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ABSTRACT

Prior to deployment, an object detector is trained on a dataset compiled from a
previous data collection campaign. However, the environment in which the object
detector is deployed will invariably evolve, particularly in outdoor settings where
changes in lighting, weather and seasons will significantly affect the appearance
of the scene and target objects. It is almost impossible for all potential scenarios
that the object detector may come across to be present in a finite training dataset.
This necessitates continuous updates to the object detector to maintain satisfactory
performance. Test-time domain adaptation techniques enable machine learning
models to self-adapt based on the distributions of the testing data. However, ex-
isting methods mainly focus on fully automated adaptation, which make sense for
applications such as self-driving cars. Despite the prevalence of full automated
approaches, in some applications such as surveillance, there is usually a human
operator overseeing the system’s operation. We propose to involve the operator
in domain adaptation to raise the performance of object detection beyond what
is achievable by fully automated adaptation. To reduce manual effort, the pro-
posed method only requires the operator to provide weak labels, which are then
used to guide the adaptation process. Furthermore, the proposed method can be
performed online, facilitating its applications in scenarios where inference and do-
main adaptation must be carried out simultaneously. Our experiments show that
the proposed method outperforms existing works, demonstrating a great benefit of
human-in-the-loop test-time domain adaptation.

1 INTRODUCTION

Object detection is a task that involves precisely localising and categorising objects within an image.
It has many applications in autonomous driving (Han et al., 2021), surveillance (Lu et al., 2023), and
augmented reality (Li et al., 2020). The deployment of an object detector typically includes three
main steps. Firstly, a large-scale dataset must be collected and annotated, providing the bounding
boxes and object categories for the objects of interest. Next, this annotated dataset is used to train an
object detector. Finally, the object detector is deployed into a desired system to effectively perform
real-time object detection.

However, while the training dataset is important for preparing an object detector, it may not cover all
possible scenarios that the detector may encounter during its operation. This incomplete coverage
is attributed to the various environmental conditions that can arise, such as different times of day,
weather, and seasons. These factors cause the image appearance to differ from the training dataset,
leading to a significant decline in detection accuracy. A solution to the problem is to continuously
capture new data and adapt the system (Doan et al., 2020; Mirza et al., 2022; Wang et al., 2022).
However, incorporating new data presents a substantial challenge due to the absence of labels within
this new data, making the adaptation of the object detector a challenging task.

A potential solution for this issue is unsupervised domain adaptation (UDA) (Chen et al., 2018;
RoyChowdhury et al., 2019; Li et al., 2022), which formulates the training dataset as the source
domain and the newly acquired data as the target domain. The goal of UDA is to minimise the
domain discrepancy in the feature space. Popular UDA methods include adversarial learning (Chen
et al., 2018; 2021; Pasqualino et al., 2021), optimal transport (Lee et al., 2019; Xu et al., 2019),
and pseudo-labelling (RoyChowdhury et al., 2019; Li et al., 2022; Mattolin et al., 2023). However, a
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Figure 1: (a) Previous works have focused on developing fully autonomous solutions, primarily for
self-driving vehicles. (b) Our approach, however, is proposed for visual surveillance, which are
typically monitored by an operator. Therefore, our method will take advantage of the operator’s
involvement in the adaptation process. (c) The definitions of full and weak labels: A full label
includes bounding boxes and object categories. A weak label only indicates which object categories
are present in the image. By only requiring weak labels, our method reduces the amount of labour
needed significantly.

Approach Source Target Online Human in
data data adaptation the loop

Unsupervised domain adaptation (Chen et al., 2018) ✓ ✓ ✗ ✗
Weakly supervised domain adaptation (Inoue et al., 2018) ✓ ✓ ✗ ✓
Test-time domain adaptation (Mirza et al., 2022) ✗ ✓ ✓ ✗

Human-in-the-loop test-time domain adaptation ✗ ✓ ✓ ✓

Table 1: A comparison of human-in-the-loop test-time domain adaptation with related approaches.

limitation of UDA is the offline setting: target data has to be acquired first before adapting the model
for multiple epochs, whereas many practical applications necessitate domain adaptation to be done
online. In addition, UDA requires complete access to the source domain, raising serious privacy and
security concerns. Recent reverse engineering techniques have demonstrated that it is possible to
use a limited amount of information about the data to fully recover the original data (Mahendran &
Vedaldi, 2015; Dosovitskiy & Brox, 2016; Pittaluga et al., 2019). In data-driven approaches, data
can be viewed as a vital asset of businesses; thus storing source data in deployed systems is indeed
a hazardous undertaking.

