47£033 326+£029 144£005 | 92234£028 5934019 2.78£0.10 | 90.41 £0.30 6.31£0.18 3.17£0.11
MbLS {Liu et al.|202T] 92.11+0.25 4614021 1.704+0.19 | 92.00 £0.29 4.98+032 2.52+0.19 | 90.55+044 430+0.32 1.68 £ 0.08
DCA%?] 92.54+0.23 400+0.14 1.63+0.09 | 93.40£025 428+0.15 1.65+0.11 [ 91.45+024 422+023 1.64£0.10

NU + 92.67+0.21 3554+0.11 1.51+0.06 | 93.16 £0.22 3.81£0.13 1.60+0.09 | 92.10+0.24 4.11+022 1.60+0.14
NUCFL (DCA+L-CKA) 92.39+£0.22 349+020 146+0.11 | 93.06 £023 3.70£0.14 1.55+0.11 | 9273 +0.24 4.16+£0.15 1.61 £0.13
NUCFL (DCA+RBF-CKA) 9258 £0.11  3504+0.17 14940.11 | 93.11 £036 3.70 £0.25 1.56+0.18 | 9281 £049 4.12+025 1.61 £0.14
MDCA 1Hebbalaguppe et al.iZOZZb 93.05+0.17 396+0.12 1.63+0.10 | 93.36 £0.24 430£0.13 1.66 £0.10 | 9203+ 0.23 420+0.16 1.63+0.11
N + 9259 +£028 378 +£0.30 1.60£0.15 | 93.14+024 4.0440.12 1.63+0.06 | 9202+£0.19 4.12+£022 1.60+0.14
NUCFL (MDCA+L-CKA) 9257+£021 370+£025 158+0.13 | 93.124+0.55 3.87+041 1.60+£0.21 | 92.13+024 410+020 1.61+0.13
NUCFL (MDCA+RBF-CKA) 92.65+£0.11 3.61+£0.12 1.53+£0.09 | 9321 £0.17 4124025 1.61£0.11 | 92.14 £ 031 4104+ 0.14  1.60 + 0.08

Calibration FedDyn (Acar et al.; 2021 FedNova 1Wang et aLJ 2020b;
Method Acc CE | Acc T E

9253 +£025 513+£0.8 255+0.09 [ 9291+£031 475+£0.17 2.3840.08
91.63 £0.27 6.08£024 3.03£0.11 | 91.33£042 475+£027 239£0.19
91.84 £0.28 6.88+£0.17 348+0.19 | 91.13£0.37 540£0.16 2.60+0.11
9140 +£0.61 5234021 25740.17 | 91.44 £0.71 4.81+£032 240+£0.19
9330+049 7734042 385+0.14 | 9244 £0.61 596 +0.68 3.03+0.37
9240+0.27 5034+0.16 2324+0.08 | 91.95+£0.40 4.94+£033 244+0.19
91.60+£0.30 5.1840.32 25640.17 | 92.00 £0.55 4.88+042 241+£0.17

DCA {Liang et al.| 2020 9300 £027 460L£0.16 230 L0.13 | 93.06 £026 425017 1.68L0.13
NU(!l—'lmjr:rucsr]ar 9308 £035 4384029 1.67+0.17 | 9326023 4144030 1.59+0.17
NUCFL (DCA+L-CKA) 9287026 4224027 164+0.15 | 93.06+£024 4.03+027 154+0.11
NUCFL (DCA+RBF-CKA) 93.09£027 4254019 1.65+0.11 | 92994025 415+0.17 158+0.10
MDCA (Hebbalaguppe et al.|[2022b] || 92.70 £0.26 4.77 £ 0.14 238 £ 0.08 | 9289 £ 025 437 £0.13 1.66 £ 0.09
N%'CFL‘FM'UCTCU!—*— H 9325+0.09 4414014 1684009 | 93.06+£022 4214022 1.64+0.10
NUCFL (MDCA+L-CKA) 92.87+026 4294024 1.65+0.11 | 9285+£0.07 4174009 1.62+0.09
NUCFL (MDCA+RBF-CKA) 93.00 £0.15 4364022 1.66+£0.10 | 9292 £0.19 422£0.13  1.64+0.07

Table 11: Accuracy (%), calibration measures ECE (%), and SCE (%) of various FL algorithms with different
calibration methods under IID scenario on the FEMNIST dataset. Underlined values indicate the best calibra-
tion across all methods.

Calibration FedAvg (McMahan et al.. 2017! FedProx (Sahu et al.{2018] Scaffold (Karimireddy et al./2019
Method Acc T 1 Acc CE | Acc T 1

Uncal. 9095 +£0.64 417+£1.04 166+072 | 9145+£1.17 461+£1.03 1.95£099 [ 91.28+129 502+1.19 2.51+088
90.63 £0.98 477 £1.30 196+0.75 | 90.00+1.29 5394143 2774105 | 91.13£1.66 538+£127 272+1.04
91.07+£123 375+£1.72 1.62+1.02 | 90.37+1.38 452+ 1.14 1.90£1.04 | 91.33+£1.75 5184+ 1.08 2.64 +0.99
9148 £0.88 5.19+124 265+0.83 | 90.98+£1.00 542+£095 280+£0.61 | 88.72+ 1.11 4194143 1.81%1.06
90.22+ 1.11  485+1.23 230+1.05 | 90.12+1.32 4.01 £2.04 1.79+1.38 | 91.44+133 507 +£1.68 2.55+1.21
90.02 £ 1.37 493+£128 295+0.74 | 90.39+£1.25 499+1.38 2.04£1.06 | 92.88+£0.84 519+ 1.14 2.58+092
90.62+1.59 4274+1.03 1994080 | 91.49£1.56 4.79+1.50 1.94+0.84 | 9287 +1.64 539+135 2.60=+091
91.84 £1.06 3.61+£092 152+0.53|92.03£1.04 425+£058 1.61+£0.69 [ 9204+130 444+108 1.82+0.88
9177+ 1.02 352+£0.79 149+045 | 91.95+1.28 3.61+1.04 135+£096 | 9242+ 1.02 439+137 1.77+1.08

NUCFL (DCA+L-CKA) 91.63+0.95 3.52+0.88 147+0.61 | 92.10£096 3.60 +£0.88 1.30+0.85 | 92.19+0.95 4.09+0.83 1.60 + 0.65
NUCFL (DCA+RBF-CKA) 91.74+1.15 349+1.00 140+0.78 | 91.99+1.23 3.77+1.04 135+1.03 | 91.74+133 415+129 1.62+094
MDCA ‘Hebbalaguppe et aLiZOZZb 91.64+£085 375+1.29 153+095|92.17+133 442+139 205+1.06 | 9295+138 461+129 1.90+£1.07
N + 9129+095 3.61+120 144+1.04 | 91.95+1.00 395+1.29 1.77+093 | 93.07+1.19 414+122 1.62+0.57
NUCFL (MDCA+L-CKA) 9197+ 1.06 328+ 1.11 128+093 | 9220+1.20 3.88+1.04 1.51+1.22 | 9277+133 420+129 1.80+1.08
NUCFL (MDCA+RBF-CKA) 9135+ 1.13 3564099 1404+0.61 | 9221 £095 4.00+1.33 1.77+1.16 | 93.04 +1.52 4194163 1.79 £ 1.05
Calibration FedDyn %ﬂ# 2021 FedNova 1\_\’;&%:;1]@);%
Method Acc 1 CE | Acc T E |

Uncal. 9275+ 1.56 524+122 260+1.03 | 9222+£1.00 4.92+095 244+0.61

Focal (Lin et al.}2017 91.15+1.07 584+1.05 2914+0.84 | 91.13£1.20 539+149 2.63+092

LS (Muller et al.. 93.08+1.90 5.19+1.65 2.63+1.01 | 9204+ 1.11 495+132 246=£0.85

T1Er. 9139+ 124 5374098 2.62+086 | 90.38 £1.33 465152 1.92+1.04

MMCE (Kumar et al.}[2018 92.114+143 493+129 249+1.00 | 91.35£1.59 508 £1.29 249 +0.96

FLSD (Mukhoti et al. 9206 +1.69 5444+177 275+1.24 | 9039 +1.71 461£133 192+1.06

MbL! 1u et al. 92.06+1.69 5444177 2754+1.24 | 9039 +1.71 461+133 1.92+1.06

DCA (Liang et al. {2020 93.08+1.44 461158 1924106 | 9237+1.35 431+1.24 1.71+091

NU + 9322+ 1.11 420+125 1.654+0.93 | 92.25+1.04 4.13+095 1.68+0.74

NUCFL (DCA+L-CKA) 9345+096 422+ 1.14 1.65+0.69 | 9233 +£1.22 4.02+1.09 1.54+0.83

NUCFL (DCA+RBF-CKA) 9295+ 1.61 434+133 1754+1.10 | 9241 £1.15 4.11+1.03 1.68+0.65

MDCA 1Hebbalaguppe et al.!ZOZZb 93.19 £ 1.07 471+£094 193+0.75 | 92.05+£128 4.62+1.14 1.82+£085

