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ABSTRACT

Many alignment methods, including reinforcement learning from human feedback
(RLHF), rely on the Bradley-Terry reward assumption, which is not always suffi-
cient to capture the full range and complexity of general human preferences. We
explore RLHF under a general preference framework by modeling the alignment
problem as a two-player zero-sum game in a game-theoretic framework, where the
Nash equilibrium policy guarantees a 50% win rate against any competing policy.
However, previous self-play algorithms for finding the Nash policy either diverge
or only converge to a Nash policy in a modified game, even in a simple synthetic
setting, thereby failing to maintain the 50% win rate guarantee against all other
policies. We propose a meta-algorithm, Convergent Meta Alignment Algorithm
(COMAL), for language model alignment with general preferences, inspired by
convergent algorithms in game theory. We provide theoretical analysis that our
meta-algorithm converges to an exact Nash policy in the last iterate and demon-
strate its effectiveness on a range of synthetic and preference optimization datasets.
COMAL is simple and can be integrated with many existing methods designed
for preference optimization with minimal changes, and empirically it consistently
maintains above 60.2% and 56.8% win rates, when applied to Llama-3-8B-Instruct
and Qwen2.5-7B, against all compared algorithms under controlled evaluations.

1 INTRODUCTION

One of the most widely adopted approaches to addressing the challenge of aligning LLMs with
human values and preferences is Reinforcement Learning from Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022). This framework consists of two steps: first, learning a reward
model from a human preferences dataset, and second, optimizing the LLM using the proximal policy
optimization (PPO) algorithm (Schulman et al., 2017). More recently, Rafailov et al. (2024) observed
that the first step can be bypassed, proposing the direct preference optimization (DPO) algorithm,
which directly optimizes the LLM from the dataset.

However, the aforementioned approaches crucially rely on the assumption that human preferences
can be expressed using the Bradley-Terry (BT) model (Bradley & Terry, 1952). Unfortunately, the BT
model is too restrictive to capture the richness and complexity of human preferences. For example,
the BT model can only induce transitive preferences – i.e., if more people favor A over B, and B
over C, then more people must favor A over C. Such transitivity may not hold in the presence of
diverse populations and is also incompatible with evidence from human decision-making (May, 1954;
Tversky, 1969). To illustrate this, consider a simple case where users are evaluating responses from
an assistant to a nuanced question like: “What’s the best way to spend a Sunday?” Some might prefer
Response A (outdoor activities) over B (reading a book), while others prefer B over C (watching TV),
yet a third group prefers C over A. These cyclic preferences – A > B > C > A – cannot be modeled
by the BT framework. Moreover, even if each individual has a consistent (transitive) ranking, the
aggregated preferences can exhibit intransitivity. In fact, even a mixture of two BT models cannot be
parameterized by a single BT model.

To overcome this limitation, recent research has begun to explore alignment under general preferences.
Munos et al. (2024); Swamy et al. (2024) formulate this alignment problem as a symmetric two-
player zero-sum alignment game (Definition 2), where both players’ strategies are LLMs, and their
payoffs are determined by the win rate against the opponent’s LLM according to the preference
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(a) COMAL converges to the optimal solution, while other preference optimiza-
tion methods do not. We initialize all algorithms at the blue dot; the Nash
equilibrium is the red star.
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Figure 1: (a) convergence behavior of five methods (§4); (b) win-rate comparison with Llama-3 (§5).

model. The objective is to identify a Nash equilibrium policy, which guarantees at least 50% win rate
against any competing policy. Existing algorithms for finding such robust policies present significant
challenges. In particular, current methods can suffer from instability, often failing to converge, or may
inadvertently optimize for a solution to a modified version of the original problem. As a result, these
approaches may fail to guarantee the desired win rate against arbitrary opponents, leaving robust
alignment an open and active area of research and motivating us to investigate the following question:

Question: Is there an algorithm that converges to the Nash equilibrium policy of the alignment game
(Definition 2), thus guaranteeing 50% win-rate against any competing policy?

Our Contributions: We propose a novel meta-algorithm, the Convergent Meta Alignment Algorithm
(COMAL), that iteratively refines language model policies by solving a regularized two-player zero-
sum game at each round, using the current policy as a reference point. The procedure at each round is
as follows:

Step 1: In iteration t, solve a KL-regularized two-player zero-sum game with respect to the reference
policy πref = πt−1. Let πt be the Nash equilibrium of this regularized game.

Step 2: Update the reference policy πref to the current policy πt and repeat the process.

The rationale behind COMAL is that it is a practical implementation of the Conceptual Prox-
method (Nemirovski, 2004), a convergent algorithm for solving two-player zero-sum games, whether
regularized or not. Importantly, Step 1 can be implemented using the Prox operator, a well-known
concept in the optimization literature (Parikh et al., 2014). A crucial observation we make here is
that many existing algorithms – including PPO (Schulman et al., 2017), GRPO (Shao et al., 2024;
Guo et al., 2025), DPO (Rafailov et al., 2024), IPO (Azar et al., 2024), SPPO (Wu et al., 2024),
REBEL (Gao et al., 2024), DRO (Richemond et al., 2024), and INPO (Zhang et al., 2025b), inter alia
– can be interpreted as practical implementations of the Prox operator in the context of LLM training
(see §3.3 for a detailed discussion). As a result, COMAL is simple and can be integrated with many
existing methods designed for preference optimization with minimal changes.

One significant departure of COMAL from existing methods for the game-theoretic formulation of
alignment is that we adaptively update the reference policy rather than keeping it fixed. A potential
concern with this approach is that the policy might drift too far from the initial policy, leading to
instability and quality degradation. However, we provide both theoretical guarantees and experimental
evidence demonstrating that this dynamic updating strategy consistently enhances model performance
while maintaining stability.

Theoretical guarantee: Given any implementation of the Prox operator, COMAL provably con-
verges to the Nash equilibrium policy in the last iterate. While existing algorithms like iterative
IPO (Azar et al., 2024) and SPPO (Wu et al., 2024) only guarantee average-iterate convergence
(which is impractical for LLMs) or convergence to a KL-regularized Nash equilibrium (Munos et al.,
2024; Zhang et al., 2025b), COMAL is the first algorithm that has provable last-iterate convergence
to the unregularized Nash equilibrium.1

1We remark that a concurrent work (Wang et al., 2025) proposes an algorithm based on Magnetic Mirror
Descent (Sokota et al., 2023) with last-iterate convergence. Our algorithms and theirs are all variants of the
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Empirical improvements: We first conduct synthetic controlled experiments on a 3× 3 two-player
zero-sum alignment game and demonstrate that COMAL is the only algorithm that converges to the
Nash equilibrium. Under realistic LLM training settings, in experiments with Llama-3-8B-Instruct
(Dubey et al., 2024) and Qwen2.5-7B (Yang et al., 2024b) on UltraFeedback (Cui et al., 2023),
COMAL achieves above 60% and 56% win rates, respectively, against all compared algorithms
according to the preference oracle.

2 BACKGROUND

We begin by introducing notation for language model alignment and preference modeling. Let ∆(Z)
denote the set of distributions over a set Z . Let X be the instruction set with a fixed distribution
ρ ∈ ∆(X ), and Y be the response set. Given an instruction x ∈ X , an LLM policy π specifies an
output distribution π(· | x) ∈ ∆(Y). For p, q ∈ ∆(Z), the Kullback-Leibler (KL) divergence is
KL(p∥q) :=

∑
z∈Z p(z) log p(z)

q(z) . The sigmoid function is σ(x) := ex

ex+1 . We use supp(p) to denote
the support of distribution p. This paper focuses on general preference models.
Definition 1 (General Preference Model). A general preference model P : X × Y × Y → [0, 1]
satisfies P(y1 ≻ y2 | x) = 1− P(y2 ≻ y1 | x). When we query P with (x, y1, y2), it outputs 1 with
probability P(y1 ≻ y2 | x) meaning y1 is preferred over y2, and it outputs 0 otherwise. The win rate
of π1 over π2 under preference model P is P(π1 ≻ π2):= Ex∼ρ[Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]].

We present the Bradley-Terry (BT) model and additional backgrounds on RLHF and DPO to §B.

2.1 ALIGNMENT WITH GENERAL PREFERENCE MODELS

The Bradley-Terry (BT) model, while widely used in preference modeling, has fundamental limita-
tions that restrict its ability to capture the full complexity of human preferences such as intransitive
preferences, especially when aggregating preferences across diverse populations or when dealing
with nuanced, context-dependent decisions (Munos et al., 2024; Swamy et al., 2024). To address
these limitations and achieve alignment with general preferences, following (Munos et al., 2024;
Swamy et al., 2024), we model the policy optimization problem as a two-player zero-sum game.
Definition 2 (Alignment Game). The alignment game is a two-player zero-sum game with objective

J(π1, π2) := P(π1 ≻ π2)−
1

2
. (1)

The constant 1
2 is introduced only to ensure the game is zero-sum and it has no other effect. We focus

on policies with Π := {π : supp(π) ⊆ supp(πinit)} in the support of the initial policy. A Nash
equilibrium policy is (π⋆

1 , π
⋆
2) ∈ argmaxπ1∈Π argminπ2∈Π J(π1, π2) and satisfies J(π1, π

⋆
2) ≤

J(π⋆
1 , π

⋆
2) ≤ J(π⋆

1 , π2),∀π1, π2 ∈ Π.

In this game, the max-player controls π1 and tries to maximize J(π1, π2) while the min-player
controls π2 and tries to minimize J(π1, π2). Since the game for two players J(π1, π2) is sym-
metric (Ye et al., 2024), the game has a symmetric Nash equilibrium (π⋆, π⋆). Moreover,
the Nash equilibrium policy π⋆ guarantees that for any other policy π, its win rate is at least
P(π⋆ ≻ π) ≥ P(π⋆ ≻ π⋆) = 50%. Our goal is to find a Nash equilibrium policy.

Existing online iterative preference optimization methods designed for or applicable to the original
game, including iterative IPO (Azar et al., 2024) and SPPO (Wu et al., 2024), are based on Multi-
plicative Weights Update (MWU, definition in §3.2), and thus diverge in the last iterate as we show
in §4.2 There is also a line of works including Nash-MD (Munos et al., 2024; Ye et al., 2024), Online
IPO (Calandriello et al., 2024), INPO (Zhang et al., 2025b) aim to find the Nash equilibrium of a
modified KL-regularized game Jτ (π1, π2, πref) defined as

J(π1, π2)− τEx∼ρ[KL(π1(· | x)||πref(· | x))] + τEx∼ρ[KL(π2(· | x)||πref(· | x))]. (2)

conceptual prox algorithm (Nemirovski, 2004). While their theoretical results require solving a regularized
game exactly, we provide stronger results showing last-iterate convergence under the more practical setting
with only approximate solutions (see Theorem 3). Their experiments and our experiments both confirm the
effectiveness of convergent regularized learning algorithms for LLM alignment. We include a more detailed
comparison with (Wang et al., 2025) in Appendix A

2The MWU algorithm only has a weaker average-iterate convergence, i.e., 1
T

∑T
t=1 π

t converges.

3
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The additional KL regularization terms in the objective are introduced for training stability. However,
the Nash equilibrium of the modified game no longer guarantees a win rate of at least 50% against
any competing policy. We compare these algorithms in Table 4.

Moreover, most existing theoretical convergence guarantees only hold for the average iterate, i.e., the
uniform mixture of training iterates, which is not used in practice. The last iterate is widely used in
practice, is more space-efficient (Munos et al., 2024), and has better performance demonstrated by
existing experimental results (Munos et al., 2024; Wu et al., 2024; Zhang et al., 2025b). This motivates
us to design principled algorithms with provable last-iterate convergence to Nash equilibrium policy.

3 CONVERGENT META-ALGORITHM FOR ALIGNMENT

We propose a simple meta-algorithm, Convergent Meta Alignment Algorithm (COMAL, Algo-
rithm 1), for aligning LLMs with general preferences. In §3.1 and 3.2, we present the theoretical
foundations of COMAL and analyze its convergence properties. §3.3 describes its practical imple-
mentation that integrates COMAL with existing preference learning methods.

3.1 COMAL

We now introduce COMAL, our meta-algorithm for preference-based policy optimization, inspired
by the conceptual prox-method (Nemirovski, 2004) from convex optimization and game theory. The
prox-method has recently demonstrated strong practical performance in computing Nash equilibria
for large-scale two-player zero-sum games (Perolat et al., 2021; Song et al., 2020; Abe et al., 2024)
and has proven highly effective for the training of advanced game-theoretic AI systems (Perolat et al.,
2022). Here, we adapt this framework into an online iterative procedure that guarantees convergence
to the Nash equilibrium in the alignment game J(π1, π2) (1).