To address the issues of UDA, test-time domain adapation (TTA) attempts to adapt the object detec-
tor to the target domain without the need for the source dataset (Wang et al., 2021; 2022; Mirza et al.,
2022). Recent studies have demonstrated that TTA can be highly effective in image classification
by adapting the model with pseudo-labelling and entropy minimisation (Chen et al., 2022; Wang
et al., 2021). However, TTA requires full access to the target data while in practice, the target data
is usually in the form of stream, resulting in the target distribution continually evolving. To address
this challenge, continual TTA (CoTTA) (Wang et al., 2022) and Dynamic Unsupervised Adaptation
(DUA) (Mirza et al., 2022) have been proposed. These methods only require an incoming target
sample to adapt the model, making them suitable for online adaptation. The effectiveness of CoTTA
has been demonstrated in image classification and image segmentation, while DUA has been proven
to be effective in object detection.

Despite their great potential, CoTTA and DUA are striving for a fully autonomous solution, which
is suitable for applications such as self-driving cars. However, there are some applications, such
as surveillance, which usually have a human operator overseeing the system (Bloisi et al., 2016).
This raises a question of whether we should involve this operator to TTA. One benefit of human-
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in-the-loop TTA is to revise the pseudo-labels used for adapting the object detector. As shown
in previous works (Li et al., 2022; Chen et al., 2022; Litrico et al., 2023), pseudo-labelling is an
effective approach for domain adaptation. However, if pseudo-labels are noisy, the object detector’s
error will accumulate, leading to a decline in the detection accuracy. Therefore, humans can be
another reliable annotator for revising pseudo-labels. Efficient use of human contributions with
minimal demands on labour cost in TTA is thus a critical objective. Our idea is illustrated in Fig. 1

Contributions This paper proposes the inclusion of humans in the adaptation of object detectors.
Our method, dubbed human-in-the-loop test-time domain adaptation (HL-TTA), uses weak labels
provided by humans to guide the domain adaptation during the testing phase. As HL-TTA only
requires weak labels to be effective; its demand on labour cost is therefore minimal. Furthermore,
HL-TTA can be done online, where the target test data is in the form of stream, allowing inference
and domain adaptation to be performed simultaneously. The experiments show that with only a few
target test images, the HL-TTA outperforms existing fully autonomous solutions. We hope that this
encouraging result will motivate further research in HL-TTA.

2 RELATED WORK

This section will review three main approaches to domain adaptation for object detection: unsu-
pervised domain adaptation (UDA), weakly supervised domain adaptation (WSDA), and test-time
domain adaptation (TTA). Also, we will discuss the novelty of HL-TTA in comparison to these
approaches, which are succinctly outlined in Table 1.

2.1 UNSUPERVISED DOMAIN ADAPTATION

Given a labelled source dataset and an unlabelled target dataset, UDA seeks to adapt an object
detector to perform accurately in the target domain. There are three main techniques in UDA for
object detection: adversarial learning (Chen et al., 2018; 2021; Pasqualino et al., 2021), optimal
transport (Lee et al., 2019; Xu et al., 2019), and pseudo-labelling (RoyChowdhury et al., 2019; Li
et al., 2022; Mattolin et al., 2023).