Ni + 93.11+1.64 431+122 1754099 | 91.99+1.22 428+0.98 1.67+0.59

NUCFL (MDCA+L-CKA) 93.11+1.64 431+122 1754099 | 91.99+1.22 428+098 1.67+0.59

NUCFL (MDCA+RBF-CKA) 93.04+123 440+135 1.80+1.05 | 9239+095 4.17+093 1.67+0.85

Table 12: Accuracy (%), calibration measures ECE (%), and SCE (%) of various FL algorithms with different
calibration methods under non-IID (a = 0.5) scenario on the FEMNIST dataset. Values in boldface represent
the best calibration provided by our method for the auxiliary calibration method, and underlined values indicate
the best calibration across all methods.
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Calibration FedAvg 1McMa.han et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold QKarimircddy et al.] 2019
Method Acc T “CE 2 ) Acc T ~CE CE | Acc T “CE =]

8891 £0.53 558+£022 283+035]88.67+£047 573£0.16 279£0.10 [ 90.07 £0.62 6.67+0.24 3.40£0.17
89.71+£0.48 6.89+0.33 3.51+0.22 | 89.06£052 6.13+£0.17 3.06+0.09 | 89.254+0.57 7.71 £0.30 3.84 £0.17
88.89 £0.45 6.14+0.17 3.06+0.15 | 87.51 £0.49 649+£0.19 3.33+£0.26 | 90.11 £0.55 837 £0.66 3.41+0.30
89.99 £0.52 826+0.23 339+0.17 | 90.51 £0.56 5.73+0.58 2.77+0.24 | 87.53+0.47 623+0.34 3.10+0.22
89.65+0.92 8.134+£0.78 335+044 | 88.66 £092 8.06+040 3.30+0.21 | 9025+ 1.08 7.15+0.82 3.05+0.39
86.97 £0.67 5414+033 261+023 | 89.73£0.71 9.09+£032 349+0.19 | 9091 £0.71 8.46+0.30 3.36+022
86.93+£1.09 7394077 3594039 | 8943 +£098 7.62+041 3.824+0.32 | 89.054+0.77 824+021 3.39+020

DCA gL ang et al. 2020 89.04 £0.57 479+£022 198+0.14 | 89.90£0.61 491+£023 251£0.15 | 90.16 £0.64 6.08 £0.24 3.00+0.17

NU + LUS'T] 90.01 £0.72 450+£0.34 1.77+£0.19 | 88.86 £0.88 4.62+0.39 1.72£0.25 | 90.80 £0.71 586+ 0.41 2.69 +0.29
NUCFL (DCA+L-CKA) 89.89 £0.53 449+£0.19 1.77£0.12 | 88.99£0.57 4564020 1.69+0.11 | 90.23 £0.60 5.61 £0.39 2.66 £ 0.20
NUCFL (DCA+RBF-CKA) 89.07 £0.61 438+025 1.71+0.14 | 89.61 £0.58 4.77+£0.22 1.88£0.12 | 90.31 £0.61 5704023 2.68 +0.14
MDCA ‘Hebbalaguppe et al,!2022b 89.18 £0.37 4.88+022 234+0.13 | 88.88£0.58 4.87+024 250+0.15 | 91.03+0.60 595+026 2.98+0.16
N + 89.03+1.00 4444039 1.78+0.28 | 88.74 £091 4.77+£0.67 1.90+£0.32 | 90.524+0.55 579+033 2.67=+0.18
NUCFL (MDCA+L-CKA) 89.11+£0.78 4.39+0.61 173+0.30 | 88.96 £0.51 4.61 £022 1.72+£0.23 | 9047 £0.54 5.67£023 2.66£0.14
NUCFL (MDCA+RBF-CKA) 88.99 £0.48 4.874+0.21 23540.15 | 89.91 £0.52 4.58+022 1.69+0.13 | 90.84 +£0.53 5.67 £0.24 2.65+0.14

Calibration FedDyn (Acar et al.| 2021 FedNova (Wang et al. [2020b
Method Acc 1 CE | Acc T I—mle 1

Uncal. 89.03+0.58 6.02+0.23 3.00+0.17 | 89.56 £0.51 5.88+022 2.76+0.19
Lin et 89.134+£0.30 8484022 3454020 | 89.42+049 6.12+£0.30 3.07+0.21
88.34+£0.53 9.03+044 350+023 | 88.63+0.50 7.574+0.25 3.2040.10
88.90+£0.71 738 +£0.33 3.59+0.14 | 88.94+048 743+025 3.61+0.14
88.80 £ 1.57 790+ 1.01 333+£049 | 8894+ 1.05 7.11+£0.77 3.04+0.39
88.90 £0.57 7.18 £0.24 3.05£0.13 | 8745+ 1.04 6.09+£0.88 2.9940.39

Focal

iuctal. 8810080 7334037 359+0.11 | 8674091 5.14+041 2,60 +0.29

DCA (Liang et al.|[2020 9020 £0.66 572025 277£0.16 | 90.11£0.59 500£022 245L0.14
NUélﬂUCK_!!UST]+ 90.10+0.56 5334022 258028 | 90.96 £ 0.54 4.79+040 2.00 % 0.39
NUCFL (DCA+L-CKA) 89.37+0.77 5074023 255+0.14 | 9057+ 1.39 4.62+089 197 +0.30
NUCFL (DCA+RBF-CKA) 89.59+0.63 5404039 2614028 | 90.19+£1.01 480+072 1.99+0.31
MDCA {Hebbalaguppe et al.J2022b] [ 90.10 £ 0.62 5.81 £0.25 2.79 £ 0.14 | 90.03 £057 527 £0.23 250 £ 0.12
N!]?FU'IVI'D'CA_CUA F] 90.03+ 058 5454049 2.63+020 | 9036+0.71 515+069 2.50 +0.30
NUCFL (MDCA+L-CKA) 90.57+1.56  5.66+ 1.24  2.69+0.70 | 89.62+0.33 4.93+022 2.05+0.19
NUCFL (MDCA+RBF-CKA) 8930+ 071 5734038 2704029 | 89.66 £ 0.53 4.69+031 1.99 +0.09

Table 13: Accuracy (%), calibration measures ECE (%), and SCE (%) of various FL algorithms with different
calibration methods under non-IID (o« = 0.1) scenario on the FEMNIST dataset. Underlined values indicate
the best calibration across all methods.

Calibration FedAvg (McMahan et al.;2017 FedProx (Sahu et al./2018] Scaffold (Karimireddy et al. 2019
Method Acc T E | Acc T CE | Acc T 1

Uncal. 86.98+£0.92 878+028 349+0.18 | 87.57+£1.01 7.03+£0.32 3.68+0.17 | 87.17£095 9.73+0.35 3.70+0.19

Focal (Lin et al. 84.71 £ 1.10 10.09£0.77 3.55+028 | 86.06+1.26 9334+0.77 3.42+0.69 | 87.25+£1.00 11.994+0.36 4.35+0.25
LS (Miiller et al. 8489 £091 834+£039 3354022 | 87.01+£097 8.69+033 3494029 | 8691092 9.67+033 3.714+0.11
50! 8599 +£095 946+£034 3444020 | 8651 +£1.03 893+£0.88 3.44+037 | 86.53+£0.89 9434027 3.69+0.16

MMCE . 86.65 £ 1.01  933£047 3434039 | 85.66+0.88 626+0.57 3.08+0.19 | 87.25+0.94 1335+0.32 4.52+0.19
FLSD (Mukhot: et 8597 £0.88 9.61 £0.35 3474023 | 8673091 929+£029 342+0.17 | 87.91£1.79 14.66 £ 146 507 £0.72
MbLS {Liu et al. 8593 £0.77 9.59£0.66 3.514028 | 8643 £1.22 882+£0.61 347+032 | 86.054+1.33 1044 £0.72 3.81+0.38
DCA ngang et al,! 2020 87.14 £ 1.04 839+£024 341+0.11 [ 8740+1.22 6.13+049 3.06+0.31 | 88.05+£1.12 9.08+0.44 3524031
NU + 87.07+1.02 8.02+026 330+0.17 | 88.16+1.25 5964033 3.01+0.21 | 87.80£1.07 879+0.61 3494044
NUCFL (DCA+L-CKA) 86.89 £1.24 7.84+£071 327+033 | 87.56+1.04 5.06+029 254+0.17 | 87.23£1.34 851+0.72 3454031
NUCFL (DCA+RBF-CKA) 8693 £1.05 780049 3254022 | 88.11+121 509+046 2.53+025 | 88.31+1.03 84740.66 3.46 +0.29
MDCA 1Hsbbalaguppe et al.iZOZZb 87.07+£1.12 822+£058 334+035| 89.06+1.15 6284038 3.08+0.11 | 8823 £1.18 8.99+043 3.51+0.27
N + 87.03 £1.10 820041 3364027 | 8874+ 1.14 571+£038 2794026 | 87.52+£1.33 859+087 3454041
NUCFL (MDCA+L-CKA) 8711 £ 133  799+£092 3304061 | 8796+ 142 534+£091 270+£0.33 | 8747+1.00 8.61+0.76 3.46+ 041
NUCFL (MDCA+RBF-CKA) 8739 £ 131 787£0.61 3254044 | 8801 £1.14 5294041 2.67+£029 | 87.844+ 131 8.654+041 347+0.28

Calibration FedDyn (Acar et al. 2021| FedNova (Wang et al. 2020b!
Method Acc T SCE | Acc T E