Algorithm 1: Convergent Meta Alignment Algorithm (COMAL) for solving alignment game
Input: Initial policy πinit, preference oracle P, regularization τ > 0, number of iterations T ≥ 1
Output: Optimized policy πT

Initialize π1, πref ← πinit

for t = 1, 2, . . . , T − 1 do
πt+1 ← argmaxπ1

minπ2
Jτ (π1, π2, πref) using Algorithm 2 (discussed in §3.2)

πref ← πt+1

return πT

Algorithmic Structure and Motivation. At each iteration t, COMAL formulates and solves a
regularized zero-sum game, defined by the objective Jτ (π1, π2, πref) (2), where the regularization
encourages policies to remain close (in KL divergence) to a reference policy πref . Specifically,
the next policy πt+1 is identified as a Nash equilibrium of this regularized game, with the current
reference set to πref = πt. (See Algorithm 2 and further exposition in §3.2). After convergence
within this regularized subproblem, the reference policy is updated to the newly computed πt+1

(the latest iterate): πref ← πt+1, and the process repeats. This mechanism operationalizes a central
insight of proximal algorithms: by updating the regularization center only when a regularized Nash
equilibrium is reached, we ensure stable yet progressive movement toward the Nash equilibrium.

Convergence and Monotonicity Guarantee. A key property of COMAL is that the KL divergence to
the Nash equilibrium policy π⋆ of the orginal game is monotonically non-increasing:KL(π⋆∥πt+1) ≤
KL(π⋆∥πt). This holds for any choice of τ > 0 (Lemma 4), permitting the regularization strength to
be adaptively adjusted during training without requiring a vanishing decay schedule. Each iteration
thus provably brings the policy closer to the original Nash solution, justifying the update of the
reference policy.

Theorem 1. We assume that there exists a Nash equilibrium π⋆ of J(π1, π2) (defined in (1)) such
that supp(π⋆) = supp(πinit). In every iteration t ≥ 1, it holds that KL(π⋆||πt+1) ≤ KL(π⋆||πt).
Moreover, COMAL has last-iterate convergence, i.e., limt→∞ πt exists and is a Nash equilibrium.

Moreover, while prior works (Perolat et al., 2021; Abe et al., 2024; Wang et al., 2025) require each
regularized game to be solved exactly, we prove a stronger result (Theorem 3): last-iterate convergence
holds even when each regularized game is solved only approximately, as long as sufficient progress is
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Algorithm 2: Regularized game solver for Jτ (π1, π2, πref) – argmaxπ1
minπ2

Jτ (π1, π2, πref)

Input: Reference policy πref , preference oracle P, regularization τ > 0, step size η > 0, number
of iterations K ≥ 1

Output: Regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
gkτ ← ∇µkJτ (µ

k, µk, πref) = P(· ≻ µk)− τ(log µk(·)
πref (·) + 1) // Gradient

µk+1 ← Prox(µk, ηg
k
τ )

return µK

made at each stage. This makes our result more robust and practical. Formal statements and proofs
are provided in §D. We also give non-asymptotic convergence rate in Theorem 2.

Relation to Previous Work. Prior iterative approaches to general-preference policy optimization—
such as mirror descent-style algorithms (Azar et al., 2024; Wu et al., 2024)—typically only guarantee
that the average iterate converges (in mixture) to a Nash policy. However, in practice, averaging across
many deep neural network checkpoints is both storage- and deployment-inefficient and uncommon.
Furthermore, existing methods for last-iterate convergence apply only to regularized games (Munos
et al., 2024; Zhang et al., 2025b), yielding stationary points that may diverge from true Nash equilibria
of the alignment game (see also Table 4). In contrast, COMAL is the first framework to attain fully
practical and provable last-iterate convergence to the Nash equilibrium of the alignment game, even
in large-scale LLM contexts. The convergence in alignment game without regularization is crucial to
ensure 50% win rate against any other policy.

Practical Instantiation. Each COMAL iteration involves solving a regularized zero-sum game
Jτ (π1, π2, πref), for which many policy optimization algorithms originally developed for RLHF and
preference learning (e.g., PPO, DPO, IPO, INPO) can serve as efficient sub-solvers; see §3.2 for
discussion and §F for variants. While the theoretical properties of COMAL provide a strong founda-
tion, its practical implementation and empirical validation in large-scale LLM alignment constitute
a central contribution of this work. We show that COMAL can be instantiated with, for example,
INPO (Zhang et al., 2025b) as the regularized game solver (Algorithm 3), yielding substantial and
consistent performance gains across challenging alignment benchmarks. Our results demonstrate that
COMAL not only offers strong convergence guarantees but is also easy to deploy, highly scalable,
and effective for real-world preference optimization and LLM fine-tuning. Notably, integrating
COMAL into existing pipelines typically requires only minimal modifications—chiefly, adding
periodic reference policy updates and an outer iteration loop—making it directly compatible with
current large-scale alignment workflows. We note that the per-iteration computational cost of our
algorithm is comparable to other alignment algorithms tested in our experiments—differing by
only a few percent—while achieving better performance without significant computational overhead.

3.2 SOLVING A REGULARIZED GAME

Each iteration of COMAL requires solving a regularized zero-sum game Jτ (π1, π2, πref). We present
Mirror Descent (MD) in Algorithm 2 for computing a Nash equilibrium of this game. MD builds
on the prox operator, a principled tool from convex optimization that ensures stability and supports
broad applicability. Importantly, we later show that this prox operator can be instantiated using a
variety of modern policy optimization algorithms. For simplicity, we consider policies π ∈ ∆(Y)
and omit dependence on the instruction x; all discussions extend naturally to the contextual setting.

Mirror Descent and Multiplicative Weights Update (MWU). Mirror Descent (MD) is a founda-
tional family of iterative optimization algorithms, widely used in game theory, machine learning,
and online learning (Nemirovskij & Yudin, 1983). At a high level, MD generalizes vanilla gradient
descent by using a geometry-aware update rule that better respects the structure of the optimization
domain through a more flexible notion of ‘distance,’ defined by a regularizer. A particularly important
special case is the Multiplicative Weights Update (MWU) algorithm (Arora et al., 2012), which can
be viewed as Mirror Descent performed with the negative entropy regularizer. For concreteness,
suppose we want to maximize some smooth objective f(π) over probabilistic policies π. At iteration

5
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t, with current policy πt, MWU computes the updated policy πt+1 as the solution to:

πt+1 := Prox(πt,∇f(πT )) := argmax
π

{
⟨∇f(πt), π⟩ − η−1 ·KL(π||πt)

}
, (3)

where η is a positive parameter (step size), and KL(·∥·) is the Kullback-Leibler (KL) divergence,
which in this case measures how much the new policy deviates from the previous one. Intuitively,
this update chooses a new policy by trading off following the gradient of f with staying close (in
KL) to the prior policy, preventing overly aggressive changes that could destabilize learning. This
update can be viewed more generally through the lens of the proximal operator (or prox operator)—a
mathematical abstraction that unifies many optimization steps used in machine learning, including
projected gradient descent and mirror descent with Bregman divergences (Parikh et al., 2014). We
include a detailed discussion on the prox operator in §C.

Non-asymptotic Convergence. Denote π⋆
τ the Nash equilibrium of the KL regularized game

Jτ (π1, π2, πref), which is τ -strongly monotone. We can apply existing results to show that MWU
(Algorithm 2) achieves linear last-iterate convergence rate: the KL divergence to the Nash equilibrium
π⋆
τ decreases exponentially fast. The proof is in §E. Theorem 2 also implies a non-asymptotic

convergence to an approximate Nash equilibrium: we can choose τ = O(ε) and approaching an
ε-approximate Nash equilibrium of the original alignment game (1) in Õ(1/ε2) iterations.
Theorem 2. For step size 0 < η ≤ τ

τ2+0.5 , Algorithm 2 guarantees for every k ≥ 1,
KL(π⋆

τ ||µk+1) ≤ (1− ητ
2 )k KL(π⋆

τ ||πref).

3.3 PRACTICAL METHODS FOR COMPUTING THE PROX OPERATOR

We show how to implement COMAL in practical large-scale applications like LLM alignment by
computing the prox operator, with a concrete implementation presented in Algorithm 3 . Specifically,
we observe that many existing algorithms designed for RLHF and preference optimization with
neural network parameters can be extended to solve the prox operator . These algorithms include
RL algorithms like PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024; Guo et al., 2025) and
loss-minimization algorithms like, DPO (Rafailov et al., 2024), IPO (Azar et al., 2024), SPPO (Wu
et al., 2024), REBEL (Gao et al., 2024), DRO (Richemond et al., 2024), INPO (Zhang et al., 2025b).
Each of them may be preferred in certain settings. Due to space limitations, we defer the detailed
discussion to §F. We also note that our meta algorithm, COMAL, can be integrated with many
existing methods designed for preference optimization with minimal change, and we present concrete
instantiations of COMAL using iterative GRPO, SPPO, REBEL, and DRO in §G.

Our unified view on existing diverse preference methods through the perspective of computing the
prox operator opens the possibility of applying other algorithms from online learning and optimiza-
tion to robust LLM alignment. We include implementations for two other last-iterate convergent
algorithms, the Mirror-Prox algorithm (Nemirovski, 2004) and the Optimistic Multiplicative Weights
Update algorithm (Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015), in §H.

Algorithm 3: Practical Implementation of COMAL integrated with INPO (Algorithm 4)
Input: Initial policy πinit, regularization {τt > 0}, step size {ηt > 0}, number of outer

iterations T ≥ 1, number of inner iterations {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πinit

for t = 1, 2, . . . , T − 1 do
πt+1 ← INPO(πref , τt, ηt,Kt,P) (Algorithm 4)
πref ← πt+1

return πT

4 SYNTHETIC EXPERIMENTS

We conduct experiments on a simple bandit problem with Y = {ya, yb, yc} and non-BT preference
model over Y . Specifically, we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. Observe
that the preference is intransitive and exhibits a preference cycle yc ≻ yb ≻ ya ≻ yc. The detailed
setup and result analysis are in §I and Figure 1, 3, and 4. Due to the space limit, we only briefly
discuss the results here. Our experiments show that iterative DPO, iterative IPO (Azar et al., 2024),
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and SPPO (Wu et al., 2024) all cycle and diverge away from the unique Nash equilibrium. The INPO
algorithm converges in the modified game as we show in Theorem 2. However, the converging point
is not the Nash equilibrium of the original game and suffers a constant equilibrium gap. COMAL is
the only algorithm that converges to the Nash equilibrium.

5 LLM-BASED EXPERIMENTS

We conduct experiments based on Llama-3-8B-Instruct (Dubey et al., 2024) and Qwen2.5-7B (Yang
et al., 2024b),3 on a commonly used dataset UltraFeedback (Cui et al., 2023) to show the effectiveness
of COMAL under the practical preference optimization setting, following Algorithm 3.

5.1 EXPERIMENTAL SETTINGS

Instruction Set. Our training experiments are conducted on the 64K instructions from the UltraFeed-
back dataset, which covers a broad range of instruction types and is well-suited and widely used for
studying preference optimization in practical scenarios.

Preference Oracle. We choose a mixture of two BT reward models as the preference oracle to
simulate the preference diversity among human annotators. Specifically, the win rate of an output ya
over yb parameterized by a mixture of two BT reward models r1 and r2 is

P (ya > yb) =
1

2
· er1(ya)

er1(ya) + er1(yb)
+

1

2
· er2(ya)

er2(ya) + er2(yb)
. (4)

The two reward models used are Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) and
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024), both achieving strong performance on various
human preference alignment benchmarks in RewardBench (Lambert et al., 2024b).

Preference Data Generation. To construct the preference data, i.e., output pairs with a preference
annotation specifying which one is better, we adopt the setting of Zhang et al. (2025b) by sampling 5
candidate outputs for each instruction with a temperature of 0.8 and applying the preference oracle to
select the best and the worst candidates to form a data point.

Baselines. The following baselines are compared: (1) BASE: Llama-3-8B-Instruct, which has already
been fine-tuned, can be directly used as the base model following SimPO (Meng et al., 2024). For
Qwen2.5-7B, we finetune it using the standard SFT objective on the Tulu3 SFT dataset (Lambert
et al., 2024a). (2) vanilla DPO (Rafailov et al., 2024) and (3) vanilla IPO (Azar et al., 2024), where
one training iteration is performed over the entire instruction set of UltraFeedback with output pairs
sampled from the BASE policy; (5) INPO (Zhang et al., 2025b)(Algorithm 4), where each iteration of
training is performed on a single data subset; (6) Iterative IPO (Iter-IPO), which follows a training
setting similar to INPO but without the KL regularization with respect to the static reference policy.

