

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMAL: A CONVERGENT META ALGORITHM FOR ALIGNING LLMs WITH GENERAL PREFERENCES

Anonymous authors

Paper under double-blind review

ABSTRACT

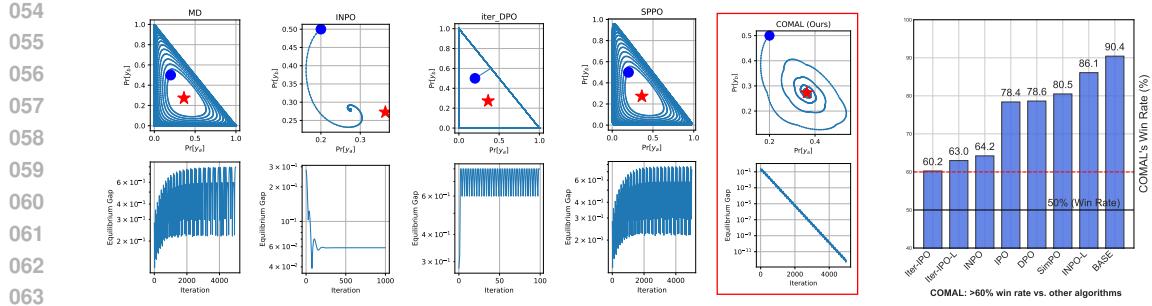
Many alignment methods, including reinforcement learning from human feedback (RLHF), rely on the Bradley-Terry reward assumption, which is not always sufficient to capture the full range and complexity of general human preferences. We explore RLHF under a general preference framework by modeling the alignment problem as a two-player zero-sum game in a game-theoretic framework, where the Nash equilibrium policy guarantees a 50% win rate against any competing policy. However, previous self-play algorithms for finding the Nash policy either diverge or only converge to a Nash policy in a modified game, even in a simple synthetic setting, thereby failing to maintain the 50% win rate guarantee against all other policies. We propose a meta-algorithm, **Convergent Meta Alignment Algorithm** (COMAL), for language model alignment with general preferences, inspired by convergent algorithms in game theory. We provide theoretical analysis that our meta-algorithm converges to an exact Nash policy in the last iterate and demonstrate its effectiveness on a range of synthetic and preference optimization datasets. COMAL is simple and can be integrated with many existing methods designed for preference optimization with minimal changes, and empirically it consistently maintains above 60.2% and 56.8% win rates, when applied to Llama-3-8B-Instruct and Qwen2.5-7B, against all compared algorithms under controlled evaluations.

1 INTRODUCTION

One of the most widely adopted approaches to addressing the challenge of aligning LLMs with human values and preferences is Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). This framework consists of two steps: first, learning a reward model from a human preferences dataset, and second, optimizing the LLM using the proximal policy optimization (PPO) algorithm (Schulman et al., 2017). More recently, Rafailov et al. (2024) observed that the first step can be bypassed, proposing the direct preference optimization (DPO) algorithm, which directly optimizes the LLM from the dataset.

However, the aforementioned approaches crucially rely on the assumption that human preferences can be expressed using the Bradley-Terry (BT) model (Bradley & Terry, 1952). Unfortunately, the BT model is too restrictive to capture the richness and complexity of human preferences. For example, the BT model can only induce *transitive* preferences – i.e., if more people favor A over B, and B over C, then more people must favor A over C. Such transitivity may not hold in the presence of diverse populations and is also incompatible with evidence from human decision-making (May, 1954; Tversky, 1969). To illustrate this, consider a simple case where users are evaluating responses from an assistant to a nuanced question like: “What’s the best way to spend a Sunday?” Some might prefer Response A (outdoor activities) over B (reading a book), while others prefer B over C (watching TV), yet a third group prefers C over A. These cyclic preferences – $A > B > C > A$ – cannot be modeled by the BT framework. Moreover, even if each individual has a consistent (transitive) ranking, the aggregated preferences can exhibit intransitivity. In fact, even a mixture of two BT models cannot be parameterized by a single BT model.

To overcome this limitation, recent research has begun to explore alignment under general preferences. Munos et al. (2024); Swamy et al. (2024) formulate this alignment problem as a symmetric two-player zero-sum *alignment game* (Definition 2), where both players’ strategies are LLMs, and their payoffs are determined by the win rate against the opponent’s LLM according to the preference



(a) COMAL converges to the optimal solution, while other preference optimization methods do not. We initialize all algorithms at the blue dot; the Nash equilibrium is the red star.

(b) COMAL’s win rate against other PO algorithms.

Figure 1: (a) convergence behavior of five methods (§4); (b) win-rate comparison with Llama-3 (§5).

model. The objective is to identify a Nash equilibrium policy, which guarantees at least 50% win rate against any competing policy. Existing algorithms for finding such robust policies present significant challenges. In particular, current methods can suffer from instability, often failing to converge, or may inadvertently optimize for a solution to a modified version of the original problem. As a result, these approaches may fail to guarantee the desired win rate against arbitrary opponents, leaving robust alignment an open and active area of research and motivating us to investigate the following question:

Question: Is there an algorithm that *converges* to the Nash equilibrium policy of the alignment game (Definition 2), thus guaranteeing 50% win-rate against any competing policy?

Our Contributions: We propose a novel meta-algorithm, the **Convergent Meta Alignment Algorithm** (COMAL), that iteratively refines language model policies by solving a regularized two-player zero-sum game at each round, using the current policy as a reference point. The procedure at each round is as follows:

Step 1: In iteration t , solve a KL-regularized two-player zero-sum game with respect to the reference policy $\pi_{\text{ref}} = \pi_{t-1}$. Let π_t be the Nash equilibrium of this regularized game.

Step 2: Update the reference policy π_{ref} to the current policy π_t and repeat the process.

The rationale behind COMAL is that it is a practical implementation of the Conceptual Prox-method (Nemirovski, 2004), a *convergent* algorithm for solving two-player zero-sum games, whether regularized or not. Importantly, Step 1 can be implemented using the Prox operator, a well-known concept in the optimization literature (Parikh et al., 2014). A crucial observation we make here is that many existing algorithms – including PPO (Schulman et al., 2017), GRPO (Shao et al., 2024; Guo et al., 2025), DPO (Rafailov et al., 2024), IPO (Azar et al., 2024), SPPO (Wu et al., 2024), REBEL (Gao et al., 2024), DRO (Richemond et al., 2024), and INPO (Zhang et al., 2025b), *inter alia* – can be interpreted as practical implementations of the Prox operator in the context of LLM training (see §3.3 for a detailed discussion). As a result, COMAL is simple and can be integrated with many existing methods designed for preference optimization with minimal changes.

One significant departure of COMAL from existing methods for the game-theoretic formulation of alignment is that we adaptively update the reference policy rather than keeping it fixed. A potential concern with this approach is that the policy might drift too far from the initial policy, leading to instability and quality degradation. However, we provide both theoretical guarantees and experimental evidence demonstrating that this dynamic updating strategy consistently *enhances* model performance while maintaining stability.

Theoretical guarantee: Given any implementation of the Prox operator, COMAL provably converges to the Nash equilibrium policy in the last iterate. While existing algorithms like iterative IPO (Azar et al., 2024) and SPPO (Wu et al., 2024) only guarantee average-iterate convergence (which is impractical for LLMs) or convergence to a KL-regularized Nash equilibrium (Munos et al., 2024; Zhang et al., 2025b), COMAL is the *first* algorithm that has provable last-iterate convergence to the unregularized Nash equilibrium.¹

¹We remark that a concurrent work (Wang et al., 2025) proposes an algorithm based on Magnetic Mirror Descent (Sokota et al., 2023) with last-iterate convergence. Our algorithms and theirs are all variants of the

108 **Empirical improvements:** We first conduct synthetic controlled experiments on a 3×3 two-player
 109 zero-sum alignment game and demonstrate that COMAL is the only algorithm that converges to the
 110 Nash equilibrium. Under realistic LLM training settings, in experiments with Llama-3-8B-Instruct
 111 (Dubey et al., 2024) and Qwen2.5-7B (Yang et al., 2024b) on UltraFeedback (Cui et al., 2023),
 112 COMAL achieves above 60% and 56% win rates, respectively, against all compared algorithms
 113 according to the preference oracle.

115 2 BACKGROUND

117 We begin by introducing notation for language model alignment and preference modeling. Let $\Delta(\mathcal{Z})$
 118 denote the set of distributions over a set \mathcal{Z} . Let \mathcal{X} be the instruction set with a fixed distribution
 119 $\rho \in \Delta(\mathcal{X})$, and \mathcal{Y} be the response set. Given an instruction $x \in \mathcal{X}$, an LLM policy π specifies an
 120 output distribution $\pi(\cdot | x) \in \Delta(\mathcal{Y})$. For $p, q \in \Delta(\mathcal{Z})$, the Kullback-Leibler (KL) divergence is
 121 $\text{KL}(p\|q) := \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}$. The sigmoid function is $\sigma(x) := \frac{e^x}{e^x + 1}$. We use $\text{supp}(p)$ to denote
 122 the support of distribution p . This paper focuses on general preference models.

123 **Definition 1** (General Preference Model). *A general preference model $\mathbb{P} : \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$ satisfies $\mathbb{P}(y_1 \succ y_2 | x) = 1 - \mathbb{P}(y_2 \succ y_1 | x)$. When we query \mathbb{P} with (x, y_1, y_2) , it outputs 1 with
 124 probability $\mathbb{P}(y_1 \succ y_2 | x)$ meaning y_1 is preferred over y_2 , and it outputs 0 otherwise. The win rate
 125 of π_1 over π_2 under preference model \mathbb{P} is $\mathbb{P}(\pi_1 \succ \pi_2) := \mathbb{E}_{x \sim \rho} [\mathbb{E}_{y_1 \sim \pi_1, y_2 \sim \pi_2} [\mathbb{P}(y_1 \succ y_2 | x)]]$.*

126 We present the Bradley-Terry (BT) model and additional backgrounds on RLHF and DPO to §B.

127 2.1 ALIGNMENT WITH GENERAL PREFERENCE MODELS

131 The Bradley-Terry (BT) model, while widely used in preference modeling, has fundamental limitations
 132 that restrict its ability to capture the full complexity of human preferences such as intransitive
 133 preferences, especially when aggregating preferences across diverse populations or when dealing
 134 with nuanced, context-dependent decisions (Munos et al., 2024; Swamy et al., 2024). To address
 135 these limitations and achieve alignment with general preferences, following (Munos et al., 2024;
 136 Swamy et al., 2024), we model the policy optimization problem as a two-player zero-sum game.

137 **Definition 2** (Alignment Game). *The alignment game is a two-player zero-sum game with objective*

$$138 \quad J(\pi_1, \pi_2) := \mathbb{P}(\pi_1 \succ \pi_2) - \frac{1}{2}. \quad (1)$$

140 The constant $\frac{1}{2}$ is introduced only to ensure the game is zero-sum and it has no other effect. We focus
 141 on policies with $\Pi := \{\pi : \text{supp}(\pi) \subseteq \text{supp}(\pi_{\text{init}})\}$ in the support of the initial policy. A **Nash**
 142 **equilibrium** policy is $(\pi_1^*, \pi_2^*) \in \text{argmax}_{\pi_1 \in \Pi} \text{argmin}_{\pi_2 \in \Pi} J(\pi_1, \pi_2)$ and satisfies $J(\pi_1, \pi_2^*) \leq$
 143 $J(\pi_1^*, \pi_2^*) \leq J(\pi_1^*, \pi_2), \forall \pi_1, \pi_2 \in \Pi$.

145 In this game, the max-player controls π_1 and tries to maximize $J(\pi_1, \pi_2)$ while the min-player
 146 controls π_2 and tries to minimize $J(\pi_1, \pi_2)$. Since the game for two players $J(\pi_1, \pi_2)$ is sym-
 147 metric (Ye et al., 2024), the game has a symmetric Nash equilibrium (π^*, π^*) . Moreover,
 148 the Nash equilibrium policy π^* guarantees that for any other policy π , its win rate is at least
 149 $\mathbb{P}(\pi^* \succ \pi) \geq \mathbb{P}(\pi^* \succ \pi^*) = 50\%$. Our goal is to find a Nash equilibrium policy.

150 Existing online iterative preference optimization methods designed for or applicable to the original
 151 game, including iterative IPO (Azar et al., 2024) and SPPO (Wu et al., 2024), are based on Multi-
 152 plicative Weights Update (MWU, definition in §3.2), and thus *diverge in the last iterate* as we show
 153 in §4.² There is also a line of works including Nash-MD (Munos et al., 2024; Ye et al., 2024), Online
 154 IPO (Calandriello et al., 2024), INPO (Zhang et al., 2025b) aim to find the Nash equilibrium of a
 155 modified KL-regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$ defined as

$$156 \quad J(\pi_1, \pi_2) - \tau \mathbb{E}_{x \sim \rho} [\text{KL}(\pi_1(\cdot | x) || \pi_{\text{ref}}(\cdot | x))] + \tau \mathbb{E}_{x \sim \rho} [\text{KL}(\pi_2(\cdot | x) || \pi_{\text{ref}}(\cdot | x))]. \quad (2)$$

157 conceptual prox algorithm (Nemirovski, 2004). While their theoretical results require solving a regularized
 158 game *exactly*, we provide stronger results showing last-iterate convergence under the more practical setting
 159 with only *approximate* solutions (see Theorem 3). Their experiments and our experiments both confirm the
 160 effectiveness of convergent regularized learning algorithms for LLM alignment. We include a more detailed
 161 comparison with (Wang et al., 2025) in Appendix A

²The MWU algorithm only has a weaker average-iterate convergence, i.e., $\frac{1}{T} \sum_{t=1}^T \pi^t$ converges.

162 The additional KL regularization terms in the objective are introduced for training stability. However,
 163 the Nash equilibrium of the modified game no longer guarantees a win rate of at least 50% against
 164 any competing policy. We compare these algorithms in Table 4.

165 Moreover, most existing theoretical convergence guarantees only hold for the average iterate, i.e., the
 166 uniform mixture of training iterates, which is not used in practice. The last iterate is widely used in
 167 practice, is more space-efficient (Munos et al., 2024), and has better performance demonstrated by
 168 existing experimental results (Munos et al., 2024; Wu et al., 2024; Zhang et al., 2025b). This motivates
 169 us to design principled algorithms with provable last-iterate convergence to Nash equilibrium policy.
 170

171 3 CONVERGENT META-ALGORITHM FOR ALIGNMENT

172 We propose a simple meta-algorithm, **Convergent Meta Alignment Algorithm (COMAL, Algo-
 173 rithm 1)**, for aligning LLMs with general preferences. In §3.1 and 3.2, we present the theoretical
 174 foundations of COMAL and analyze its convergence properties. §3.3 describes its practical imple-
 175 mentation that integrates COMAL with existing preference learning methods.
 176

177 3.1 COMAL

178 We now introduce COMAL, our meta-algorithm for preference-based policy optimization, inspired
 179 by the conceptual prox-method (Nemirovski, 2004) from convex optimization and game theory. The
 180 prox-method has recently demonstrated strong practical performance in computing Nash equilibria
 181 for large-scale two-player zero-sum games (Perolat et al., 2021; Song et al., 2020; Abe et al., 2024)
 182 and has proven highly effective for the training of advanced game-theoretic AI systems (Perolat et al.,
 183 2022). Here, we adapt this framework into an online iterative procedure that guarantees convergence
 184 to the Nash equilibrium in the alignment game $J(\pi_1, \pi_2)$ (1).

185 **Algorithm 1: Convergent Meta Alignment Algorithm (COMAL) for solving alignment game**

186 **Input:** Initial policy π_{init} , preference oracle \mathbb{P} , regularization $\tau > 0$, number of iterations $T \geq 1$
 187 **Output:** Optimized policy π^T
 188 Initialize $\pi^1, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$
 189 **for** $t = 1, 2, \dots, T - 1$ **do**
 190 $\pi^{t+1} \leftarrow \text{argmax}_{\pi_1} \min_{\pi_2} J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$ using Algorithm 2 (discussed in §3.2)
 191 $\pi_{\text{ref}} \leftarrow \pi^{t+1}$
 192 **return** π^T

193 **Algorithmic Structure and Motivation.** At each iteration t , COMAL formulates and solves a
 194 *regularized zero-sum game*, defined by the objective $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$ (2), where the regularization
 195 encourages policies to remain close (in KL divergence) to a reference policy π_{ref} . Specifically,
 196 the next policy π^{t+1} is identified as a Nash equilibrium of this regularized game, with the current
 197 reference set to $\pi_{\text{ref}} = \pi^t$. (See Algorithm 2 and further exposition in §3.2). After convergence
 198 within this regularized subproblem, the reference policy is *updated* to the newly computed π^{t+1}
 199 (the latest iterate): $\pi_{\text{ref}} \leftarrow \pi^{t+1}$, and the process repeats. This mechanism operationalizes a central
 200 insight of proximal algorithms: by updating the regularization center only when a regularized Nash
 201 equilibrium is reached, we ensure stable yet progressive movement toward the Nash equilibrium.
 202

203 **Convergence and Monotonicity Guarantee.** A key property of COMAL is that the KL divergence to
 204 the Nash equilibrium policy π^* of the original game is monotonically non-increasing: $\text{KL}(\pi^* \parallel \pi^{t+1}) \leq$
 205 $\text{KL}(\pi^* \parallel \pi^t)$. This holds for any choice of $\tau > 0$ (Lemma 4), permitting the regularization strength to
 206 be adaptively adjusted during training without requiring a vanishing decay schedule. Each iteration
 207 thus provably brings the policy closer to the original Nash solution, justifying the update of the
 208 reference policy.
 209

210 **Theorem 1.** *We assume that there exists a Nash equilibrium π^* of $J(\pi_1, \pi_2)$ (defined in (1)) such
 211 that $\text{supp}(\pi^*) = \text{supp}(\pi_{\text{init}})$. In every iteration $t \geq 1$, it holds that $\text{KL}(\pi^* \parallel \pi^{t+1}) \leq \text{KL}(\pi^* \parallel \pi^t)$.
 212 Moreover, COMAL has last-iterate convergence, i.e., $\lim_{t \rightarrow \infty} \pi^t$ exists and is a Nash equilibrium.*

213 Moreover, while prior works (Perolat et al., 2021; Abe et al., 2024; Wang et al., 2025) require each
 214 regularized game to be solved *exactly*, we prove a stronger result (Theorem 3): last-iterate convergence
 215 holds even when each regularized game is solved only *approximately*, as long as sufficient progress is

216 **Algorithm 2:** Regularized game solver for $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}}) = \text{argmax}_{\pi_1} \min_{\pi_2} J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$

217 **Input:** Reference policy π_{ref} , preference oracle \mathbb{P} , regularization $\tau > 0$, step size $\eta > 0$, number
218 of iterations $K \geq 1$

219 **Output:** Regularized Nash equilibrium policy μ_K

220 Initialize $\mu^1 \leftarrow \pi_{\text{ref}}$

221 **for** $k = 1, 2, \dots, K - 1$ **do**

222 $g_\tau^k \leftarrow \nabla_{\mu^k} J_\tau(\mu^k, \mu^k, \pi_{\text{ref}}) = \mathbb{P}(\cdot \succ \mu_k) - \tau(\log \frac{\mu_k(\cdot)}{\pi_{\text{ref}}(\cdot)} + 1) // \text{ Gradient}$

223 $\mu^{k+1} \leftarrow \text{Prox}(\mu_k, \eta g_\tau^k)$

224 **return** μ_K

226
227
228 made at each stage. This makes our result more robust and practical. Formal statements and proofs
229 are provided in §D. We also give non-asymptotic convergence rate in [Theorem 2](#).

230 **Relation to Previous Work.** Prior iterative approaches to general-preference policy optimization—
231 such as mirror descent-style algorithms (Azar et al., 2024; Wu et al., 2024)—typically only guarantee
232 that the *average* iterate converges (in mixture) to a Nash policy. However, in practice, averaging across
233 many deep neural network checkpoints is both storage- and deployment-inefficient and uncommon.
234 Furthermore, existing methods for last-iterate convergence apply only to *regularized* games (Munos
235 et al., 2024; Zhang et al., 2025b), yielding stationary points that may diverge from true Nash equilibria
236 of the alignment game (see also Table 4). In contrast, COMAL is the first framework to attain fully
237 practical and provable last-iterate convergence to the Nash equilibrium of the alignment game, even
238 in large-scale LLM contexts. The convergence in alignment game without regularization is crucial to
239 ensure 50% win rate against any other policy.