Adversarial learning attempts to minimise the domain discrepancy in the feature space. To this end,
domain adaptive Faster-RCNN (Chen et al., 2018) employs gradient reversal layers (Ganin & Lem-
pitsky, 2015) in their adversarial learning framework to align the feature and instance distributions
of source and target domains. This concept is further improved in (Chen et al., 2021), which aligns
the source and target distributions across different image scales. Additionally, adversarial learning
has been explored in anchor-free object detection techniques (Pasqualino et al., 2021; 2022). In
comparison to adversarial learning which solves a minimax optimisation problem, optimal transport
instead minimises Wasserstein distance between source and target domains. For instance, (Lee et al.,
2019) employs the sliced Wasserstein distance to address high-dimensional issue in the feature space
and (Xu et al., 2019) considers the duality of the Wasserstein distance, which can be approximated
by neural networks under certain conditions. Another approach that has been shown to be effective
is pseudo-labelling. To generate reliable pseudo-labels for target dataset, (RoyChowdhury et al.,
2019) fuses the results of detection and tracking as well as proposes a label smoothing technique.
To further improve the detection performance, some recent methods integrate pseudo-labelling to
other strategies. For instance, (Li et al., 2022) incorporates pseudo-labelling to student-teacher ar-
chitecture and (Mattolin et al., 2023) combines pseudo-labelling with domain mixing techniques.

Despite its great potential, UDA is done offline, which is not suitable for many practical applications
that require online domain adaptation. Furthermore, the need for access to the source data can be
a shortcoming in terms of privacy and security (see Sec. 1). To address this, our HL-TTA can be
performed online and is a source-free method, thus avoiding any privacy and security risks.

2.2 TEST-TIME DOMAIN ADAPTATION

TTA attempts to adapt the model in an online manner without using the source data. Some interesting
TTA works include Tent (Wang et al., 2021) which proposes to update batch normalisation layers
using entropy minimisation, CoTTA (Wang et al., 2022) which uses teacher-student architecture with
pseudo-labelling to adapt the model, and DDA (Gao et al., 2023) which employs a diffusion process
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to transform the appearance of images from the target domain to resemble the source domain. Since
these methods are only tested in image classification, DUA (Mirza et al., 2022) shows that TTA can
be effectively applied to object detection by introducing a momentum decay parameter to stabilise
the domain adaptation process.

As alluded, existing TTA works aim for developing fully autonomous domain adaptation techniques,
which are useful to applications like self-driving cars. However, there are some other applications,
such as surveillance, which usually have an operator overseeing the systems (Bloisi et al., 2016).
Therefore, our HL-TTA proposes to leverage this operator to generate more reliable pseudo-labels,
which can be useful for TTA.

2.3 WEAKLY SUPERVISED DOMAIN ADAPTATION

The concept of human-in-the-loop domain adaptation for object detection has been explored in the
literature, which is usually referred to as weakly supervised domain adaptation (WSDA). This ap-
proach involves asking annotators to provide weak labels for the target dataset (see Fig. 1c). Then,
domain adaptation can be done using the source dataset with full labels and the target dataset with
weak labels. Inoue et al. (2018) propose combining predictions of the source pre-trained detector
with weak labels to generate high-quality pseudo-labels for target images. Xu et al. (2022) attempt
to minimise the domain gap by using domain and weak label classifiers.

Through using weak labels, WSDA is shown to outperform UDA. However, WSDA also suffers
drawbacks similar to those of UDA, i.e., the domain adaptation is done offline and the need to access
the source data raises privacy and security concerns (see Sec. 1). Therefore, HL-TTA is proposed to
overcome these challenges.

3 METHOD

This section will elaborate our methodology. To begin with, Sec. 3.1 outlines the formal problem
definition. Subsequently, the HL-TTA framework is presented in Sec. 3.2, where we will explain
the loss function for domain adaptation. Given the loss function, we will discuss how the domain
adaptation can be achieved via updating batch normalisation (BN) layers in Sec. 3.3.

3.1 PROBLEM FORMULATION

Let f(· ; θ0) with parameters θ0 be an object detector that has been trained on the labelled source
dataset

(
XS,YS

)
, where X and Y are the sample space and label space. During its operation,

the detector will carry out the online inference and adaptation on the unlabelled target data XT.
Specifically, at time step t, the target data xt ∈ XT is given as an input to the detector f(· ; θt).
Then, the detector f(· ; θt) must make an inference ŷt = f(xt; θt) and adapt itself θt → θt+1 for
the next input xt+1. The detector’s performance is evaluated based on the predictions ŷt from the
online inference. It is important to emphasise that during each time step t, the adaptation only relies
on the target data xt. This choice aligns with the recommendation of (Yang et al., 2022) that xt

should be deleted immediately after the adaptation to safeguard the privacy.