Training Details. To reduce computational cost, the instructions in UltraFeedBack are divided into
six equal subsets (10K each), with one subset used per training iteration. For iterative optimization
algorithms, 18 training iterations are performed. All iterative optimization algorithms compared have
similar computational costs, each taking around 100 hours on 8 NVIDIA A6000 GPUs. To the best
of our knowledge, multi-iteration training like ours has rarely been explored in previous work. For
example, INPO only trained up to 3 iterations, equivalent to just one full round over UltraFeedback’s
instructions. The overall update process is as follows: (1) Iter-IPO: at each iteration, the reference
policy in the IPO loss (Eq. 13) is updated to the policy produced in the previous iteration; (2) INPO:
at each iteration, one optimization step in Algorithm 4 is performed, with the reference policy fixed
to the BASE policy; (3) COMAL: as outlined in Algorithm 3, COMAL uses INPO as a sub-routine,
and updates the reference policy in INPO every 6 iterations, i.e., an entire pass of the instruction set.

Hyper-Parameters. We conduct a grid search for the KL regularization strength, η−1, for DPO, IPO
and INPO, within the range of 0.001 - 0.1. The value of τ in INPO (Equation (14)) is determined
by following Zhang et al. (2025b), where ητ is set to a fixed ratio, 1/3. We found Iter-IPO and
INPO achieve the best performance when η−1 is 0.002. However, in Llama-3 training, we observe
rapid performance degradation of both algorithms after 6 training iterations. In contrast, training
Qwen2.5-SFT remains stable. We posit that this is because Llama-3-8B-Instruct has undergone more
extensive post-training, making further updates more intricate. We then explored larger values of

3Additional experiments based on Qwen2-1.5B (Yang et al., 2024a) are also provided in the §K.
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η−1 for stable training and found that it must be increased to around 0.1 to maintain stability after
6 iterations. Therefore, to study the algorithms’ behavior in more training iterations, we perform
additional experiments with η−1 set to 0.1 (Iter-IPO-L and INPO-L), which leads to stabler training.
For COMAL, since it involves multi-round INPO training with adjustable KL regularization strengths
(Algorithm 3), we set η−1 to 0.002 for the first INPO training round (i.e., 6 iterations) and adjust it to
0.1 for the subsequent two rounds, balancing training stability with efficiency. In Qwen2.5 training,
η−1 is fixed to 0.002 for all algorithms since the training process remains stable. More details are in
Appendix J.

Evaluations. We use the instructions in a widely used benchmark, AlpacaEval (Li et al., 2023), to
construct the test set, since these instructions cover various task scenarios. However, instead of using
GPT-4, the default evaluator for the AlpacaEval benchmark, we chose to use the same preference
oracle used during training as the evaluator. This follows the setting of previous work (Munos
et al., 2024), which provides a controlled experimental setting, ensuring that the preference oracle the
model learns to fit is also the one used to evaluate its performance.

5.2 RESULT ANALYSIS

Table 1: Performance comparison of different training algorithms evaluated by the preference oracle.
The row v.s. column win rate (%) is reported. All the training is based on the BASE checkpoint,
Llama-3-8B-Instruct. For Iterative IPO (Iter-IPO) and INPO, we report their performance
with both a small, optimal regularization (η−1 = 0.002) after 6 iterations and a large regularization
(η−1 = 0.1, Iter-IPO-L and INPO-L) after 18 iterations.

Row/Column BASE IPO DPO Iter-IPO-L Iter-IPO INPO-L INPO COMAL Avg

IPO 93.04 50.00 47.20 28.20 20.75 83.23 25.22 21.61 46.16
DPO 92.42 52.80 50.00 28.57 21.37 81.49 26.46 21.37 46.81
Iter-IPO 94.16 79.25 78.63 50.68 50.00 89.19 53.79 39.75 66.93
INPO 92.92 74.78 73.54 47.08 46.21 87.20 50.00 35.78 63.44

COMAL 90.43 78.39 78.63 62.98 60.25 86.09 64.22 50.00 71.37

Table 2: Performance comparison of different training algorithms evaluated by the preference oracle.
The row v.s. column win rate (%) is reported. All the training is based on the BASE checkpoint,
which is fine-tuned from Qwen2.5-7B using the SFT objective.

Row/Column BASE IPO DPO Iter-IPO INPO COMAL Avg

IPO 91.43 50.00 50.19 22.98 23.73 21.37 43.28
DPO 90.68 49.81 50.00 23.35 23.60 20.50 42.99
Iter-IPO 91.68 77.02 76.65 50.00 50.43 43.11 64.81
INPO 90.81 76.27 76.40 49.57 50.00 42.11 64.19

COMAL 90.68 78.63 79.50 56.89 57.89 50.00 68.93

Table 1 and Table 2 perform pairwise comparisons of different algorithms. For Iter-IPO and INPO,
we evaluate their best checkpoints due to significant performance degradation thereafter. For Iter-
IPO-L, INPO-L, and COMAL, comparisons are made at the final 18-iteration checkpoint. The
result shows that COMAL achieves a win rate exceeding 60.2% against all competing algorithms
when using Llama-3-8B-Instruct, and 56.9% with Qwen2.5-7B, demonstrating its effectiveness.

Figure 2 presents the training dynamics of three iterative preference optimization algorithms, where
the average win rate is computed against all the algorithms in Table 1 and Table 2. We note that:

(1) COMAL consistently outperforms other algorithms, showing steady improvements even in the
late stages of the training period.

(2) Both Iter-IPO and INPO exhibit rapid degradation at the 7th training iteration in Llama-3 training.
We posit that this is because Llama-3-8B-Instruct has already undergone extensive post-training,
making further optimization more delicate. Training with a larger KL-regularization with Llama-3-
8B-Instruct leads to stabler training for both Iter-IPO(-L) and INPO(-L). However, it also introduces
a lower performance upper bound. As discussed above, COMAL overcomes this limitation by
dynamically adjusting the strength of the KL-regularization.
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Figure 2: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The average win rates of the
trained checkpoints at each iteration against each training algorithm are displayed.

Table 3: Performance of various preference optimization algorithms on standard benchmarks.

Method GSM8K MMLU BBH HumanEval AlpacaEval Arena-Hard

BASE (Llama-3-8B-Instruct) 77.0 63.5 66.4 79.2 25.0 21.3
IPO(-Llama-3-8B-Instruct) 74.0 63.1 53.4 65.3 48.7 38.9
DPO(-Llama-3-8B-Instruct) 73.5 62.7 51.0 65.6 48.6 33.0
Iter-IPO(-Llama-3-8B-Instruct) 71.5 64.4 62.6 77.7 50.6 43.8
INPO(-Llama-3-8B-Instruct) 73.0 64.7 61.7 77.4 51.6 41.0
COMAL(-Llama-3-8B-Instruct) 77.5 64.9 63.3 77.2 53.5 41.3

BASE (Qwen2.5-7B-SFT) 77.5 70.9 65.6 84.0 14.7 22.3
IPO(-Qwen2.5-7B-SFT) 91.0 70.2 67.2 86.7 33.4 53.2
DPO(-Qwen2.5-7B-SFT) 91.0 70.2 66.9 86.6 34.8 54.3
Iter-IPO(-Qwen2.5-7B-SFT) 91.0 70.8 71.9 86.3 42.9 64.5
INPO(-Qwen2.5-7B-SFT) 91.5 70.7 71.0 86.8 39.8 62.2
COMAL(-Qwen2.5-7B-SFT) 91.0 70.8 72.3 85.1 42.2 63.0

Evaluation Results on Standard Benchmarks. To verify that the checkpoints produced by our
algorithm retain general capabilities, we compare their performance against the baselines on six
standard LLM benchmarks as a sanity check. These include GSM8K for math problem solving (Cobbe
et al., 2021), MMLU for multi-task language understanding (Hendrycks et al., 2021), BigBench Hard
(BBH) for reasoning (Suzgun et al., 2023), HumanEval for coding (Chen et al., 2021), and two LLM
alignment evaluation benchmarks, AlpacaEval and Arena-Hard, where the original evaluator, GPT-4,
is used. The results in Table 3, highlighting two findings:

(1) COMAL maintains comparable performance on standard academic benchmarks; (2) While
not optimized for GPT-4’s preferences, COMAL performs strongly on AlpacaEval and Arena-
Hard compared to the baselines, indicating its generalizability. We note that COMAL does not
outperform Iter-IPO on Arena-Hard. However, as noted above, we compare Iter-IPO at its best
checkpoint, whereas COMAL is evaluated at the final checkpoint, because Iter-IPO’s performance
declines near the end of training (Figure 2). Moreover, since Arena-Hard compares each model only
against a fixed baseline (GPT-4), its setup does not fully align with COMAL’s objective.

Discussion on Updating the Reference Policy. Our theoretical analysis in Section 3 indicates the
reference policy in COMAL’s objective needs to be updated in order to converge to the alignment
game (Equation (1)). Emprically, it means that COMAL does not have a KL-regularization from a
static reference policy. However, as shown in Table 3, COMAL does not suffer substantially from the
“alignment tax” (Dong et al., 2024; Ouyang et al., 2022). Moreover, we observe that its improvement
is not solely from relaxing the KL-constraint – Iter-IPO has even smaller constraints from a reference
policy updated at each iteration, but fails to outperform COMAL and suffers from training instability.

6 CONCLUSION

We have proposed COMAL, a meta-algorithm for preference optimization that provably converges
to the Nash equilibrium policy in the last iterate. We have provided a theoretical analysis of the
properties of COMAL and have empirically demonstrated its effectiveness under both synthetic
and real-world experimental settings, where COMAL consistently maintains a win rate above 50%
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against other policies in controlled settings. We believe COMAL has significant potential to enhance
the performance of LLMs in the alignment fine-tuning setting, due to its theoretical guarantees and
flexibility, as it can be integrated with existing learning algorithms while overcoming their limitations.
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A RELATED WORK

Alignment under Preference models Most existing approaches adopt the Bradley-Terry (BT)
preference model (Bradley & Terry, 1952; Christiano et al., 2017), which involves first learning a
preference model and then optimizing the objective function with a KL divergence penalty relative to
the original language model. For example, RLHF (Ouyang et al., 2022) aims to ensure that LLMs
follow instructions by initially learning a BT model and subsequently fine-tuning the model based on
the learned reward while regularizing it with the original LLM.

Building on this framework, Rafailov et al. (2024) introduces Direct Preference Optimization (DPO)
that maintains the assumption of the BT model for preferences but eliminates the preference learning
step by reformulating the objective and optimizing it directly. Additionally, Ethayarajh et al. (2024)
diverges from the traditional BT-based methods by deriving algorithms that bypass the preference
modeling step altogether. Instead, they model user preferences based on Kahneman and Tversky’s
utility theory.

Alignment Solution Concepts under General Preferences Azar et al. (2024) is the first to consider
general preferences. They propose the IPO algorithm, an offline algorithm that directly optimizes the
win rate of the model penalized by the KL divergence with respect to the original model. Munos et al.
(2024) also consider general preferences and aim to find the von Neumann winner, which corresponds
to the Nash equilibrium of a game played between the two LLMs over the win rate. They propose a
variant of the Mirror Descent (MD) algorithm called Nash-MD and show last-iterate convergence
in the KL-regularized game. Concurrently, Swamy et al. (2024) study the same solution concept
focusing more on sequential games. Calandriello et al. (2024) proved that the objective of the the
IPO algorithm coincides with the Nash policy under a proper choice of the parameter that controls
the regularization. The work of Liu et al. (2025a) further studies the statistical properties of the
Nash equilibrium policy, showing that Nash equilibria correspond to Condorcet winners if they exist,
and if not, the Nash equilibrium must be mixed. These results show the importance of finding the
Nash equilibrium of the original game rather than the KL-regularized game. The work by Pásztor
et al. (2025) proposes Stackelberg learning from human feedback, aiming to find the Stackelberg
equilibrium of a two-player sequential-move game.

Iterative Self-Play Algorithms Apart from the aforementioned works, recent research has also
proposed practical implementations of Mirror Descent (MD) algorithms, which can be used to learn
Nash equilibria through self-play. Rosset et al. (2024) propose Direct Nash Optimization (DNO),
where, at each iteration, the model regresses predicted preferences against actual preferences using
cross-entropy loss. Similarly, Wu et al. (2024) introduces the Self-Play Preference Optimization
(SPPO) method, Gao et al. (2024) introduces Reinforcement Learning via Regressing Relative
Rewards (REBEL), and Richemond et al. (2024) introduces the Direct Reward Optimization (DRO)
which regresses the loss using the ℓ2 distance at each iteration. Since these algorithms simulate the
MD update, when applied in a two-player zero-sum game, they only have average-iterate convergence
but all diverge in the last iterate. Moreover, all these methods require the estimation of the win rate,
which can be computationally expensive.