240 **Practical Instantiation.** Each COMAL iteration involves solving a regularized zero-sum game
241 $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, for which many policy optimization algorithms originally developed for RLHF and
242 preference learning (e.g., PPO, DPO, IPO, INPO) can serve as efficient sub-solvers; see §3.2 for
243 discussion and §F for variants. While the theoretical properties of COMAL provide a strong founda-
244 tion, its practical implementation and empirical validation in large-scale LLM alignment constitute
245 a central contribution of this work. We show that COMAL can be instantiated with, for example,
246 *INPO* (Zhang et al., 2025b) as the regularized game solver (Algorithm 3), yielding substantial and
247 consistent performance gains across challenging alignment benchmarks. Our results demonstrate that
248 COMAL not only offers strong convergence guarantees but is also easy to deploy, highly scalable,
249 and effective for real-world preference optimization and LLM fine-tuning. Notably, integrating
250 COMAL into existing pipelines typically requires only minimal modifications—chiefly, adding
251 periodic reference policy updates and an outer iteration loop—making it directly compatible with
252 current large-scale alignment workflows. **We note that the per-iteration computational cost of our**
253 **algorithm is comparable to other alignment algorithms tested in our experiments**—differing by
254 only a few percent—while achieving better performance without significant computational overhead.

255 3.2 SOLVING A REGULARIZED GAME

256
257 Each iteration of COMAL requires solving a regularized zero-sum game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$. We present
258 Mirror Descent (MD) in Algorithm 2 for computing a Nash equilibrium of this game. MD builds
259 on the prox operator, a principled tool from convex optimization that ensures stability and supports
260 broad applicability. Importantly, we later show that this prox operator can be instantiated using a
261 variety of modern policy optimization algorithms. For simplicity, we consider policies $\pi \in \Delta(\mathcal{Y})$
262 and omit dependence on the instruction x ; all discussions extend naturally to the contextual setting.

263 **Mirror Descent and Multiplicative Weights Update (MWU).** Mirror Descent (MD) is a founda-
264 tional family of iterative optimization algorithms, widely used in game theory, machine learning,
265 and online learning (Nemirovskij & Yudin, 1983). At a high level, MD generalizes vanilla gradient
266 descent by using a geometry-aware update rule that better respects the structure of the optimization
267 domain through a more flexible notion of ‘distance,’ defined by a regularizer. A particularly important
268 special case is the *Multiplicative Weights Update* (MWU) algorithm (Arora et al., 2012), which can
269 be viewed as Mirror Descent performed with the negative entropy regularizer. For concreteness,
suppose we want to maximize some smooth objective $f(\pi)$ over probabilistic policies π . At iteration

270 t , with current policy π^t , MWU computes the updated policy π^{t+1} as the solution to:
 271

$$272 \quad \pi^{t+1} := \text{Prox}(\pi^t, \nabla f(\pi^T)) := \underset{\pi}{\operatorname{argmax}} \left\{ \langle \nabla f(\pi^t), \pi \rangle - \eta^{-1} \cdot \text{KL}(\pi || \pi^t) \right\}, \quad (3)$$

273 where η is a positive parameter (step size), and $\text{KL}(\cdot || \cdot)$ is the Kullback-Leibler (KL) divergence,
 274 which in this case measures how much the new policy deviates from the previous one. Intuitively,
 275 this update chooses a new policy by trading off following the gradient of f with staying close (in
 276 KL) to the prior policy, preventing overly aggressive changes that could destabilize learning. This
 277 update can be viewed more generally through the lens of the *proximal operator* (or *prox operator*)—a
 278 mathematical abstraction that unifies many optimization steps used in machine learning, including
 279 projected gradient descent and mirror descent with Bregman divergences (Parikh et al., 2014). We
 280 include a detailed discussion on the prox operator in §C.

281 **Non-asymptotic Convergence.** Denote π_τ^* the Nash equilibrium of the KL regularized game
 282 $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, which is τ -strongly monotone. We can apply existing results to show that MWU
 283 (Algorithm 2) achieves linear last-iterate convergence rate: the KL divergence to the Nash equilibrium
 284 π_τ^* decreases exponentially fast. The proof is in §E. **Theorem 2** also implies a **non-asymptotic**
 285 **convergence to an approximate Nash equilibrium**: we can choose $\tau = O(\varepsilon)$ and approaching an
 286 ε -approximate Nash equilibrium of the original alignment game (1) in $\tilde{O}(1/\varepsilon^2)$ iterations.

287 **Theorem 2.** *For step size $0 < \eta \leq \frac{\tau}{\tau^2 + 0.5}$, Algorithm 2 guarantees for every $k \geq 1$,*
 288 $\text{KL}(\pi_\tau^* || \mu^{k+1}) \leq (1 - \frac{\eta\tau}{2})^k \text{KL}(\pi_\tau^* || \pi_{\text{ref}})$.

290 3.3 PRACTICAL METHODS FOR COMPUTING THE PROX OPERATOR

291 We show how to implement COMAL in practical large-scale applications like LLM alignment by
 292 computing the prox operator, with a concrete implementation presented in **Algorithm 3**. Specifically,
 293 we observe that many existing algorithms designed for RLHF and preference optimization with
 294 neural network parameters can be extended to solve the prox operator. These algorithms include
 295 RL algorithms like PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024; Guo et al., 2025) and
 296 loss-minimization algorithms like, DPO (Rafailov et al., 2024), IPO (Azar et al., 2024), SPPO (Wu
 297 et al., 2024), REBEL (Gao et al., 2024), DRO (Richemond et al., 2024), INPO (Zhang et al., 2025b).
 298 Each of them may be preferred in certain settings. Due to space limitations, we defer the detailed
 299 discussion to §F. We also note that our meta algorithm, COMAL, can be integrated with many
 300 existing methods designed for preference optimization with minimal change, and we present concrete
 301 instantiations of COMAL using iterative GRPO, SPPO, REBEL, and DRO in §G.

302 Our unified view on existing diverse preference methods through the perspective of computing the
 303 prox operator opens the possibility of applying other algorithms from online learning and optimization
 304 to robust LLM alignment. We include implementations for two other last-iterate convergent
 305 algorithms, the Mirror-Prox algorithm (Nemirovski, 2004) and the Optimistic Multiplicative Weights
 306 Update algorithm (Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015), in §H.

308 309 **Algorithm 3:** Practical Implementation of COMAL integrated with INPO (Algorithm 4)

310 **Input:** Initial policy π_{init} , regularization $\{\tau_t > 0\}$, step size $\{\eta_t > 0\}$, number of outer
 311 iterations $T \geq 1$, number of inner iterations $\{K_t \geq 1\}$, preference oracle \mathbb{P} .

312 **Output:** Optimized policy π^T

313 Initialize $\pi^1, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$

314 **for** $t = 1, 2, \dots, T - 1$ **do**

315 $\pi^{t+1} \leftarrow \text{INPO}(\pi_{\text{ref}}, \tau_t, \eta_t, K_t, \mathbb{P})$ (Algorithm 4)

316 $\pi_{\text{ref}} \leftarrow \pi^{t+1}$

317 **return** π^T

318 319 4 SYNTHETIC EXPERIMENTS

320 We conduct experiments on a simple bandit problem with $\mathcal{Y} = \{y_a, y_b, y_c\}$ and non-BT preference
 321 model over \mathcal{Y} . Specifically, we set $\mathbb{P}[y_b \succ y_a] = \mathbb{P}[y_c \succ y_b] = 0.9$ and $\mathbb{P}[y_a \succ y_c] = 0.8$. Observe
 322 that the preference is intransitive and exhibits a preference cycle $y_c \succ y_b \succ y_a \succ y_c$. The detailed
 323 setup and result analysis are in §I and Figure 1, 3, and 4. Due to the space limit, we only briefly
 324 discuss the results here. Our experiments show that iterative DPO, iterative IPO (Azar et al., 2024),

324 and SPPO (Wu et al., 2024) all cycle and diverge away from the unique Nash equilibrium. The INPO
 325 algorithm converges in the modified game as we show in [Theorem 2](#). However, the converging point
 326 is not the Nash equilibrium of the original game and suffers a constant equilibrium gap. COMAL is
 327 the only algorithm that converges to the Nash equilibrium.

328 5 LLM-BASED EXPERIMENTS

330 We conduct experiments based on Llama-3-8B-Instruct (Dubey et al., 2024) and Qwen2.5-7B (Yang
 331 et al., 2024b),³ on a commonly used dataset UltraFeedback (Cui et al., 2023) to show the effectiveness
 332 of COMAL under the practical preference optimization setting, following [Algorithm 3](#).

334 5.1 EXPERIMENTAL SETTINGS

335 **Instruction Set.** Our training experiments are conducted on the 64K instructions from the UltraFeed-
 336 back dataset, which covers a broad range of instruction types and is well-suited and widely used for
 337 studying preference optimization in practical scenarios.

338 **Preference Oracle.** We choose a mixture of two BT reward models as the preference oracle to
 339 simulate the preference diversity among human annotators. Specifically, the win rate of an output y_a
 340 over y_b parameterized by a mixture of two BT reward models r_1 and r_2 is

$$342 P(y_a > y_b) = \frac{1}{2} \cdot \frac{e^{r_1(y_a)}}{e^{r_1(y_a)} + e^{r_1(y_b)}} + \frac{1}{2} \cdot \frac{e^{r_2(y_a)}}{e^{r_2(y_a)} + e^{r_2(y_b)}}. \quad (4)$$

343 The two reward models used are Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) and
 344 ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024), both achieving strong performance on various
 345 human preference alignment benchmarks in RewardBench (Lambert et al., 2024b).

346 **Preference Data Generation.** To construct the preference data, i.e., output pairs with a preference
 347 annotation specifying which one is better, we adopt the setting of [Zhang et al. \(2025b\)](#) by sampling 5
 348 candidate outputs for each instruction with a temperature of 0.8 and applying the preference oracle to
 349 select the best and the worst candidates to form a data point.

350 **Baselines.** The following baselines are compared: (1) **BASE**: Llama-3-8B-Instruct, which has already
 351 been fine-tuned, can be directly used as the base model following SimPO (Meng et al., 2024). For
 352 Qwen2.5-7B, we finetune it using the standard SFT objective on the Tulu3 SFT dataset (Lambert
 353 et al., 2024a). (2) vanilla **DPO** (Rafailov et al., 2024) and (3) vanilla **IPO** (Azar et al., 2024), where
 354 one training iteration is performed over the entire instruction set of UltraFeedback with output pairs
 355 sampled from the BASE policy; (5) **INPO** (Zhang et al., 2025b)(Algorithm 4), where each iteration of
 356 training is performed on a single data subset; (6) **Iterative IPO (Iter-IPO)**, which follows a training
 357 setting similar to INPO but without the KL regularization with respect to the static reference policy.

358 **Training Details.** To reduce computational cost, the instructions in UltraFeedBack are divided into
 359 six equal subsets (10K each), with one subset used per training iteration. For iterative optimization
 360 algorithms, 18 training iterations are performed. All iterative optimization algorithms compared have
 361 similar computational costs, each taking around 100 hours on 8 NVIDIA A6000 GPUs. To the best
 362 of our knowledge, multi-iteration training like ours has rarely been explored in previous work. For
 363 example, INPO only trained up to 3 iterations, equivalent to just one full round over UltraFeedback’s
 364 instructions. The overall update process is as follows: (1) **Iter-IPO**: at each iteration, the reference
 365 policy in the IPO loss (Eq. 13) is updated to the policy produced in the previous iteration; (2) **INPO**:
 366 at each iteration, one optimization step in [Algorithm 4](#) is performed, with the reference policy fixed
 367 to the BASE policy; (3) **COMAL**: as outlined in [Algorithm 3](#), COMAL uses INPO as a sub-routine,
 368 and updates the reference policy in INPO every 6 iterations, i.e., an entire pass of the instruction set.

369 **Hyper-Parameters.** We conduct a grid search for the KL regularization strength, η^{-1} , for DPO, IPO
 370 and INPO, within the range of 0.001 - 0.1. The value of τ in INPO ([Equation \(14\)](#)) is determined
 371 by following [Zhang et al. \(2025b\)](#), where $\eta\tau$ is set to a fixed ratio, 1/3. We found **Iter-IPO** and
 372 **INPO** achieve the best performance when η^{-1} is 0.002. However, in Llama-3 training, we observe
 373 rapid performance degradation of both algorithms after 6 training iterations. **In contrast, training**
 374 **Qwen2.5-SFT** remains stable. **We posit that this is because Llama-3-8B-Instruct has undergone more**
 375 **extensive post-training, making further updates more intricate. We then explored larger values of**

376 377 ³Additional experiments based on Qwen2-1.5B (Yang et al., 2024a) are also provided in the §K.

η^{-1} for stable training and found that it must be increased to around 0.1 to maintain stability after 6 iterations. Therefore, to study the algorithms' behavior in more training iterations, we perform additional experiments with η^{-1} set to 0.1 (**Iter-IPO-L** and **INPO-L**), which leads to stabler training. For **COMAL**, since it involves multi-round INPO training with adjustable KL regularization strengths (Algorithm 3), we set η^{-1} to 0.002 for the first INPO training round (i.e., 6 iterations) and adjust it to 0.1 for the subsequent two rounds, balancing training stability with efficiency. In Qwen2.5 training, η^{-1} is fixed to 0.002 for all algorithms since the training process remains stable. More details are in Appendix J.

Evaluations. We use the instructions in a widely used benchmark, AlpacaEval (Li et al., 2023), to construct the test set, since these instructions cover various task scenarios. However, instead of using GPT-4, the default evaluator for the AlpacaEval benchmark, **we chose to use the same preference oracle used during training as the evaluator**. This follows the setting of previous work (Munos et al., 2024), which provides a controlled experimental setting, ensuring that the preference oracle the model learns to fit is also the one used to evaluate its performance.

5.2 RESULT ANALYSIS

Table 1: Performance comparison of different training algorithms evaluated by the preference oracle. The row v.s. column win rate (%) is reported. All the training is based on the **BASE** checkpoint, Llama-3-8B-Instruct. For Iterative IPO (**Iter-IPO**) and **INPO**, we report their performance with both a small, optimal regularization ($\eta^{-1} = 0.002$) after 6 iterations and a large regularization ($\eta^{-1} = 0.1$, **Iter-IPO-L** and **INPO-L**) after 18 iterations.

Row/Column	BASE	IPO	DPO	Iter-IPO-L	Iter-IPO	INPO-L	INPO	COMAL	Avg
IPO	93.04	50.00	47.20	28.20	20.75	83.23	25.22	21.61	46.16
DPO	92.42	52.80	50.00	28.57	21.37	81.49	26.46	21.37	46.81
Iter-IPO	94.16	79.25	78.63	50.68	50.00	89.19	53.79	39.75	66.93
INPO	92.92	74.78	73.54	47.08	46.21	87.20	50.00	35.78	63.44
COMAL	90.43	78.39	78.63	62.98	60.25	86.09	64.22	50.00	71.37

Table 2: Performance comparison of different training algorithms evaluated by the preference oracle. The row v.s. column win rate (%) is reported. All the training is based on the **BASE** checkpoint, which is fine-tuned from Qwen2.5-7B using the SFT objective.

Row/Column	BASE	IPO	DPO	Iter-IPO	INPO	COMAL	Avg
IPO	91.43	50.00	50.19	22.98	23.73	21.37	43.28
DPO	90.68	49.81	50.00	23.35	23.60	20.50	42.99
Iter-IPO	91.68	77.02	76.65	50.00	50.43	43.11	64.81
INPO	90.81	76.27	76.40	49.57	50.00	42.11	64.19
COMAL	90.68	78.63	79.50	56.89	57.89	50.00	68.93

Table 1 and **Table 2** perform pairwise comparisons of different algorithms. For **Iter-IPO** and **INPO**, we evaluate their *best* checkpoints due to significant performance degradation thereafter. For **Iter-IPO-L**, **INPO-L**, and **COMAL**, comparisons are made at the final 18-iteration checkpoint. The result shows that **COMAL achieves a win rate exceeding 60.2% against all competing algorithms when using Llama-3-8B-Instruct, and 56.9% with Qwen2.5-7B**, demonstrating its effectiveness.

Figure 2 presents the training dynamics of three iterative preference optimization algorithms, where the average win rate is computed against all the algorithms in **Table 1** and **Table 2**. We note that:

(1) COMAL consistently outperforms other algorithms, **showing steady improvements even in the late stages of the training period.**

(2) Both Iter-IPO and INPO exhibit rapid degradation at the 7th training iteration in Llama-3 training. We posit that this is because Llama-3-8B-Instruct has already undergone extensive post-training, making further optimization more delicate. Training with a larger KL-regularization with Llama-3-8B-Instruct leads to stabler training for both Iter-IPO(-L) and INPO(-L). However, it also introduces a lower performance upper bound. As discussed above, COMAL overcomes this limitation by dynamically adjusting the strength of the KL-regularization.

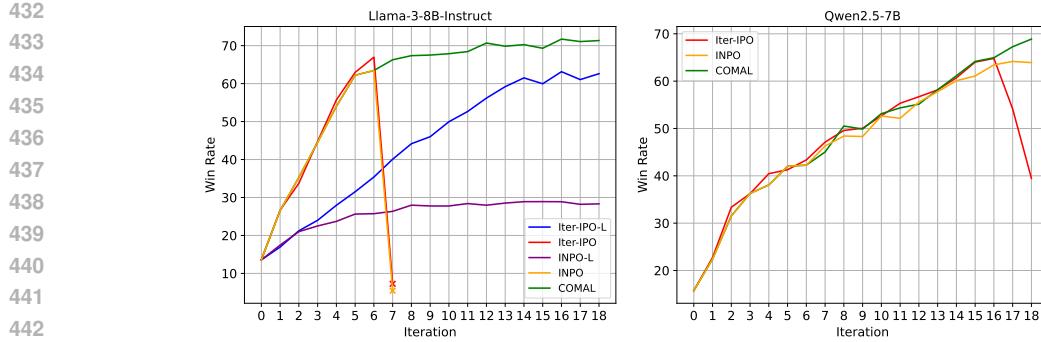


Figure 2: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The average win rates of the trained checkpoints at each iteration against each training algorithm are displayed.

Table 3: Performance of various preference optimization algorithms on standard benchmarks.

Method	GSM8K	MMLU	BBH	HumanEval	AlpacaEval	Arena-Hard
BASE (Llama-3-8B-Instruct)	77.0	63.5	66.4	79.2	25.0	21.3
IPO-(Llama-3-8B-Instruct)	74.0	63.1	53.4	65.3	48.7	38.9
DPO-(Llama-3-8B-Instruct)	73.5	62.7	51.0	65.6	48.6	33.0
Iter-IPO-(Llama-3-8B-Instruct)	71.5	64.4	62.6	77.7	50.6	43.8
INPO-(Llama-3-8B-Instruct)	73.0	64.7	61.7	77.4	51.6	41.0
COMAL-(Llama-3-8B-Instruct)	77.5	64.9	63.3	77.2	53.5	41.3
BASE (Qwen2.5-7B-SFT)	77.5	70.9	65.6	84.0	14.7	22.3
IPO-(Qwen2.5-7B-SFT)	91.0	70.2	67.2	86.7	33.4	53.2
DPO-(Qwen2.5-7B-SFT)	91.0	70.2	66.9	86.6	34.8	54.3
Iter-IPO-(Qwen2.5-7B-SFT)	91.0	70.8	71.9	86.3	42.9	64.5
INPO-(Qwen2.5-7B-SFT)	91.5	70.7	71.0	86.8	39.8	62.2
COMAL-(Qwen2.5-7B-SFT)	91.0	70.8	72.3	85.1	42.2	63.0

Evaluation Results on Standard Benchmarks. To verify that the checkpoints produced by our algorithm retain general capabilities, we compare their performance against the baselines on six standard LLM benchmarks as a sanity check. These include GSM8K for math problem solving (Cobbe et al., 2021), MMLU for multi-task language understanding (Hendrycks et al., 2021), BigBench Hard (BBH) for reasoning (Suzgun et al., 2023), HumanEval for coding (Chen et al., 2021), and two LLM alignment evaluation benchmarks, AlpacaEval and Arena-Hard, where the original evaluator, GPT-4, is used. The results in Table 3, highlighting two findings:

(1) **COMAL maintains comparable performance on standard academic benchmarks;** (2) While not optimized for GPT-4’s preferences, **COMAL performs strongly on AlpacaEval and Arena-Hard compared to the baselines**, indicating its generalizability. We note that COMAL does not outperform Iter-IPO on Arena-Hard. However, as noted above, we compare Iter-IPO at its best checkpoint, whereas COMAL is evaluated at the final checkpoint, because Iter-IPO’s performance declines near the end of training (Figure 2). Moreover, since Arena-Hard compares each model only against a fixed baseline (GPT-4), its setup does not fully align with COMAL’s objective.