88.03+£1.08 10.51+£0.33 3.66£0.21 | 87.56+1.02 9.08£0.30 3.50=£0.18
87.13+1.03 11.28£0.77 3.69£0.39 | 83.00 £0.94 1292049 447 £0.35
8834+ 144 1523 £1.31 5.16£0.72 | 83.63+£0.98 10.77£0.33 3.69 £0.25
87904+ 0.97 1258 £0.54 445+£021 | 86.944+0.94 10.13£028 3.64+£0.15
8780+ 1.19 1510+£048 5.13+£022 | 87.11+1.03 1331£0.73 4.52+0.49
86.90+0.94 9.07+0.53 3.52+£034 | 8645+ 1.12 1029 +£049 3.65+0.30
87.16 £ 1.07 1553 £0.61 5.17+£032 | 85744+ 0.82 14.84 £0.30 5.06 £0.29
8870 £ I.11  892+£041 345+0.19 | 89.06+1.08 8.60+042 3.47+£0.29
88.10+1.09 853+£041 341+£030 | 87.96+1.06 849+0.30 3.41+£0.18

NUCFL (DCA+L-CKA) 8837+ 1.09 787+024 326+0.11 | 87.56+1.03 838+£047 339+£0.22
NUCFL (DCA+RBF-CKA) 8859+ 1.10 8.60+£0.57 341+£044 | 87344122 830+0.17 3.37£0.09
MDCA 1Hebbalaguppe et al.!2022b| 88.10 £ 1.16 9.18 £044 354£0.31 | 87.73+£ 133 867+£0.69 347042
NI + 88.11+£1.00 875£049 349£032 | 8.00+124 755+£061 3.27+£0.35
NUCFL (MDCA+L-CKA) 88.07+1.13  8.66+0.52 3.42+£0.29 | 8759+ 123 7.51+0.61 328+0.39
NUCFL (MDCA+RBF-CKA) 8830+ 1.29 883+044 350+031 | 8796+124 7.80+0.39 3.33+0.22

Table 14: Accuracy (%), calibration measures ECE (%), and SCE (%) of various FL algorithms with different
calibration methods under non-IID (a = 0.05) scenario on the FEMNIST dataset. Underlined values indicate
the best calibration across all methods.
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Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold qKarimireddy et al.] 2019
Method Acc T E | Acc T CE | Acc 1

Uncal. 8023 +£1.23 7.60+£053 270+031 | 81.52+0.87 941+£0.72 352+£026 | 8127+1.09 691+082 235+041

Focal (Lin et al. 79.46 £ 1.14 1079 £0.42 3.51+£028 | 77.37+£1.09 12.74+£099 4.76+023 | 80.78+1.26 836+0.72 3.05+£0.49

LS (Miller et 4 79.78 £1.20 830+£051 3.03+£041 | 79.084+1.05 9.38+093 353+£032| 7925+142 949+085 3.55+0.50
7690 £1.32  527+£049 1644035 | 77.97+£1.07 882+£0.64 3.134£034 | 7854+128 632+£0.75 233+£045

MMCE . 7949 £1.07 9.82+£041 3504033 | 7854091 869+£0.74 3104022 | 7926+ 1.16 10.61£0.73 3.52+£042
FLSD ( 7976 £ 125 9.52+£0.61 3444043 | 80.01 £ 141 1146082 3.79+0.54 | 80.11 £1.00 943 +£0.69 3.55+045
MbL. . 81.73£2.12 11.17£0.65 3.834+0.40 | 7930 £ 1.03 1001 £0.61 349£0.29 | 79.57+ 124 9.11+£0.82 3.46+£0.52
DCA (Liang et al.. 8033 +£1.09 637+£047 191+£034 | 8251+1.12 735+£064 2.61+£025]|8023+1.20 502+083 1.49+044
NU 8035+ 1.19 575+048 1754028 | 81.66+0.95 671050 230+039 | 81324+ 1.14 492+0.77 1.49+0.31
NUCFL (DCA+L-CKA) 81.05+1.01 577+£050 1.75+0.34 | 79.66+1.13 629 +051 1.88+028 | 80.924+1.00 4.66+0.81 1.34 +£0.48
NUCFL (DCA+RBF-CKA) 8048 £ 1.11 5.64+£068 1.71+029 | 81.55+1.12 6.64+1.22 228+052 | 81.63+1.26 4.65+092 1.35+0.66
MDCA 1Hebbalaguppe et al.!2022b 8140 £ 1.14 694+£059 237+033 [ 8202+1.24 7.84+054 297+041 | 8141+132 633£081 229+048
N + 80.80 £ 1.12  6.19+£0.64 185+028 | 81.41+£1.03 7.07+£054 2.61+£030 | 81.92+1.18 577+£0.76 1.72+£0.51
NUCFL (MDCA+L-CKA) 8037 £1.04 538+0.52 1.68+031 | 8200+ 1.08 6.79+£0.56 2294029 | 81.22+121 535+£0.82 1.68+£0.50
NUCFL (MDCA+RBF-CKA) 8122+ 1.61 558 £0.51 1.70 4030 | 81.70 £ 1.33  6.67 £0.92 2.26+0.71 | 81.69+091 526+0.78 1.65+ 049

Calibration FedDyn (Acar et al. 2021| FedNova (Wang et al. 2020b!
Method Acc SCE | Acc T El

81.05+ 139 9.11+£0.64 347+053 | 81.69+1.11 10.88+£0.72 3.52+0.21
7991 £1.31 10.124+0.52 3494032 | 80.37 £1.13  13.61 2093 4.54 4+ 0.63
80.49 £ 1.15 11.20£0.62 3.77£0.65 | 79.63 £ 1.08 13.37 £0.84 4.50£0.43
7941 £1.19 11.874+091 3.854+0.64 | 77.06 £1.05 9.04£0.71 3484023
79.03 £1.02 12.60 £0.54 4.77+051 | 8022 £1.13  11.024+0.81 3.88+0.28
80.09 +1.28 12.88£0.65 4.80+£0.53 | 7850+ 1.31 13.54 £1.21 4.51+£0.71
79.65£1.14 11.094+0.54 380045 | 81.47+£1.07 1463 +0.75 4.74£0.25
8140+ .11 7.83+£059 2.66+041 [ 81.39+1.04 9.11+£071 3.49+£0.29
81.64+£0.92 6.62+£0.55 227+£026 | 81.74+1.00 866+091 3.10£0.19

NUCFL (DCA+L-CKA) 80.89£0.90 6.08+0.81 1.82+039 | 81.47+1.08 7.79+£0.62 2.67£0.28
NUCFL (DCA+RBF-CKA) 80.76 £ 1.07 6.16+0.54 1.84+£0.36 | 82.04 4097 7.29+0.61  2.65+0.30
MDCA %}%W%%iml 8112+ 1.15 816+£0.68 3.00£1.03 | 81.88+129 9.07+£0.77 348+£0.33
N + 8159+ 1.15 720+£0.82 254+£040 | 8205+ 1.11 881 +£0.53 329+£0.27
NUCFL (MDCA+L-CKA) 8091 £0.84 696047 239+£0.38 | 8136+ 1.12 7.13+£0.93  2.63 £0.41
NUCFL (MDCA+RBF-CKA) 8098+ 1.11  7.14+1.22 253+061 | 81.56+0.88 7.72+0.57 2.94+0.25

Table 15: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated opti-
mization methods with different calibration methods under IID scenario on the CIFAR-10 dataset.
Underlined values indicate the best calibration across all methods.

Calibration FedAvg (McMahan et al.|[2017 FedProx (Sahu et al.{2018] Scaffold (Karimireddy et al./2019
Method Acc E | Acc CE | Acc 1

7883 £1.05 9.69+£0.65 3504040 | 7927+ 1.12 936+£0.54 349+034 ] 79.19+£1.09 1099£0.59 3.55+£0.37
7424 £1.08 13.81 061 4714038 | 78.02+ 1.11 10244071 3.54+044 | 77.00 £ 1.07 11.37+£0.54 3.56 £0.35
7710 £ 1.10  10.04 £0.57 3.554035 | 77.42+£1.09 1471 £0.65 472+£0.38 | 77.54 £ 1.12 1444 £0.51 471 £0.22
7850 £1.09 10.87+£0.55 3.584034 | 7834+ 1.13 1026+ 1.17 3.56+0.88 | 76.40 £ 1.22 838 £0.58 3.06 £0.35
7472 £133  740£1.22 2714036 | 8039 £1.07 1427+£1.03 4.73£051 | 7653 £1.09 9.03£1.00 3.42+0.61
78.15+£1.10 1408 £ 1.11 479 +0.88 | 78.57 = 1.80 1429+ 0.60 473 £0.36 | 75.66+0.77 7.37+£0.81 2.65+0.33
79.07+£0.81 1370 £0.89 4.80+0.61 | 7846+ 1.13 1131 £0.66 3.56+041 | 79.18 & 1.10 13.67 £0.93 4.87 £0.61
78.84 £ 1.18 845+058 3.11+£046 | 80.11+£1.24 9.10+£054 345+034 [ 79.12+1.29 923+£053 3.50+£0.34
79.09+£1.00 740+£046 2724032 | 79.13+£091 871+£0.66 343+£023 | 7933+1.14 874+£049 336+£025