Most closely related to our work is Iterative Nash Policy Optimization (INPO) by Zhang et al. (2025b),
which continues to use ℓ2 distance regression. However, by further reformulating and simplifying the
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objective in a manner similar to IPO, INPO eliminates the need to estimate the expected win rate. The
primary distinction between our approach and INPO is that INPO is designed for the KL-regularized
game and is equivalent to MD; while our algorithm COMAL is inspired by the Conceptual Prox
algorithm and guarantees last-iterate convergence in the original game. This fundamental difference
allows COMAL to achieve more favorable convergence properties and outperform INPO, achieving a
win rate strictly greater than 50% against it. The work by Tang et al. (2025) also proposes methods
for the regularized game, which do not achieve last-iterate convergence in the original game.

Last-Iterate Convergence in Games Mirror Descent fails to converge in simple zero-sum games,
often resulting in cycling behavior (Mertikopoulos et al., 2018). In contrast, several algorithms have
been shown to achieve last-iterate convergence including the Proximal Point (PP) method (Rockafellar,
1976), Extra-Gradient (EG) (Korpelevich, 1976), Optimistic Gradient Descent (OGD) (Popov, 1980;
Rakhlin & Sridharan, 2013), and the Conceptual Prox/Mirror Prox methods (Nemirovski, 2004).
The asymptotic convergence properties of these algorithms have been extensively studied (Popov,
1980; Facchinei & Pang, 2003; Iusem et al., 2003; Nemirovski, 2004; Daskalakis & Panageas, 2018).
Recently, there has been a growing focus on establishing finite-time convergence guarantees for
these methods, addressing the practical necessity of understanding their performance within a limited
number of iterations (see e.g., (Mokhtari et al., 2020b;a; Golowich et al., 2020b;a; Perolat et al.,
2021; Bauschke et al., 2021; Wei et al., 2021; Cai et al., 2022; Gorbunov et al., 2022; Cai & Zheng,
2023a;b; Cai et al., 2023; Abe et al., 2024; Cai et al., 2024b;a) and references therein). In particular,
Perolat et al. (2021); Abe et al. (2024); Sokota et al. (2023) propose algorithms that are variants of
the Conceptual-Prox algorithm (Nemirovski, 2004) and achieve last-iterate convergence under the
assumption the regularized game can be solved exactly. Our work further extends their results to
the case where the regularized game can be solved only approximately and demonstrates COMAL’s
effectiveness in large-scale LLM alignment setting.

While our work focuses on the Conceptual-Prox algorithm, in §H we also include practical im-
plementations of other convergent methods, including the mirror-prox method (Nemirovski, 2004)
that generalizes the extragradient method (Korpelevich, 1976), and the Optimistic Multiplicative
Weight Update algorithm (Rakhlin & Sridharan, 2013). We remark that several concurrent and
subsequent works (Zhou et al., 2025; Zhang et al., 2025a; Wu et al., 2025; Tiapkin et al., 2025) have
also investigated both the theoretical and practical performance of Mirror-Prox (which subsumes the
extragradient method) and OMWU for LLM alignment. Taken together with our experiments, these
studies provide extensive evidence that provably last-iterate convergent algorithms are effective for
LLM alignment.

Comparison with (Wang et al., 2025) The concurrent and independent work by Wang et al.
(2025) also presents a last-iterate convergent method for NLHF. Their algorithm is based on the
Magnetic Mirror Descent (MMD) method (Sokota et al., 2023), which is also an implementation of
the conceptual prox algorithm. The main differences between the two works are:

• The theoretical results of last-iterate convergence in (Wang et al., 2025) require solving each
regularized game exactly. This requires an infinite number of iterations to solve each subgame
(see their Theorems 3.4 and 3.7). In contrast, we prove last-iterate convergence under the weaker
assumption that each regularized game is solved approximately.

• The experiments in (Wang et al., 2025) compare only reward-based methods such as PPO and
DPO, while we conduct extensive experiments comparing COMAL with both DPO and methods
for general preferences and NLHF, such as iterative IPO and INPO. While Wang et al. (2025) only
report the win rate of their method against the base model, we report improved win rates against the
base model and across all baseline methods, including DPO, IPO, and INPO. Our results show that
COMAL achieves a consistent > 50% win rate against all baseline models, which is an important
property of Nash equilibrium convergence.

• Wang et al. (2025) does not report results on standard benchmarks such as Arena-Hard or Alpaca-
Eval 2, we present a comprehensive evaluation of COMAL and baseline methods on these bench-
marks. Our results show the robustness of COMAL and that the alignment tax is very mild.
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Table 4: Property comparison of different preference optimization algorithms. The algorithms are
compared based on whether they work for general preferences and whether they exhibit last-iterate
convergence in two-player zero-sum games. ✓\ : convergence only in the modified KL-regularized
game Jτ (π1, π2, πref) (2) but not in J(π1, π2) (1).

Algorithm General Preference Convergence

DPO (Rafailov et al., 2024) IPO (Azar et al., 2024) ✗ ✗

SPPO (Wu et al., 2024) Nash-MD (Munos et al., 2024) ✓ ✗

INPO (Zhang et al., 2025b) ✓ ✓\

COMAL (Algorithm 1) ✓ ✓

B ADDITIONAL BACKGROUNDS

A special case of the general preference model is the Bradley-Terry (BT) model, which assumes a
reward function parameterizes the preference.

Definition 3 (Bradley-Terry Model). A preference model P satisfies the Bradley-Terry (BT) assump-
tion if there exists a reward function r∗ : X × Y → R such that

P(y1 ≻ y2 | x) =
exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))

= σ(r∗(x, y1)− r∗(x, y2)).

B.1 ALIGNMENT UNDER THE BRADLEY-TERRY MODEL ASSUMPTION

RLHF Reinforcement Learning from Human Feedback (RLHF) is to first learn a reward function
r under the BT model and then find the optimal KL regularized policy π∗ w.r.t. the learned reward
function r:

π∗ := argmax
π

Ex∼ρ,y∼π(·|x)[
r(x, y)− η−1 KL(π(· | x)||πref(· | x))

]
, (5)

where η−1 > 0 controls the regularization, and πref is the initial reference model, usually the policy
πsft obtained from pre-training and supervised fine-tuning.

DPO Rafailov et al. (2024) observe that the regularized optimization problem (5) has a closed-form
solution: for any x and y, π∗(y | x) = πref (y|x) exp (ηr(x,y))

Zx
, where Zx = Ey∼πref (·|x)[exp(

1
η r(y, x))]

is the normalization constant known as the partition function. Since π∗ implicitly parameterizes the
reward function r. Rafailov et al. (2024) propose direct preference optimization (DPO) to learn the
optimal policy using the maximum likelihood objective directly:

ℓDPO(π;πref) = −E(x,yw,yl)∼D[
log σ

(
η−1 log

π(yw | x)
πref(yw | x)

− η−1 log
π(yl | x)
πref(yl | x)

)]
,

where D is a data set containing win-loss pair of responses {yw, yl} given prompt x.

B.2 CAST STUDY: A SINGLE BT MODEL CANNOT REPRESENT A MIXTURE OF TWO BT
MODELS (ADDED DURING REBUTTAL PERIOD)

We would like to note that a mixture of two BT reward models can represent complex preference
patterns that exhibit intransitivity or even cyclic preferences, and in general does not satisfy the
BT assumption in Definition 3. Consider a fixed prompt x ∈ X and three candidate responses
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A,B,C ∈ Y (for brevity, we omit x from the notation and write r∗(A) instead of r∗(x,A)). Define
two BT preference models P1,P2 with corresponding BT reward functions r∗1 , r

∗
2 satisfying

r∗1(A) = 1, r∗1(B) = 2, r∗1(C) = 3,

r∗2(A) = 5, r∗2(B) = 3, r∗2(C) = 1.

By the BT assumption,

Pk(i ≻ j | x) = σ(r∗k(i)− r∗k(j)), k ∈ {1, 2}, i, j ∈ {A,B,C},

where σ(t) = 1
1+e−t .

Cyclic preferences from a mixture. Consider first the mixture preference model

Pmix(i ≻ j | x) := 0.6P1(i ≻ j | x) + 0.4P2(i ≻ j | x).

A direct calculation yields

Pmix(A ≻ B | x) ≈ 0.514 > 0.5, Pmix(B ≻ C | x) ≈ 0.514 > 0.5,

Pmix(C ≻ A | x) ≈ 0.536 > 0.5.

Thus the induced preference is cyclic:

A ≻ B, B ≻ C, C ≻ A.

In particular, the mixture Pmix violates transitivity, even though each component P1,P2 individually
satisfies the BT assumption.

Equal-weight mixture is not BT-representable. Now consider the equal-weight mixture

Pmix(i ≻ j | x) := 0.5P1(i ≻ j | x) + 0.5P2(i ≻ j | x).

In this case we obtain

Pmix(A ≻ B | x) ≈ Pmix(B ≻ C | x) ≈ 0.575 > 0.5, Pmix(A ≻ C | x) ≈ 0.551.

We now show that these three probabilities cannot arise from any single BT model. Suppose, for
contradiction, that there exists a reward function r̃∗ : X × Y → R such that the corresponding BT
model P̃ satisfies

P̃(i ≻ j | x) = σ(r̃∗(i)− r̃∗(j)),

and matches the mixture probabilities for i, j ∈ {A,B,C}. Since

P̃(A ≻ B | x) ≈ P̃(B ≻ C | x) ≈ 0.575 > 0.5,

and σ is strictly increasing with σ(0) = 0.5, we must have

r̃∗(A)− r̃∗(B) = r̃∗(B)− r̃∗(C) =: d > 0.

Therefore
r̃∗(A)− r̃∗(C) = (r̃∗(A)− r̃∗(B)) + (r̃∗(B)− r̃∗(C)) = 2d > d,

which implies, by strict monotonicity of σ,

P̃(A ≻ C | x) = σ(r̃∗(A)− r̃∗(C)) = σ(2d) > σ(d) = P̃(A ≻ B | x) ≈ 0.575.

However, the mixture model satisfies

Pmix(A ≻ C | x) ≈ 0.551 < 0.575,

a contradiction. Hence the 50%-50% mixture of these two BT models cannot be represented by any
single BT model satisfying the BT assumption.
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C PROX OPERATOR

Prox Operator and Bregman Divergence. To define the prox operator, we first introduce the
Bregman divergence, which generalizes the notion of squared distance. For a convex function
φ : Z → R (called the regularizer), the Bregman divergence between z and z′ is defined as
Dφ(z∥z′) := φ(z)− φ(z′)− ⟨∇φ(z′), z − z′⟩, where ∇φ(z′) is the gradient of φ at z′. The prox
operator then takes a current point z ∈ Z and a (sub)gradient direction g ∈ Rn, and returns the next
point according to:

Prox(z, g) := argmax
z′

{⟨g, z′⟩ −Dφ(z
′∥z)} .

This formulation interpolates between moving in the direction of g and staying close to z, as measured
by the Bregman divergence for the chosen regularizer. Two important special cases are

• When φ(z) = 1
2∥z∥

2 (the squared Euclidean norm), Dφ is just the squared distance, and
the prox operator reduces to the usual projected gradient step.

• When φ(z) is the negative entropy (as in MWU), the Bregman divergence is the KL
divergence, leading to updates appropriate for probability distributions.

In our framework, we will instantiate the prox operator with choices of φ and g that map directly
onto concrete policy-learning algorithms. In this paper, when we refer to the prox operator, we use
the negative entropy regularizer φ(z) =

∑n
i=1 z[i] ln z[i], for which the corresponding Bregman

divergence Dφ is the KL divergence. Under this choice, the MWU update in Equation (3) is equivalent
to the prox-form update πt+1 = Prox(πt, η∇f(πt)).

C.1 PROPERTIES OF THE PROX OPERATOR

Recall that Prox(z, g) = argmaxz′∈Z ⟨g, z′⟩ −Dφ(z
′||z) = argmaxz′∈Z ⟨g +∇φ(z), z′⟩ −φ(z′).