Discussion on Updating the Reference Policy. Our theoretical analysis in Section 3 indicates the reference policy in COMAL’s objective needs to be updated in order to converge to the alignment game (Equation (1)). Empirically, it means that COMAL does not have a KL-regularization from a static reference policy. However, as shown in Table 3, COMAL does not suffer substantially from the “alignment tax” (Dong et al., 2024; Ouyang et al., 2022). Moreover, we observe that its improvement is not solely from relaxing the KL-constraint – Iter-IPO has even smaller constraints from a reference policy updated at each iteration, but fails to outperform COMAL and suffers from training instability.

6 CONCLUSION

We have proposed COMAL, a meta-algorithm for preference optimization that provably converges to the Nash equilibrium policy in the last iterate. We have provided a theoretical analysis of the properties of COMAL and have empirically demonstrated its effectiveness under both synthetic and real-world experimental settings, where COMAL consistently maintains a win rate above 50%

486 against other policies in controlled settings. We believe COMAL has significant potential to enhance
 487 the performance of LLMs in the alignment fine-tuning setting, due to its theoretical guarantees and
 488 flexibility, as it can be integrated with existing learning algorithms while overcoming their limitations.
 489

490 **REFERENCES**

492 Kenshi Abe, Kaito Ariu, Mitsuki Sakamoto, and Atsushi Iwasaki. Adaptively perturbed mirror
 493 descent for learning in games. In *Proceedings of the 41st International Conference on Machine
 494 Learning*, 2024.

495 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
 496 algorithm and applications. *Theory of computing*, 8(1):121–164, 2012.

498 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
 499 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
 500 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
 501 4447–4455. PMLR, 2024.

502 Heinz H. Bauschke, Walaa M. Moursi, and Xianfu Wang. Generalized monotone operators and their
 503 averaged resolvents. *Math. Program.*, 189(1):55–74, 2021. doi: 10.1007/S10107-020-01500-6.
 504 URL <https://doi.org/10.1007/S10107-020-01500-6>.

505 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
 506 of paired comparisons. *Biometrika*, 39:324, 1952. URL <https://api.semanticscholar.org/CorpusID:125209808>.

509 Yang Cai and Weiqiang Zheng. Accelerated single-call methods for constrained min-max optimization.
 510 *International Conference on Learning Representations (ICLR)*, 2023a.

511 Yang Cai and Weiqiang Zheng. Doubly optimal no-regret learning in monotone games. In *International
 512 Conference on Machine Learning*, pp. 3507–3524. PMLR, 2023b.

514 Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Finite-time last-iterate convergence for learning
 515 in multi-player games. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

516 Yang Cai, Haipeng Luo, Chen-Yu Wei, and Weiqiang Zheng. Uncoupled and convergent learning
 517 in two-player zero-sum markov games with bandit feedback. *Advances in Neural Information
 518 Processing Systems*, 36, 2023.

520 Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and
 521 Weiqiang Zheng. Fast last-iterate convergence of learning in games requires forgetful algorithms.
 522 *arXiv preprint arXiv:2406.10631*, 2024a.

523 Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Accelerated algorithms for constrained
 524 nonconvex-nonconcave min-max optimization and comonotone inclusion. In *Forty-first Interna-
 525 tional Conference on Machine Learning*, 2024b.

526 Daniele Calandriello, Zhaohan Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang,
 527 Bernardo Avila Pires, Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu,
 528 Rishabh Joshi, Zeyu Zheng, and Bilal Piot. Human alignment of large language models through
 529 online preference optimisation. In *Forty-first International Conference on Machine Learning*, 2024.
 530 URL <https://openreview.net/forum?id=2RQqg2Y7Y6>.

531 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan, Harrison
 532 Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
 533 Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
 534 Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
 535 Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
 536 Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, Suchir
 537 Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
 538 Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
 539 Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 large language models trained on code. *ArXiv*, abs/2107.03374, 2021.

540 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 541 reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy
 542 Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
 543 *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
 544 Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 4299–4307, 2017. URL
 545 <https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html>.
 546

547 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 548 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 549 Schulman. Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021.
 550

551 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 552 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. *arXiv
 553 preprint arXiv:2310.01377*, 2023.

554 Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in
 555 min-max optimization. In *the 32nd Annual Conference on Neural Information Processing Systems
 556 (NeurIPS)*, 2018.

557 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 558 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
 559 *Transactions on Machine Learning Research*, 2024.

560 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 561 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 562 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 563 Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
 564 Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 565 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 566 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 567 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 568 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 569 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
 570 Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
 571 Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
 572 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
 573 Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
 574 Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
 575 Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
 576 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
 577 Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yearly, Laurens van der Maaten, Lawrence
 578 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 579 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 580 Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
 581 Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
 582 Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 583 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 584 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
 585 Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
 586 Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
 587 Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
 588 Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raptorthy, Sheng Shen, Shengye Wan,
 589 Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
 590 Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
 591 Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
 592 Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
 593 Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
 Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
 Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen

594 Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 595 Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 596 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
 597 Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
 598 Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
 599 Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
 600 Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
 601 Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
 602 Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
 603 Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
 604 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
 605 Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
 606 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 607 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 608 Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
 609 Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
 610 Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
 611 Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
 612 Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
 613 Suk, Henry Aspegen, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
 614 Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
 615 Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
 616 Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
 617 Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
 618 Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
 619 Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhota, Kyle Huang, Lailin Chen,
 620 Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
 621 Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
 622 Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
 623 Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
 624 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 625 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 626 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 627 Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
 628 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 629 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 630 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 631 Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
 632 Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
 633 Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
 634 Ramaswamy, Shaun Lindsay, Shuang Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 635 Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
 636 Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
 637 Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
 638 Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
 639 Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
 640 Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu,
 641 Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
 642 Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaoqian Wu, Xiaolan Wang,
 643 Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
 644 Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
 645 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
 646 of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

647 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: model
 648 alignment as prospect theoretic optimization. *CoRR*, abs/2402.01306, 2024. doi: 10.48550/ARX
 649 IV.2402.01306. URL <https://doi.org/10.48550/arXiv.2402.01306>.

650 Francisco Facchinei and Jong-Shi Pang. *Finite-dimensional variational inequalities and complemen-*
 651 *tarity problems*. Springer, 2003.

648 Gabriele Farina, Christian Kroer, Chung-Wei Lee, and Haipeng Luo. Clairvoyant regret minimization:
 649 Equivalence with nemirovski's conceptual prox method and extension to general convex games.
 650 *arXiv preprint arXiv:2208.14891*, 2022.

651

652 Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
 653 Thorsten Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen Sun. REBEL: reinforcement
 654 learning via regressing relative rewards. *CoRR*, abs/2404.16767, 2024. doi: 10.48550/ARXIV.240
 655 4.16767. URL <https://doi.org/10.48550/arXiv.2404.16767>.

656

657 Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis. Tight last-iterate convergence rates
 658 for no-regret learning in multi-player games. *Advances in neural information processing systems*
 659 (*NeurIPS*), 2020a.

660

661 Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman Ozdaglar. Last iterate is
 662 slower than averaged iterate in smooth convex-concave saddle point problems. In *Conference on*
 663 *Learning Theory (COLT)*, 2020b.

664

665 Eduard Gorbunov, Adrien B. Taylor, and Gauthier Gidel. Last-iterate convergence of optimistic
 666 gradient method for monotone variational inequalities. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
 667 Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*
 668 35: Annual Conference on Neural Information Processing Systems 2022, *NeurIPS* 2022, New
 669 Orleans, LA, USA, November 28 - December 9, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/893cd874ba98afa54ae9e385a24a83ac-Abstract-Conference.html.

670

671 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 672 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 673 via reinforcement learning. *Nature*, 645:633–638, 2025. URL <https://doi.org/10.1038/s41586-025-09422-z>.

674

675 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 676 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 677 *Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

678

679 Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive learning in
 680 continuous games: Optimal regret bounds and convergence to nash equilibrium. In *Conference on*
 681 *Learning Theory*, pp. 2388–2422. PMLR, 2021.

682

683 A. N. Iusem, T. Pennanen., and B. F. Svaiter. Inexact variants of the proximal point algorithm without
 684 monotonicity. *SIAM Journal on Optimization*, 13(4):1080–1097, 2003. doi: 10.1137/S105262340
 685 1399587. URL <https://doi.org/10.1137/S1052623401399587>.

686

687 G. M. Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*,
 688 12:747–756, 1976. URL <https://ci.nii.ac.jp/naid/10017556617/>.

689

690 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 691 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\ulu 3: Pushing frontiers in
 692 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024a.

693

694 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 695 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
 for language modeling. *arXiv preprint arXiv:2403.13787*, 2024b.

696

697 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 698 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 699 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

700

701 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 702 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint*
 703 *arXiv:2410.18451*, 2024.

702 Kaizhao Liu, Qi Long, Zhekun Shi, Weijie J Su, and Jiancong Xiao. Statistical impossibility and
 703 possibility of aligning llms with human preferences: From condorcet paradox to nash equilibrium.
 704 *arXiv preprint arXiv:2503.10990*, 2025a.

705 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 706 Lin. Understanding r1-zero-like training: A critical perspective. In *Conference on Language
 707 Modeling (COLM)*, 2025b.

708 Kenneth O May. Intransitivity, utility, and the aggregation of preference patterns. *Econometrica: Journal of the Econometric Society*, pp. 1–13, 1954.

709 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 710 free reward. *arXiv preprint arXiv:2405.14734*, 2024.

711 Panayotis Mertikopoulos, Christos H. Papadimitriou, and Georgios Piliouras. Cycles in adversarial
 712 regularized learning. In Artur Czumaj (ed.), *Proceedings of the Twenty-Ninth Annual ACM-SIAM
 713 Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018*, pp. 2703–2717. SIAM, 2018. doi: 10.1137/1.9781611975031.172. URL <https://doi.org/10.1137/1.9781611975031.172>.

714 Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
 715 optimistic gradient methods for saddle point problems: Proximal point approach. In *International
 716 Conference on Artificial Intelligence and Statistics (AISTATS)*, 2020a.

717 Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of $\mathcal{O}(1/k)$ for optimistic
 718 gradient and extragradient methods in smooth convex-concave saddle point problems. *SIAM Journal on Optimization*, 30(4):3230–3251, 2020b.

719 Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 720 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegel, et al. Nash
 721 learning from human feedback. In *Forty-first International Conference on Machine Learning*, 2024.

722 Arkadi Nemirovski. Prox-method with rate of convergence $\mathcal{O}(1/t)$ for variational inequalities with
 723 lipschitz continuous monotone operators and smooth convex-concave saddle point problems. *SIAM Journal on Optimization*, 15(1):229–251, 2004.

724 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. *Problem complexity and method
 725 efficiency in optimization*. Wiley-Interscience, 1983.

726 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 727 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 728 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 729 Ryan Lowe. Training language models to follow instructions with human feedback. In Sanmi
 730 Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in
 731 Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
 732 Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.
 733 URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

734 Neal Parikh, Stephen Boyd, et al. Proximal algorithms. *Foundations and trends® in Optimization*, 1
 735 (3):127–239, 2014.

736 Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias:
 737 Leveraging debiased data for tuning evaluators. *arXiv preprint arXiv:2407.06551*, 2024.

738 Barna Pásztor, Thomas Kleine Buening, and Andreas Krause. Stackelberg learning from human
 739 feedback: Preference optimization as a sequential game. In *Eighteenth European Workshop on
 740 Reinforcement Learning*, 2025.

741 Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro
 742 Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, et al. From poincaré
 743 recurrence to convergence in imperfect information games: Finding equilibrium via regularization.
 744 In *International Conference on Machine Learning*, pp. 8525–8535. PMLR, 2021.

756 Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
 757 Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of stratego
 758 with model-free multiagent reinforcement learning. *Science*, 378(6623):990–996, 2022.

759

760 Leonid Denisovich Popov. A modification of the Arrow-Hurwicz method for search of saddle points.
 761 *Mathematical notes of the Academy of Sciences of the USSR*, 28(5):845–848, 1980. Publisher:
 762 Springer.

763

764 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 765 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 766 in Neural Information Processing Systems*, 36, 2024.

767

768 Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences.
 769 *Advances in Neural Information Processing Systems*, 2013.

770

771 Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Gheshlaghi
 772 Azar, Rafael Raffailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will Ellsworth,
 773 et al. Offline regularised reinforcement learning for large language models alignment. *arXiv
 774 preprint arXiv:2405.19107*, 2024.

775

776 R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. *SIAM Journal
 777 on Control and Optimization*, 14(5):877–898, 1976. doi: 10.1137/0314056. URL <https://doi.org/10.1137/0314056>.

777

778 Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 779 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
 780 preferences. *CoRR*, abs/2404.03715, 2024. doi: 10.48550/ARXIV.2404.03715. URL <https://doi.org/10.48550/arXiv.2404.03715>.

781

782 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 783 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

784

785 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 786 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 787 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

788

789 Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
 790 Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal response
 791 equilibria, and two-player zero-sum games. In *The Eleventh International Conference on Learning
 792 Representations*, 2023. URL <https://openreview.net/forum?id=DpE5UYUQzZH>.

793

794 Chaobing Song, Zhengyuan Zhou, Yichao Zhou, Yong Jiang, and Yi Ma. Optimistic dual extrapolation
 795 for coherent non-monotone variational inequalities. *Advances in Neural Information Processing
 796 Systems (NeurIPS)*, 33:14303–14314, 2020.

797

798 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 799 Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
 800 tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
 801 Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*,
 802 pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 803 10.18653/v1/2023.findings-acl.824. URL <https://aclanthology.org/2023.findings-acl.824>.

804

805 Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A mini-
 806 maximalist approach to reinforcement learning from human feedback, 2024.

807

808 Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
 809 regularized learning in games. *Advances in Neural Information Processing Systems (NeurIPS)*,
 810 2015.

811

812 Xiaohang Tang, Sangwoong Yoon, Seongho Son, Huizhuo Yuan, Quanquan Gu, and Ilija Bo-
 813 gunovic. Game-theoretic regularized self-play alignment of large language models. *arXiv preprint
 814 arXiv:2503.00030*, 2025.

810 Daniil Tiapkin, Daniele Calandriello, Denis Belomestny, Eric Moulines, Alexey Naumov, Kashif
 811 Rasul, Michal Valko, and Pierre Menard. Accelerating nash learning from human feedback via
 812 mirror prox. *arXiv preprint arXiv:2505.19731*, 2025.

813
 814 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 815 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 816 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

817 Amos Tversky. Intransitivity of preferences. *Psychological review*, 76(1):31, 1969.

818
 819 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
 820 via multi-objective reward modeling and mixture-of-experts. *arXiv preprint arXiv:2406.12845*,
 821 2024.

822
 823 Mingzhi Wang, Chengdong Ma, Qizhi Chen, Linjian Meng, Yang Han, Jiancong Xiao, Zhaowei
 824 Zhang, Jing Huo, Weijie J Su, and Yaodong Yang. Magnetic preference optimization: Achieving
 825 last-iterate convergence for language model alignment. In *The Thirteenth International Conference
 826 on Learning Representations*, 2025. URL <https://openreview.net/forum?id=PDnEDS244P>.

827
 828 Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate convergence
 829 in constrained saddle-point optimization. In *International Conference on Learning Representations
 830 (ICLR)*, 2021.

831
 832 Yongtao Wu, Luca Viano, Yihang Chen, Zhenyu Zhu, Kimon Antonakopoulos, Quanquan Gu, and
 833 Volkan Cevher. Multi-step alignment as markov games: An optimistic online gradient descent
 834 approach with convergence guarantees. *arXiv preprint arXiv:2502.12678*, 2025.

835
 836 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
 837 preference optimization for language model alignment. *arXiv preprint arXiv:2405.00675*, 2024.

838
 839 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 840 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint
 arXiv:2407.10671*, 2024a.

841
 842 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 843 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 arXiv:2412.15115*, 2024b.

844
 845 Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of
 846 nash learning from human feedback under general kl-regularized preference. *arXiv preprint
 847 arXiv:2402.07314*, 2024.

848
 849 Yuheng Zhang, Dian Yu, Tao Ge, Linfeng Song, Zhichen Zeng, Haitao Mi, Nan Jiang, and Dong Yu.
 850 Improving llm general preference alignment via optimistic online mirror descent. *arXiv preprint
 851 arXiv:2502.16852*, 2025a.

852
 853 Yuheng Zhang, Dian Yu, Baolin Peng, Linfeng Song, Ye Tian, Mingyue Huo, Nan Jiang, Haitao
 854 Mi, and Dong Yu. Iterative nash policy optimization: Aligning LLMs with general preferences
 855 via no-regret learning. In *The Thirteenth International Conference on Learning Representations*,
 2025b. URL <https://openreview.net/forum?id=Pujt3ADZgI>.

856
 857 Runlong Zhou, Maryam Fazel, and Simon S Du. Extragradient preference optimization (egpo):
 858 Beyond last-iterate convergence for nash learning from human feedback. *arXiv preprint
 859 arXiv:2503.08942*, 2025.

860 861 CONTENTS

862 1 Introduction

864	2 Background	3
865	2.1 Alignment with General Preference Models	3
866		
867		
868	3 Convergent Meta-Algorithm for Alignment	4
869	3.1 COMAL	4
870		
871	3.2 Solving a Regularized Game	5
872		
873	3.3 Practical methods for computing the prox operator	6
874		
875	4 Synthetic Experiments	6
876		
877	5 LLM-Based Experiments	7
878	5.1 Experimental Settings	7
879		
880	5.2 Result Analysis	8
881		
882	6 Conclusion	9
883		
884	A Related Work	18
885		
886		
887	B Additional Backgrounds	20
888	B.1 Alignment under the Bradley-Terry Model Assumption	20
889		
890	B.2 Cast Study: A Single BT Model Cannot Represent A Mixture of Two BT Models (Added during Rebuttal Period)	20
891		
892		
893	C Prox Operator	22
894	C.1 Properties of the Prox Operator	22
895		
896		
897	D Last-Iterate Convergence of COMAL	22
898	D.1 Last-Iterate Convergence under Exact Solutions	22
899		
900	D.2 Last-Iterate Convergence under Approximate Solutions	24
901		
902	D.3 Auxiliary propostion	27
903		
904	E Proof of Theorem 2	27
905		
906	F Computing the Prox Operator using Preference Learning Methods	28
907	F.1 COMAL integrated with INPO	30
908		
909		
910	G More Practical Implementations of COMAL	31
911	G.1 Practical Implementation of COMAL using iterative GRPO (Shao et al., 2024)	31
912		
913	G.2 COMAL integrated with SPPO (Wu et al., 2024)	31
914		
915	G.3 COMAL integrated with DRO (Richemond et al., 2024)	31
916		
917	G.4 COMAL integrated with REBEL (Gao et al., 2024)	32
	H Implementation of Mirror-Prox and Optimistic Multiplicative Weights Update	32

918	I Synthetic Experiments	34
919		
920	J Hyperparameters and Training Details for LLM Experiments	36
921		
922	K LLM-Based Experiments with 1.5B LLM	36
923		
924	K.1 Experimental Settings	36
925		
926	K.2 Result Analysis	37
927		
928	L Limitations	38
929		
930		
931	A RELATED WORK	
932		

Alignment under Preference models Most existing approaches adopt the Bradley-Terry (BT) preference model (Bradley & Terry, 1952; Christiano et al., 2017), which involves first learning a preference model and then optimizing the objective function with a KL divergence penalty relative to the original language model. For example, RLHF (Ouyang et al., 2022) aims to ensure that LLMs follow instructions by initially learning a BT model and subsequently fine-tuning the model based on the learned reward while regularizing it with the original LLM.