The impetus for online adaptation is derived from practical scenarios in which perception systems
are constantly operating in ever-evolving environments, with input coming in the form of streaming
data. Consequently, inference and domain adaptation must be done online. Previous studies (Mirza
et al., 2022; Wang et al., 2022; Gao et al., 2023) have mainly focused on developing fully au-
tonomous TTA solutions for applications such as self-driving cars or autonomous robots. However,
in certain applications, such as surveillance, a human operator is usually needed to supervise the
system (Bloisi et al., 2016). Therefore, our idea is to involve the operator in TTA. Specifically, let
C be a set of L object categories. For each target image xt, the operator will provide a weak label
zt = {cj}Mj=1, where cj ∈ C is the object category present in the image and M denotes the total
number of object categories in the image; see Fig. 1c. This weak label zt will then be leveraged
to adapt the object detector’s parameters θt → θt+1 for the next input. As discussed in previous
works (Cao et al., 2021; Vo et al., 2022; Zhong et al., 2020), providing weak labels instead of full
labels will significantly reduce the amount of labour required.
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Figure 2: For an incoming target testing sample xt, HL-TTA initially produces a prediction ŷt and
the operator is required to provide a weak label zt for it. Subsequently, using the prediction ŷt and
weak label zt, a pseudo-label ypsd

t is generated. Finally, the weak label zt and pseudo-label ypsd
t are

used as groundtruth for image-level recognition and instance-level recognition respectively.

3.2 FRAMEWORK

The overview of HL-TTA is shown in Fig. 2. Specifically, for the model f(· ; θt), HL-TTA adopts
a two-stage object detection architecture Faster-RCNN (Ren et al., 2015) that includes a backbone,
a region proposal network (RPN), and a detection head (ROI Head). Our HL-TTA consists of three
main components: pseudo-labelling, image-level recognition, and instance-level recognition.

Using the prediction ŷt and weak label zt, pseudo-labelling will generate a pseudo-label ypds
t . The

pseudo label and weak label will be used to construct loss functions Lins
t in instance-level recognition

and Limg
t in image-level recognition. The final loss for domain adaptation will be

Lt = Lins
t + α.Limg

t (1)

This loss Lt will be used to update Faster-RCNN’s parameters θt → θt+1 for the next input xt+1

(see Sec. 3.3). In this section, we will outline each component: pseudo-labelling, image-level recog-
nition, and instance-level recognition.

Pseudo-labelling The target image xt is initially given to the operator and the operator must pro-
vide a weak label zt. Then, HL-TTA makes a prediction ŷt = {b̂i, ĉi, p̂i}Ni=1 = f(xt ; θt), where
b̂i ∈ R4 is the predicted bounding box, ĉi ∈ C is the predicted object category, p̂i ∈ R is the proba-
bility that b̂i belongs to ĉi, and N is the total number of predicted bounding boxes. Note that ŷt is
obtained after excluding overlapping boxes by non-maximum suppression for each object category.

However, the prediction ŷt may contain mistakes, i.e., bounding boxes with incorrect object cate-
gories. If we use ŷt as the groundtruth to adapt θt, the errors will accumulate over time, leading to a
decrease in the detector’s performance. To minimise these errors, we will create a pseudo-label ypsd

t
by keeping bounding boxes of ŷt such that their object categories are present in the weak label zt
and their predicted probability is greater than 0.8

ypsd
t = {b̂i, ĉi | b̂i, ĉi, p̂i ∈ ŷt and p̂i ≥ 0.8 and ĉi ∈ zt} (2)

These pseudo-label ypsd
t and weak label zt will be respectively used as groundtruth in the instance-

level recognition and image-level recognition.

Image-level recognition This component aggregates the outputs of RPN and ROI head to obtain
an image-level prediction, which is used to calculate the image-level loss Limg

t . This aggregation
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operation is developed based on the idea of weakly-supervised object detection (Bilen & Vedaldi,
2016; Xu et al., 2022). Recall that L is the total number of object categories, we denote K as the total
number of proposals, the output of RPN as o ∈ RK , and the output of ROI Head as C ∈ RK×L.

Firstly, we create a matrix O that has a same size as C

[O]k,l′ =

{
[o]k if l′ = argmax

l
[C]k,1:L

0 otherwise
(3)

where, [·]k,l denotes the element in the row kth and column lth of a matrix, and [·]k denotes the kth

element of a vector.