The following properties of the prox operator are well-known in the literature(e.g., (Nemirovski,
2004))
Lemma 1. Prox(z, g) = z′ if and only if ⟨g +∇φ(z)−∇φ(z′), z′ − z∗⟩ ≥ 0 for all z∗ ∈ Z .
Corollary 1. Let Prox(z, g) = z′, then

⟨g, z∗ − z′⟩ ≤ Dφ(z
∗||z)−Dφ(z

∗||z′)−Dφ(z
′||z), ∀z∗ ∈ Z

D LAST-ITERATE CONVERGENCE OF COMAL

The proof of Theorem 1 is largely inspired by existing results for the conceptual prox algorithm in
the literature (Facchinei & Pang, 2003; Nemirovski, 2004). We first consider the case where each
step of COMAL, πt+1 ← argmaxπ1

minπ2 Jτ (π1, π2, πref), can be solved exactly in Appendix D.1.
We then extend the proof to the case where we only solve the regularized game approximately in
Appendix D.2. In both cases, we prove last-iterate convergence to Nash equilibrium, i.e., limt→∞ πt

exists and is a Nash equilibrium. The proof for the latter case seems to be the first in the literature.

In Theorem 1, we make the following assumption.
Assumption 1. We assume there exists a Nash equilibrium π⋆ such that supp(π⋆) = supp(πinit).

This assumption is mild and much weaker than the “Bounded Log Density" assumptions used
in previous works (Rosset et al., 2024; Zhang et al., 2025b), which directly assumes | log πt

πinit
| is

bounded.

D.1 LAST-ITERATE CONVERGENCE UNDER EXACT SOLUTIONS

Recall that Π := {π : supp(π) ⊆ supp(πinit)}. Then KL(π||πinit) ≤ D :=
maxy:πinit(y)>0 log πinit(y) is bounded for any π ∈ Π. We first prove KL(π⋆||πt+1) ≤ KL(π⋆||πt)
for any t ≥ 1.
Lemma 2. Let π⋆ be an Nash equilibrium of J(π1, π2). Then for any τ > 0, if

(π, π) = argmax
π1∈Π

argmin
π2∈Π

Jτ (π1, π2, πref),
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then
KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref)

Proof. By definition of the prox operator, we have

π = argmax
π1∈Π

Jτ (π1, π, πref)

= argmax
π1∈Π

P(π1 ≻ π)− τ KL(π1, πref)

= Prox(πref ,
1

τ
P(· ≻ π)). (6)

Using Corollary 1, we have for any π′ ∈ Π,

1

τ
(P(π′ ≻ π)− P(π ≻ π)) ≤ KL(π′||πref)−KL(π′||π)−KL(π||πref). (7)

Plugging π′ = π⋆ into the above inequality and noting that P(π ≻ π) = 1
2 , we get

1

τ

(
P(π⋆ ≻ π)− 1

2

)
≤ KL(π⋆||πref)−KL(π⋆||π)−KL(π||πref).

Since π⋆ is a Nash equilibrium and thus P(π⋆ ≻ π) ≥ 1
2 , the lefthand side of the above inequality is

≥ 0. Then we have

KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref).

Lemma 2 implies the following properties on the trajectory {πt}.
Corollary 2. Denote π⋆ an Nash equilibrium such that supp(π⋆) = supp(πinit) as guaranteed by
Assumption 1. Then the following holds for the trajectory {πt} produced by COMAL:

1. KL(π⋆||πt+1) ≤ KL(π⋆||πt) for all t ≥ 1.

2.
∑∞

t=1 KL(πt+1||πt) ≤ KL(π⋆||πinit) < +∞.

3. For all t ≥ 1, it holds that for y ∈ supp(πinit), πt(y) ≥ c > 0 where c is some constant c
depends only on π⋆ and πinit. This also holds even for any limit point of {πt}.

Proof. The first item is direct from Lemma 2. The second item is also direct by applying Lemma 2
for t ≥ 1:

∞∑
t=1

KL(πt+1||πt) ≤
∞∑
t=1

KL(π⋆||πt)−KL(π⋆||πt+1) ≤ KL(π⋆||πinit) ≤ D <∞.

Now we consider the third item. Define D := KL(π⋆||πinit) and pmin := miny∈supp(π⋆) π
⋆(y). By

Assumption 1, pmin > 0. Then

KL(π⋆||πt) ≤ D ⇒ pmin log
pmin

πt(y)
≤ D,∀y ∈ supp(π⋆)

⇒ πt(y) ≥ pmin

exp(D/pmin)
,∀y ∈ supp(π⋆).

Since the above holds for all πt, it also holds for any limit point of {πt}.

Since the sequence {πt} is bounded (all lies in the simplex), it has at least one limit point π̂. The
next lemma shows that a limit point must be a Nash equilibrium.

Lemma 3. If π̂ is a limit point of {πt}, then π̂ is a Nash equilibrium of J(π1, π2).
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Proof. By item 2 in Corollary 2, we have limt→∞ KL(πt+1||πt) = 0. This implies
limt→∞ ∥πt+1 − πt∥ = 0. As π̂ is a limit point of {πt}, we let {πk : k ∈ κ} be the subsequence
that converges to π̂. Then by Equation (6), we have

lim
k∈κ,k→∞

πk+1 = lim
k∈κ,k→∞

Prox(πk,
1

τ
P(· ≻ πk+1))

⇒π̂ = Prox(π̂,
1

τ
P(· ≻ π̂)).

Thus π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π). Moreover, by item 3 in Corollary 2, we have

supp(π̂) = supp(πinit). Now consider both the max and min player running MWU initialized with
π1 = π̂. Then we have πt = π̂ for all t ≥ 1. By Equation (7), we have for any π′ ∈ Π,

1

τ

∞∑
t=1

(
P(π′ ≻ π̂)− 1

2

)
≤ KL(π′||π̂) <∞,

where the inequality holds since supp(π′) ⊆ supp(π̂). As a result, we get

P(π′ ≻ π̂) ≤ 1

2
,∀π′ ∈ Π⇔ P(π̂ ≻ π′) ≥ 1

2
,∀π′ ∈ Π

Thus π̂ is a Nash equilibrium of J(π1, π2).

Proof of Theorem 1 By Lemma 3, we know a limit point π̂ is a Nash equilibrium. Then by
Corollary 2, {KL(π̂||πt) ≥ 0} is a decreasing sequence. Thus {KL(π̂||πt)} converges. Let {πk :
k ∈ κ} be a subsequence that converges to π̂. Then we have

lim
t→∞

KL(π̂||πt) = lim
k∈κ,k→∞

KL(π̂||πk) = KL(π̂||π̂) = 0.

Thus we have limt→∞ πt = π̂ is a Nash equilibrium. This completed the proof of Theorem 1.

D.2 LAST-ITERATE CONVERGENCE UNDER APPROXIMATE SOLUTIONS

This section considers the case where we can not solve the regularized game Jτ (π1, π2, πref) exactly
but only compute an approximate solution. Specifically, we consider the following inexact COMAL
update: denote π̂t+1 = argmaxπ1∈Π minπ2∈Π Jτ (π1, π2, π

t) the exactly solution; the algorithm
updates the next iterate πt+1 as an εt-approximate solution such that

KL(π̂t+1, πt+1) ≤ εt = O

(
1

t4

)
. (8)

We note that we can compute πt+1 within εt error using O(log 1
εt
) = O(log t) iterations of Algo-

rithm 2 (Theorem 2).

We denote Π⋆ the set of Nash equilibria such that each π⋆ ∈ Π⋆ has support supp(π⋆) = supp(πinit)
as guaranteed by Assumption 1. We introduce a few quantities that depend on the Nash equilibria
and the initial policy.

Definition 4. We define the following constants.

1. psft := max{p > 0 : ∀y ∈ supp(πinit), πinit(y) ≥ p}; D := |Y| log 1
psft

so that
KL(π||πinit) ≤ D for all π ∈ Π

2. pmin := max{p > 0 : ∃π⋆ ∈ Π⋆,∀y ∈ supp(πinit), π
⋆(y) ≥ p}; Let π⋆ ∈ Π⋆ be a Nash

equilibrium so that π⋆(y) ≥ pmin holds for all y in its support.

3. c1 := pmin

exp (D+2)/pmin
and c2 := c1

exp(1/c1)
.

Our main result is that if each optimization problem at iteration t can be solved within approximation
error εt ≤ c1

3t2 , then COMAL converges in last-iterate to a Nash equilibrium.
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Theorem 3 (COMAL with approximate regularized game solver). Assume Assumption 1 holds. If
in each iteration t ≥ 1, the returned iterate πt+1 is an εt-approximate solution to Jτ (π1, π2, π

t) as
defined in (8) with εt ≤ c21

9t4 (c1 defined in Definition 4), then {xt} converges to a Nash equilibrium
of J(π1, π2).

We need the following technical lemma in the proof of Theorem 3.

Lemma 4. Let εt ≤ c21
9t4 . Then for all t ≥ 1,

1. KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) + 1
t2 .

2. miny∈supp(πinit) π
t(y) ≥ c2.

3. limt→∞ ∥πt+1 − πt∥ = 0.

4. For any Nash equilibrium π̂ ∈ Π and t ≥ 1, we have KL(π̂||πt+1) ≤ KL(π̂||πt) + 1
t2

Proof. By Lemma 2, we have π̂t+1 = Prox(πt,P(· ≻ π̂t+1)) and

KL(π⋆||π̂t+1) ≤ KL(π⋆||πt)−KL(π̂t+1||πt). (9)

The above implies

KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) + KL(π⋆||πt+1)−KL(π⋆||π̂t+1)︸ ︷︷ ︸
E1

+KL(πt+1||πt)−KL(π̂t+1||πt)︸ ︷︷ ︸
E2

. (10)

Now, we use induction to prove the claim. For the base case, we define π0 := π1 and εt = 0, then

Base Case: t = 0 Since π0 = π1, we have KL(π1||π0) = 0. Then it is clear that

KL(π⋆||π1) ≤ KL(π⋆||π0)−KL(π1||π0).

Moreover, by Proposition 1 and D ≥ KL(π⋆||πinit), we have miny∈supp(π1) π
1(y) ≥ c1 ≥ c2.

Induction: t ≥ 1 We have

KL(π⋆||π̂t+1) ≤ KL(π⋆||πt) ((9))

≤ KL(π⋆||πinit) +

t−1∑
t=1

1

t2
(inductive hypothesis)

≤ D + 2. (D ≥ KL(π⋆||πinit))

Using Proposition 1, we have miny∈supp(πinit) π̂
t+1(y) ≥ c1. By KL(π̂t+1||πt+1) ≤ εt ≤ 1 and

Proposition 1 again, we get miny∈supp(πinit) π
t+1(y) ≥ c2 := c1

exp(1/c1)
. Thus, both π̂t+1 and πt+1

are bounded away from the boundary in their support. Further by KL(π̂t+1||πt+1) ≤ εt, we have∑
y

π̂t+1(y) log
π̂t+1(y)

πt+1(y)
≤ εt ⇒ max

y
log

π̂t+1(y)

πt+1(y)
≤ εt

c1
.

As a result, we can bound

E1 = KL(π⋆||πt+1)−KL(π⋆||π̂t+1)

=
∑
y

π⋆(y) log
π̂t+1(y)

πt+1(y)

≤ max
y

log
π̂t+1(y)

πt+1(y)

≤ εt
c1

.
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Moreover, we have
E2 = KL(πt+1||πt)−KL(π̂t+1||πt)

=
∑
y

(πt+1(y)− π̂t+1(y)) log
πt+1(y)

πt(y)
−KL(π̂t+1||πt+1)

≤
∥∥πt+1 − π̂t+1

∥∥
1
·max

y
| log πt+1(y)

πt(y)
|

≤
√
KL(π̂t+1||πt+1) · log 1

c2
(Pinsker’s Inequality)

≤
2
√
εt

c1
Combining the above two inequalities with (10) and noting the fact that εt ≤

√
εt gives

KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) +
3
√
εt

c1
.

We conclude the claim since εt ≤ c21
9t4 . This completes the proof for item 1 and item 2.

For item 3, we have
∑∞

t=1 ∥πt+1 − πt∥ ≤
∑∞

t=1 KL(πt+1||πt) ≤ D + 2. Thus
limt→∞ ∥πt+1 − πt∥ = 0.

For item 4, we can use Lemma 2 and π̂t+1 = Prox(πt,P(· ≻ π̂t+1)) to get
KL(π̂||πt+1) ≤ KL(π̂||πt)−KL(πt+1||πt) + KL(π̂||πt+1)−KL(π̂||π̂t+1)︸ ︷︷ ︸

E1

+KL(πt+1||πt)−KL(π̂t+1||πt)︸ ︷︷ ︸
E2

. (11)

We note that E2 ≤ 2
√
εt

c1
has been proved in the above. For E1, we have

E1 = KL(π̂||πt+1)−KL(π̂||π̂t+1)

=
∑
y

π̂(y) log
π̂t+1(y)

πt+1(y)

≤ max
y

log
π̂t+1(y)

πt+1(y)

≤ εt
c1

.