Building on this framework, Rafailov et al. (2024) introduces Direct Preference Optimization (DPO) that maintains the assumption of the BT model for preferences but eliminates the preference learning step by reformulating the objective and optimizing it directly. Additionally, Ethayarajh et al. (2024) diverges from the traditional BT-based methods by deriving algorithms that bypass the preference modeling step altogether. Instead, they model user preferences based on Kahneman and Tversky’s utility theory.

Alignment Solution Concepts under General Preferences Azar et al. (2024) is the first to consider general preferences. They propose the IPO algorithm, an offline algorithm that directly optimizes the win rate of the model penalized by the KL divergence with respect to the original model. Munos et al. (2024) also consider general preferences and aim to find the *von Neumann winner*, which corresponds to the Nash equilibrium of a game played between the two LLMs over the win rate. They propose a variant of the Mirror Descent (MD) algorithm called Nash-MD and show last-iterate convergence in the KL-regularized game. Concurrently, Swamy et al. (2024) study the same solution concept focusing more on sequential games. Calandriello et al. (2024) proved that the objective of the the IPO algorithm coincides with the Nash policy under a proper choice of the parameter that controls the regularization. The work of Liu et al. (2025a) further studies the statistical properties of the Nash equilibrium policy, showing that Nash equilibria correspond to Condorcet winners if they exist, and if not, the Nash equilibrium must be mixed. These results show the importance of finding the Nash equilibrium of the original game rather than the KL-regularized game. The work by Pásztor et al. (2025) proposes Stackelberg learning from human feedback, aiming to find the Stackelberg equilibrium of a two-player sequential-move game.

Iterative Self-Play Algorithms Apart from the aforementioned works, recent research has also proposed practical implementations of Mirror Descent (MD) algorithms, which can be used to learn Nash equilibria through self-play. Rosset et al. (2024) propose Direct Nash Optimization (DNO), where, at each iteration, the model regresses predicted preferences against actual preferences using cross-entropy loss. Similarly, Wu et al. (2024) introduces the Self-Play Preference Optimization (SPPO) method, Gao et al. (2024) introduces Reinforcement Learning via Regressing Relative Rewards (REBEL), and Richemond et al. (2024) introduces the Direct Reward Optimization (DRO) which regresses the loss using the ℓ_2 distance at each iteration. Since these algorithms simulate the MD update, when applied in a two-player zero-sum game, they only have average-iterate convergence but all *diverge in the last iterate*. Moreover, all these methods require the estimation of the win rate, which can be computationally expensive.

Most closely related to our work is Iterative Nash Policy Optimization (INPO) by Zhang et al. (2025b), which continues to use ℓ_2 distance regression. However, by further reformulating and simplifying the

972 objective in a manner similar to IPO, INPO eliminates the need to estimate the expected win rate. The
 973 primary distinction between our approach and INPO is that INPO is designed for the KL-regularized
 974 game and is equivalent to MD; while our algorithm COMAL is inspired by the Conceptual Prox
 975 algorithm and guarantees last-iterate convergence in the original game. This fundamental difference
 976 allows COMAL to achieve more favorable convergence properties and outperform INPO, achieving a
 977 win rate strictly greater than 50% against it. **The work by Tang et al. (2025) also proposes methods**
 978 **for the regularized game, which do not achieve last-iterate convergence in the original game.**

980 **Last-Iterate Convergence in Games** Mirror Descent fails to converge in simple zero-sum games,
 981 often resulting in cycling behavior (Mertikopoulos et al., 2018). In contrast, several algorithms have
 982 been shown to achieve last-iterate convergence including the Proximal Point (PP) method (Rockafellar,
 983 1976), Extra-Gradient (EG) (Korpelevich, 1976), Optimistic Gradient Descent (OGD) (Popov, 1980;
 984 Rakhlin & Sridharan, 2013), and the Conceptual Prox/Mirror Prox methods (Nemirovski, 2004).
 985 The asymptotic convergence properties of these algorithms have been extensively studied (Popov,
 986 1980; Facchinei & Pang, 2003; Iusem et al., 2003; Nemirovski, 2004; Daskalakis & Panageas, 2018).
 987 Recently, there has been a growing focus on establishing finite-time convergence guarantees for
 988 these methods, addressing the practical necessity of understanding their performance within a limited
 989 number of iterations (see e.g., (Mokhtari et al., 2020b;a; Golowich et al., 2020b;a; Perolat et al.,
 990 2021; Bauschke et al., 2021; Wei et al., 2021; Cai et al., 2022; Gorbunov et al., 2022; Cai & Zheng,
 991 2023a;b; Cai et al., 2023; Abe et al., 2024; Cai et al., 2024b;a) and references therein). In particular,
 992 Perolat et al. (2021); Abe et al. (2024); Sokota et al. (2023) propose algorithms that are variants of
 993 the Conceptual-Prox algorithm (Nemirovski, 2004) and achieve last-iterate convergence under the
 994 assumption the regularized game can be solved exactly. Our work further extends their results to
 995 the case where the regularized game can be solved only approximately and demonstrates COMAL’s
 996 effectiveness in large-scale LLM alignment setting.

997 While our work focuses on the Conceptual-Prox algorithm, in §H we also include practical im-
 998 plementations of other convergent methods, including the mirror-prox method (Nemirovski, 2004)
 999 that generalizes the extragradient method (Korpelevich, 1976), and the Optimistic Multiplicative
 1000 Weight Update algorithm (Rakhlin & Sridharan, 2013). We remark that several concurrent and
 1001 subsequent works (Zhou et al., 2025; Zhang et al., 2025a; Wu et al., 2025; Tiapkin et al., 2025) have
 1002 also investigated both the theoretical and practical performance of Mirror-Prox (which subsumes the
 1003 extragradient method) and OMWU for LLM alignment. Taken together with our experiments, these
 1004 studies provide extensive evidence that provably last-iterate convergent algorithms are effective for
 1005 LLM alignment.

1006 **Comparison with (Wang et al., 2025)** The concurrent and independent work by Wang et al.
 1007 (2025) also presents a last-iterate convergent method for NLHF. Their algorithm is based on the
 1008 Magnetic Mirror Descent (MMD) method (Sokota et al., 2023), which is also an implementation of
 1009 the conceptual prox algorithm. The main differences between the two works are:

- 1011 • The theoretical results of last-iterate convergence in (Wang et al., 2025) require solving each
 1012 regularized game *exactly*. This requires an infinite number of iterations to solve each subgame
 1013 (see their Theorems 3.4 and 3.7). In contrast, we prove last-iterate convergence under the weaker
 1014 assumption that each regularized game is solved *approximately*.
- 1015 • The experiments in (Wang et al., 2025) compare only reward-based methods such as PPO and
 1016 DPO, while we conduct extensive experiments comparing COMAL with both DPO and methods
 1017 for general preferences and NLHF, such as iterative IPO and INPO. While Wang et al. (2025) only
 1018 report the win rate of their method against the base model, we report improved win rates against the
 1019 base model and across all baseline methods, including DPO, IPO, and INPO. Our results show that
 1020 COMAL achieves a consistent > 50% win rate against all baseline models, which is an important
 1021 property of Nash equilibrium convergence.
- 1022 • Wang et al. (2025) does not report results on standard benchmarks such as Arena-Hard or Alpaca-
 1023 Eval 2, we present a comprehensive evaluation of COMAL and baseline methods on these bench-
 1024 marks. Our results show the robustness of COMAL and that the alignment tax is very mild.

1026 Table 4: Property comparison of different preference optimization algorithms. The algorithms are
 1027 compared based on whether they work for **general preferences** and whether they exhibit **last-iterate**
 1028 **convergence** in two-player zero-sum games. \times : convergence only in the modified KL-regularized
 1029 game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$ (2) but not in $J(\pi_1, \pi_2)$ (1).

Algorithm	General Preference	Convergence
DPO (Rafailov et al., 2024) IPO (Azar et al., 2024)	\times	\times
SPPO (Wu et al., 2024) Nash-MD (Munos et al., 2024)	✓	\times
INPO (Zhang et al., 2025b)	✓	\times
COMAL (Algorithm 1)	✓	✓

B ADDITIONAL BACKGROUNDS

A special case of the general preference model is the Bradley-Terry (BT) model, which assumes a reward function parameterizes the preference.

Definition 3 (Bradley-Terry Model). *A preference model \mathbb{P} satisfies the Bradley-Terry (BT) assumption if there exists a reward function $r^* : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ such that*

$$\begin{aligned} \mathbb{P}(y_1 \succ y_2 \mid x) &= \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))} \\ &= \sigma(r^*(x, y_1) - r^*(x, y_2)). \end{aligned}$$

B.1 ALIGNMENT UNDER THE BRADLEY-TERRY MODEL ASSUMPTION

RLHF Reinforcement Learning from Human Feedback (RLHF) is to first learn a reward function r under the BT model and then find the optimal KL regularized policy π^* w.r.t. the learned reward function r :

$$\begin{aligned} \pi^* &:= \arg \max_{\pi} \mathbb{E}_{x \sim \rho, y \sim \pi(\cdot \mid x)} \\ &\quad [r(x, y) - \eta^{-1} \text{KL}(\pi(\cdot \mid x) \parallel \pi_{\text{ref}}(\cdot \mid x))], \end{aligned} \quad (5)$$

where $\eta^{-1} > 0$ controls the regularization, and π_{ref} is the initial reference model, usually the policy π_{sft} obtained from pre-training and supervised fine-tuning.

DPO Rafailov et al. (2024) observe that the regularized optimization problem (5) has a closed-form solution: for any x and y , $\pi^*(y \mid x) = \frac{\pi_{\text{ref}}(y \mid x) \exp(\eta r(x, y))}{Z_x}$, where $Z_x = \mathbb{E}_{y \sim \pi_{\text{ref}}(\cdot \mid x)} [\exp(\frac{1}{\eta} r(y, x))]$ is the normalization constant known as the partition function. Since π^* implicitly parameterizes the reward function r . Rafailov et al. (2024) propose direct preference optimization (DPO) to learn the optimal policy using the maximum likelihood objective directly:

$$\begin{aligned} \ell_{\text{DPO}}(\pi; \pi_{\text{ref}}) &= -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \\ &\quad \left[\log \sigma \left(\eta^{-1} \log \frac{\pi(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \eta^{-1} \log \frac{\pi(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right], \end{aligned}$$

where \mathcal{D} is a data set containing win-loss pair of responses $\{y_w, y_l\}$ given prompt x .

B.2 CAST STUDY: A SINGLE BT MODEL CANNOT REPRESENT A MIXTURE OF TWO BT MODELS (ADDED DURING REBUTTAL PERIOD)

We would like to note that a mixture of two BT reward models can represent complex preference patterns that exhibit intransitivity or even cyclic preferences, and in general does not satisfy the BT assumption in Definition 3. Consider a fixed prompt $x \in \mathcal{X}$ and three candidate responses

1080 $A, B, C \in \mathcal{Y}$ (for brevity, we omit x from the notation and write $r^*(A)$ instead of $r^*(x, A)$). Define
 1081 two BT preference models $\mathbb{P}_1, \mathbb{P}_2$ with corresponding BT reward functions r_1^*, r_2^* satisfying
 1082

$$1083 \quad r_1^*(A) = 1, \quad r_1^*(B) = 2, \quad r_1^*(C) = 3,$$

$$1085 \quad r_2^*(A) = 5, \quad r_2^*(B) = 3, \quad r_2^*(C) = 1.$$

1086 By the BT assumption,

$$1088 \quad \mathbb{P}_k(i \succ j \mid x) = \sigma(r_k^*(i) - r_k^*(j)), \quad k \in \{1, 2\}, i, j \in \{A, B, C\},$$

1089 where $\sigma(t) = \frac{1}{1+e^{-t}}$.

1091 **Cyclic preferences from a mixture.** Consider first the mixture preference model

$$1093 \quad \mathbb{P}_{\text{mix}}(i \succ j \mid x) := 0.6 \mathbb{P}_1(i \succ j \mid x) + 0.4 \mathbb{P}_2(i \succ j \mid x).$$

1094 A direct calculation yields

$$1096 \quad \mathbb{P}_{\text{mix}}(A \succ B \mid x) \approx 0.514 > 0.5, \quad \mathbb{P}_{\text{mix}}(B \succ C \mid x) \approx 0.514 > 0.5,$$

$$1098 \quad \mathbb{P}_{\text{mix}}(C \succ A \mid x) \approx 0.536 > 0.5.$$

1099 Thus the induced preference is cyclic:

$$1100 \quad A \succ B, \quad B \succ C, \quad C \succ A.$$

1102 In particular, the mixture \mathbb{P}_{mix} violates transitivity, even though each component $\mathbb{P}_1, \mathbb{P}_2$ individually
 1103 satisfies the BT assumption.

1105 **Equal-weight mixture is not BT-representable.** Now consider the equal-weight mixture

$$1107 \quad \mathbb{P}_{\text{mix}}(i \succ j \mid x) := 0.5 \mathbb{P}_1(i \succ j \mid x) + 0.5 \mathbb{P}_2(i \succ j \mid x).$$

1109 In this case we obtain

$$1110 \quad \mathbb{P}_{\text{mix}}(A \succ B \mid x) \approx \mathbb{P}_{\text{mix}}(B \succ C \mid x) \approx 0.575 > 0.5, \quad \mathbb{P}_{\text{mix}}(A \succ C \mid x) \approx 0.551.$$

1112 We now show that these three probabilities cannot arise from any single BT model. Suppose, for
 1113 contradiction, that there exists a reward function $\tilde{r}^* : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ such that the corresponding BT
 1114 model $\tilde{\mathbb{P}}$ satisfies

$$1115 \quad \tilde{\mathbb{P}}(i \succ j \mid x) = \sigma(\tilde{r}^*(i) - \tilde{r}^*(j)),$$

1117 and matches the mixture probabilities for $i, j \in \{A, B, C\}$. Since

$$1118 \quad \tilde{\mathbb{P}}(A \succ B \mid x) \approx \tilde{\mathbb{P}}(B \succ C \mid x) \approx 0.575 > 0.5,$$

1120 and σ is strictly increasing with $\sigma(0) = 0.5$, we must have

$$1122 \quad \tilde{r}^*(A) - \tilde{r}^*(B) = \tilde{r}^*(B) - \tilde{r}^*(C) =: d > 0.$$

1123 Therefore

$$1125 \quad \tilde{r}^*(A) - \tilde{r}^*(C) = (\tilde{r}^*(A) - \tilde{r}^*(B)) + (\tilde{r}^*(B) - \tilde{r}^*(C)) = 2d > d,$$

1126 which implies, by strict monotonicity of σ ,

$$1128 \quad \tilde{\mathbb{P}}(A \succ C \mid x) = \sigma(\tilde{r}^*(A) - \tilde{r}^*(C)) = \sigma(2d) > \sigma(d) = \tilde{\mathbb{P}}(A \succ B \mid x) \approx 0.575.$$

1129 However, the mixture model satisfies

$$1131 \quad \mathbb{P}_{\text{mix}}(A \succ C \mid x) \approx 0.551 < 0.575,$$

1133 a contradiction. Hence the 50%-50% mixture of these two BT models cannot be represented by any
 single BT model satisfying the BT assumption.

1134 C PROX OPERATOR
1135

1136 **Prox Operator and Bregman Divergence.** To define the prox operator, we first introduce the
1137 *Bregman divergence*, which generalizes the notion of squared distance. For a convex function
1138 $\varphi : \mathcal{Z} \rightarrow \mathbb{R}$ (called the regularizer), the Bregman divergence between z and z' is defined as
1139 $D_\varphi(z\|z') := \varphi(z) - \varphi(z') - \langle \nabla \varphi(z'), z - z' \rangle$, where $\nabla \varphi(z')$ is the gradient of φ at z' . The *prox*
1140 *operator* then takes a current point $z \in \mathcal{Z}$ and a (sub)gradient direction $g \in \mathbb{R}^n$, and returns the next
1141 point according to:

$$1142 \text{Prox}(z, g) := \operatorname{argmax}_{z'} \{ \langle g, z' \rangle - D_\varphi(z'\|z) \}.$$

1143 This formulation interpolates between moving in the direction of g and staying close to z , as measured
1144 by the Bregman divergence for the chosen regularizer. Two important *special cases* are
1145

- 1146 • When $\varphi(z) = \frac{1}{2}\|z\|^2$ (the squared Euclidean norm), D_φ is just the squared distance, and
1147 the prox operator reduces to the usual projected gradient step.
- 1148 • When $\varphi(z)$ is the negative entropy (as in MWU), the Bregman divergence is the KL
1149 divergence, leading to updates appropriate for probability distributions.

1150 In our framework, we will instantiate the prox operator with choices of φ and g that map directly
1151 onto concrete policy-learning algorithms. In this paper, when we refer to the prox operator, we use
1152 the negative entropy regularizer $\varphi(z) = \sum_{i=1}^n z[i] \ln z[i]$, for which the corresponding Bregman
1153 divergence D_φ is the KL divergence. Under this choice, the MWU update in Equation (3) is equivalent
1154 to the prox-form update $\pi^{t+1} = \text{Prox}(\pi^t, \eta \nabla f(\pi^t))$.

1155 C.1 PROPERTIES OF THE PROX OPERATOR
1156

1157 Recall that $\text{Prox}(z, g) = \operatorname{argmax}_{z' \in \mathcal{Z}} \langle g, z' \rangle - D_\varphi(z'\|z) = \operatorname{argmax}_{z' \in \mathcal{Z}} \langle g + \nabla \varphi(z), z' \rangle - \varphi(z')$.
1158 The following properties of the prox operator are well-known in the literature (e.g., (Nemirovski,
1159 2004))

1160 **Lemma 1.** $\text{Prox}(z, g) = z'$ if and only if $\langle g + \nabla \varphi(z) - \nabla \varphi(z'), z' - z^* \rangle \geq 0$ for all $z^* \in \mathcal{Z}$.

1161 **Corollary 1.** Let $\text{Prox}(z, g) = z'$, then

$$1164 \langle g, z^* - z' \rangle \leq D_\varphi(z^*\|z) - D_\varphi(z^*\|z') - D_\varphi(z'\|z), \quad \forall z^* \in \mathcal{Z}$$

1165 D LAST-ITERATE CONVERGENCE OF COMAL
1166

1167 The proof of [Theorem 1](#) is largely inspired by existing results for the conceptual prox algorithm in
1168 the literature (Facchinei & Pang, 2003; Nemirovski, 2004). We first consider the case where each
1169 step of COMAL, $\pi^{t+1} \leftarrow \operatorname{argmax}_{\pi_1} \min_{\pi_2} J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, can be solved *exactly* in [Appendix D.1](#).
1170 We then extend the proof to the case where we only solve the regularized game *approximately* in
1171 [Appendix D.2](#). In both cases, we prove last-iterate convergence to Nash equilibrium, i.e., $\lim_{t \rightarrow \infty} \pi^t$
1172 exists and is a Nash equilibrium. The proof for the latter case seems to be the first in the literature.
1173

1174 In [Theorem 1](#), we make the following assumption.

1175 **Assumption 1.** We assume there exists a Nash equilibrium π^* such that $\operatorname{supp}(\pi^*) = \operatorname{supp}(\pi_{\text{init}})$.

1176 This assumption is mild and **much weaker** than the “Bounded Log Density” assumptions used
1177 in previous works (Rosset et al., 2024; Zhang et al., 2025b), which directly assumes $|\log \frac{\pi^t}{\pi_{\text{init}}}|$ is
1178 bounded.

1179 D.1 LAST-ITERATE CONVERGENCE UNDER EXACT SOLUTIONS
1180

1181 Recall that $\Pi := \{\pi : \operatorname{supp}(\pi) \subseteq \operatorname{supp}(\pi_{\text{init}})\}$. Then $\text{KL}(\pi\|\pi_{\text{init}}) \leq D :=$
1182 $\max_{y:\pi_{\text{init}}(y)>0} \log \pi_{\text{init}}(y)$ is bounded for any $\pi \in \Pi$. We first prove $\text{KL}(\pi^*\|\pi^{t+1}) \leq \text{KL}(\pi^*\|\pi^t)$
1183 for any $t \geq 1$.