Next, the softmax is applied on C and O

[σ(C)]k,l =
e[C]k,l∑L
l=1 e

[C]k,l

, [σ(O)]k,l =
e[O]k,l∑K
k=1 e

[O]k,l

(4)

Then, the image-level prediction ẑt ∈ RL is calculated

[ẑt]l =

K∑
k=1

[
σ (C)⊙ σ

(
Ō
)]

k,l
(5)

Finally, the image-level loss can be obtained via the standard cross-entropy function

Limg
t = cross entropy loss (ẑt,multi hot (zt)) (6)

where, multi hot(·) is a function to convert zt into a multi-hot vector of size L.

Instance-level recognition This component will employ the pseudo-label ypsd
t from Eq. (2) as the

groundtruth. The instance-level loss is formulated as follows

Lins
t = Lrpn

cls (xt, y
psd
t ) + Lroi

cls(xt, y
psd
t ) (7)

where, Lrpn
cls and Lroi

cls are the classification losses of RPN and ROI Head proposed in standard Faster-
RCNN (Ren et al., 2015). Here, the instance-level loss Lins

t ignores the bounding-box regression task
since the pseudo-label ypsd

t in Eq. (2) indicates the confidence score of predicted bounding boxes.
Thus, the parameters θt are adapted to enhance the classification performance of the detector.

3.3 UPDATING BATCH NORMALISATION

Given the final loss from Eq. (1), we need to adapt θt → θt+1 for the next input xt+1. We choose
to update all BN layers in θ as this has been shown to be highly effective in recent studies (Mirza
et al., 2022; Wang et al., 2021; Schneider et al., 2020). The rationale of updating BN layers is to
reduce the covariate shift between the source and target distributions (Schneider et al., 2020). If
the target distribution is different from source distributions, BN’s parameters estimated from the
source distribution are no longer normalising the target data as expected. Therefore, it is necessary
to update BN layers with the new target distribution.

Specifically, for an arbitrary BN layer of θt, let µt and σt be its running mean and running variance,
and also let γt and βt be its transformation parameters. We also denote mt as its momentum (m0 is
set to 0.1 by default). As shown in (Mirza et al., 2022), if the momentum is gradually decayed, it will
stabilise the convergence of the domain adaptation. Therefore, we initially decay the momentum

mt = mt−1.ω + δ (8)
where, ω ∈ (0, 1) is a predefined decay parameter and δ defines the lower bound of momentum.

Subsequently, BN’s parameters will be updated as follows
µt+1 = (1−mt).µt +m.µ̂t, σt+1 = (1−mt).σt +m.σ̂t, (9)

γt+1 = γt + λ
∂Lt

∂γt
, βt+1 = βt + λ

∂Lt

∂βt
, (10)

where, λ is the step size of gradient update and µ̂ and σ̂ are mean and variance of the current input
data. Note that the previous work (Mirza et al., 2022) only updates µt and σt while our method can
also update transformation parameters γt and βt, thanks to weak labels provided by the operator.
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Figure 3: Sample images of our MSA-SYNTH dataset, where top row is RGB images and bottom
row is Infrared images.

4 EXPERIMENT

4.1 SETUP

The following benchmarks are used in the experiment.

• KITTI → KITTI-Fog: KITTI (Geiger et al., 2012) is a widely-used dataset in autonomous
driving. KITTI is used to pre-train the model, which are then adapted to the target KITTI-
Fog with the most severe fog level 30m visibility (Halder et al., 2019). Object categories
taken into account are “Car”, “Pedestrian”, and “Cyclist”. A total of 7481 images are
randomly divided into 3740 for training and 3741 for testing.

• Cityscapes → KITTI: Cityscapes (Cordts et al., 2016) is another popular dataset in self-
driving cars. We pre-train the object detector in Cityscape, then adapt it to KITTI. Three
object categories in Cityscapes are used: “Car”, “Pedestrian”, and “Rider”. Similarly, three
object categories in KITTI are used: “Car”, “Pedestrian”, and “Cyclist”. A total of 3475
Cityscapes images from its training and validation sets are randomly divided into 1737 for
training and 1738 for testing. Similarly, a total of 7481 KITTI images are randomly divided
into 3740 for training and 3741 for testing.