NUCFL (DCA+L-CKA) 78.66 £ 1.13  7.06 £0.66 2.60 £0.41 | 7996+ 1.12 8.66 £ 0.66 3.39+0.39 | 80.54+9.15 843+1.00 3.11+£035
NUCFL (DCA+RBF-CKA) 79.94+1.29 8.03+045 3.03+0.30 | 80.90+1.00 890+043 3454029 | 7931+1.14 811+099 3.06+0.54
MDCA ‘Hebbalaguppe et aLiZOZZb 7892+ 1.07 844+1.05 3.11+082 ][ 7942+1.12 886+0.60 340+035] 79.66+1.10 10.20+0.67 3.55+0.40
N + 78.67+1.19 7.63+089 2.73+0.63 | 80.17+ 091 8.67+047 338+029 | 80.56+0.88 9.80+0.61 3.48+0.22
NUCFL (MDCA+L-CKA) 79.14+1.29  696+051 2524031 | 7994+ 1.11 842+071 333+£022 | 79.77+1.02 937+049 344+035
NUCFL (MDCA+RBF-CKA) 79.08 +£1.09 6.95+054 2514022 7993+1.02 7.99+044 3.08+029 | 80.024+ 1.11 9.61 £0.52 347 +0.44
Calibration FedDyn %&@M FedNova w@gc
Method Acc T SCE | Acc T E|

Uncal. 7950 £ 1.14 1284+0.85 480+048 | 7899 £1.08 1567 +0.69 4.94+0.36

Focal (Lin et al.}2017 7689 £1.15 1396 £0.86 4.89+0.53 | 74254+ 1.09 1021 £0.61 3.67 £0.37

LS (Muller et al. 7476 £236  17.35+£0.79 7.67+1.22 | 7757+ 1.10 1440 £0.56 4.70 £0.61

rier, 7813 £1.14 1435+1.74 470+0.66 | 79.00+ 1.12 1580 £0.58 4.98 £0.39

MMCE (Kumar et al.}2018 7672 £1.26 1023 +£1.08 3.53+0.61 | 76204+ 1.12 1434+0.82 471 £0.55

FLSD (Mukhoti et al. 7484 £1.13  953+073 3514+049 | 71.66 £ 1.09 9.824+0.64 3.65+0.41

MBbL! 1u et al. 77.66 £1.12 1062+ 1.79 3.50+0.61 | 79.09 £ 1.10 17.03+0.65 7.63 £ 0.36

DCA !Llang et al,! 202()' 80.11+1.22 10.00£0.65 348+056 | 7893+ 1.19 13.72+£0.59 4.87+0.42

NU + 79.80 £ 1.13 927 +0.61 3494039 | 79.11 £091 1194+ 1.11  3.69 £ 0.66

NUCFL (DCA+L-CKA) 80.88+1.20 8.62+0.71 334+029 | 7849+ 1.12 10.19 £0.68 3.59 + 0.44

NUCFL (DCA+RBF-CKA) 79.95+£1.10 858+ 150 3.16+0.62 | 79.04 £0.82 10.70 +0.87 3.62 & 0.44

MDCA 1Hebbalaguppe et al.!ZOZZbI 7920 £1.13 1027+£046 347+021 | 79.00+ 1.22 1327 £0.61 4.87 £0.39

Ni + 7930 £091 823+059 3.10+044 | 7953+ 141 1174 £1.23 3.67 £0.66

NUCFL (MDCA+L-CKA) 80.17+1.22 847+£0.66 3.13+£042 | 7905+ 1.12 1021 +£0.55 3.60 +0.34

NUCFL (MDCA+RBF-CKA) 79.61 £1.08 9.08 £0.51 3.34£0.60 | 80.07+1.10 1049 +1.06 3.6240.48

Table 16: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under non-IID (a0 = 0.5) scenario on the CIFAR-10
dataset. Underlined values indicate the best calibration across all methods.
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Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold QKarimircddy et al.] 2019
Method Acc T “CE E| Acc T “CE CE | Acc T “CE 5]

64.80 £ 1.21 1262+ 1.13 442+092 | 66.77 = 1.61 13.19+153 448+0.85 | 6634+ 1.18 1495+ 1.10 4.69+£0.90
60.18 £ 1.00 1521 £2.08 4.81+0.87 | 6525+ 1.27 1620+132 499+082 | 6348+ 1.33 11.02+£1.07 3.61 £1.09
62.13+£1.20 1292+1.07 445+086 | 5729+ 1.64 1099+124 3.60+£088 | 61.94+1.71 1027 £1.12 3.55+£091
59.18+2.16 921 £1.10 3.50+0.89 | 62.16+2.23 10.61 £1.16 3.56+0.82 | 68.09+2.20 1942+2.12 9.59+191
65.62+1.39 1825+2.18 9.05+1.37 | 68.76+2.07 1691 £180 4.93+£1.05 | 6490+1.22 9.02+1.16 3.42+0.89
6831 +£2.17 17214£192 8654131 | 6321124 1025+£1.66 3.54+£085 | 69.03+£320 1853£2.18 9.13£1.17
63.06 £ 122 12.774+1.26 4454098 | 6092+ 126 1003 +£1.14 3504085 | 6495+ 121 1491£1.20 4.71+£0.96

DCA ngang et al. 2020 6480 £ 120 1032+ 1.10 3514082 | 6723125 1147£1.17 3.64+£086 | 6699+ 1.19 1390+ 1.14 4.50£0.89

NU + LUS'T] 65.60 £ 142 994£1.32 3474105 | 6724+ 1.11 1074£1.22 358+ 1.13 | 6747097 12.75+£1.62 4.40=£0.89
NUCFL (DCA+L-CKA) 6477 £1.03 843£1.00 3124089 | 67.03+£122 1042+£1.41 3.56£1.06 | 66.99 £ 1.17 1227+ 145 438 £1.05
NUCFL (DCA+RBF-CKA) 65.00+1.29 839+138 3124072 | 67.08+1.23 9.99+2.12 350+1.08 | 66.17+1.19 1214+ 1.10 4.36 +0.95
MDCA ‘Hebbalaguppe et al,!2022b 6502+ 1.77 1093 +£1.08 354+124 [ 6748+1.22 1020+£139 354+086 | 6755+1.02 1377215 449+£193
N + 6525+ 1.88 9.74+£1.05 344+101 | 66.54+139 937+£137 347+£085 | 67.62+145 1280+ 1.11 4.40+£1.37
NUCFL (MDCA+L-CKA) 64.97+£1.03 927+1.06 341+£103 | 6691+1.06 9.01+1.77 332+124 | 6694+1.03 12.63£3.13 4.40+£2.39
NUCFL (MDCA+RBF-CKA) 65.07+£1.69 10.16+1.07 3524133 | 66.924+2.09 9.84+135 350103 | 67.04+1.19 11.06+2.10 3.96+ 1.88

Calibration FedDyn (Acar et al.{2021 | FedNova (Wang et al.|[2020b
Method Acc T SCE | Acc T I_S]CE 1

6226 £1.58 13.03+1.09 447+099 | 66.71 £191 1929+242 948 +2.15
6412 £1.25 1509+ 1.08 4.68+0.80 | 63.71 £1.30 13.66+1.35 4.57+093
63.62£1.26 19234+ 1.19 9334095 | 6025+ 1.24 954+ 141 3584097
6399 £1.25 15534121 471+093 | 6450 £ 1.41 14954235 4.69+2.00
64.69 £1.27 20534272 9704+ 195 | 63.58 £1.25 14.674+1.33 4.69 £ 1.02
64.16 £1.24 1737+ 1.17 790+0.93 | 62.64 £1.23 10.69 4+ 1.30 3.58 & 0.92

6588 £1.23 13.00+1.16 4441087 | 67.09+£1.21 11.11+128 3.64 £0.91

NU 6598 £095 12194206 434+139 | 6754 +£123 993+£177 370+125
NUCFL (DCA+L-CKA) 64.88 £1.52 1139+ 128 4.07+1.55 | 6741 £136 9.15+1.18 3.67+0.77
NUCFL (DCA+RBF-CKA) 64.77£232 1227+148 436+1.00 | 6720+ 1.18 10.19+1.16 3.71 £0.92
MDCA 1Hebbalaguppe et al.!2022b| 6570 £1.24 1356+ 133 447+108 | 67.88 £2.01 1256+ 149 397+ 1.68
N + 6533 £1.42 12.03+132 4324097 | 66.68 £1.99 10524 1.04 3.61 £ 1.00
NUCFL (MDCA+L-CKA) 6575+£1.23 12384+ 1.44 4364107 | 66.50 £ 1.40 10124246 3.60 & 1.65
NUCFL (MDCA+RBF-CKA) 6588 £2.01 12444230 4364215 | 66.45+£1.28 11.364+1.00 3.66 4 1.09

Table 17: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimiza-
tion methods with different calibration methods under non-IID (. = 0.1) scenario on the CIFAR-10
dataset. Underlined values indicate the best calibration across all methods.

Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold QKarimireddy et al.] 2019
Method Acc T E | Acc 1 CE | Acc T 1

5984 £120 1430£1.03 4.60+1.00 | 61.50 125 1603L£1.18 499+£095 ] 61.99+1.18 1388L1.10 4.61=E1.14
53.13+£1.20 10.08 +£1.08 3524098 | 5591 +1.22 11.72+1.10 4.18+£0.96 | 5930+ 1.17 12.03 £ 1.11 452+ 1.10
59.86 £ 1.18 18.10+1.07 7.63+0.95 | 60.91 +1.71 22.68 +1.14 854+092 | 6023+ 1.55 17.79+129 5.34+1.09
61.80 £ 1.12 2248+ 1.13 857+101 | 60.75+1.21 1798 +188 6.36+194 | 5920+ 1.15 1042+1.08 4.08£1.05
60.72 £ 1.19 2059+ 1.07 8.11+£094 | 5896+ 1.37 1352+ 1.10 4.53£0.66 | 59.50+ 1.17 13.69£1.09 4.64 £1.07
5883+ 1.62 1822+1.06 7.72+097 | 59.22+1.21 1001 £1.19 349+£093 | 60.65+ 1.40 1515+£1.10 4.79+£1.50
60.73+£1.20 1881 £2.15 776 £1.61 | 6209+ 1.52 2028 £2.11 8.13£231 | 60.27+2.18 1451 +1.13 478 £1.13

DCA (Liang et al.}2020 5994+ 1.17 13.07+£1.06 431+£093 | 6228 +1.22 1457+£1.66 4.64+£089 | 60.78+1.15 11.07£1.07 4.10+1.04
NU + I'UST] 6046 +1.33 1128+ 1.72 4194094 | 6200+ 1.03 13.84+1.13 459+092 | 6206+ 1.16 1053 +129 4.03+1.02
NUCFL (DCA+L-CKA) 6030 £1.20 10.624+1.02 3924092 | 6211 £123 13.03+1.00 4.57+042 | 62.09+1.18 9.06+1.33 3.84+1.20
NUCFL (DCA+RBF-CKA) 60.52 £ 121 1076 £1.24 3.944091 | 6290 £1.22 1390+ 1.11 4.60+0.88 | 61.99 £ 1.00 10.144+1.52 400+ 1.11
MDCA ‘Hebbalaguppe et al,!2022b 60.I15E 171 1299+ 1.05 430£1.16 [ 6233+ 121 I5SI8E£ 111 470£091 [ 61.92+122 1226+ 1.16 450+ 1.52
Ni + 60.00 £1.92 10534+1.03 390+ 1.15 | 6220+ 1.73 1401 £1.09 4.61 £0.90 | 61.37 +1.33 12.00+ 1.37 4.50 + 1.00
NUCFL (MDCA+L-CKA) 6049 +1.72 1005+ 101 3.88+1.14 | 6201 +£1.22 1392+£1.08 4.61£089 | 6238+ 132 11.35+£1.13 4.17+1.71
NUCFL (MDCA+RBF-CKA) 59.92+1.32 11.03+1.02 400+1.13 | 61.62+1.33 13.44+132 453+078 | 61.69+1.00 1039 £1.12 4.00 £ 1.00
Calibration FedDyn char et al.] 2021 | FedNova 1V__V|ang et al.] 2020b|
Method Acc T SCE | Acc T CE |
Uncal. 60.00 £ 122 1535+ 105 468:087 | 6207 £123 1645L .19 505098

55.12+£1.21 1035+ 1.07 357+0.89 | 6022 £1.22 1568+ 1.18 4.92+0.97
61.26 £222 19354+122 696+ 1.12 | 59.71 £1.24 1729+ 125 518+ 1.03
59.62 £ 1.18 1423+ 1.13 4334093 | 60.25£1.20 19.54+120 8.404 1.01
59.39£1.20 1978+ 1.67 7.004+1.32 | 61.11 £1.21 1795+ 1.17 5424 1.08
5863 £1.22 12.604+1.12 4334+095 | 60.58 £1.23 17.67+1.19 5224 1.09
60.13 £1.21 17374142 5344102 | 62.64 £1.22 20.6941.16 7.88 4 0.95
6095 £1.32 13.60+1.09 4.60+071 | 6211 £1.20 1539+ 1.16 4.90+095
60.26 £1.62 1217+ 138 449+0.88 | 6254 £1.22 1413+ 137 470+ 1.00

NUCFL (DCA+L-CKA) 60.68 £1.24 1155+ 121 420+032 | 6241 £1.42 13.00+1.16 4.58 +0.99
NUCFL (DCA+RBF-CKA) 60.67 £1.23 1127+ 1.09 4.15+0.87 | 61.99+1.42 13.19+1.88 4.58+1.38
MDCA 1Hebbalaguppe et al.!2022b| 61.09 £1.18 1432+ 1.10 4.64+094 | 6280 £1.61 1500+ 132 487+1.04
N + 60.71 £1.19 1456+ 1.11  4.86+0.93 | 62.68 £1.28 1417142 471121
NUCFL (MDCA+L-CKA) 6175+ 1.18 12.81 192 4524132 | 6250+ 1.58 14124+129 4714133
NUCFL (MDCA+RBF-CKA) 60.89 £ 1.32 13.18 £ 1.09 4.61 4048 | 6245+ 1.57 14364100 4734043

Table 18: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated opti-
mization methods with different calibration methods under non-IID (o« = 0.05) scenario on the
CIFAR-10 dataset. Underlined values indicate the best calibration across all methods.
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Calibration FedAvgMcMahan et al. (2017 FedProx|Sahu et al. (2018 Scaffold|Karimireddy et al. (2019
Method Acct ECE S'(‘ E| Acct ECE SCE | Acc t ECE SC éi
65.19£1.25 7.61+£1.04 3254+089 | 66.13£1.33 652+£1.04 3.194+095 | 6629130 824£147 337+1.08
6388 £1.61 11214132 3784109 | 6592+ 1.55 925+1.24 3.5541.07 | 65.03+£1.04 10.00£092 3.59+0.58
63.17 £1.67 12.194+1.08 3.884+094 | 66.80 £ 1.30 1021 +149 6.744+1.10 | 6592+ 127 7.01+£1.35 3.67+1.11
65.00£1.71 8514124 3384100 | 65.19£1.38 9.15£1.20 3514092 | 6382+£1.75 7.11£1.06 3.044081
al 65.03 £1.61 10.01 120 3.734£1.01 | 6482+£1.79 920£1.22 3544141 | 6522191 892£1.85 3.50+1.38
a 63.11 £1.37 815+£1.04 3364050 | 6185121 8.18£1.04 3364092 | 6437 £1.69 927147 3.55+1.24
iu et al. (2021 6417 £1.95 8.60+£1.64 3474141 | 6492£1.63 7.63£125 3234£1.00 | 6599124 920£1.06 3.52+£1.04
DCA|Liang et al. !2020 65.63 £1.14 611£1.05 3.06+£092 | 6671 £1.23 595+£1.07 2974085 | 6658130 7.11£1.08 3.03£092
NU + 6566 £1.07 6044110 3.01£085 | 66.73+1.02 5.61+£096 2924059 | 66.73+125 692+0.95 3.00+0.90
NUCFL (DCA+L-CKA) 6543 £1.12 598+1.03 2994078 | 66.66+1.25 554+120 2.68+092 | 6628098 6.77+0.75 2.96 4 0.61
NUCFL (DCA+RBF-CKA) 6531 £095 594+1.13 2964092 | 66.17£1.06 558+£1.03 2.704+0.78 | 6637 £098 679 £1.03 2.96 + 0.85
MDCA [Hebbalaguppe et al. !2022b| 6532£125 625+£1.06 3124069 | 6583 £1.28 6.04+£1.04 3024056 | 66.71 £1.35 7.09£3.00 3.51%1.05
+ 6541 £1.04 6.17+£1.11 3.104£082 | 6592+ 144 5924124 2954093 | 66.65+1.04 683+£1.22 2994091
NUCFL (MDCA+L-CKA) 6550 £1.27 6.04+£1.09 3.024+066 | 6585+ 1.03 571+£1.00 2934+085 | 66.70+£1.19 6.77+1.06 2974083
NUCFL (MDCA+RBF-CKA) 6544 £1.06 6084123 3.054092 | 6588 £ 1.11 582+£1.35 2.934+1.06 | 66.73£1.04 685£1.20 2994097
Calibration FedDyn|Acar et al. H2021 FedNova|Wang et al. H2020b
Method Acc SCE | Acc CE |

Uncal 6588 £1.52 927£147 355+£1.06 | 6742+1.10 939+£099 3.58£0.63

Focal[Lin et al.[(2017] 6377+ 131  9.04£129 350+ 1.11 | 6495+ 1.69 10.00£1.52 3.70=£1.14

LSMuller et al.|(2019] 64.49 £ 1.59 11.52+£1.37 383£1.21 | 6671 £ 1.71 1261 £1.04 3.72£0.92

950 6592+ 1.06 10624094 3.66+0.70 | 6517+149 791 +124 3.30+£1.00

MMCE Kumar et al. (2018 6561 £145 9.11+£127 356+1.04 | 6592+152 1055+£1.22 3.63+£0.89

FLSD tal. 6333+£193 821 +£140 337+131 | 6489+191 999+1.74 370+ 1.56

Mb! al. (2 63.79+£0.92 10914+049 3.80+0.37 | 63.21+£1.04 10254128 3.77£091

DCA&% 2020 6627 £ 134 820£092 3374083 | 6739+£149 808+£1.03 331+£091

NU +SO'ST] 66.15+ 123 804+£1.05 3294071 | 67444+£1.02 781+£1.00 3.26+0.87

NUCFL (DCA+L-CKA) 66.02+1.04 804+£1.23 32841.02 | 6752+1.02 7774123 3244095

NUCFL (DCA+RBF-CKA) 6592+ 131 801£1.06 326+091 | 67.61+£123 779+£1.04 3.26£0.85

MDCA |Hebbalaguppe et al. (2022b] || 66.35 £ 1.27 824 £1.23 333+£1.07 | 6790139 814£1.08 3.35£091

+ 6627 £1.04 796 £1.00 327£0.74 | 67.73+£1.09 802+ 1.13 327 £0.82

NUCFL (MDCA+L-CKA) 66.03+ 133 7.90+1.25 3244099 | 6792+ 131 785+142 327+1.11

NUCFL (MDCA+RBF-CKA) 6619+ 1.06 800+£096 3264058 | 6785+ 1.06 7.89+1.04 3.28+0.81

Table 19: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimization
methods with different calibration methods under IID scenario on the CIFAR-100 dataset. Underlined values
indicate the best calibration across all methods.

Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold (Karimireddy et al.] 2019
Method Acc T E | Acc CE | Acc 1
6134+ 131 1052+1.17 3.61+£093 | 61.88+1.55 937+1.21 358+£1.05] 6208+097 11.42+205 3.82+£1.55
60.59 £ 142 1288+0.95 3.74+135| 6207+139 1145+£1.04 379+£091 | 6139+ 1.15 1328+ 1.71 4.88+1.30
59.35+£2.15 1561 +1.27 628+1.74 | 6223+ 148 1437+135 6.14+£1.55 | 6215+ 1.53 1169+ 1.84 4.05+ 1.07
61.20£195 11324+ 144 380+ 1.10 | 60.43+1.04 10.15+£138 3.61£1.17 | 60.39+1.30 1092+ 1.33 3.80+ 1.10
60.00 £ 1.07 13.414+2.05 493+£1.72 | 60.11+1.25 11.32+£122 377+139 | 61.03+1.22 11374152 3.83+1.08
58.71£259 11514133 3.92+1.05 | 5928+ 149 10.66+139 3.81+£1.04 | 6049+ 135 13.61+1.51 5.15%0.99
59.62 +2.31 9424158 3554096 | 6039 £1.11 11.374+1.90 384+125 )| 61.38+1.67 11.994+1.93 407+1.25
6124 £120 769+ 1.11 324+1.03 | 6193£1.17 874+122 340+093 | 6211120 925+132 355+0.88
61.88+1.05 621+095 3.114+084 | 6238+1.04 815+1.01 335+0.77 | 62.17+1.06 888+1.04 3.50=£0.79
NUCFL (DCA+L-CKA) 6205+ 1.17 614+1.03 3.07+095 | 6231 +1.21 8.04+£1.19 330+£095 | 6225+1.14 841+1.15 345+1.00
NUCFL (DCA+RBF-CKA) 61.59+095 6.19+1.22 3.11+1.13 | 61.89+1.10 8.17+1.04 3354073 | 61.94+0.92 852+2.00 345+1.33
MDCAW 61.03 + 1.31 771+£150 329+ 1.19 | 6200+ 1.73 821 +145 337+1.10 | 6223 +£1.10 9.04 £129 3.51+1.00
N + 62.00£133 6384107 3.14+£098 | 61.93+134 794+129 329+133 | 62.17+0.87 831+£1.17 340+0.75
NUCFL (MDCA+L-CKA) 62.17 £ 140 6254143 3.11+124 | 6203+125 7.88+1.04 3.25+095 | 62224+1.04 830+125 3.40+0.95
NUCFL (MDCA+RBF-CKA) 61.54 £1.08 6204 1.66 3.09+139 | 61.79+1.04 802+1.38 329+1.07 | 62.154+1.22 842+1.03 345+ 1.11
Calibration FedDyn char et al,] 2021| FedNova 1Wang et al.] 2020b!
Method Acc T “CE SCE | Acc T “CE E |

Uncal. 6239+ 125 1253 £125 384£1.10[ 6301 +1.62 T145£1.05 382%0.79

Focal 60.21 £1.04 11224+1.00 381+095 | 61.15+£1.82 1321+ 134 471+1.06

LS (Muller et 6134 +£145 1519+£208 6.58+1.54 | 63.054+225 16.03+2.00 6.89+1.85

62.17£142 1381 +£127 491+091 | 6044+ 1.04 1139+1.61 4.06+1.24

MMCE (Kumar et al.}2018 6135+£1.07 1293+135 395+ 1.11 | 61284+ 133 1255+140 3.90+1.09

FLSD . 6094 £2.11 11.83+1.04 4.04+091 | 6049+ 152 13.81+1.23 4.88+£0.99

MBbLS (Liu et al. /2! 6230+ 1.51 1495+141 650+122 | 6293 +1.95 13.66+ 1.64 4.69 + 1.04

DCA (Liang et al.}2020; 6293 +£1.04 10.17+1.04 375+0.92 | 63.15+1.38 927+094 355+0.61

NU(!F - (DC K+J!US 6281091 929+095 3.54+£067 | 6324+1.29 885+1.11 3514082

NUCFL (DCA+L-CKA) 62944122 914+122 3524084 | 6327 +1.30 8.52+£094 34340.64

NUCFL (DCA+RBF-CKA) 6284+ 1.15 9214+1.04 3554092 | 63.174+1.17 8.01+1.08 3.30+0385

MDCA 1Hebbalaguppe et al.!2022b| 6284082 1024+085 372+£059[6329+1.06 10.00+ .15 371+0.74

N + 6291 £1.04 933+£1.02 356+091 | 63.14 £ 1.11 916+ 124 3.584+0.99

NUCFL (MDCA+L-CKA) 6288 +£095 9.19+084 353+062 | 63.14+1.51 9.03+148 351=£1.17

NUCFL (MDCA+RBF-CKA) 6265 +£1.12 9244120 3554094 | 63.224+1.35 859+127 347 £1.06

Table 20: Accuracy (%), calibration measures ECE (%), and SCE (%) of various federated optimization
methods with different calibration methods under non-1ID («
Values in boldface represent the best calibration provided by our method for the auxiliary calibration method,
and underlined values indicate the best calibration across all methods.
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Calibration FedAvg 1McMahan et al.] 2017 FedProx 1Sahu et al.] 2018 Scaffold QKarimireddy et al.] 2019
Method Acc T E | Acc T CE | Acc T 1

Uncal. 5834+ 1.66 1202+139 380+097 | 5883+1.29 1061 +144 3.63+£120 [ 59.08+1.02 1392+200 475+133
Focal (Lin et al.|2017 5759+ 1.13 1428+120 4.60+122 | 5807+ 1.66 11.85+128 419+1.11 | 5839+ 1.36 14.68+192 478+ 149
LS ( 56.35+£242 1201 £1.54 381+£195|5923+1.72 1477+£158 480£1.75 | 59.15+1.80 15.09+£2.13 5.09+1.21

56.20+£2.19 1172+ 166 420+124 | 5643+ 1.21 1055+£157 3.60+£133 | 5739+ 1.51 1232+£152 3.82+1.24

MMCE 4 .12018 57.00 £ 1.34  11.81+£229 383+£1.00 | 57.11+£147 11.72+144 417+£1.03 | 5803+ 144 11.77£1.72 4.03+1.21

58.71+£1.85 1191 +£1.52 377+1.14 | 5628 £1.70 10.06 £1.57 3.89£1.15 | 57494+ 1.08 14.01 £1.00 4.65+0.92

MbL. 120 5862+ 149 13824182 4754095 | 57.39+£0.82 11.77+1.12 4.1441.03 | 5938+ 1.05 1439+ 1.15 472+1.01

DCA gL ang et al.;2020 5919 £ 1.12 1045+£087 3.614+054 | 5895+ 1.15 857£0.74 3454045 5910128 11.09+0.83 3.83+£0.51

NU + IUST] 5897125 935£090 3554065 | 59.11+1.12 802+£0.88 3.41+0.60 | 59.134+ 135 1087 +£0.79 3.68 £0.52
NUCFL (DCA+L-CKA) 60.73 £120 9.14+£0.85 3.50+045 | 59.16 132 7.99+£0.71 342£0.31 | 60.09+129 1095+£0.73 3.70 £0.64
NUCFL (DCA+RBF-CKA) 5920 £1.30 1016 £0.94 3.60 £0.61 | 5995+ 124 8.09£042 3.41£0.10 | 60.05+ 133 10.33£0.69 3.61 £0.57
MDCA ‘Hebbalaguppe et al,!2022h 5947+£1.22 1019+ 1.14 3.60£0.66 | 59.17 £ 1.15 8.61+£092 347£059 | 6085+ .11 12.19+£1.03 4.15+£0.74
N + 5924+ 1.15 9.74+£095 359+0.69 | 5878+ 1.20 812+086 3.44+057 | 60.07+1.12 11.46+101 4.06+0.63
NUCFL (MDCA+L-CKA) 59.64+1.44 970 +£131 359+107 | 59.69+1.18 829+092 345+059 | 59.64+1.15 10.51+089 3.62+0.65
NUCFL (MDCA+RBF-CKA) 5871+ 1.14 10.09+0.89 3.61 £0.60 | 5881+ 1.13 831+£091 345+053 | 59.10+1.00 10.64 £0.87 3.64 £0.68

Calibration FedDyn (Acar et al.| 2021 | FedNova (Wang et al.|[2020b
Method Acc T SCE | Acc T I_S]CE 1