1184 **Lemma 2.** Let π^* be an Nash equilibrium of $J(\pi_1, \pi_2)$. Then for any $\tau > 0$, if

$$1185 (\pi, \pi) = \operatorname{argmax}_{\pi_1 \in \Pi} \operatorname{argmin}_{\pi_2 \in \Pi} J_\tau(\pi_1, \pi_2, \pi_{\text{ref}}),$$

1188 then

1189
$$\text{KL}(\pi^* \parallel \pi) \leq \text{KL}(\pi^* \parallel \pi_{\text{ref}}) - \text{KL}(\pi \parallel \pi_{\text{ref}})$$

1190

1191 *Proof.* By definition of the prox operator, we have

1193
$$\begin{aligned} \pi &= \underset{\pi_1 \in \Pi}{\operatorname{argmax}} J_\tau(\pi_1, \pi, \pi_{\text{ref}}) \\ &= \underset{\pi_1 \in \Pi}{\operatorname{argmax}} \mathbb{P}(\pi_1 \succ \pi) - \tau \text{KL}(\pi_1, \pi_{\text{ref}}) \\ &= \operatorname{Prox}(\pi_{\text{ref}}, \frac{1}{\tau} \mathbb{P}(\cdot \succ \pi)). \end{aligned} \tag{6}$$

1197

1199 Using [Corollary 1](#), we have for any $\pi' \in \Pi$,

1201
$$\frac{1}{\tau} (\mathbb{P}(\pi' \succ \pi) - \mathbb{P}(\pi \succ \pi)) \leq \text{KL}(\pi' \parallel \pi_{\text{ref}}) - \text{KL}(\pi' \parallel \pi) - \text{KL}(\pi \parallel \pi_{\text{ref}}). \tag{7}$$

1202

1203 Plugging $\pi' = \pi^*$ into the above inequality and noting that $\mathbb{P}(\pi \succ \pi) = \frac{1}{2}$, we get

1205
$$\frac{1}{\tau} \left(\mathbb{P}(\pi^* \succ \pi) - \frac{1}{2} \right) \leq \text{KL}(\pi^* \parallel \pi_{\text{ref}}) - \text{KL}(\pi^* \parallel \pi) - \text{KL}(\pi \parallel \pi_{\text{ref}}).$$

1207

1208 Since π^* is a Nash equilibrium and thus $\mathbb{P}(\pi^* \succ \pi) \geq \frac{1}{2}$, the lefthand side of the above inequality is ≥ 0 . Then we have

1210
$$\text{KL}(\pi^* \parallel \pi) \leq \text{KL}(\pi^* \parallel \pi_{\text{ref}}) - \text{KL}(\pi \parallel \pi_{\text{ref}}).$$

1211

1212

1213

1214 [Lemma 2](#) implies the following properties on the trajectory $\{\pi^t\}$.

1215 **Corollary 2.** Denote π^* an Nash equilibrium such that $\text{supp}(\pi^*) = \text{supp}(\pi_{\text{init}})$ as guaranteed by
1216 [Assumption 1](#). Then the following holds for the trajectory $\{\pi^t\}$ produced by COMAL:

1217

1218 1. $\text{KL}(\pi^* \parallel \pi^{t+1}) \leq \text{KL}(\pi^* \parallel \pi^t)$ for all $t \geq 1$.
1219 2. $\sum_{t=1}^{\infty} \text{KL}(\pi^{t+1} \parallel \pi^t) \leq \text{KL}(\pi^* \parallel \pi_{\text{init}}) < +\infty$.
1220 3. For all $t \geq 1$, it holds that for $y \in \text{supp}(\pi_{\text{init}})$, $\pi^t(y) \geq c > 0$ where c is some constant c
1221 depends only on π^* and π_{init} . This also holds even for any limit point of $\{\pi^t\}$.
1222

1223

1224 *Proof.* The first item is direct from [Lemma 2](#). The second item is also direct by applying [Lemma 2](#)
1225 for $t \geq 1$:

1227
$$\sum_{t=1}^{\infty} \text{KL}(\pi^{t+1} \parallel \pi^t) \leq \sum_{t=1}^{\infty} \text{KL}(\pi^* \parallel \pi^t) - \text{KL}(\pi^* \parallel \pi^{t+1}) \leq \text{KL}(\pi^* \parallel \pi_{\text{init}}) \leq D < \infty.$$

1228

1229

1230 Now we consider the third item. Define $D := \text{KL}(\pi^* \parallel \pi_{\text{init}})$ and $p_{\min} := \min_{y \in \text{supp}(\pi^*)} \pi^*(y)$. By
1231 [Assumption 1](#), $p_{\min} > 0$. Then

1232
$$\begin{aligned} \text{KL}(\pi^* \parallel \pi^t) \leq D &\Rightarrow p_{\min} \log \frac{p_{\min}}{\pi^t(y)} \leq D, \forall y \in \text{supp}(\pi^*) \\ &\Rightarrow \pi^t(y) \geq \frac{p_{\min}}{\exp(D/p_{\min})}, \forall y \in \text{supp}(\pi^*). \end{aligned}$$

1233

1234

1235

1236

1237 Since the above holds for all π^t , it also holds for any limit point of $\{\pi^t\}$. □

1238

1239

1240

1241

1242 Since the sequence $\{\pi^t\}$ is bounded (all lies in the simplex), it has at least one limit point $\hat{\pi}$. The
1243 next lemma shows that a limit point must be a Nash equilibrium.

1244 **Lemma 3.** If $\hat{\pi}$ is a limit point of $\{\pi^t\}$, then $\hat{\pi}$ is a Nash equilibrium of $J(\pi_1, \pi_2)$.

23

1242 *Proof.* By item 2 in [Corollary 2](#), we have $\lim_{t \rightarrow \infty} \text{KL}(\pi^{t+1} \parallel \pi^t) = 0$. This implies
 1243 $\lim_{t \rightarrow \infty} \|\pi^{t+1} - \pi^t\| = 0$. As $\hat{\pi}$ is a limit point of $\{\pi^t\}$, we let $\{\pi^k : k \in \kappa\}$ be the subsequence
 1244 that converges to $\hat{\pi}$. Then by [Equation \(6\)](#), we have

$$\begin{aligned} \lim_{k \in \kappa, k \rightarrow \infty} \pi^{k+1} &= \lim_{k \in \kappa, k \rightarrow \infty} \text{Prox}(\pi^k, \frac{1}{\tau} \mathbb{P}(\cdot \succ \pi^{k+1})) \\ \Rightarrow \hat{\pi} &= \text{Prox}(\hat{\pi}, \frac{1}{\tau} \mathbb{P}(\cdot \succ \hat{\pi})). \end{aligned}$$

1250 Thus $\hat{\pi}$ is a fixed point of $\text{Prox}(\pi, \frac{1}{\tau} \mathbb{P}(\cdot \succ \pi))$. Moreover, by item 3 in [Corollary 2](#), we have
 1251 $\text{supp}(\hat{\pi}) = \text{supp}(\pi_{\text{init}})$. Now consider both the max and min player running MWU initialized with
 1252 $\pi^1 = \hat{\pi}$. Then we have $\pi^t = \hat{\pi}$ for all $t \geq 1$. By [Equation \(7\)](#), we have for any $\pi' \in \Pi$,

$$\frac{1}{\tau} \sum_{t=1}^{\infty} \left(\mathbb{P}(\pi' \succ \hat{\pi}) - \frac{1}{2} \right) \leq \text{KL}(\pi' \parallel \hat{\pi}) < \infty,$$

1253 where the inequality holds since $\text{supp}(\pi') \subseteq \text{supp}(\hat{\pi})$. As a result, we get

$$\mathbb{P}(\pi' \succ \hat{\pi}) \leq \frac{1}{2}, \forall \pi' \in \Pi \Leftrightarrow \mathbb{P}(\hat{\pi} \succ \pi') \geq \frac{1}{2}, \forall \pi' \in \Pi$$

1254 Thus $\hat{\pi}$ is a Nash equilibrium of $J(\pi_1, \pi_2)$. □

1255 **Proof of Theorem 1** By [Lemma 3](#), we know a limit point $\hat{\pi}$ is a Nash equilibrium. Then by
 1256 [Corollary 2](#), $\{\text{KL}(\hat{\pi} \parallel \pi^t) \geq 0\}$ is a decreasing sequence. Thus $\{\text{KL}(\hat{\pi} \parallel \pi^t)\}$ converges. Let $\{\pi^k : k \in \kappa\}$ be a subsequence that converges to $\hat{\pi}$. Then we have

$$\lim_{t \rightarrow \infty} \text{KL}(\hat{\pi} \parallel \pi^t) = \lim_{k \in \kappa, k \rightarrow \infty} \text{KL}(\hat{\pi} \parallel \pi^k) = \text{KL}(\hat{\pi} \parallel \hat{\pi}) = 0.$$

1257 Thus we have $\lim_{t \rightarrow \infty} \pi^t = \hat{\pi}$ is a Nash equilibrium. This completed the proof of [Theorem 1](#).

1258 D.2 LAST-ITERATE CONVERGENCE UNDER APPROXIMATE SOLUTIONS

1259 This section considers the case where we can not solve the regularized game $J_{\tau}(\pi_1, \pi_2, \pi_{\text{ref}})$ exactly
 1260 but only compute an approximate solution. Specifically, we consider the following inexact COMAL
 1261 update: denote $\hat{\pi}^{t+1} = \text{argmax}_{\pi_1 \in \Pi} \min_{\pi_2 \in \Pi} J_{\tau}(\pi_1, \pi_2, \pi^t)$ the exactly solution; the algorithm
 1262 updates the next iterate π^{t+1} as an ε_t -approximate solution such that

$$\text{KL}(\pi^{t+1}, \pi^{t+1}) \leq \varepsilon_t = O\left(\frac{1}{t^4}\right). \quad (8)$$

1263 We note that we can compute π^{t+1} within ε_t error using $O(\log \frac{1}{\varepsilon_t}) = O(\log t)$ iterations of Algo-
 1264 rithm 2 ([Theorem 2](#)).

1265 We denote Π^* the set of Nash equilibria such that each $\pi^* \in \Pi^*$ has support $\text{supp}(\pi^*) = \text{supp}(\pi_{\text{init}})$
 1266 as guaranteed by [Assumption 1](#). We introduce a few quantities that depend on the Nash equilibria
 1267 and the initial policy.

1268 **Definition 4.** We define the following constants.

- 1269 1. $p_{\text{sft}} := \max\{p > 0 : \forall y \in \text{supp}(\pi_{\text{init}}), \pi_{\text{init}}(y) \geq p\}; D := |\mathcal{Y}| \log \frac{1}{p_{\text{sft}}}$ so that
 1270 $\text{KL}(\pi \parallel \pi_{\text{init}}) \leq D$ for all $\pi \in \Pi$
- 1271 2. $p_{\min} := \max\{p > 0 : \exists \pi^* \in \Pi^*, \forall y \in \text{supp}(\pi_{\text{init}}), \pi^*(y) \geq p\}$; Let $\pi^* \in \Pi^*$ be a Nash
 1272 equilibrium so that $\pi^*(y) \geq p_{\min}$ holds for all y in its support.
- 1273 3. $c_1 := \frac{p_{\min}}{\exp(D+2)/p_{\min}}$ and $c_2 := \frac{c_1}{\exp(1/c_1)}$.

1274 Our main result is that if each optimization problem at iteration t can be solved within approximation
 1275 error $\varepsilon_t \leq \frac{c_1}{3t^2}$, then COMAL converges in last-iterate to a Nash equilibrium.

1296 **Theorem 3** (COMAL with approximate regularized game solver). *Assume Assumption 1 holds. If*
 1297 *in each iteration $t \geq 1$, the returned iterate π^{t+1} is an ε_t -approximate solution to $J_\tau(\pi_1, \pi_2, \pi^t)$ as*
 1298 *defined in (8) with $\varepsilon_t \leq \frac{c_1^2}{9t^4}$ (c_1 defined in Definition 4), then $\{x^t\}$ converges to a Nash equilibrium*
 1299 *of $J(\pi_1, \pi_2)$.*

1300
 1301 We need the following technical lemma in the proof of Theorem 3.

1302 **Lemma 4.** *Let $\varepsilon_t \leq \frac{c_1^2}{9t^4}$. Then for all $t \geq 1$,*

- 1304 1. $\text{KL}(\pi^* \parallel \pi^{t+1}) \leq \text{KL}(\pi^* \parallel \pi^t) - \text{KL}(\pi^{t+1} \parallel \pi^t) + \frac{1}{t^2}$.
- 1305 2. $\min_{y \in \text{supp}(\pi_{\text{init}})} \pi^t(y) \geq c_2$.
- 1306 3. $\lim_{t \rightarrow \infty} \|\pi^{t+1} - \pi^t\| = 0$.
- 1307 4. *For any Nash equilibrium $\hat{\pi} \in \Pi$ and $t \geq 1$, we have $\text{KL}(\hat{\pi} \parallel \pi^{t+1}) \leq \text{KL}(\hat{\pi} \parallel \pi^t) + \frac{1}{t^2}$*

1309 *Proof.* By Lemma 2, we have $\hat{\pi}^{t+1} = \text{Prox}(\pi^t, \mathbb{P}(\cdot \succ \hat{\pi}^{t+1}))$ and

$$\text{KL}(\pi^* \parallel \hat{\pi}^{t+1}) \leq \text{KL}(\pi^* \parallel \pi^t) - \text{KL}(\hat{\pi}^{t+1} \parallel \pi^t). \quad (9)$$

1314 The above implies

$$\begin{aligned} \text{KL}(\pi^* \parallel \pi^{t+1}) &\leq \text{KL}(\pi^* \parallel \pi^t) - \text{KL}(\pi^{t+1} \parallel \pi^t) + \underbrace{\text{KL}(\pi^* \parallel \pi^{t+1}) - \text{KL}(\pi^* \parallel \hat{\pi}^{t+1})}_{E_1} \\ &\quad + \underbrace{\text{KL}(\pi^{t+1} \parallel \pi^t) - \text{KL}(\hat{\pi}^{t+1} \parallel \pi^t)}_{E_2}. \end{aligned} \quad (10)$$

1320 Now, we use induction to prove the claim. For the base case, we define $\pi^0 := \pi^1$ and $\varepsilon_t = 0$, then

1322 **Base Case:** $t = 0$ Since $\pi^0 = \pi^1$, we have $\text{KL}(\pi^1 \parallel \pi^0) = 0$. Then it is clear that

$$\text{KL}(\pi^* \parallel \pi^1) \leq \text{KL}(\pi^* \parallel \pi^0) - \text{KL}(\pi^1 \parallel \pi^0).$$

1325 Moreover, by Proposition 1 and $D \geq \text{KL}(\pi^* \parallel \pi_{\text{init}})$, we have $\min_{y \in \text{supp}(\pi^1)} \pi^1(y) \geq c_1 \geq c_2$.

1327 **Induction:** $t \geq 1$ We have

$$\begin{aligned} \text{KL}(\pi^* \parallel \hat{\pi}^{t+1}) &\leq \text{KL}(\pi^* \parallel \pi^t) && ((9)) \\ &\leq \text{KL}(\pi^* \parallel \pi_{\text{init}}) + \sum_{t=1}^{t-1} \frac{1}{t^2} && \text{(inductive hypothesis)} \\ &\leq D + 2. && (D \geq \text{KL}(\pi^* \parallel \pi_{\text{init}})) \end{aligned}$$

1334 Using Proposition 1, we have $\min_{y \in \text{supp}(\pi_{\text{init}})} \hat{\pi}^{t+1}(y) \geq c_1$. By $\text{KL}(\hat{\pi}^{t+1} \parallel \pi^{t+1}) \leq \varepsilon_t \leq 1$ and
 1335 Proposition 1 again, we get $\min_{y \in \text{supp}(\pi_{\text{init}})} \pi^{t+1}(y) \geq c_2 := \frac{c_1}{\exp(1/c_1)}$. Thus, both $\hat{\pi}^{t+1}$ and π^{t+1}
 1336 are bounded away from the boundary in their support. Further by $\text{KL}(\hat{\pi}^{t+1} \parallel \pi^{t+1}) \leq \varepsilon_t$, we have

$$\sum_y \hat{\pi}^{t+1}(y) \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \leq \varepsilon_t \Rightarrow \max_y \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \leq \frac{\varepsilon_t}{c_1}.$$

1341 As a result, we can bound

$$\begin{aligned} E_1 &= \text{KL}(\pi^* \parallel \pi^{t+1}) - \text{KL}(\pi^* \parallel \hat{\pi}^{t+1}) \\ &= \sum_y \pi^*(y) \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \\ &\leq \max_y \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \\ &\leq \frac{\varepsilon_t}{c_1}. \end{aligned}$$

1350 Moreover, we have

$$\begin{aligned}
 1351 \quad E_2 &= \text{KL}(\pi^{t+1} \parallel \pi^t) - \text{KL}(\hat{\pi}^{t+1} \parallel \pi^t) \\
 1352 \quad &= \sum_y (\pi^{t+1}(y) - \hat{\pi}^{t+1}(y)) \log \frac{\pi^{t+1}(y)}{\pi^t(y)} - \text{KL}(\hat{\pi}^{t+1} \parallel \pi^{t+1}) \\
 1353 \quad &\leq \|\pi^{t+1} - \hat{\pi}^{t+1}\|_1 \cdot \max_y \left| \log \frac{\pi^{t+1}(y)}{\pi^t(y)} \right| \\
 1354 \quad &\leq \sqrt{\text{KL}(\hat{\pi}^{t+1} \parallel \pi^{t+1})} \cdot \log \frac{1}{c_2} \quad (\text{Pinsker's Inequality}) \\
 1355 \quad &\leq \frac{2\sqrt{\varepsilon_t}}{c_1}
 \end{aligned}$$

1362 Combining the above two inequalities with (10) and noting the fact that $\varepsilon_t \leq \sqrt{\varepsilon_t}$ gives

$$1363 \quad \text{KL}(\pi^* \parallel \pi^{t+1}) \leq \text{KL}(\pi^* \parallel \pi^t) - \text{KL}(\pi^{t+1} \parallel \pi^t) + \frac{3\sqrt{\varepsilon_t}}{c_1}.$$

1364 We conclude the claim since $\varepsilon_t \leq \frac{c_1^2}{9t^4}$. This completes the proof for item 1 and item 2.

1365 For item 3, we have $\sum_{t=1}^{\infty} \|\pi^{t+1} - \pi^t\| \leq \sum_{t=1}^{\infty} \text{KL}(\pi^{t+1} \parallel \pi^t) \leq D + 2$. Thus
 1366 $\lim_{t \rightarrow \infty} \|\pi^{t+1} - \pi^t\| = 0$.