• MSA-SYNTH RGB → IR 1: We use Unreal Engine and Infinite Studio to generate a
maritime dataset. Three boat/vessel categories “Fishing”, “Sailing”, and “Passenger” are
simulated. We collect 8147 RGB images and 8147 Infrared (IR) images, which are then
divided into 4243 RGB images for training, 3904 RGB images for testing, 4243 IR images
for training, and 3904 IR images for testing; see Fig. 3 for sample images. The model will
be pre-trained in the source domain RGB, then adapted to the target domain IR.

We consider following baselines for comparison

• Source: The source pre-trained model is tested on the target data without any adaptation.
• BN stats: BN stats (Schneider et al., 2020) adapts the source pre-trained model by up-

dating the statistics of batch normalisation (BN) layers.
• DUA: DUA (Mirza et al., 2022) introduces a decay factor to update the momentum param-

eters of the BN layers of the source pre-trained model.
• Oracle: The source pre-trained model is fine-tuned in 120k iterations on the target train-

ing set with full supervision.

To reduce labour cost, our HL-TTA uses 100 target testing images for adaptation in all benchmarks,
unless otherwise stated. For baselines, all target testing images are used for adaptation since they are
fully autonomous adaptation techniques. To simulate online adaptation, each target testing image
is given to each method one at a time to perform domain adaptation. To measure detection perfor-
mance, we present the average precision with a threshold of 50% (AP50) for each object category
and the mean average precision (mAP) across all object categories.

4.2 IMPLEMENTATION

We employ Detectron2 (Wu et al., 2019) for implementation. Faster-RCNN with backbone ResNet-
50 is pre-trained on the source dataset with a batch size of 2. Learning rate is initially set to 0.001
for 30k iterations, then reduced to 0.0001 for another 90k iterations. For HL-TTA, unless stated

1The dataset will be released upon acceptance
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otherwise we set ω = 0.99 for KITTI → KITTI-Fog and Cityscapes → KITTI, and ω = 0.94 for
MSA-SYNTH RGB → IR. For remaining parameters, unless stated otherwise we set learning rate
λ = 0.0001, δ = 0.005, and α = 0.1 for all benchmarks.

4.3 RESULTS

Car Pedestrian Cyclist mAP

Source 23.4 26.7 12.4 20.9
BN Stats 41.3 41.4 20.8 34.5
DUA 41.3 41.8 21.3 34.8
HL-TTA 44.6 41.9 23.1 36.5

Oracle 85.5 65.7 68.3 73.2

(a) KITTI → KITTI-Fog

Car Pedestrian Cyclist mAP

Source 66.9 46.4 9.0 40.8
BN Stats 68.1 50.1 12.3 43.5
DUA 68.1 50.3 12.7 43.7
HL-TTA 68.1 51.5 14.3 44.6

Oracle 90.4 70.7 77.2 79.4

(b) Cityscapes → KITTI

Fishing Sailing Passenger mAP

Source 42.4 15.6 33.5 30.5
BN Stats 43.8 14.8 37.0 31.8
DUA 44.6 15.1 37.0 32.2
HL-TTA 54.7 21.1 36.2 37.4

Oracle 69.9 39.2 72.8 60.6

(c) MSA-SYNTH RGB → IR

Table 2: Comparing AP50 within each object cat-
egories and mAP across all categories between
HL-TTA and other baselines (larger is better).

Benefits of human guidance in TTA As
shown in Table 2, domain adaptation sig-
nificantly enhances object detection perfor-
mance. Specifically, the fully autonomous
TTA methods BN Stats and DUA out-
performs Source by 11%-14% mAP in
all benchmarks. When human guidance
is incorporated into the domain adapta-
tion, HL-TTA increases mAP by 4% mAP
in MSA-SYNTH RGB → IR and 1% in
KITTI → KITTI-Fog and Cityscapes → KITTI,
compared to BN Stats and DUA. The im-
provement is even more significant for certain
object categories. For instance, HL-TTA im-
proves “Car” in KITTI → KITTI-Fog, “Cy-
clist” in Cityscapes → KITTI, and “Fishing” in
MSA-SYNTH RGB → IR by about 3.3%, 2%,
and 10% respectively, compared to BN Stats
and DUA.