59.39 £1.30 13.03+1.30 504+123 | 60.01 £1.33 1395+ 1.14 497 +0.92

5721 £1.27 13.624+122 505+1.07 | 58.15+£2.05 1461 £1.53 519+1.25

5834 £1.67 15594234 5384172 | 60.05+£2.56 16434+ 131 5.6942.05

59.17 £1.63 1421+ 151 4814102 | 5744 £1.24 11.79+186 4194135

5835£1.27 15334158 5354124 | 5828 £1.55 12954 1.62 4.98+1.06

57.94 £231 12234+122 4854101 | 6049+ 1.73 1621 + 141 564+ 1.09

1u et al. 5930 £ 1.71 15354+ 1.62 533+1.30 | 59.93+1.17 1406+ 1.84 475+ 1.00

DCA !Llang et al.! 2020} 60.77 £1.39 12.13+099 481+0.68 | 5998 £1.41 1123+0.82 3.85+0.53
NU + 5948 £ 140 11.53+£094 3.85+075 | 60.14+1.35 10.62+£0.72 3.66 £0.59
NUCFL (DCA+L-CKA) 6049 £1.33 11294+0.89 383+0.58 | 60.33 £1.01 10.61+0.70 3.65 £ 0.67
NUCFL (DCA+RBF-CKA) 5923 £1.29 11.04+095 3.79+0.69 | 60.69 £ 1.39 10.654+0.79 3.65+ 0.54
MDCA 1Hebbalaguppe et al.12022b| 59.61 £1.24 1201+ 1.12 4394095 | 6095+ 1.17 1058 +0.93 3.65+0.66
N + 5976 £1.01 10934+ 1.09 3.694+0.81 | 6093 £1.19 9.78+£0.88 3.634+0.55
NUCFL (MDCA+L-CKA) 6028 £1.29 10.60+1.12 3.674+0.92 | 59.92£1.00 9.65+0.94  3.60 & 0.63
NUCFL (MDCA+RBF-CKA) 6027 £1.17 995+ 1.10 3.634+0.84 | 59.98 £1.00 10.034+0.87 3.63 4 0.62

Table 21: Accuracy (%), calibration measures ECE (%), and SCE (%) of various

federated optimization

methods with different calibration methods under non-IID (o« = 0.1) scenario on the CIFAR-100 dataset.

Underlined values indicate the best calibration across all methods.

Calibration FedAvg (McMahan et al.;2017 FedProx (Sahu et al.{2018] Scaffold (Karimireddy et al./2019
Method Acc T E | Acc CE | Acc 1

Uncal. 56.77+£1.42 1480+£091 477051 | 5795+ 1.33 1529+£0.74 5.11£039 | 57.00+ 1.37 13.88+£0.93 4.70 £0.52

Focal (Lin et

5561 £ 1.18 1596 +0.84 5204056 | 58.00 £ 1.47 16404078 5584044 | 57.63 £ 135 16924+087 4774561

LS (Muiller et al. 56.26 £ 145 14594+098 4714060 | 58.09+1.52 17.08+0.83 5.814+0.52 | 5790+ 148 15.13+£0.74 5.11£043
50 5526 +£1.56 13.984+092 4724049 | 57.72+£ 139 16.81+£085 5754042 | 56.01 £ 1.11 1559 +0.71 5.18 £0.51

MMCE . 57.64 £129 16.66 095 3.874+057 | 57.64 £ 143 1626077 5.53+045 | 5746+ 134 17.77+£091 5.85£0.61
FLSD (Mukhoti et 5410 £ 1.35 11.29+£0.89 3.56+0.51 | 5923 £1.52 1945+£0.99 6.50£0.71 | 5539+ 142 10.84£0.76 3.61 £0.54
MBDBLS (Liu et al. 20 5516 £1.55 1499+ 1.08 480+0.61 | 5642+ 148 1594+0.79 S5.18£0.51 | 55114+ 144 1247+£082 4.21+0.58
DCA%Q 56.19£098 13.05+042 399+035] 5699 +1.10 13.17+031 4.05+£029 [ 5810+ 1.05 11.69+0.34 3.85+0.37
NU + 56.97 £1.05 11.95+040 3.64+033 | 57.64+0.97 11.12+£028 3.53+£022 | 57.334+1.02 1097 £0.31 3.80+0.29
NUCFL (DCA+L-CKA) 5703+ 1.21 1024+042 3.52+0.11 | 5796+ 1.01 10.09+0.32 3.50+0.19 | 57.75+1.08 9.05+0.29 3.28 +£0.28
NUCFL (DCA+RBF-CKA) 56.90 £ 1.11  10.76 £0.39 3.54 £0.34 | 5805+ 1.03 10.19+£0.92 3.52+0.61 | 57854+ 1.00 10.94£0.30 3.81 £0.26
MDCA 'Hebbalaguppe et al.i2022b 57.32+£1.01 1279+048 390£039 | 57.77+£ 1.12 1421 £031 438 £026 | 5795+ 1.07 10.99 £0.37 3.54 £0.40
N + 5694 +£123 11.344+042 3764033 | 57.58 £1.02 13924030 4.11£0.31 | 57.87+£1.09 9.06+£0.32  3.30£0.27
NUCFL (MDCA+L-CKA) 5744 +£133 11.30+041 3.764+029 | 5749+ 1.03 11.89+029 3.83+023 | 5694+ 1.11 10.11 035 3.38+0.31
NUCFL (MDCA+RBF-CKA) 56.51 £1.04 11.69+046 3.8240.34 | 58.11+£1.06 14.07+£0.31 435£0.24 | 57.90+1.09 1024+£0.33 3.39£0.30

Calibration FedDyn char et al,] 2021 | FedNova 1Wang et al,] 20201)!
Method Acc T SCE | Acc T E

Uncal. 5813 £1.40 1426+107 4591076 | 5843 £1.29 1725£082 6.14+0.48
57.64£1.50 17.00+1.05 480+0.68 | 5648 £1.42 1481+ 1.12 4.61 +£0.74
57.65+1.53 1857+ 1.09 644+0.71 | 5426 +£1.49 1683 +0.88 4.77 +0.59
57.83+£1.57 1606+ 1.18 523+0.81 | 5626 £1.20 16.77 £0.81 4.73 £0.32
56.15+ 146 1027 £1.08 3.54£040 | 5699+ 1.55 17.32£0.80 6.18 £0.68
5695+ 1.60 11.19+£096 3.55+£0.63 | 5735+ 1.51 17.83 £0.84 6.17 £0.99
56.58 £1.41 1069+ 1.06 3.59+0.79 | 57.38 £1.48 16.66 +0.77 4.74 £ 0.59
5857 £1.02 12534+048 3914045 | 5868 +£0.97 15834+039 5214030
5828 £1.09 11.134+042 3.854+0.36 | 58.64 £0.77 14724037 4594031

NUCFL (DCA+L-CKA) 5819 £ 1.11 11394045 3.874+041 | 59.17£1.07 14.214+0.34 4.56 4+ 0.29
NUCFL (DCA+RBF-CKA) 58.11£1.09 10904044 3.814+038 | 5849 £ 1.06 14.2540.62 4.56 & 0.44
MDCA 1Hebbalaguppe et al.£2022b| 5841 £1.09 11.61+045 3904049 | 5875£1.03 15184033 5.09+0.32
N + 59.00 £1.14  10.09+:0.48 3484041 | 5873 £1.08 14.384+0.36 4.76+0.30
NUCFL (MDCA+L-CKA) 5878 £1.13  10.00 046 347 +045 | 58.69 £1.13 14254038 4.57£0.36
NUCFL (MDCA+RBF-CKA) 5867+ 1.10 9.95+043 347+037 | 58844+ 1.07 14.13+035 4.55+0.28

Table 22: Accuracy (%), calibration measures ECE (%), and SCE (%) of various

federated optimization

methods with different calibration methods under non-IID (o« = 0.05) scenario on the CIFAR-100 dataset.

Underlined values indicate the best calibration across all methods.
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— D Non-IID (@ = 0.5) Non-IID (@ = 0.0) Non-TID (@ = 0.05)

Dataset  Calibration Method || \ .+ pcE| SCE| | Acct ECE| SCE | Acct ECEL SCE] | Acct ECE| SCE.

UnCal. 9620 088 020 | 9502 189 065 [[9268 296 104 | 8751 622 183

MNIST FedCal 9620 069 024 | 9502 094 041 | 9268 201 091 | 8751 600 177

NUCFL(DCA+L-CKA) | 9690 044 016 | 9597 078 031 | 9241 132  0.66 || 8770 520 159

UnCal. 9248 410 166 | 9095 417 166 | 8891 558  2.83 | 8698 878 349

FEMNIST FedCal 9248 392 166 | 90.95 402 162 | 8891 501 262 | 8698 800 342

NUCFL(DCA+L-CKA) || 9230 349 146 | 9163 352 147 | 8989 449 177 || 8689 7.84 327

UnCal. 8023 760 270 | 7883 9.69 350 || 6486 1262 442 [ 5984 1430 460

CIFAR-10 FedCal 8023 755 270 | 7883 827  3.19 || 6486 1139 440 | 5984 1407 458

NUCFL(DCA+L-CKA) | 81.05 577 175 | 7866 706 260 | 6477 843 312 || 6030 10.62 392

UnCal. 65.09 761 325 | 6134 1052 361 [ 5834 1200 380 | 5677 1480 477

CIFAR-100 FedCal 65.19 701 320 | 6134 880 349 | 5834 1200 380 | 5677 1339 456

NUCFL(DCA+L-CKA) || 6543 598 299 | 6205 6.14 307 | 6073 914 350 | 57.03 1024 3.2

Table 23: Comparison with SOTA baseline (FedCal) on different datasets using FedAvg under different data
distribution. The average ACC and calibration error are reported. Our method outperforms the baseline in
terms of calibration error and sometimes in average accuracy as well.