1367 For item 4, we can use [Lemma 2](#) and $\hat{\pi}^{t+1} = \text{Prox}(\pi^t, \mathbb{P}(\cdot \succ \hat{\pi}^{t+1}))$ to get

$$\begin{aligned}
 1368 \quad \text{KL}(\hat{\pi} \parallel \pi^{t+1}) &\leq \text{KL}(\hat{\pi} \parallel \pi^t) - \text{KL}(\pi^{t+1} \parallel \pi^t) + \underbrace{\text{KL}(\hat{\pi} \parallel \pi^{t+1}) - \text{KL}(\hat{\pi} \parallel \hat{\pi}^{t+1})}_{E_1} \\
 1369 \quad &\quad + \underbrace{\text{KL}(\pi^{t+1} \parallel \pi^t) - \text{KL}(\hat{\pi}^{t+1} \parallel \pi^t)}_{E_2}.
 \end{aligned} \tag{11}$$

1370 We note that $E_2 \leq \frac{2\sqrt{\varepsilon_t}}{c_1}$ has been proved in the above. For E_1 , we have

$$\begin{aligned}
 1371 \quad E_1 &= \text{KL}(\hat{\pi} \parallel \pi^{t+1}) - \text{KL}(\hat{\pi} \parallel \hat{\pi}^{t+1}) \\
 1372 \quad &= \sum_y \hat{\pi}(y) \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \\
 1373 \quad &\leq \max_y \log \frac{\hat{\pi}^{t+1}(y)}{\pi^{t+1}(y)} \\
 1374 \quad &\leq \frac{\varepsilon_t}{c_1}.
 \end{aligned}$$

1375 Thus we have $\text{KL}(\hat{\pi} \parallel \pi^{t+1}) \leq \text{KL}(\hat{\pi} \parallel \pi^t) + \frac{1}{t^2}$ as $\varepsilon_t \leq \frac{c_1^2}{9t^4}$. □

1376 Proof of [Theorem 3](#)

1377 *Proof.* Since the sequence $\{\pi^t\}$ is bounded, it has at least one limit point $\hat{\pi}$. By item 2 in [Lemma 4](#), we
 1378 know $\hat{\pi}(y) \geq c_2$ for all $y \in \text{supp}(\pi_{\text{init}})$. By item 3 in [Lemma 4](#), we have $\lim_{t \rightarrow \infty} \|\pi^{t+1} - \pi^t\| = 0$.
 1379 Denote $\{\pi^k : k \in \kappa\}$ a subsequence that converges to $\hat{\pi}$. Then we have

$$\begin{aligned}
 1380 \quad \hat{\pi} &= \lim_{k \in \kappa, \kappa \rightarrow \infty} \pi^{k+1} \\
 1381 \quad &= \lim_{k \in \kappa, \kappa \rightarrow \infty} \hat{\pi}^{k+1} \quad (\text{KL}(\hat{\pi}^{k+1}, \pi^{k+1}) \leq \varepsilon_k \text{ and } \lim_{t \rightarrow \infty} \varepsilon_t = 0) \\
 1382 \quad &= \lim_{k \in \kappa, \kappa \rightarrow \infty} \text{Prox}(\pi^k, \frac{1}{\tau} \mathbb{P}(\cdot \succ \hat{\pi}^{k+1})) \\
 1383 \quad &= \lim_{k \in \kappa, \kappa \rightarrow \infty} \text{Prox}(\pi^{k+1}, \frac{1}{\tau} \mathbb{P}(\cdot \succ \hat{\pi}^{k+1})) \quad (\lim_{t \rightarrow \infty} \|\pi^{t+1} - \pi^t\| = 0) \\
 1384 \quad &= \lim_{k \in \kappa, \kappa \rightarrow \infty} \text{Prox}(\pi^{k+1}, \frac{1}{\tau} \mathbb{P}(\cdot \succ \pi^{k+1})) \quad (\text{KL}(\hat{\pi}^{k+1}, \pi^{k+1}) \leq \varepsilon_k \text{ and } \lim_{t \rightarrow \infty} \varepsilon_t = 0) \\
 1385 \quad &= \text{Prox}(\hat{\pi}, \frac{1}{\tau} \mathbb{P}(\cdot \succ \hat{\pi})).
 \end{aligned}$$

1404 Since $\hat{\pi}$ is a fixed point of $\text{Prox}(\pi, \frac{1}{\tau}\mathbb{P}(\cdot \succ \pi))$ and $\text{supp}(\hat{\pi}) = \text{supp}(\pi_{\text{init}})$, we can use the same
 1405 proof in [Lemma 3](#) to show that $\hat{\pi}$ is a Nash equilibrium of $J(\pi_1, \pi_2)$.
 1406

1407 Given that $\hat{\pi}$ is a Nash equilibrium of the original game, we can apply item 4 in [Lemma 4](#) and get
 1408

$$1409 \text{KL}(\hat{\pi} \parallel \pi^{t+1}) \leq \text{KL}(\hat{\pi} \parallel \pi^t) + \frac{1}{t^2}.$$

1410 Now we show the sequence $\{x^t\}$ converges to $\hat{\pi}$. Fix any $\epsilon > 0$. Let $T_1 \geq 1$ such that $\sum_{t=T_1}^{\infty} \frac{1}{t^2} < \frac{\epsilon}{2}$,
 1411 Since $\hat{\pi}$ is a limit point of $\{x^t\}$, there exists $T_2 \geq T_1$ such that $\text{KL}(\hat{\pi} \parallel \pi^{T_2}) \leq \frac{\epsilon}{2}$. Then for any
 1412 $t \geq T_2$, we have
 1413

$$1414 \text{KL}(\hat{\pi} \parallel \pi^{t+1}) \leq \text{KL}(\hat{\pi} \parallel \pi^{T_2}) + \sum_{t=T_2}^{\infty} \frac{1}{t^2} \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

1415 Since the above holds for any $\epsilon > 0$, we know $\lim_{t \rightarrow \infty} \text{KL}(\hat{\pi} \parallel \pi^t) = 0$ and thus $\{x^t\}$ converges to $\hat{\pi}$.
 1416 This completes the proof. \square
 1417

1420 D.3 AUXILIARY PROPOSITION

1421 **Proposition 1.** *Let π_1 and π_2 be two distributions with the same support. If there exists $p, D > 0$
 1422 such that $\min_{y \in \text{supp}(\pi_1)} \pi_1(y) \geq p$ and $\text{KL}(\pi_1 \parallel \pi_2) \leq D$, then $\text{supp}(\pi_2) = \text{supp}(\pi_1)$ and*

$$1423 \min_{y \in \text{supp}(\pi_1)} \pi_2(y) \geq \frac{p}{\exp(D/p)}.$$

1424 *Proof.* We have
 1425

$$1426 \text{KL}(\pi_1 \parallel \pi_2) \leq D \Rightarrow p \log \frac{p}{\pi_2(y)} \leq D, \forall y \in \text{supp}(\pi_1) \\ 1427 \Rightarrow \pi_2(y) \geq \frac{p}{\exp(D/p)}, \forall y \in \text{supp}(\pi_1).$$

1428 \square
 1429

1430 E PROOF OF THEOREM 2

1431 We show that MWU (Algorithm 2) has linear convergence to the unique Nash equilibrium of a
 1432 KL-regularized zero-sum game $J(\pi_1, \pi_2, \pi_{\text{ref}})$. We denote $\mu^* = \pi_{\tau}^*$ its unique Nash equilibrium.
 1433 Our proof is inspired by (Abe et al., 2024, Lemma F.1) that give linear convergence of MWU in
 1434 KL-regularized game. Here, we include a simpler proof with slightly better constants for our setting
 1435 for completeness.

1436 We prove the following descent lemma, which immediately implies [Theorem 2](#).
 1437

1438 **Lemma 5.** *If we choose $\eta \in (0, \frac{\tau}{\tau^2 + \frac{1}{2}}]$ in MWU (Algorithm 2), then we have for every $k \geq 1$*

$$1439 \text{KL}(\mu^*, \mu^{k+1}) \leq \left(1 - \frac{\eta\tau}{2}\right) \text{KL}(\mu^*, \mu^k).$$

1440 *Proof.* We define the gradient operator $G : \Pi \rightarrow \mathbb{R}^{|\mathcal{Y}|}$ of $J(\pi_1, \pi_2)$ and the gradient operator
 1441 $A : \Pi \rightarrow \mathbb{R}^{|\mathcal{Y}|}$ of the KL regularization $\text{KL}(\pi, \pi_{\text{ref}})$ as follows.
 1442

$$1443 G(\pi) := \mathbb{P}(\cdot \succ \pi) \\ 1444 A(\pi) := \nabla_{\pi} \text{KL}(\pi, \pi_{\text{ref}}) = \log \frac{\pi(\cdot)}{\pi_{\text{ref}}(\cdot)}.$$

1445 We define the composite operator $F = G - \tau A$. Then MWU update in Algorithm 2 is equivalent to
 1446

$$1447 \mu^{k+1} = \text{Prox}(\mu^k, \eta F(\mu^k)).$$

1458 Using Corollary 1, we have
 1459

$$\langle \eta F(\mu^k), \mu^* - \mu^{k+1} \rangle \leq \text{KL}(\mu^* || \mu^k) - \text{KL}(\mu^* || \mu^{k+1}) - \text{KL}(\mu^{k+1} || \mu^k)$$

1460 We focus on the left-hand side of the above inequality. Since μ^* is a Nash equilibrium of the
 1461 regularized game with gradient F , we have $\langle \eta F(\mu^*), \mu^* - \mu^{k+1} \rangle \geq 0$ and thus
 1462

$$\begin{aligned} & \langle \eta F(\mu^k), \mu^* - \mu^{k+1} \rangle \\ & \geq \langle \eta F(\mu^k), \mu^* - \mu^{k+1} \rangle - \langle \eta F(\mu^*), \mu^* - \mu^{k+1} \rangle \\ & = \underbrace{\eta \langle G(\mu^k) - G(\mu^{k+1}), \mu^* - \mu^{k+1} \rangle}_{\text{term}_1} + \underbrace{\eta \tau \langle A(\mu^k) - A(\mu^*), \mu^{k+1} - \mu^* \rangle}_{\text{term}_2} \\ & \quad + \underbrace{\eta \langle G(\mu^{k+1}) - G(\mu^*), \mu^* - \mu^{k+1} \rangle}_{\text{term}_3=0}. \end{aligned}$$

1463 We note that $\text{term}_3 = 0$ since G is the gradient of a zero-sum game:
 1464

$$\begin{aligned} & \langle G(\mu^{k+1}) - G(\mu^*), \mu^* - \mu^{k+1} \rangle \\ & = \mathbb{P}(\mu^* \succ \mu^{k+1}) + \mathbb{P}(\mu^{k+1} \succ \mu^*) - \frac{1}{2} - \frac{1}{2} = 0. \end{aligned}$$

1465 For term_2 , we can apply the three-point identity for the Bregman divergence as follows:
 1466

$$\begin{aligned} \text{term}_2 & = \eta \tau \langle A(\mu^k) - A(\mu^*), \mu^{k+1} - \mu^* \rangle \\ & = \eta \tau \left\langle \log \frac{\mu^k}{\mu^*}, \mu^{k+1} - \mu^* \right\rangle \\ & = \eta \tau (\text{KL}(\mu^* || \mu^k) - \text{KL}(\mu^{k+1} || \mu^k) + \text{KL}(\mu^{k+1} || \mu^*)) \\ & \geq \eta \tau (\text{KL}(\mu^* || \mu^k) - \text{KL}(\mu^{k+1} || \mu^k)). \end{aligned}$$

1467 For term_1 , we will use the 1-Lipschitzness of G and Cauchy-Swarz inequality:
 1468

$$\begin{aligned} \text{term}_1 & = \eta \langle G(\mu^k) - G(\mu^{k+1}), \mu^* - \mu^{k+1} \rangle \\ & \geq -\eta \left(\frac{1}{2\tau} \|G(\mu^k) - G(\mu^{k+1})\|_\infty^2 + \frac{\tau}{2} \|\mu^* - \mu^{k+1}\|_1^2 \right) \\ & \geq -\eta \left(\frac{1}{2\tau} \|\mu^k - \mu^{k+1}\|_1^2 + \frac{\tau}{2} \|\mu^* - \mu^{k+1}\|_1^2 \right) \quad (G \text{ is 1-Lipschitz}) \\ & \geq -\frac{\eta}{2\tau} \text{KL}(\mu^{k+1} || \mu^k) - \frac{\eta\tau}{2} \text{KL}(\mu^* || \mu^{k+1}) \end{aligned}$$

1469 Combining the above gives
 1470

$$(1 - \frac{\eta\tau}{2}) \text{KL}(\mu^* || \mu^{k+1}) \leq (1 - \eta\tau) \text{KL}(\mu^* || \mu^k) - (1 - \eta\tau - \frac{\eta}{2\tau}) \text{KL}(\mu^{k+1} || \mu^k)$$

1471 Let $\eta \leq \frac{1}{\tau + \frac{1}{2\tau}} = \frac{\tau}{\tau^2 + \frac{1}{2}}$, then we have $1 - \eta\tau - \frac{\eta}{2\tau} \geq 0$ and thus
 1472

$$\text{KL}(\mu^* || \mu^{k+1}) \leq \frac{1 - \eta\tau}{1 - \frac{\eta\tau}{2}} \text{KL}(\mu^* || \mu^k) \leq \left(1 - \frac{\eta\tau}{2}\right) \text{KL}(\mu^* || \mu^k).$$

1473 This completes the proof. □
 1474

1475 F COMPUTING THE PROX OPERATOR USING PREFERENCE LEARNING 1476 METHODS

1477 We include additional examples showing how existing algorithms designed for RLHF and preference
 1478 optimization with neural network parameters can be adapted to solve the prox operator $\text{Prox}(\pi, \eta g)$
 1479 ($\eta > 0$ is the step size). These algorithms include RL algorithms like PPO and loss-minimization
 1480 algorithms like DPO, IPO, SPPO, DRO, INPO, each of which may be preferred in certain settings.
 1481

1512 **Reinforcement Learning algorithms** We can use the Proximal Policy Optimization (PPO) algo-
 1513 rithm (Schulman et al., 2017) or Group-Relative Policy optimization (GRPO) (Shao et al., 2024; Guo
 1514 et al., 2025) to solve $\text{Prox}(\pi, \eta g)$. Observe that

$$\begin{aligned} \text{Prox}(\pi, \eta g) &= \underset{\pi'}{\text{argmax}} \{ \langle \eta g, \pi' \rangle - \text{KL}(\pi' || \pi) \} \\ &= \underset{\pi'}{\text{argmax}} \mathbb{E}_{y \sim \pi'} [g[y] - \eta^{-1} \cdot \text{KL}(\pi' || \pi)] \end{aligned}$$

1519 shares the same form as the objective in (5). Typically, we parameterize $\pi' = \pi_\theta$ with neural network
 1520 parameters θ and optimize over θ .
 1521

1522 **Loss minimization algorithms** Let us denote $\hat{\pi}$ the prox operator $\text{Prox}(\pi, \eta g)$, then we have

$$\hat{\pi}[y] = \frac{\pi(y) \exp(\eta g(y))}{Z} \Leftrightarrow \log \frac{\hat{\pi}(y)}{\pi(y)} - \eta g(y) + \log Z = 0,$$

1526 where $Z = \mathbb{E}_{y \sim \pi} [\exp(\eta g(y))]$ is the partition function. We can directly compute the partition
 1527 function Z and thus $\hat{\pi}$ in small tabular cases. However, the partition function is hard to compute in
 1528 general large-scale applications. Several works have recently proposed to solve the above equality by
 1529 optimizing the corresponding L_2 loss.

1530 The Self-Play Preference Optimization (SPPO) loss (Wu et al., 2024) assumes $\log Z = \frac{\eta}{2}$ and
 1531 optimizes

$$\ell_{\text{SPPO}}(\theta) = \left(\log \frac{\pi_\theta(y)}{\pi(y)} - \eta g(y) - \frac{\eta}{2} \right)^2.$$

1535 The Direct Reward Optimization (DRO) loss (Richemond et al., 2024) parameterizes both $\hat{\pi}$ and
 1536 $\log Z$ with θ and V_ϕ respectively and optimize⁴

$$\ell_{\text{DRO}}(\theta, \phi) = \left(\log \frac{\pi_\theta(y)}{\pi(y)} - \eta g(y) - \eta V_\phi \right)^2.$$

1540 The REBEL loss (Gao et al., 2024) uses *differences in rewards* to eliminate the partition function Z
 1541 and optimize the regression loss

$$\ell_{\text{REBEL}}(\theta) = \left(\eta^{-1} \left(\log \frac{\pi_\theta(y)}{\pi(y)} - \log \frac{\pi_\theta(y')}{\pi(y')} \right) - (g(y) - g(y')) \right)^2.$$

1542 All the above approaches can be used to solve $\text{Prox}(\pi, \eta g)$. However, directly applying them
 1543 iteratively on $J(\pi_1, \pi_2)$ is equivalent to running MWU, which provably diverges. In contrast, we can
 1544 apply them in Algorithm 2 and then apply our meta-algorithm COMAL to guarantee convergence to
 1545 a Nash equilibrium.
 1546

1547 **Remark 1.** *The above approaches are versatile and work well for any g that can be evaluated
 1548 efficiently. In particular, we should consider using them when (1) $g = r$ is a reward function and
 1549 we can efficiently query r ; (2) $g = \mathbb{P}(\cdot | \mu)$ is the win rate against a reference policy μ , and we can
 1550 efficiently sample from μ and have oracle access to \mathbb{P} . These two setting are popular and practical in
 1551 the LLM alignment setting.*
 1552

1553 Now we turn attention to the more specific setting where g corresponds to a preference model \mathbb{P}
 1554 (could be a BT model or a general preference) and that we can collect a win-loss preference data set
 1555 $\mathcal{D} = \{(y_w, y_l)\}$, which is standard for LLM alignment. Although the abovementioned algorithms
 1556 apply, they all require estimating g (the win rate) and may be inefficient in practice. In the following,
 1557 we present algorithms directly working on the sampled dataset \mathcal{D} without further estimation.
 1558

1559 **Sampled loss based on the BT preference model** Assume $g = r$ is the reward of the Bradley-
 1560 Terry model, and the dataset $\{(y_w, y_l)\}$ consists of win-lose pairs of responses. Then we can solve
 1561 $\text{Prox}(\pi, \eta g)$ by optimize the DPO loss (Rafailov et al., 2024) defined as

$$\ell_{\text{DPO}}((y_w, y_l); \theta) = -\log \sigma \left(\eta^{-1} \log \frac{\pi_\theta(y_w)}{\pi(y_w)} - \eta^{-1} \log \frac{\pi_\theta(y_l)}{\pi(y_l)} \right).$$

1562 ⁴we modified some constants in the original DRO loss to make it consistent with our presentation. The
 1563 modification has no other effects.
 1564

1566 **Sampled loss for general preference** The DPO loss inspires many other loss functions that work
 1567 under even weaker assumptions on the preference model. Now, we assume a general preference
 1568 model \mathbb{P} over \mathcal{Y} (not necessarily the BT model). We assume g is the win-rate against some policy
 1569 μ such that $g_\mu(y) = \mathbb{P}[y \succ \mu] := \mathbb{E}_{y' \sim \mu}[\mathbb{P}[y \succ y']]$ (think of μ as the reference policy π_{ref} or other
 1570 online policy π_t). We assume the dataset contains win-lose pairs sampled from μ : $\{y_w, y_l \sim \mu\}$. We
 1571 denote the preference distribution $\lambda_{\mathbb{P}}(y, y')$ as a binary distribution:

$$\lambda_{\mathbb{P}}(y, y') = \begin{cases} (y, y') \text{ w.p. } \mathbb{P}[y \succ y'] \\ (y', y) \text{ w.p. } 1 - \mathbb{P}[y \succ y'] \end{cases} \quad (12)$$

1575 **IPO for computing Prox for unregularized preferences** we first show that the IPO loss could be
 1576 used to solve $\pi_\theta = \text{Prox}(\pi, \eta g_\mu)$ where g is the unregularized win-rate against a reference policy μ
 1577 such that $g_\mu(y) = \mathbb{P}[y \succ \mu] := \mathbb{E}_{y' \sim \mu}[\mathbb{P}[y \succ y']]$. Given a dataset of win-lose pairs sampled from μ :
 1578 $\{y_w, y_l \sim \mu\}$, the (population) IPO loss (Azar et al., 2024) $\ell_{\text{IPO}}(\theta, \mu)$ is defined as
 1579

$$\mathbb{E}_{\substack{(y_w, y_l) \sim \mu \\ (y^+, y^-) \sim \lambda_{\mathbb{P}}(y_w, y_l)}} \left[\left(\log \frac{\pi_\theta(y^+)}{\pi_\theta(y^-)} - \log \frac{\pi(y^+)}{\pi(y^-)} - \frac{\eta}{2} \right)^2 \right]. \quad (13)$$

1580 Azar et al. (2024) have shown that the minimizer of the $\ell_{\text{IPO}}(\theta, \mu)$ satisfies $\pi_\theta(y) \propto \pi(y) \exp(-\eta \mathbb{P}[y \succ \mu]) \Leftrightarrow \pi_\theta = \text{Prox}(\pi, \eta g_\mu)$. Thus we can compute $\text{Prox}(\pi, \eta g_\mu)$ where
 1581 $g_\mu = \mathbb{P}(\cdot \succ \mu)$ by minimizing the IPO loss.