Thus we have KL(π̂||πt+1) ≤ KL(π̂||πt) + 1
t2 as εt ≤ c21

9t4 .

Proof of Theorem 3

Proof. Since the sequence {πt} is bounded, it has at least one limit point π̂. By item 2 in Lemma 4, we
know π̂(y) ≥ c2 for all y ∈ supp(πinit). By item 3 in Lemma 4, we have limt→∞ ∥πt+1 − πt∥ = 0.
Denote {πk : k ∈ κ} a subsequence that converges to π̂. Then we have

π̂ = lim
k∈κ,κ→∞

πk+1

= lim
k∈κ,κ→∞

π̂k+1 (KL(π̂k+1, πk+1) ≤ εk and limt→∞ εt = 0)

= lim
k∈κ,κ→∞

Prox(πk,
1

τ
P(· ≻ π̂k+1))

= lim
k∈κ,κ→∞

Prox(πk+1,
1

τ
P(· ≻ π̂k+1)) (limt→∞ ∥πt+1 − πt∥ = 0)

= lim
k∈κ,κ→∞

Prox(πk+1,
1

τ
P(· ≻ πk+1)) (KL(π̂k+1, πk+1) ≤ εk and limt→∞ εt = 0)

= Prox(π̂,
1

τ
P(· ≻ π̂)).
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Since π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π)) and supp(π̂) = supp(πinit), we can use the same

proof in Lemma 3 to show that π̂ is a Nash equilibrium of J(π1, π2).

Given that π̂ is a Nash equilibrium of the original game, we can apply item 4 in Lemma 4 and get

KL(π̂||πt+1) ≤ KL(π̂||πt) +
1

t2
.

Now we show the sequence {xt} converges to π̂. Fix any ϵ > 0. Let T1 ≥ 1 such that
∑∞

t=T1

1
t2 < ϵ

2 ,
Since π̂ is a limit point of {xt}, there exists T2 ≥ T1 such that KL(π̂||πT2) ≤ ϵ

2 . Then for any
t ≥ T2, we have

KL(π̂||πt+1) ≤ KL(π̂||πT2) +

∞∑
t=T2

1

t2
≤ ϵ

2
+

ϵ

2
= ϵ.

Since the above holds for any ε > 0, we know limt→∞ KL(π̂||πt) = 0 and thus {xt} converges to π̂.
This completes the proof.

D.3 AUXILIARY PROPOSTION

Proposition 1. Let π1 and π2 be two distributions with the same support. If there exists p,D > 0
such that miny∈supp(π1) π1(y) ≥ p and KL(π1||π2) ≤ D, then supp(π2) = supp(π1) and

min
y∈supp(π1)

π2(y) ≥
p

exp(D/p)
.

Proof. We have

KL(π1||π2) ≤ D ⇒ p log
p

π2(y)
≤ D,∀y ∈ supp(π1)

⇒ π2(y) ≥
p

exp(D/p)
,∀y ∈ supp(π1).

E PROOF OF THEOREM 2

We show that MWU (Algorithm 2) has linear convergence to the unique Nash equilibrium of a
KL-regularized zero-sum game J(π1, π2, πref). We denote µ⋆ = π⋆

τ its unique Nash equilibrium.
Our proof is inspired by (Abe et al., 2024, Lemma F.1) that give linear convergence of MWU in
KL-regularized game. Here, we include a simpler proof with slightly better constants for our setting
for completeness.

We prove the following descent lemma, which immediately implies Theorem 2.

Lemma 5. If we choose η ∈ (0, τ
τ2+ 1

2

] in MWU (Algorithm 2), then we have for every k ≥ 1

KL(µ⋆, µk+1) ≤
(
1− ητ

2

)
KL(µ⋆, µk).

Proof. We define the gradient operator G : Π → R|Y| of J(π1, π2) and the gradient operator
A : Π→ R|Y| of the KL regularization KL(π, πref) as follows.

G(π) := P(· ≻ π)

A(π) := ∇π KL(π, πref) = log
π(·)
πref(·)

.

We define the composite operator F = G− τA. Then MWU update in Algorithm 2 is equivalent to

µk+1 = Prox(µk, ηF (µk)).
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Using Corollary 1, we have〈
ηF (µk), µ⋆ − µk+1

〉
≤ KL(µ⋆||µk)−KL(µ⋆||µk+1)−KL(µk+1||µk)

We focus on the left-hand side of the above inequality. Since µ⋆ is a Nash equilibrium of the
regularized game with gradient F , we have ⟨ηF (µ⋆), µ⋆ − µk+1⟩ ≥ 0 and thus〈

ηF (µk), µ⋆ − µk+1
〉

≥
〈
ηF (µk), µ⋆ − µk+1

〉
−
〈
ηF (µ⋆), µ⋆ − µk+1

〉
= η

〈
G(µk)−G(µk+1), µ⋆ − µk+1

〉︸ ︷︷ ︸
term1

+ ητ
〈
A(µk)−A(µ⋆), µk+1 − µ⋆

〉︸ ︷︷ ︸
term2

+ η
〈
G(µk+1)−G(µ⋆), µ⋆ − µk+1

〉︸ ︷︷ ︸
term3=0

.

We note that term3 = 0 since G is the gradient of a zero-sum game:〈
G(µk+1)−G(µ⋆), µ⋆ − µk+1

〉
= P(µ⋆ ≻ µk+1) + P(µk+1 ≻ µ⋆)− 1

2
− 1

2
= 0.

For term2, we can apply the three-point identity for the Bregman divergence as follows:

term2 = ητ
〈
A(µk)−A(µ⋆), µk+1 − µ⋆

〉
= ητ

〈
log

µk

µ⋆
, µk+1 − µ⋆

〉
= ητ

(
KL(µ⋆||µk)−KL(µk+1||µk) + KL(µk+1||µ⋆)

)
≥ ητ

(
KL(µ⋆||µk)−KL(µk+1||µk)

)
.

For term1, we will use the 1-Lipschitzness of G and Cauchy-Swarz inequality:

term1 = η
〈
G(µk)−G(µk+1), µ⋆ − µk+1

〉
≥ −η

(
1

2τ

∥∥G(µk)−G(µk+1)
∥∥2
∞ +

τ

2

∥∥µ⋆ − µk+1
∥∥2
1

)
≥ −η

(
1

2τ

∥∥µk − µk+1
∥∥2
1
+

τ

2

∥∥µ⋆ − µk+1
∥∥2
1

)
(G is 1-Lipschitz)

≥ − η

2τ
KL(µk+1||µk)− ητ

2
KL(µ⋆||µk+1)

Combining the above gives

(1− ητ

2
)KL(µ⋆||µk+1) ≤ (1− ητ)KL(µ⋆||µk)− (1− ητ − η

2τ
)KL(µk+1||µk)

Let η ≤ 1
τ+ 1

2τ

= τ
τ2+ 1

2

, then we have 1− ητ − η
2τ ≥ 0 and thus

KL(µ⋆||µk+1) ≤ 1− ητ

1− ητ
2

KL(µ⋆||µk) ≤
(
1− ητ

2

)
KL(µ⋆||µk).

This completes the proof.

F COMPUTING THE PROX OPERATOR USING PREFERENCE LEARNING
METHODS

We include additional examples showing how existing algorithms designed for RLHF and preference
optimization with neural network parameters can be adapted to solve the prox operator Prox(π, ηg)
(η > 0 is the step size). These algorithms include RL algorithms like PPO and loss-minimization
algorithms like DPO, IPO, SPPO, DRO, INPO, each of which may be preferred in certain settings.
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Reinforcement Learning algorithms We can use the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017) or Group-Relative Policy optimization (GRPO) (Shao et al., 2024; Guo
et al., 2025) to solve Prox(π, ηg). Observe that

Prox(π, ηg) = argmax
π′

{⟨ηg, π′⟩ −KL(π′||π)}

= argmax
π′

Ey∼π′
[
g[y]− η−1 ·KL(π′||π)

]
shares the same form as the objective in (5). Typically, we parameterize π′ = πθ with neural network
parameters θ and optimize over θ.

Loss minimization algorithms Let us denote π̂ the prox operator Prox(π, ηg), then we have

π̂[y] =
π(y) exp(ηg(y))

Z
⇔ log

π̂(y)

π(y)
− ηg(y) + logZ = 0,

where Z = Ey∼π[exp(ηg(y))] is the partition function. We can directly compute the partition
function Z and thus π̂ in small tabular cases. However, the partition function is hard to compute in
general large-scale applications. Several works have recently proposed to solve the above equality by
optimizing the corresponding L2 loss.

The Self-Play Preference Optimization (SPPO) loss (Wu et al., 2024) assumes logZ = η
2 and

optimizes

ℓSPPO(θ) =

(
log

πθ(y)

π(y)
− ηg(y)− η

2

)2

.

The Direct Reward Optimization (DRO) loss (Richemond et al., 2024) parameterizes both π̂ and
logZ with θ and Vϕ respectively and optimize4

ℓDRO(θ, ϕ) =

(
log

πθ(y)

π(y)
− ηg(y)− ηVϕ

)2

.

The REBEL loss (Gao et al., 2024) uses differences in rewards to eliminate the partition function Z
and optimize the regression loss

ℓREBEL(θ) =

(
η−1

(
log

πθ(y)

π(y)
− log

πθ(y
′)

π(y′)

)
− (g(y)− g(y′))

)2

.

All the above approaches can be used to solve Prox(π, ηg). However, directly applying them
iteratively on J(π1, π2) is equivalent to running MWU, which provably diverges. In contrast, we can
apply them in Algorithm 2 and then apply our meta-algorithm COMAL to guarantee convergence to
a Nash equilibrium.
Remark 1. The above approaches are versatile and work well for any g that can be evaluated
efficiently. In particular, we should consider using them when (1) g = r is a reward function and
we can efficiently query r; (2) g = P(· | µ) is the win rate against a reference policy µ, and we can
efficiently sample from µ and have oracle access to P. These two setting are popular and practical in
the LLM alignment setting.

Now we turn attention to the more specific setting where g corresponds to a preference model P
(could be a BT model or a general preference) and that we can collect a win-loss preference data set
D = {(yw, yl)}, which is standard for LLM alignment. Although the abovementioned algorithms
apply, they all require estimating g (the win rate) and may be inefficient in practice. In the following,
we present algorithms directly working on the sampled dataset D without further estimation.

Sampled loss based on the BT preference model Assume g = r is the reward of the Bradley-
Terry model, and the dataset {(yw, yl)} consists of win-lose pairs of responses. Then we can solve
Prox(π, ηg) by optimize the DPO loss (Rafailov et al., 2024) defined as

ℓDPO((yw, yl); θ) = − log σ

(
η−1 log

πθ(yw)

π(yw)
− η−1 log

πθ(yl)

π(yl)

)
.

4we modified some constants in the original DRO loss to make it consistent with our presentation. The
modification has no other effects.
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Sampled loss for general preference The DPO loss inspires many other loss functions that work
under even weaker assumptions on the preference model. Now, we assume a general preference
model P over Y (not necessarily the BT model). We assume g is the win-rate against some policy
µ such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]] (think of µ as the reference policy πref or other
online policy πt). We assume the dataset contains win-lose pairs sampled from µ: {yw, yl ∼ µ}. We
denote the preference distribution λP(y, y

′) as a binary distribution:

λP(y, y
′) =

{
(y, y′) w.p. P[y ≻ y′]

(y′, y) w.p. 1− P[y ≻ y′]
(12)

IPO for computing Prox for unregularized preferences we first show that the IPO loss could be
used to solve πθ = Prox(π, ηgµ) where g is the unregularized win-rate against a reference policy µ
such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]]. Given a dataset of win-lose pairs sampled from µ:
{yw, yl ∼ µ}, the (population) IPO loss (Azar et al., 2024) ℓIPO(θ, µ) is defined as

E (yw,yl)∼µ

(y+,y−)∼λP(yw,yl)(12)

[(
log

πθ(y
+)

πθ(y−)
− log

π(y+)

π(y−)
− η

2

)2
]
. (13)

Azar et al. (2024) have shown that the minimizer of the ℓIPO(θ, µ) satisfies πθ(y) ∝
π(y) exp (−ηP[y ≻ µ]) ⇔ πθ = Prox(π, ηgµ). Thus we can compute Prox(π, ηgµ) where
gµ = P(· ≻ µ) by minimizing the IPO loss.