B.3 MITIGATING OVER/UNDER-CONFIDENCE

In addition to the over-confidence examples discussed in Section[5.2] we also observe cases of under-
confidence in FL algorithms. Figure[6and [7] presents the reliability histograms for non-IID (o =
0.5) FedAvg using the MNIST and FEMNIST datasets, where the results show a gap that exceeds
the diagonal line, indicating under-confidence issues. While over-confidence is often viewed as
more problematic in deep neural networks for real-world applications, under-confidence can also
pose challenges in specific scenarios. For example, in a medical diagnosis scenario, a threshold
of 0.95 for negative predictions means that any instance classified as negative with a probability <
0.95 requires manual review. An under-confident model may classify an instance as negative with a
probability of 0.51, suggesting a true probability of correctness that is at least 0.51, yet this does not
clarify whether it surpasses the threshold. This leads to compulsory manual inspection regardless of
the actual correctness, thus increasing the workload. Among all the figures, we see that our proposed
method effectively calibrates FL and exhibits a smaller gap (red region), demonstrating improved
performance over other approaches.

B.4 COMPARISON WITH FEDCAL

This section presents additional experimental results and comparisons with FedCal (Peng et al.,
2024) from Section [5.2] Table 23] provides complete comparisons across different datasets. The
results in Table 23]indicate that our proposed NUCFL outperforms FedCal. FedCal improves local
client calibration using a local scaler design and aggregates these scalers to create a global scaler for
the global model. However, relying solely on an aggregated scaler from local clients can lower global
ECE but may neglect crucial interactions between global and local calibration needs. Our method
accounts for these interactions, mitigating biases toward local heterogeneity and more effectively
meeting global calibration requirements.

B.5 MORE DIFFICULT SCENARIO

In addition to evaluating our method in a cross-silo scenario where all clients participate simultane-
ously, we also assess its performance in a cross-device scenario with partial participation. To accom-
plish this, we divided the CIFAR-100 training set among M = 100 clients, each with a distinct data
distribution. We then implemented FedAvg using ResNet-34, setting the client participation ratio to
10% for each round. This experiment aims to provide deeper insights into how our method performs
under more practical conditions, where participation rates are typically low. Table [24| shows that in
this practical scenario, our NUCFL continues to demonstrate its benefits. While the global model
may not fully represent the global distribution due to the bias toward clients participating in the
previous round, our approach can effectively minimize calibration bias towards current participants.

B.6 TRADE-OFF BETWEEN ACCURACY AND RELIABILITY

During this study, we observed two types of trade-offs between accuracy and reliability: the Cali-
bration Method Trade-Off and the FL Algorithm Trade-Off.

Calibration Method Trade-Off. In a centralized setup, there are two types of calibration meth-
ods, train-time calibration and post-hoc calibration. Post-hoc calibration, which is often used for
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Calibration Method 1D Non-IID (o = 0.5) Non-IID (« = 0.1) Non-TID (a = 0.05)
Acct EBCE| SCEJ | Acct ECE] SCE/ | Acct ECE| SCE| || Acct ECE] SCE]

UnCal. 5733 1021 439 | 5499 1149 446 || 5134 1402 470 | 4933 1880 597
DCA 5761 821  3.00 || 5510 928 341 || 5124 11.02 3.61 || 4929 1413 476

MDCA 5749 940 352 || 5523 1033  3.64 || 51.63 1239 382 | 4961 1466 4.8l
FedCal 5733 933 349 || 5499 949 346 || 5134 1093 3.60 | 4933 1391 474
NUCFL(DCA+L-CKA) | 57.55 8.00 296 | 5523 9.8 337 || 51.93 10.67 357 | 4929 1230 3.86
NUCFL(MDCA+L-CKA) || 5721 847 3.7 || 5539 944 346 | 5149 1002 3.51 || 49.69 1279 4.6

Table 24: Comparison under a partial participants scenario (10% clients in each round) using FedAvg on the
CIFAR-100 dataset, where representative calibration methods are selected for comparison. Improved calibra-
tion error shows that our method significantly enhances model calibration.

Calibration Method FedSpeed (Sun et al.[[2023) || FedSAM (Qu et al.[2022] || FedMR (Hu et al.{[2023) || FedCross (Hu et al.[[2022)
AccT ECE] SCE | Acct ECE] SCE] AccT ECE] SCE] | Acct ECEJ[ SCE |
UnCal. 65.10  15.33 7.11 6423  13.95 6.92 64.95 13.18 6.70 65.30 15.81 7.19
FedCal 65.10 12.95 6.53 6423  12.08 6.48 6495 12.85 6.49 65.30 14.39 6.98
NUCFL(DCA+L-CKA) || 65.17 11.15 5.92 6452  10.22 5.55 6495 1211 6.47 6533 13.01 6.53

Table 25: Comparison using other FL optimization methods shows that our method can adapt to any FL
algorithm and improve calibration error.

centralized models, adjusts the calibration error without impacting accuracy. However, as shown in
Table [6] when we examine train-time calibration methods in a centralized context, we observe that
in over 25% of cases, these methods improve calibration at the cost of reduced accuracy, unlike the
stable post-hoc methods. But given that train-time methods are more practical for FL due to the lack
of post-hoc dataset, we take this concern into consideration. We found that existing train-time cali-
bration methods tend to degrade accuracy in FL settings, although they vary in their effectiveness at
reducing calibration error. This observation further guided our goal to design a calibration method
that could improve reliability without compromising accuracy.

FL Algorithm Trade-Off. Another trade-off we identified is between accuracy and reliability across
different FL algorithms. While advanced FL algorithms, such as FedDyn and FedNova, can achieve
higher accuracy than naive FedAvg, they also tend to introduce greater calibration error. For exam-
ple, in Table (1} the accuracy (ACC) for FedAvg is 61.34, while FedDyn and FedNova reach 62.39
and 63.01, respectively. However, their calibration error also increases from 10.52 in FedAvg to
12.53 in FedDyn and 11.45 in FedNova. With the help of our method applied to FedDyn and Fed-
Nova, we improve their accuracies to 62.84 and 63.17, respectively, while significantly reducing
their calibration error to 10.24 and 8.01—both lower than the original FedAvg calibration error of
10.52. This trend is also found in other datasets and data distributions, as shown in our result tables
in Appendix[B.2] This shows our method’s effectiveness in improving reliability without sacrificing
accuracy across various FL algorithms.

B.7 COMPARISON WITH FLL OPTIMIZATION METHODS USING “CALIBRATION”

While searching for related work, we found that some FL studies [Zhang et al.[ (2022); [Luo et al.
(2021)) use the term “calibration.” Although these works do not focus on “model calibration” as
discussed in this paper, we consider them advanced FL optimization methods and evaluate their
performance in terms of model calibration. Specifically, we evaluate both the uncalibrated versions
of FedLC Zhang et al.|(2022) (with 7 = 1) and CCVR |[Luo et al.|(2021) (on FedAvg) as well as their
calibrated counterparts by integrating our proposed NUCFL. We follow the same experimental setup
as described in Table[I] utilizing the CIFAR-100 dataset under a non-IID (ov = 0.5) data distribution
scenario. The results are provided in Table

Comparing uncalibrated CCVR and FedLC with FedAvg, we observe an increase in accuracy along-
side a rise in calibration error. This indicates that these algorithms are advanced FL optimization
methods designed primarily to improve accuracy rather than address model calibration. Since we
view CCVR and FedLC as advanced FL optimization methods, we can apply NUCFL to them.

. . local epoch £ =1 local epoch £ = 5 (default) local epoch £ = 10
Calibration Method ||\ ™ pop | SCE| | Acct ECEJ SCE| || Acct ECE] SCE|
UnCal. 5923 892 347 | 6134 1052 361 (6200 1139 398
NUCFL(DCA+L-CKA) || 5947 640 329 || 6205 614 307 | 6205 608  3.00

Table 26: Calibration performance with different local epochs using FedAvg under non-IID conditions (o =
0.5 on CIFAR-100 dataset.
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—_ FedAvg CCVR FedL.C
Calibration Method || -+ pCE|” SCE| | Acct ECE] SCEJ || Acct ECE] SCE
UnCal. 6134 1052 361 [ 6301 1369 499 | 6273 1458 611
NUCFL(DCA+L-CKA) | 6205 6.4  3.07 | 63.05 928 353 || 6277 1098 379

Table 27: Calibration performance of FL algorithms incorporating “calibration.”

Comparing the original versions with their NUCFL-calibrated counterparts, we observe improve-
ments in both accuracy and calibration error. This demonstrates the adaptability of our method and
its compatibility with any FL algorithm.

Algorithm 2 Applying NUCFL to FL

1: Input: global model w, local model w,, for client m, local epochs E, and rounds 7'
2: for eachround t = 1,2,...,7 do

3 Server sends w' ~Y to all clients.

4 for each client m € M do

5: Initialize local model w£,€’°) « D

6 for eachepoche = 1,2, ..., E do

7 Get the gradient for each client: 55he) = (=1
8
9

Calculate the similarity with the previous accumulated gradient: 3, = sim(J =1 6,(2’6)),
Decide calibration loss function £.,; based on DCA (6) or MDCA (7).

o)

10:

Each client obtains calibrated local loss £5%! (wﬁf;e)) based on H
11: wih® « clientoPT(wl ™, L5 (wih®))
12: end for
13: w't" denotes the result after performing E epochs of local updates.
14: Client sends 67(5) =D _ wg‘m to the server after local training.
15:  end for Do £
. t) _ m
16:  Server computes aggregate update 5 = 3 meM de
17:  Server updates global model w') «— ServeropT(w!t=Y §®)
18: end for
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