1582 **INPO for computing Prox for regularized preferences** The Iterative Nash Policy Optimization
 1583 (INPO) loss (Zhang et al., 2025b) is a generalization of the IPO loss to the regularized preference setting. We show that INPO could be used to compute $\text{Prox}(\mu, \eta g_\mu^\tau)$, where $g_\mu^\tau := \nabla_\pi J_\tau(\pi, \mu, \pi_{\text{ref}}) = \mathbb{P}(\cdot \succ \mu) - \tau \log \frac{\mu(\cdot)}{\pi_{\text{ref}}(\cdot)}$ is the gradient of the regularized objective (2). Given a win-loss pair data set
 1584 $\{y_w, y_l \sim \mu\}$, the INPO loss $\ell_{\text{INPO}}(\pi)$ is defined as
 1585

$$\ell_{\text{INPO}}(\pi) := \mathbb{E}_{\substack{(y_w, y_l) \sim \mu \\ (y^+, y^-) \sim \lambda_{\mathbb{P}}(y_w, y_l)}} \left[\left(\log \frac{\pi(y^+)}{\pi(y^-)} - \eta \tau \log \frac{\pi_{\text{ref}}(y^+)}{\pi_{\text{ref}}(y^-)} - (1 - \eta \tau) \log \frac{\mu(y^+)}{\mu(y^-)} - \frac{\eta}{2} \right)^2 \right]. \quad (14)$$

1586 It has been proved that the minimizer of the INPO loss is $\text{Prox}(\mu, \eta g_\mu^\tau)$ (Zhang et al., 2025b). Thus
 1587 we can use INPO in Algorithm 2 as a regularized game solver, as we show in Algorithm 4.

1601 F.1 COMAL INTEGRATED WITH INPO

1604 **Algorithm 4: INPO** (Zhang et al., 2025b) for solving $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$

1605 **Input:** Reference policy π_{ref} , regularization $\tau > 0$, step size $\eta > 0$, number of iterations $K \geq 1$,
 1606 preference oracle \mathbb{P} .

1607 **Output:** Approximate regularized NE policy μ^K

1608 Initialize $\mu^1 \leftarrow \pi_{\text{ref}}$

1609 **for** $k = 1, 2, \dots, K - 1$ **do**

1610 Generate response pairs $\{(y_1^{(i)}, y_2^{(i)}) \sim \mu^k\}_{i=1}^n$

1611 Query preference oracle \mathbb{P} to get preference data $\mathcal{D}_k = \{y_w^{(i)}, y_l^{(i)}\}_{i=1}^n$

1612 Compute $\mu^{k+1} = \text{argmin}_{\pi \in \Pi} \mathbb{E}_{\mathcal{D}_k} \ell_{\text{INPO}}(\pi)$ (14)

1613 **return** μ^K

1615 **Practical Implementation of COMAL** We present an implementation of COMAL in Algorithm 3
 1616 using the INPO (Zhang et al., 2025b) algorithm as a subgame solver. We remark that COMAL can also
 1617 be implemented using PPO or many other preference learning algorithms, as we show in Appendix F
 1618 and Appendix G. Given the implementation of these existing methods, our meta-algorithm requires
 1619 minimal change but achieves last-iterate convergence to a Nash equilibrium.

1620 In practice, COMAL provides guidance for performing iterative preference optimization: the reference
 1621 policy needs to be updated in order to avoid the performance upper bound imposed by a relatively
 1622 weak reference policy, however, the reference policy should not be updated at each optimization step
 1623 to avoid training instability.

1625 G MORE PRACTICAL IMPLEMENTATIONS OF COMAL

1627 In this section, we provide more practical implementations of COMAL using iterative GRPO (Shao
 1628 et al., 2024; Guo et al., 2025), the SPPO loss (Wu et al., 2024), the DRO loss (Richemond et al.,
 1629 2024), and the REBEL loss (Gao et al., 2024). All these implementations demonstrate that COMAL
 1630 is simple and versatile and can be integrated with many existing methods designed for preference
 1631 optimization with minimal changes.

1632 Although the SPPO, DPO, and REBEL losses are proposed in the unregularized preference setting,
 1633 we have shown how to extend these losses to compute the prox operator even for KL-regularized
 1634 preferences in Appendix F. Thus, we can integrate these losses for computing the prox operator
 1635 in Algorithm 2 for solving the regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$. As a result, we get the practical
 1636 implementation of COMAL by using different regularized game solvers.

1637 We omit the instruction $x \sim \rho \in \Delta(\mathcal{X})$ for notation simplicity in the following implementations.
 1638 Generalization to the contextual setting is straightforward.

1640 G.1 PRACTICAL IMPLEMENTATION OF COMAL USING ITERATIVE GRPO (SHAO ET AL., 1641 2024)

1643 We observe that the iterative GRPO procedure used in DeepSeekMath (Shao et al., 2024) and
 1644 DeepSeek-R1 (Guo et al., 2025) aligns closely with COMAL’s design principles: iterative GPRO
 1645 updates the reference policy model to the latest policy model every few steps (every 400 steps in
 1646 DeepSeek-R1 (Guo et al., 2025)), and each step solves a regularized objective. To adapt iterative
 1647 GRPO to preference alignment, one simply instantiates the reward with the win-rate induced by a
 1648 preference oracle \mathbb{P} . We include the full algorithm for completeness below in Algorithm 5. For the
 1649 GRPO objective, we can use either the original objective (Shao et al., 2024) or the unbiased Dr.GRPO
 1650 objective without length and std normalization (Liu et al., 2025b).

$$1651 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\{y^{(i)}\}_{i=1}^G \sim \pi_{\text{old}}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y^{(i)}|} \sum_{l=1}^{|y^{(i)}|} \left\{ \min \left(\frac{\pi_\theta(y_l^{(i)} | y_{<l}^{(i)})}{\pi_{\text{old}}(y_l^{(i)} | y_{<l}^{(i)})} \right) \hat{A}_{i,l}, \right. \right. \\ 1652 \left. \left. \text{clip} \left(\frac{\pi_\theta(y_l^{(i)} | y_{<l}^{(i)})}{\pi_{\text{old}}(y_l^{(i)} | y_{<l}^{(i)})}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,l} \right) - \tau_t \mathbb{D}_{\text{KL}}[\pi_\theta \parallel \pi_{\text{ref}}] \right\} \right]. \quad (15)$$

1656 We remark that COMAL (Algorithm 1) is a meta-algorithm that can be instantiated with any algorithm
 1657 that solves the regularized game in each iteration and guarantees convergence to an exact Nash
 1658 equilibrium. While we focus on using Mirror Descent (Algorithm 2) for solving the regularized game
 1659 and present most implementations using MD, we can also use the clairvoyant implementation of
 1660 conceptual prox (Farina et al., 2022), where our convergence result (Theorem 1) still applies. Iterative
 1661 GRPO for the alignment game can be seen as the clairvoyant implementation of the conceptual prox
 1662 algorithm.

1664 G.2 COMAL INTEGRATED WITH SPPO (WU ET AL., 2024)

1666 We present Reg-SPPO (Algorithm 6) for solving a KL-regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, which is
 1667 the instantiation of Algorithm 2 using the SPPO loss. Then, we give a practical implementation of
 1668 COMAL integrated with the SPPO loss in Algorithm 7.

1670 G.3 COMAL INTEGRATED WITH DRO (RICHEMOND ET AL., 2024)

1672 We present Reg-DRO (Algorithm 8) for solving a KL regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, which is
 1673 the instantiation of Algorithm 2 using the DRO loss. Then, we give a practical implementation of
 COMAL integrated with the DRO loss in Algorithm 9.

1674

Algorithm 5: Practical Implementation of COMAL using iterative GRPO (Shao et al., 2024)

1675

Input: Initial policy π_{init} , regularization $\{\tau_t > 0\}$, number of iterations $T \geq 1$, number of inner optimization steps $\{K_t \geq 1\}$, preference oracle \mathbb{P} , hyperparameter ε .

1676

Output: Optimized policy π^T

1677

Initialize $\pi^1, \pi_\theta, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$

1678

for $t = 1, 2, \dots, T - 1$ **do**

1679

 reference policy $\pi_{\text{ref}} \leftarrow \pi^t$

1680

for step $k = 1, \dots, K_t$ **do**

1681

 Update the old policy $\pi_{\text{old}} \leftarrow \pi_\theta$

1682

 Sample G responses $\{y^{(i)}\}_{i=1}^G \sim \pi_{\text{old}}$

1683

 Query preference oracle \mathbb{P} to compute the reward, i.e., empirical win-rate

1684

 $r_i := \hat{P}[y^{(i)} \succ \pi_{\text{old}}] = \frac{1}{G} \sum_{j=1}^G \mathbb{P}[y^{(i)} \succ y^{(j)}]$ for each sample $y^{(i)}$

1685

 Compute $\hat{A}_{i,l}$ for the l -th token of $y^{(i)}$ through group relative advantage estimation.

1686

 Update the policy π_θ by maximizing the GRPO objective (15).

1687

 $\pi_\theta^{t+1} \leftarrow \pi_\theta$

1688

return π^T

1689

1690

1691

Algorithm 6: Reg-SPPO: Extension of SPPO (Wu et al., 2024) for solving KL-regularized games

1692

Input: Reference policy π_{ref} , regularization $\tau > 0$, step size $\eta > 0$, number of rounds $K \geq 1$, preference oracle \mathbb{P} .

1693

Output: Approximate regularized Nash equilibrium policy μ_K

1694

Initialize $\mu^1 \leftarrow \pi_{\text{ref}}$

1695

for $k = 1, 2, \dots, K - 1$ **do**

1696

 Generate responses $\{y^{(i)} \sim \mu^k\}_{i=1}^n$

1697

 Query preference oracle \mathbb{P} to annotate the win-rate $\mathbb{P}[y^{(i)} \succ y^{(j)}], \forall i, j \in [n]$

1698

 Form dataset $\mathcal{D}_t = \{(y^{(i)}, \hat{P}[y^{(i)} \succ \mu^k])\}_{i \in [n]}$

1699

 Compute $\mu^{k+1} = \mu_{\theta^{k+1}}$ where

1700

 $\theta^{k+1} = \underset{\theta}{\operatorname{argmin}} \ell_{\text{SPPO}}(\theta) := \mathbb{E}_{(y, \hat{P}[y \succ \mu^k]) \sim \mathcal{D}_t} \left[\left(\log \frac{\mu_\theta(y)}{\mu^k(y)} - \eta \left(\hat{P}[y \succ \mu^k] - \tau \log \frac{\mu^k(y)}{\pi_{\text{ref}}(y)} - \frac{1}{2} \right) \right)^2 \right]$

1701

return μ^K

1702

1703

1704

1705

1706

Algorithm 7: Practical Implementation of COMAL integrated with Reg-SPPO (Algorithm 6)

1707

Input: Initial policy π_{init} , regularization $\{\tau_t > 0\}$, step size $\{\eta_t > 0\}$, number of iterations $T \geq 1$, number of inner optimization steps $\{K_t \geq 1\}$, preference oracle \mathbb{P} .

1708

Output: Optimized policy π^T

1709

Initialize $\pi^1, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$

1710

for $t = 1, 2, \dots, T - 1$ **do**

1711

 $\pi^{t+1} \leftarrow \text{Reg-SPPO}(\pi_{\text{ref}}, \tau_t, \eta_t, K_t, \mathbb{P})$ defined in Algorithm 6

1712

 $\pi_{\text{ref}} \leftarrow \pi^{t+1}$

1713

return π^T

1714

1715

1716

1717

G.4 COMAL INTEGRATED WITH REBEL (GAO ET AL., 2024)

1718

We present Reg-REBEL (Algorithm 10) for solving a KL regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$, which is the instantiation of Algorithm 2 using the REBEL loss. Then, we give a practical implementation of COMAL (Algorithm 1) integrated with the REBEL loss in Algorithm 11.

1719

1720

1721

1722

1723

1724

1725

H IMPLEMENTATION OF MIRROR-PROX AND OPTIMISTIC MULTIPLICATIVE WEIGHTS UPDATE

1726

1727

We note that there are other algorithms that has provable last-iterate convergence to Nash equilibrium in (unregularized) zero-sum games, including the Mirror-Prox algorithm (Nemirovski, 2004) and

1728
1729
1730
1731
1732**Algorithm 8:** Reg-DRO: Extension of DRO (Richemond et al., 2024) for solving KL-regularized games1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756**Input:** Reference policy π_{ref} , regularization $\tau > 0$, step size $\eta > 0$, number of rounds $K \geq 1$, preference oracle \mathbb{P} .**Output:** Approximate regularized Nash equilibrium policy μ_K Initialize $\mu^1 \leftarrow \pi_{\text{ref}}$ **for** $k = 1, 2, \dots, K - 1$ **do**| Generate responses $\{y^{(i)} \sim \mu^k\}_{i=1}^n$ | Query preference oracle \mathbb{P} to annotate the win-rate $\mathbb{P}[y^{(i)} \succ y^{(j)}], \forall i, j \in [n]$ | Form dataset $\mathcal{D}_t = \{(y^{(i)}, \hat{P}[y^{(i)} \succ \mu^k])\}_{i \in [n]}$ | Compute $\mu^{k+1} = \mu_{\theta^{k+1}}$ where

$$\theta^{k+1} = \operatorname{argmin}_{\theta} \ell_{\text{DRO}}(\theta) := \mathbb{E}_{(y, \hat{P}[y \succ \mu^k]) \sim \mathcal{D}_t} \left[\left(\log \frac{\mu_{\theta}(y)}{\mu^k(y)} - \eta \left(\hat{P}[y \succ \mu^k] - \tau \log \frac{\mu^k(y)}{\pi_{\text{ref}}(y)} \right) - \eta V_{\phi} \right)^2 \right]$$

return μ^K **Algorithm 9:** Practical Implementation of COMAL integrated with Reg-DRO (Algorithm 8)1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756**Input:** Initial policy π_{init} , regularization $\{\tau_t > 0\}$, step size $\{\eta_t > 0\}$, number of iterations $T \geq 1$, number of inner optimization steps $\{K_t \geq 1\}$, preference oracle \mathbb{P} .**Output:** Optimized policy π^T Initialize $\pi^1, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$ **for** $t = 1, 2, \dots, T - 1$ **do**| $\pi^{t+1} \leftarrow \text{Reg-DRO}(\pi_{\text{ref}}, \tau_t, \eta_t, K_t, \mathbb{P})$ defined in Algorithm 6| $\pi_{\text{ref}} \leftarrow \pi^{t+1}$ **return** π^T 1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781**Algorithm 10:** Reg-REBEL: Extension of REBEL (Gao et al., 2024) for solving KL-regularized games**Input:** Reference policy π_{ref} , regularization $\tau > 0$, step size $\eta > 0$, number of rounds $K \geq 1$, preference oracle \mathbb{P} .**Output:** Approximate regularized Nash equilibrium policy μ_K Initialize $\mu^1 \leftarrow \pi_{\text{ref}}$ **for** $k = 1, 2, \dots, K - 1$ **do**| Generate responses $\{y^{(i)} \sim \mu^k\}_{i=1}^n$ | Query preference oracle \mathbb{P} to annotate the win-rate $\mathbb{P}[y^{(i)} \succ y^{(j)}], \forall i, j \in [n]$ | Form dataset $\mathcal{D}_t = \{(y^{(i)}, y^{(j)}, \hat{P}[y^{(i)} \succ \mu^k], \hat{P}[y^{(j)} \succ \mu^k])\}_{i, j \in [n]}$ | Compute $\mu^{k+1} = \mu_{\theta^{k+1}}$ where

$$\theta^{k+1} = \operatorname{argmin}_{\theta} \ell_{\text{REBEL}}(\theta)$$

$$\ell_{\text{REBEL}}(\theta) := \mathbb{E}_{(y, y') \sim \mathcal{D}_t} \left[\left(\eta^{-1} \left(\log \frac{\mu_{\theta}(y)}{\mu^k(y)} - \log \frac{\mu_{\theta}(y')}{\mu^k(y')} \right) - \left(\hat{P}[y \succ \mu^k] - \tau \log \frac{\mu^k(y)}{\pi_{\text{ref}}(y)} - \hat{P}[y' \succ \mu^k] + \tau \log \frac{\mu^k(y')}{\pi_{\text{ref}}(y')} \right) \right)^2 \right]$$

return μ^K

Optimistic Multiplicative Weights Update (OMWU) algorithm (Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015; Hsieh et al., 2021). We present practical implementations of these two algorithms in the context of LLM alignment for solving $J(\pi_1, \pi_2)$ (1), where we use preference optimization algorithms to solve the prox operator as shown in §3.3 and Appendix F.

We denote the gradient $g(\pi) := \mathbb{P}(\cdot \succ \pi)$.

Algorithm 11: Practical Implementation of COMAL integrated with Reg-REBEL (Algorithm 10)

Input: Initial policy π_{init} , regularization $\{\tau_t > 0\}$, step size $\{\eta_t > 0\}$, number of iterations $T \geq 1$, number of inner optimization steps $\{K_t \geq 1\}$, preference oracle \mathbb{P} .

Output: Optimized policy π^T

Initialize $\pi_1, \pi_{\text{ref}} \leftarrow \pi_{\text{init}}$

for $t = 1, 2, \dots, T - 1$ **do**

$\pi^{t+1} \leftarrow \text{Reg-REBEL}(\pi_{\text{ref}}, \tau_t, \eta_t, K_t, \mathbb{P})$ defined in Algorithm 10

$\pi_{\text{ref}} \leftarrow \pi^{t+1}$

return π^T

Mirror-Prox The Mirror-Prox algorithm (Nemirovski, 2004) initialized $\pi^1 = \pi_{\text{init}}$ and updates in each iteration $t \geq 1$:

$$\pi^{t+\frac{1}{2}} = \text{Prox}(\pi^t, \eta g(\pi^t))$$

$$\pi^{t+1} = \text{Prox}(\pi^t, \eta g(\pi^{t+\frac{1}{2}}))$$

We can implement Mirror-Prox using PPO/DPO/IPO/SPPO/DRO/REBEL to compute the prox operator. Specifically, we could sample from π^t and construct a preference dataset D_t and optimize certain regression loss (IPO/DRO/REBEL) to compute $\pi^{t+\frac{1}{2}} = \text{Prox}(\pi^t, \eta g(\pi^t))$. The procedure applies to the second step in each iteration. Thus in such an implementation, we require two sampling and two optimization procedures in each iteration.

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm (Rakhlin & Sridharan, 2013) is an optimistic variant of the MWU algorithm. Although MWU diverges in zero-sum games, it has been shown that OMWU has last-iterate convergence to Nash equilibrium (Wei et al., 2021; Hsieh et al., 2021). Initialized with $\pi^1 = \pi^{\frac{1}{2}} = \pi_{\text{init}}$, OMWU updates in each iteration $t \geq 1$:

$$\pi^{t+\frac{1}{2}} = \text{Prox}(\pi^t, \eta g(\pi^{t-\frac{1}{2}}))$$

$$\pi^{t+1} = \text{Prox}(\pi^t, \eta g(\pi^{t+\frac{1}{2}}))$$

Similarly, we can implement OMWU to solve $J(\pi_1, \pi_2)$ using preference methods to compute the prox operator as shown in §3.3. Moreover, OMWU has an equivalent update rule: initialize $\pi^1 = \pi^0 = \pi_{\text{init}}$

$$\pi^{t+1} = \text{Prox}(\pi^t, 2\eta g(\pi^t) - \eta g(\pi^{t-1})),$$

which requires computing only one prox operator in each iteration.

We leave a systematic evaluation of Mirror-Prox and OMWU at a large scale, including LLM alignment, to future work.

I SYNTHETIC EXPERIMENTS

Experiment Setup Recall that we set $\mathbb{P}[y_b \succ y_a] = \mathbb{P}[y_c \succ y_b] = 0.9$ and $\mathbb{P}[y_a \succ y_c] = 0.8$. This results in the following zero-sum game: we have policies $\Pi = \Delta(\{y_a, y_b, y_c\})$ and objective

$$J(\pi_1, \pi_2) = \pi_1^\top A \pi_2 - 0.5, \text{ where } A = \begin{bmatrix} 0.5 & 0.1 & 0.8 \\ 0.9 & 0.5 & 0.1 \\ 0.2 & 0.9 & 0.5 \end{bmatrix}.$$

The game has a unique Nash equilibrium $[4/11, 3/11, 4/11]$. We set the initial policy to be $\pi^1 = [0.2, 0.5, 0.3]$ for all algorithms. We choose $\eta = 0.3$ for iterative DPO, iterative IPO, and SPPO. We choose $\eta = 0.3$ and $\tau = 0.1$ for INPO and COMAL. For COMAL (Algorithm 3), we set $T = 200$ and $K_t = 25$ so the total number of iterations is $T \cdot K_t = 5000$.