INPO for computing Prox for regularized preferences The Iterative Nash Policy Optimization
(INPO) loss (Zhang et al., 2025b) is a generalization of the IPO loss to the regularized preference set-
ting. We show that INPO could be used to compute Prox(µ, ηgτµ), where gτµ := ∇πJτ (π, µ, πref) =

P(· ≻ µ)− τ log µ(·)
πref (·) is the gradient of the regularized objective (2). Given a win-loss pair data set

{yw, yl ∼ µ}, the INPO loss ℓINPO(π) is defined as

ℓINPO(π) := E (yw,yl)∼µ

(y+,y−)∼λP(yw,yl)(12)

[(
log

π(y+)

π(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µ(y+)

µ(y−)
− η

2

)2
]
.

(14)

It has been proved that the minimizer of the INPO loss is Prox(µ, ηgτµ) (Zhang et al., 2025b). Thus
we can use INPO in Algorithm 2 as a regularized game solver, as we show in Algorithm 4.

F.1 COMAL INTEGRATED WITH INPO

Algorithm 4: INPO (Zhang et al., 2025b) for solving Jτ (π1, π2, πref)

Input: Reference policy πref , regularization τ > 0, step size η > 0, number of iterations K ≥ 1,
preference oracle P.

Output: Approximate regularized NE policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate response pairs {(y(i)1 , y

(i)
2 ) ∼ µk}ni=1

Query preference oracle P to get preference data Dk = {y(i)w , y
(i)
l }ni=1

Compute µk+1 = argminπ∈Π EDk
ℓINPO(π) (14)

return µK

Practical Implementation of COMAL We present an implementation of COMAL in Algorithm 3
using the INPO (Zhang et al., 2025b) algorithm as a subgame solver. We remark that COMAL can also
be implemented using PPO or many other preference learning algorithms, as we show in Appendix F
and Appendix G. Given the implementation of these existing methods, our meta-algorithm requires
minimal change but achieves last-iterate convergence to a Nash equilibrium.
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In practice, COMAL provides guidance for performing iterative preference optimization: the reference
policy needs to be updated in order to avoid the performance upper bound imposed by a relatively
weak reference policy, however, the reference policy should not be updated at each optimization step
to avoid training instability.

G MORE PRACTICAL IMPLEMENTATIONS OF COMAL

In this section, we provide more practical implementations of COMAL using iterative GRPO (Shao
et al., 2024; Guo et al., 2025), the SPPO loss (Wu et al., 2024), the DRO loss (Richemond et al.,
2024), and the REBEL loss (Gao et al., 2024). All these implementations demonstrate that COMAL
is simple and versatile and can be integrated with many existing methods designed for preference
optimization with minimal changes.

Although the SPPO, DPO, and REBEL losses are proposed in the unregularized preference setting,
we have shown how to extend these losses to compute the prox operator even for KL-regularized
preferences in Appendix F. Thus, we can integrate these losses for computing the prox operator
in Algorithm 2 for solving the regularized game Jτ (π1, π2, πref). As a result, we get the practical
implementation of COMAL by using different regularized game solvers.

We omit the instruction x ∼ ρ ∈ ∆(X ) for notation simplicity in the following implementations.
Generalization to the contextual setting is straightforward.

G.1 PRACTICAL IMPLEMENTATION OF COMAL USING ITERATIVE GRPO (SHAO ET AL.,
2024)

We observe that the iterative GRPO procedure used in DeepSeekMath (Shao et al., 2024) and
DeepSeek-R1 (Guo et al., 2025) aligns closely with COMAL’s design principles: iterative GPRO
updates the reference policy model to the latest policy model every few steps (every 400 steps in
DeepSeek-R1 (Guo et al., 2025)), and each step solves a regularized objective. To adapt iterative
GRPO to preference alignment, one simply instantiates the reward with the win-rate induced by a
preference oracle P. We include the full algorithm for completeness below in Algorithm 5. For the
GRPO objective, we can use either the original objective (Shao et al., 2024) or the unbiased Dr.GRPO
objective without length and std normalization (Liu et al., 2025b).

JGRPO(θ) = E{y(i)}G
i=1∼πold

[
1

G

G∑
i=1

1

|y(i)|

|y(i)|∑
l=1

{
min

(
πθ

(
y
(i)
l | y

(i)
<l

)
πold

(
y
(i)
l | y

(i)
<l

) Âi,l,

clip

(
πθ

(
y
(i)
l | y

(i)
<l

)
πold

(
y
(i)
l | y

(i)
<l

) , 1− ε, 1 + ε

)
Âi,l

)
− τt DKL

[
πθ ∥πref

]}]
.

(15)

We remark that COMAL (Algorithm 1) is a meta-algorithm that can be instantiated with any algorithm
that solves the regularized game in each iteration and guarantees convergence to an exact Nash
equilibrium. While we focus on using Mirror Descent (Algorithm 2) for solving the regularized game
and present most implementations using MD, we can also use the clairvoyant implementation of
conceptual prox (Farina et al., 2022), where our convergence result (Theorem 1) still applies. Iterative
GRPO for the alignment game can be seen as the clairvoyant implementation of the conceptual prox
algorithm.

G.2 COMAL INTEGRATED WITH SPPO (WU ET AL., 2024)

We present Reg-SPPO (Algorithm 6) for solving a KL-regularized game Jτ (π1, π2, πref), which is
the instantiation of Algorithm 2 using the SPPO loss. Then, we give a practical implementation of
COMAL integrated with the SPPO loss in Algorithm 7.

G.3 COMAL INTEGRATED WITH DRO (RICHEMOND ET AL., 2024)

We present Reg-DRO (Algorithm 8) for solving a KL regularized game Jτ (π1, π2, πref), which is
the instantiation of Algorithm 2 using the DRO loss. Then, we give a practical implementation of
COMAL integrated with the DRO loss in Algorithm 9.
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Algorithm 5: Practical Implementation of COMAL using iterative GRPO (Shao et al., 2024)
Input: Initial policy πinit, regularization {τt > 0}, number of iterations T ≥ 1, number of inner

optimization steps {Kt ≥ 1}, preference oracle P, hyperparameter ε.
Output: Optimized policy πT

Initialize π1, πθ, πref ← πinit

for t = 1, 2, . . . , T − 1 do
reference policy πref ← πt

for step k = 1, . . .Kt do
Update the old policy πold ← πθ

Sample G responses {y(i)}Gi=1 ∼ πold

Query preference oracle P to compute the reward, i.e., empirical win-rate
ri := P̂ [y(i) ≻ πold] =

1
G

∑G
j=1 P[y(i) ≻ y(j)] for each sample y(i)

Compute Âi,l for the l-th token of y(i) through group relative advantage estimation.
Update the policy πθ by maximizing the GRPO objective (15).

πt+1 ← πθ

return πT

Algorithm 6: Reg-SPPO: Extension of SPPO (Wu et al., 2024) for solving KL-regularized games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), P̂ [y(i) ≻ µk])}i∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

ℓSPPO(θ) := E(y,P̂ [y≻µk])∼Dt

[(
log

µθ(y)

µk(y)
− η

(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)
− 1

2

))2
]

return µK

Algorithm 7: Practical Implementation of COMAL integrated with Reg-SPPO (Algorithm 6)
Input: Initial policy πinit, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πinit

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-SPPO(πref , τt, ηt,Kt,P) defined in Algorithm 6
πref ← πt+1

return πT

G.4 COMAL INTEGRATED WITH REBEL (GAO ET AL., 2024)

We present Reg-REBEL (Algorithm 10) for solving a KL regularized game Jτ (π1, π2, πref), which
is the instantiation of Algorithm 2 using the REBEL loss. Then, we give a practical implementation
of COMAL (Algorithm 1) integrated with the REBEL loss in Algorithm 11.

H IMPLEMENTATION OF MIRROR-PROX AND OPTIMISTIC MULTIPLICATIVE
WEIGHTS UPDATE

We note that there are other algorithms that has provable last-iterate convergence to Nash equilibrium
in (unregularized) zero-sum games, including the Mirror-Prox algorithm (Nemirovski, 2004) and
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Algorithm 8: Reg-DRO: Extension of DRO (Richemond et al., 2024) for solving KL-regularized
games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), P̂ [y(i) ≻ µk])}i∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

min
ϕ

ℓDRO(θ) := E(y,P̂ [y≻µk])∼Dt

[(
log

µθ(y)

µk(y)
− η

(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)

)
− ηVϕ

)2
]

return µK

Algorithm 9: Practical Implementation of COMAL integrated with Reg-DRO (Algorithm 8)
Input: Initial policy πinit, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πinit

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-DRO(πref , τt, ηt,Kt,P) defined in Algorithm 6
πref ← πt+1

return πT

Algorithm 10: Reg-REBEL: Extension of REBEL (Gao et al., 2024) for solving KL-regularized
games
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate responses {y(i) ∼ µk}ni=1

Query preference oracle P to annotate the win-rate P[y(i) ≻ y(j)],∀i, j ∈ [n]

Form dataset Dt = {(y(i), y(j), P̂ [y(i) ≻ µk], P̂ [y(j) ≻ µk])}i,j∈[n]

Compute µk+1 = µθk+1 where

θk+1 = argmin
θ

ℓREBEL(θ)

ℓREBEL(θ) := E(y,y′)∼Dt

[(
η−1

(
log

µθ(y)

µk(y)
− log

µθ(y
′)

µk(y′)

)
−
(
P̂ [y ≻ µk]− τ log

µk(y)

πref(y)
− P̂ [y′ ≻ µk] + τ log

µk(y′)

πref(y′)

))2
]

return µK

Optimistic Multiplicative Weights Update (OMWU) algorithm (Rakhlin & Sridharan, 2013; Syrgkanis
et al., 2015; Hsieh et al., 2021). We present practical implementations of these two algorithms in
the context of LLM alignment for solving J(π1, π2) (1), where we use preference optimization
algorithms to solve the prox operator as shown in §3.3 and Appendix F.

We denote the gradient g(π) := P(· ≻ π).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 11: Practical Implementation of COMAL integrated with Reg-REBEL (Algorithm 10)
Input: Initial policy πinit, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πinit

for t = 1, 2, . . . , T − 1 do
πt+1 ← Reg-REBEL(πref , τt, ηt,Kt,P) defined in Algorithm 10
πref ← πt+1

return πT

Mirror-Prox The Mirror-Prox algorithm (Nemirovski, 2004) initialized π1 = πinit and updates in
each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

We can implement Mirror-Prox using PPO/DPO/IPO/SPPO/DRO/REBEL to compute the prox
operator. Specifically, we could sample from πt and construct a preference dataset Dt and optimize
certain regression loss (IPO/DRO/REBEL) to compute πt+ 1

2 = Prox(πt, ηg(πt)). The procedure
applies to the second step in each iteration. Thus in such an implementation, we require two sampling
and two optimization procedures in each iteration.

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm (Rakhlin & Sridha-
ran, 2013) is an optimistic variant of the MWU algorithm. Although MWU diverges in zero-sum
games, it has been shown that OMWU has last-iterate convergence to Nash equilibrium (Wei et al.,
2021; Hsieh et al., 2021). Initialized with π1 = π

1
2 = πinit, OMWU updates in each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt− 1

2 ))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

Similarly, we can implement OMWU to solve J(π1, π2) using preference methods to compute
the prox operator as shown in §3.3. Moreover, OMWU has an equivalent update rule: initialize
π1 = π0 = πinit

πt+1 = Prox(πt, 2ηg(πt)− ηg(πt−1)),

which requires computing only one prox operator in each iteration.

We leave a systematic evaluation of Mirror-Prox and OMWU at a large scale, including LLM
alignment, to future work.

I SYNTHETIC EXPERIMENTS

Experiment Setup Recall that we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. This
results in the following zero-sum game: we have policies Π = ∆({ya, yb, yc}) and objective

J(π1, π2) = π⊤
1 Aπ2 − 0.5, where A =

[
0.5 0.1 0.8
0.9 0.5 0.1
0.2 0.9 0.5

]
.

The game has a unique Nash equilibrium [4/11, 3/11, 4/11]. We set the initial policy to be π1 =
[0.2, 0.5, 0.3] for all algorithms. We choose η = 0.3 for iterative DPO, iterative IPO, and SPPO. We
choose η = 0.3 and τ = 0.1 for INPO and COMAL. For COMAL (Algorithm 3), we set T = 200
and Kt = 25 so the total number of iterations is T ·Kt = 5000.