Effects of noisy weak labels This experi-
ment examines the possibility of humans pro-
viding incorrect weak labels. To simulate this,
each element in the groundtruth multi-hot vec-
tor has a probability of being switched to an in-
correct value. This probability is referred to as
the noise ratio. An example of this simulation
is shown Fig 4. The results are shown in Fig. 5.
In general, HL-TTA can be seen to be sensitive
to noisy labels.

Car

Create 

multi-
hot

vector

Pedes-
trian Cyclist

Simulate
noisy label

noise ratio = 70%

30%

Car, Cyclist

Figure 4: Illustration of how noisy weak labels
are simulated. Given a weak label {Car, Cyclist},
a corresponding multi-hot vector is created. If the
noise ratio is 70%, the value 1 in “Car” element
will have the 70% probability of being switched
to 0, while having the 30% probability of remain-
ing 1. A similar operation is applied to elements
“Pedestrian” and “Cyclist”.

At a noise level of 50%, the performance of HL-
TTA decreases by about 1% in the “Car” and
“Cyclist” categories in the KITTI → KITTI-
Fog benchmark. A similar 1% drop is ob-
served in the “Pedestrian” and “Cyclist” cate-
gories in the Cityscapes → KITTI benchmark.
However, the most significant decrease is seen
in the MSA-SYNTH RGB → IR benchmark,
where the accuracy of the “Fishing” category
decreases by 6% and that of the “Sailing” cate-
gory drops by 2.5%.

When the noise ratio is increased to 99%, the
performance of HL-TTA in KITTI → KITTI-
Fog reduces by 6% and 3% in the “Car” and
“Cyclist” categories respectively. Similarly,
there is a significant decrease of 6% and 5%
in the “Car” and “Pedestrian” categories in
Cityscapes → KITTI. The most dramatic de-
cline is observed in MSA-SYNTH RGB → IR,
where the performance of HL-TTA decreased by more than 8% and nearly 5% in the “Fishing” and
“Sailing” categories.
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Figure 5: Effects of noisy weak labels to HL-TTA are shown on benchmarks (a) KITTI → KITTI
Fog, (b) Cityscapes → KITTI, and (c) MSA-SYNTH RGB → IR.
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Figure 6: (a) HL-TTA results on KITTI → KITTI-Fog for 30 independent runs. For each run, the
order of KITTI-Fog testing samples is randomly shuffled. (b) HL-TTA results on KITTI → KITTI-
Fog for different decay factors.

Effects of sample orders This experiment investigates the effects of sample orders. The result
on KITTI → KITTI-Fog in shown in Fig. 6a, where we conduct 30 independent runs and calculate
the mean and standard deviation of mAP. For each run, the order of samples is randomly shuffled.
In the first few samples used for adaptation, the standard deviation is large. For example, with 100
samples, we obtain mAP of 36.0 ± 0.6. When the adaptation samples increase, the mAP continues
to improve as well as the standard deviation decreases. For instance, the mAP achieves 39.8 ± 0.5
at 600 samples and 40.2 ± 0.4 at 1000 samples. However, it can be seen that the mAP saturates at
40.0 after 700 samples.

Effects of decay factors We investigate the effect of the decay factor ω on the performance of
HL-TTA on the KITTI → KITTI-Fog benchmark. Fig. 6b shows the results when different decay
factors ω from 1.0 (no decay) to 0.91 are applied. We observe that when ω is set to 0.99 or 0.97,
the mAP is better than that of ω = 1.0, indicating that decaying the momentum accelerates the
convergence of domain adaptation. However, if the momentum decays too quickly (i.e. ω < 0.97),
the detection accuracy decreases. This suggests that tuning the decay factor ω is essential to achieve
the optimal domain adaptation performance.

5 CONCLUSION

This paper presents a method involving a human operator in TTA. The algorithm only requires the
operator to provide weak labels for images, which are then used to guide the adaptation process. The
experiments show that the proposed method outperforms existing autonomous test-time adaptation
solutions, demonstrating great potential of human guidance for TTA.
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