Experiments using noiseless gradient We present numerical results of mirror-descent (MD) algorithms (equivalent to MWU) and COMAL (Algorithm 1) in Figure 3. We can see that the MD algorithm diverges from the unique Nash equilibrium and suffers a large equilibrium gap, while COMAL achieves fast last-iterate convergence to the Nash equilibrium, aligned with our theoretical results (Theorem 1).

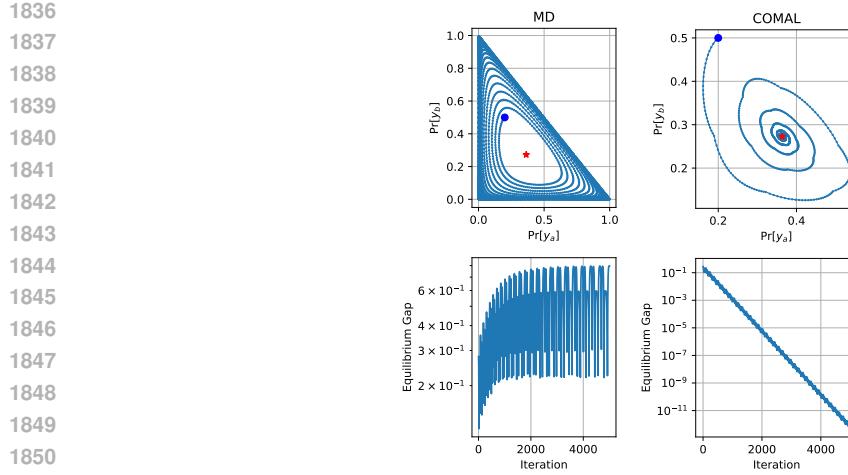


Figure 3: Dynamics on a simple 3-dimensional preference game. The unique Nash equilibrium is $[4/11, 3/11, 4/11]$ represented as red star. We initialize all algorithms at the blue dot point $[0.2, 0.5, 0.3]$.

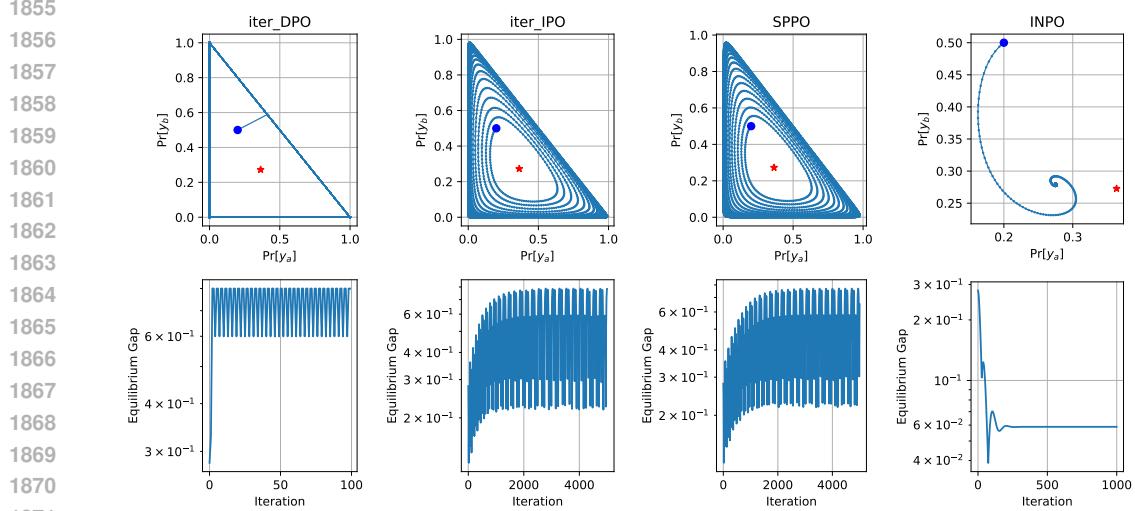


Figure 4: Dynamics on a simple 3-dimensional preference game. The unique Nash equilibrium is $[4/11, 3/11, 4/11]$ represented as red star. We initialize all algorithms at the blue point $[0.2, 0.5, 0.3]$.

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Experiments using preference samples Since the popular iterative DPO algorithm does not contain a gradient step, we also conduct experiments with only Oracle query access to the preference model. We compare the performance of various algorithms, including iterative DPO, iterative IPO, SPPO, and INPO and present results in Figure 4. The sample-only setting is also more aligned with what happens in practice. We use a sufficient number of samples in each iteration for every algorithm. As a result, the COMAL performs the same as in the noiseless gradient setting, while the iterative IPO algorithm becomes equivalent to the MD algorithm. We note the following:

Iterative DPO: We observe that iterative DPO cycles between extreme policies (e.g., outputting y_a with probability close to 1). This is aligned with (Azar et al., 2024), where they found DPO will converge to the deterministic policy regardless of the regularization parameter in extreme preference settings. The cycling behavior of iterative DPO may be explained as follows: in each iteration, DPO converges to a nearly deterministic policy output y ; then the new preference data shows that $y' \neq y$ is more preferred; finally, iterative DPO cycles over \mathcal{Y} since the preference itself exhibits a cycle and there is no clear winner.

1890 *Iterative IPO* (Azar et al., 2024; Calandriello et al., 2024): The IPO loss is a variant of the DPO loss,
 1891 but it does not rely on the BT model assumption and works for a general preference model. However,
 1892 as we have discussed before, (exactly) minimizing the IPO loss is equivalent to performing one MD
 1893 step, and thus, iterative IPO is equivalent to MD up to sampling error. As a result, we observe that
 1894 iterative IPO also exhibits cycling behavior.

1895 *SPPO* (Wu et al., 2024): The SPPO algorithm (see Appendix F) is not exactly the same as MWU since
 1896 SPPO assumes the partition function is always $Z = \log \frac{\eta}{2}$ which may not be the case. We observe
 1897 that SPPO exhibits very similar cycling behavior as MD. We conclude that SPPO approximates MD
 1898 very well in this instance and exhibits similar behavior.

1899 *INPO* (Zhang et al., 2025b): The INPO algorithm is designed for finding the Nash equilibrium of
 1900 the KL regularized game $J_\tau(\pi_1, \pi_2, \pi_{\text{ref}})$. As we proved in Theorem 2, INPO does not diverge
 1901 and exhibits last-iterate convergence. However, it converges to a point that differs from the Nash
 1902 equilibrium of the game $J(\pi_1, \pi_2)$ and has constant equilibrium gap.

1904 J HYPERPARAMETERS AND TRAINING DETAILS FOR LLM EXPERIMENTS

1907 We follow a similar training recipe proposed in Tunstall et al. (2023) for the experiments. Specifically,
 1908 at each training iteration, the models are fine-tuned for one epoch with a batch size of 32 and a
 1909 maximum learning rate of 5×10^{-7} , using a cosine learning rate scheduler with 10% of warmup
 1910 steps. We conduct a grid search for the strength of the KL regularization, η^{-1} , in the loss functions
 1911 of DPO, IPO and INPO, within the range of 0.001 - 0.1. INPO has another hyper-parameter τ which
 1912 controls the strength of the KL regularization from the reference policy. Its value is determined
 1913 following Zhang et al. (2025b), where $\eta\tau$ is set to a fixed ratio, 1/3.

1914 K LLM-BASED EXPERIMENTS WITH 1.5B LLM

1917 In §5, we conduct experiments using an 8B LLM, Llama-3-8B-Instruct. Here, we provide additional
 1918 experiments with a pre-trained smaller LLM, Qwen2-1.5B (Yang et al., 2024a). Its smaller size
 1919 allows us to perform more training iterations.

1921 K.1 EXPERIMENTAL SETTINGS

1922 Some of the experiment settings are identical to the settings in §5. Therefore, here we only outline
 1923 the differences in the settings.

1925 **Preference Oracle** The preference oracle we used is Llama-3-OffsetBias-8B (Park et al., 2024),
 1926 which is a pairwise preference model that predicts which output is better given an instruction and a
 1927 pair of outputs. Fine-tuned from Meta-Llama-3-8B-Instruct (Dubey et al., 2024), it achieves strong
 1928 performance on various human preference alignment benchmarks in RewardBench (Lambert et al.,
 1929 2024b). We selected it as the preference oracle for its balance of computational efficiency and
 1930 alignment with human preferences, making it suitable for iterative preference optimization.

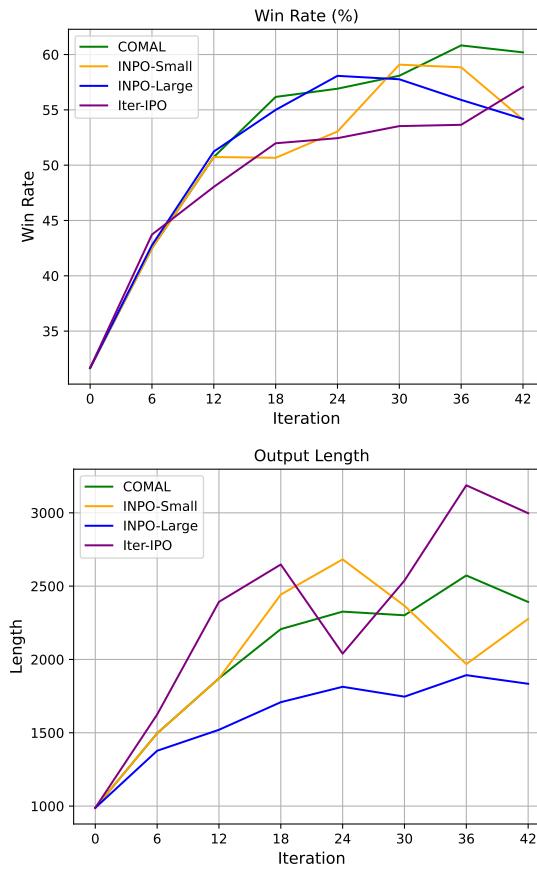
1931 **Baselines** We include the following baselines for comparisons with COMAL: (1) SFT, which fine-
 1932 tunes the pre-trained Qwen2-1.5B on the UltraChat dataset, with the resulting checkpoint serving as
 1933 the starting point and/or reference policy for the other training algorithms; (2) vanilla DPO (Rafailov
 1934 et al., 2024) and (3) vanilla IPO (Azar et al., 2024), where one training iteration is performed over
 1935 the entire instruction set of UltraFeedback with output pairs sampled from the SFT policy; (4)
 1936 INPO (Zhang et al., 2025b), where each iteration of training is performed on a single data split; (5)
 1937 iterative IPO, which follows a training setting similar to INPO but without the KL regularization with
 1938 respect to the reference policy.

1939 **Evaluations** We chose to use the same preference oracle used during data generation, Llama-3-
 1940 OffsetBias-8B, as the evaluator. This decision was made to maintain a controlled experimental
 1941 setting, ensuring that the preference oracle the model learns to fit is also the one used to evaluate its
 1942 performance.

1943 **Training Details** We follow the training recipe proposed in Tunstall et al. (2023) for the experiments.
 Specifically, at each training iteration, the models are fine-tuned for 3 epochs with a batch size of 32

1944 and maximum learning rate of 5×10^{-7} , using a linear learning rate scheduler where 10% of the
 1945 steps are for warmup and the rest for linearly decreasing the rate. The checkpoints are selected based
 1946 on their validation loss on the UltraFeedback dataset. The training is performed on 8 NVIDIA A6000
 1947 Ada GPUs with 48GB memory, and one training iteration over the 10K instructions takes around
 1948 5 hours. Due to the relatively high computational requirements and the large number of training
 1949 iterations we tested (up to 42), we opted to use a moderately sized LLM and did not conduct an
 1950 exhaustive hyper-parameter search, instead referencing settings from previous work when appropriate.
 1951

1952 **Hyper-Parameters** We conduct a grid search for the strength of the KL regularization, η^{-1} , in both
 1953 vanilla DPO and IPO. We found that DPO achieves the best performance when η^{-1} is set to 0.01,
 1954 while IPO achieves the best performance when η^{-1} is set within the range of 0.002 - 0.01. We then
 1955 choose the value of η^{-1} to be 0.002 to encourage larger learning steps. This value of η is also used for
 1956 iterative IPO. For INPO, we compare two settings where η^{-1} is set to 0.002 and 0.01, corresponding
 1957 to a small and a large regularization respectively. INPO has another hyper-parameter τ which controls
 1958 the strength of the KL regularization from the reference policy. We determine its value following the
 1959 setting of [Zhang et al. \(2025b\)](#), where $\eta\tau$ is set to a fixed ratio, 1/3. Regarding COMAL, which is
 1960 implemented based on INPO as outlined in Algorithm 3, η^{-1} is also set to 0.002 at the beginning of
 1961 the training. The reference policy used in COMAL is updated when the first optimization step begins
 1962 to converge or overfit, and η^{-1} is increased to 0.01 to improve training stability.
 1963



1964 Figure 5: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The average win rates of the
 1965 trained checkpoints against the best checkpoints of each training algorithm, and the average lengths
 1966 of the outputs are compared. For INPO, two variations with a small regularization ($\eta^{-1} = 0.002$,
 1967 INPO-Small) and a large regularization ($\eta^{-1} = 0.01$, INPO-Large) are compared.
 1968

K.2 RESULT ANALYSIS

1969 Figure 5 presents the training dynamics of three iterative preference optimization algorithms we
 1970 compared: iterative IPO (Iter-IPO), INPO with a small and a large regularization (INPO-Small and
 1971 INPO-Large), and COMAL. The top plot shows the average win rate (%) of the trained checkpoints
 1972 against the best checkpoints of each algorithm. The bottom plot shows the average length of the
 1973 outputs. The x-axis for both plots represents the iteration number, ranging from 0 to 42. The y-axis
 1974 for the top plot represents the win rate (%) from 35 to 60. The y-axis for the bottom plot represents
 1975 the output length from 1000 to 3000. The legend indicates four algorithms: COMAL (green line),
 1976 INPO-Small (orange line), INPO-Large (blue line), and Iter-IPO (purple line).
 1977

1998 Table 5: Performance comparison of different training algorithms. The row v.s. column win rate
 1999 (%) is reported. The *best* checkpoints produced by each training algorithm are compared. For
 2000 INPO, we report two variations with a small regularization ($\eta^{-1} = 0.002$, INPO-Small) and a large
 2001 regularization ($\eta^{-1} = 0.01$, INPO-Large).

Row/Column	SFT	DPO	IPO	Iter-IPO	INPO-Large	INPO-Small	COMAL	Avg
Iter-IPO	67.33	62.36	58.76	50.00	48.20	44.72	44.10	53.64
INPO-Large	77.02	69.81	67.83	51.80	50.00	46.21	44.84	58.22
INPO-Small	73.66	66.21	66.46	55.28	53.79	50.00	48.70	59.16
COMAL	74.53	70.56	68.82	55.90	55.16	51.30	50.00	60.90

2009 Table 6: Performance comparison of different training algorithms. The row v.s. column win rate
 2010 (%) is reported. The *last* checkpoints produced by each training algorithm are compared. For
 2011 INPO, we report two variations with a small regularization ($\eta^{-1} = 0.002$, INPO-Small) and a large
 2012 regularization ($\eta^{-1} = 0.01$, INPO-Large).

Row/Column	SFT	DPO	IPO	Iter-IPO	INPO-Large	INPO-Small	COMAL	Avg
Iter-IPO	67.33	62.36	58.76	50.00	50.93	49.07	45.47	54.84
INPO-Large	70.43	62.98	61.61	49.07	50.00	48.07	41.61	54.83
INPO-Small	68.57	61.12	59.88	50.93	51.93	50.00	43.23	55.09
COMAL	74.53	67.83	65.09	54.53	58.39	56.77	50.00	61.02

2021 INPO-Large), and COMAL, which are demonstrated by their checkpoints’ win rates against the *best*
 2022 checkpoints produced by 7 different algorithms: SFT, IPO, DPO, Iter-IPO, INPO-Small, INPO-Large,
 2023 COMAL, and the average lengths of their outputs. For INPO and COMAL, the model is trained for
 2024 up to 42 iterations, equivalent to 7 training rounds over the entire instruction set since it has been
 2025 split into 6 subsets. We note that:

2026 (1) Iter-IPO shows a quicker improvement rate at the beginning of the training, but its performance
 2027 begins to lag behind other algorithms after the first training round with a rapid increase in output
 2028 length, which indicates the inherent instability of this training algorithm.

2029 (2) INPO achieves stronger performance and larger improvement rates compared to Iter-IPO. However,
 2030 the win rates of both INPO-Small and INPO-Large start to decrease after 5 training rounds. We
 2031 suspect this suggests that INPO has started to converge and/or overfit. Moreover, for INPO-Small, its
 2032 performance shows only a minor improvement and even a slight decline during training rounds 2 to 4
 2033 (iterations 12 - 24). Therefore, for COMAL, which shares the same training trajectory as INPO-Small
 2034 for the first two training rounds, we update the reference policy at the beginning of the third training
 2035 round, following the optimization process described in Algorithm 3.

2036 (3) COMAL is able to further improve the model performance with the updated reference policy.
 2037 Notably, its performance continues to improve up until the 6th training round, when the other
 2038 algorithms begin to degrade, demonstrating the benefit of updating the reference policy.

2039 Table 5 provides pairwise comparisons between the *best* checkpoints of the iterative preference
 2040 optimization algorithms and a few baselines. It demonstrates the clear advantage of COMAL,
 2041 which is able to achieve a win rate that is strictly above 50% against all the other checkpoints. The
 2042 comparison of the *final* checkpoints of different algorithms after the last iteration is presented in
 2043 Table 6, where COMAL is able to achieve significantly better performance thanks to its stability.

L LIMITATIONS

2048 **Provable Guarantee on Computing the Prox Operators** Our theoretical guarantee on the last-
 2049 iterate convergence of COMAL relies on computing the prox operator and solving a regularized game
 2050 approximately. Although we provide many practical loss minimization approaches that compute the
 2051 prox operator, the applicability of our results in practical LLM settings lacks a provable guarantee
 since the losses could be highly non-convex, for which no provably efficient algorithms exist. We also

2052 remark that our analysis is non-trivial and novel, which gives a more robust guarantee than existing
 2053 works (Perolat et al., 2021; Sokota et al., 2023; Abe et al., 2024) that require solving the regularized
 2054 game *exactly*.
 2055

2056 **Theoretical Convergence Guarantees** Our [Theorem 1](#) provides asymptotic last-iterate convergence
 2057 to exact Nash equilibrium and [Theorem 2](#) gives non-asymptotic ($1/\varepsilon^2$) convergence to an
 2058 ε -approximate Nash equilibrium when we choose the regularization $\tau = O(\varepsilon)$. Here we discuss
 2059 the possibility of achieving non-asymptotic convergence with non-vanishing regularization τ . We
 2060 remark that there are algorithms with ℓ_2 regularization that have polynomial last-iterate convergence
 2061 rates (Cai et al., 2022). However, it is unclear whether these algorithms with ℓ_2 regularization are
 2062 practical in large-scale LLM settings, as no known efficient implementations exist. In contrast,
 2063 prox operators with entropy regularization can be computed using practical preference optimization
 2064 algorithms such as DPO, IPO, INPO as we discussed in §F. Regarding the possibility of establishing a
 2065 last-iterate convergence rate of our algorithm, we note that a uniform convergence rate for algorithms
 2066 of this type is unlikely, as suggested by a recent work (Cai et al., 2024a). Here, “uniform” refers to
 2067 an upper bound on the duality gap that holds for all instances. While it may be possible to obtain
 2068 a weaker instance-dependent rate, similar to the ones in (Wei et al., 2021), under a unique Nash
 2069 equilibrium assumption, the rate depends on a problem-dependent parameter that could be arbitrarily
 2070 large and difficult to characterize—particularly in the LLM setting. As such, such rates offer limited
 2071 practical guidance for implementation or for understanding convergence speed in realistic scenarios.
 Nevertheless, getting a convergence rate is an interesting question and we leave it for future work.

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105