Experiments using noiseless gradient We present numerical results of mirror-descent (MD)
algorithms (equivalent to MWU) and COMAL (Algorithm 1) in Figure 3. We can see that the MD
algorithm diverges from the unique Nash equilibrium and suffers a large equilibrium gap, while
COMAL achieves fast last-iterate convergence to the Nash equilibrium, aligned with our theoretical
results (Theorem 1).
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Figure 3: Dyanmics on a simple 3-dimensional preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].
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Figure 4: Dyanmics on a simple 3-dimensional preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

Experiements using preference samples Since the popular iterative DPO algorithm does not
contain a gradient step, we also conduct experiments with only Oracle query access to the preference
model. We compare the performance of various algorithms, including iterative DPO, iterative IPO,
SPPO, and INPO and present results in Figure 4. The sample-only setting is also more aligned with
what happens in practice. We use a sufficient number of samples in each iteration for every algorithm.
As a result, the COMAL performs the same as in the noiseless gradient setting, while the iterative
IPO algorithm becomes equivalent to the MD algorithm. We note the following:

Iterative DPO: We observe that iterative DPO cycles between extreme policies (e.g., outputting ya
with probability close to 1). This is aligned with (Azar et al., 2024), where they found DPO will
converge to the deterministic policy regardless of the regularization parameter in extreme preference
settings. The cycling behavior of iterative DPO may be explained as follows: in each iteration, DPO
converges to a nearly deterministic policy output y; then the new preference data shows that y′ ̸= y is
more preferred; finally, iterative DPO cycles over Y since the preference itself exhibits a cycle and
there is no clear winner.
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Iterative IPO (Azar et al., 2024; Calandriello et al., 2024): The IPO loss is a variant of the DPO loss,
but it does not rely on the BT model assumption and works for a general preference model. However,
as we have discussed before, (exactly) minimizing the IPO loss is equivalent to performing one MD
step, and thus, iterative IPO is equivalent to MD up to sampling error. As a result, we observe that
iterative IPO also exhibits cycling behavior.

SPPO (Wu et al., 2024): The SPPO algorithm (see Appendix F) is not exactly the same as MWU since
SPPO assumes the partition function is always Z = log η

2 which may not be the case. We observe
that SPPO exhibits very similar cycling behavior as MD. We conclude that SPPO approximates MD
very well in this instance and exhibits similar behavior.

INPO (Zhang et al., 2025b): The INPO algorithm is designed for finding the Nash equilibrium of
the KL regularized game Jτ (π1, π2, πref). As we proved in Theorem 2, INPO does not diverge
and exhibits last-iterate convergence. However, it converges to a point that differs from the Nash
equilibrium of the game J(π1, π2) and has constant equilibrium gap.

J HYPERPARAMETERS AND TRAINING DETAILS FOR LLM EXPERIMENTS

We follow a similar training recipe proposed in Tunstall et al. (2023) for the experiments. Specifically,
at each training iteration, the models are fine-tuned for one epoch with a batch size of 32 and a
maximum learning rate of 5 × 10−7, using a cosine learning rate scheduler with 10% of warmup
steps. We conduct a grid search for the strength of the KL regularization, η−1, in the loss functions
of DPO, IPO and INPO, within the range of 0.001 - 0.1. INPO has another hyper-parameter τ which
controls the strength of the KL regularization from the reference policy. Its value is determined
following Zhang et al. (2025b), where ητ is set to a fixed ratio, 1/3.

K LLM-BASED EXPERIMENTS WITH 1.5B LLM

In §5, we conduct experiments using an 8B LLM, Llama-3-8B-Instruct. Here, we provide additional
experiments with a pre-trained smaller LLM, Qwen2-1.5B (Yang et al., 2024a). Its smaller size
allows us to perform more training iterations.

K.1 EXPERIMENTAL SETTINGS

Some of the experiment settings are identical to the settings in §5. Therefore, here we only outline
the differences in the settings.

Preference Oracle The preference oracle we used is Llama-3-OffsetBias-8B (Park et al., 2024),
which is a pairwise preference model that predicts which output is better given an instruction and a
pair of outputs. Fine-tuned from Meta-Llama-3-8B-Instruct (Dubey et al., 2024), it achieves strong
performance on various human preference alignment benchmarks in RewardBench (Lambert et al.,
2024b). We selected it as the preference oracle for its balance of computational efficiency and
alignment with human preferences, making it suitable for iterative preference optimization.

Baselines We include the following baselines for comparisons with COMAL: (1) SFT, which fine-
tunes the pre-trained Qwen2-1.5B on the UltraChat dataset, with the resulting checkpoint serving as
the starting point and/or reference policy for the other training algorithms; (2) vanilla DPO (Rafailov
et al., 2024) and (3) vanilla IPO (Azar et al., 2024), where one training iteration is performed over
the entire instruction set of UltraFeedback with output pairs sampled from the SFT policy; (4)
INPO (Zhang et al., 2025b), where each iteration of training is performed on a single data split; (5)
iterative IPO, which follows a training setting similar to INPO but without the KL regularization with
respect to the reference policy.

Evaluations We chose to use the same preference oracle used during data generation, Llama-3-
OffsetBias-8B, as the evaluator. This decision was made to maintain a controlled experimental
setting, ensuring that the preference oracle the model learns to fit is also the one used to evaluate its
performance.

Training Details We follow the training recipe proposed in Tunstall et al. (2023) for the experiments.
Specifically, at each training iteration, the models are fine-tuned for 3 epochs with a batch size of 32
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and maximum learning rate of 5 × 10−7, using a linear learning rate scheduler where 10% of the
steps are for warmup and the rest for linearly decreasing the rate. The checkpoints are selected based
on their validation loss on the UltraFeedback dataset. The training is performed on 8 NVIDIA A6000
Ada GPUs with 48GB memory, and one training iteration over the 10K instructions takes around
5 hours. Due to the relatively high computational requirements and the large number of training
iterations we tested (up to 42), we opted to use a moderately sized LLM and did not conduct an
exhaustive hyper-parameter search, instead referencing settings from previous work when appropriate.

Hyper-Parameters We conduct a grid search for the strength of the KL regularization, η−1, in both
vanilla DPO and IPO. We found that DPO achieves the best performance when η−1 is set to 0.01,
while IPO achieves the best performance when η−1 is set within the range of 0.002 - 0.01. We then
choose the value of η−1 to be 0.002 to encourage larger learning steps. This value of η is also used for
iterative IPO. For INPO, we compare two settings where η−1 is set to 0.002 and 0.01, corresponding
to a small and a large regularization respectively. INPO has another hyper-parameter τ which controls
the strength of the KL regularization from the reference policy. We determine its value following the
setting of Zhang et al. (2025b), where ητ is set to a fixed ratio, 1/3. Regarding COMAL, which is
implemented based on INPO as outlined in Algorithm 3, η−1 is also set to 0.002 at the beginning of
the training. The reference policy used in COMAL is updated when the first optimization step begins
to converge or overfit, and η−1 is increased to 0.01 to improve training stability.
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Figure 5: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The average win rates of the
trained checkpoints against the best checkpoints of each training algorithm, and the average lengths
of the outputs are compared. For INPO, two variations with a small regularization (η−1 = 0.002,
INPO-Small) and a large regularization (η−1 = 0.01, INPO-Large) are compared.

K.2 RESULT ANALYSIS

Figure 5 presents the training dynamics of three iterative preference optimization algorithms we
compared: iterative IPO (Iter-IPO), INPO with a small and a large regularization (INPO-Small and
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Table 5: Performance comparison of different training algorithms. The row v.s. column win rate
(%) is reported. The best checkpoints produced by each training algorithm are compared. For
INPO, we report two variations with a small regularization (η−1 = 0.002, INPO-Small) and a large
regularization (η−1 = 0.01, INPO-Large).

Row/Column SFT DPO IPO Iter-IPO INPO-Large INPO-Small COMAL Avg

Iter-IPO 67.33 62.36 58.76 50.00 48.20 44.72 44.10 53.64
INPO-Large 77.02 69.81 67.83 51.80 50.00 46.21 44.84 58.22
INPO-Small 73.66 66.21 66.46 55.28 53.79 50.00 48.70 59.16
COMAL 74.53 70.56 68.82 55.90 55.16 51.30 50.00 60.90

Table 6: Performance comparison of different training algorithms. The row v.s. column win rate
(%) is reported. The last checkpoints produced by each training algorithm are compared. For
INPO, we report two variations with a small regularization (η−1 = 0.002, INPO-Small) and a large
regularization (η−1 = 0.01, INPO-Large).

Row/Column SFT DPO IPO Iter-IPO INPO-Large INPO-Small COMAL Avg

Iter-IPO 67.33 62.36 58.76 50.00 50.93 49.07 45.47 54.84
INPO-Large 70.43 62.98 61.61 49.07 50.00 48.07 41.61 54.83
INPO-Small 68.57 61.12 59.88 50.93 51.93 50.00 43.23 55.09
COMAL 74.53 67.83 65.09 54.53 58.39 56.77 50.00 61.02

INPO-Large), and COMAL, which are demonstrated by their checkpoints’ win rates against the best
checkpoints produced by 7 different algorithms: SFT, IPO, DPO, Iter-IPO, INPO-Small, INPO-Large,
COMAL, and the average lengths of their outputs. For INPO and COMAL, the model is trained for
up to 42 iterations, equivalent to 7 training rounds over the entire instruction set since it has been
split into 6 subsets. We note that:

(1) Iter-IPO shows a quicker improvement rate at the beginning of the training, but its performance
begins to lag behind other algorithms after the first training round with a rapid increase in output
length, which indicates the inherent instability of this training algorithm.

(2) INPO achieves stronger performance and larger improvement rates compared to Iter-IPO. However,
the win rates of both INPO-Small and INPO-Large start to decrease after 5 training rounds. We
suspect this suggests that INPO has started to converge and/or overfit. Moreover, for INPO-Small, its
performance shows only a minor improvement and even a slight decline during training rounds 2 to 4
(iterations 12 - 24). Therefore, for COMAL, which shares the same training trajectory as INPO-Small
for the first two training rounds, we update the reference policy at the beginning of the third training
round, following the optimization process described in Algorithm 3.

(3) COMAL is able to further improve the model performance with the updated reference policy.
Notably, its performance continues to improve up until the 6th training round, when the other
algorithms begin to degrade, demonstrating the benefit of updating the reference policy.

Table 5 provides pairwise comparisons between the best checkpoints of the iterative preference
optimization algorithms and a few baselines. It demonstrates the clear advantage of COMAL,
which is able to achieve a win rate that is strictly above 50% against all the other checkpoints. The
comparison of the final checkpoints of different algorithms after the last iteration is presented in
Table 6, where COMAL is able to achieve significantly better performance thanks to its stability.

L LIMITATIONS

Provable Guarantee on Computing the Prox Operators Our theoretical guarantee on the last-
iterate convergence of COMAL relies on computing the prox operator and solving a regularized game
approximately. Although we provide many practical loss minimization approaches that compute the
prox operator, the applicability of our results in practical LLM settings lacks a provable guarantee
since the losses could be highly non-convex, for which no provably efficient algorithms exist. We also

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

remark that our analysis is non-trivial and novel, which gives a more robust guarantee than existing
works (Perolat et al., 2021; Sokota et al., 2023; Abe et al., 2024) that require solving the regularized
game exactly.

Theoretical Convergence Guarantees Our Theorem 1 provides asymptotic last-iterate conver-
gence to exact Nash equilibrium and Theorem 2 gives non-asymptotic (1/ε2) convergence to an
ε-approximate Nash equilibrium when we choose the regularization τ = O(ε). Here we discuss
the possibility of achieving non-asymptotic convergence with non-vanishing regularization τ . We
remark that there are algorithms with ℓ2 regularization that have polynomial last-iterate convergence
rates (Cai et al., 2022). However, it is unclear whether these algorithms with ℓ2 regularization are
practical in large-scale LLM settings, as no known efficient implementations exist. In contrast,
prox operators with entropy regularization can be computed using practical preference optimization
algorithms such as DPO, IPO, INPO as we discussed in §F. Regarding the possibility of establishing a
last-iterate convergence rate of our algorithm, we note that a uniform convergence rate for algorithms
of this type is unlikely, as suggested by a recent work (Cai et al., 2024a). Here, “uniform” refers to
an upper bound on the duality gap that holds for all instances. While it may be possible to obtain
a weaker instance-dependent rate, similar to the ones in (Wei et al., 2021), under a unique Nash
equilibrium assumption, the rate depends on a problem-dependent parameter that could be arbitrarily
large and difficult to characterize—particularly in the LLM setting. As such, such rates offer limited
practical guidance for implementation or for understanding convergence speed in realistic scenarios.
Nevertheless, getting a convergence rate is an interesting question and we leave it for future work.
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