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CAUSAL PREFERENCE OPTIMIZATION FOR VISION
CUSTOMIZATION
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Figure 1: Consis-GCPO achieves high-quality personalized generation across diverse scenarios.
Top: R2I generation with complex multi-subject compositions and interactions. Bottom: R2V gen-
eration demonstrating temporal consistency and subject fidelity in motion sequences. Corresponding
prompts and additional visualization results are provided in the Appendix.

ABSTRACT

Subject-driven generation faces a fundamental challenge: achieving high subject
fidelity while maintaining semantic alignment with textual descriptions. While
recent GRPO-based approaches have shown promise in aligning generative mod-
els with human preferences, they apply uniform optimization across all denoising
timesteps, ignoring the temporal dynamics of how textual and visual conditions
influence generation. We present Consis-GCPO, a causal reinforcement learning
framework that reformulates multi-modal condition generation through discrete-
time causal modeling. Our key insight is that different conditioning signals exert
varying influence throughout the denoising process—text guides semantic struc-
ture in early steps while visual references anchor details in later stages. By in-
troducing decoupled causal intervention trajectories, we quantify instantaneous
causal effects at each timestep, transforming these measurements into temporally-
weighted advantages for targeted optimization. This approach enables precise
tracking of textual and visual contributions, ensuring accurate credit assignment
for each conditioning modality. Extensive experiments demonstrate that Consis-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

GCPO significantly advances personalized generation, achieving superior subject
consistency while preserving strong text-following capabilities, particularly ex-
celling in complex multi-subject scenarios.

1 INTRODUCTION

Personalized content creation (Ruiz et al., 2023; Wu et al., 2025; Mou et al., 2025; Chen et al., 2025;
She et al., 2025; Jiang et al., 2024) has emerged as a critical capability in generative modeling,
enabling users to synthesize diverse outputs that maintain consistency with provided references. In
the image domain, reference-to-image (R2I) generation has achieved remarkable progress through
various adaptation strategies, from full-model fine-tuning and parameter-efficient techniques like
LoRA (Hu et al.) to lightweight conditioning mechanisms using subject embeddings. Recent R2I
methods such as DreamO (Mou et al., 2025), XVerse (Chen et al., 2025), and MOSAIC She et al.
(2025) have further advanced the field by introducing multi-reference subject generation, enabling
consistent synthesis across multiple input references. Building upon these advances, reference-
to-video (R2V) generation extends personalization to the temporal domain, with frameworks like
VACE Jiang et al. (2025) and Phantom Liu et al. (2025c) demonstrating compelling results for both
single- and multi-subject video generation while preserving identity consistency across frames.

Despite these technical achievements, current approaches face fundamental limitations in balanc-
ing competing objectives that prevent them from meeting human preferences as shown in Figure 2.
Subject fidelity degradation manifests when models struggle to preserve fine-grained characteris-
tics and identity consistency, particularly in complex multi-subject compositions where interactions
between subjects must be maintained. Concurrently, semantic alignment drift emerges as visual
reference conditioning often interferes with the model’s text-following capabilities, causing gener-
ated content to prioritize visual similarity at the expense of semantic coherence. These dual chal-
lenges result in a problematic trade-off: models either produce visually accurate outputs that ignore
textual instructions or semantically correct generations that fail to maintain subject identity. This in-
ability to simultaneously satisfy both visual consistency and semantic alignment creates significant
barriers to real-world deployment.

Recent advances in reinforcement learning for generation, particularly Group Relative Policy Opti-
mization (GRPO) methodologies like Flow-GRPO (Liu et al., 2025a) and DanceGRPO (Xue et al.,
2025), have demonstrated success in aligning models with human preferences, offering a promising
avenue to address these challenges. However, these approaches suffer from critical shortcomings
when applied to multimodal generation: temporal blindness—they ignore how the importance of
textual versus visual conditioning varies across denoising timesteps, applying uniform optimization
throughout the generation trajectory; and entangled feedback—they provide only terminal rewards
without decomposing the individual contributions of text and reference conditions, making targeted
improvements impossible.

To address these fundamental limitations, we propose Consis-GCPO, a principled framework that
reformulates multi-condition guided generation as a temporal causal optimization problem. The
foundation of Consis-GCPO is a discrete-time structural causal model (SCM) that explicitly mod-
els causal dependencies between conditioning signals and generation outcomes at each denoising
timestep—addressing the critical gap in existing methods’ inability to capture temporal dynamics
of multimodal conditions. Leveraging this causal foundation, Consis-GCPO implements decoupled
causal interventions through targeted ablations that selectively remove specific conditions at individ-
ual timesteps. By comparing main generation trajectories with prompt and reference-intervention
paths, we precisely quantify when textual semantics versus visual references are most critical during
denoising. These instantaneous causal effects are converted into temporally-weighted advantages
that enable dynamic adjustment of semantic alignment and subject fidelity based on each timestep’s
actual importance rather than uniform treatment. The resulting optimization adaptively integrates
textual and visual guidance based on measured temporal contributions rather than heuristic weight-
ing schemes. Notably, our method achieves superior multimodal consistency while maintaining
computational efficiency, particularly excelling in complex multi-subject scenarios that current ap-
proaches struggle with. Our contributions are as follows:
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Flow-GRPO
A cute bear plushie with 
soft white wings gracefully 
soaring through the bright 
blue sky, surrounded by 
fluffy clouds glowing in the 
sunlight.

Consis-GCPOPrompt

A man sits by the window 
of a car, raising a hand in a 
wave toward the outside. 
Sunlight reflects off the 
glass, with blurred scenery
in the background .

A baby boy sits in a wooden 
crib, smiling brightly as he 
stretches one hand toward 
a colorful mobile hanging 
above, while his other arm 
hugs a teddy bear.

Flow-GRPO Consis-GCPOReference

Prompt
A refined gray tabby 
cat, perched regally on 
the edge of a polished 
mahogany table, lifts its 
slender paw with 
elegant poise and gently 
brushes against its 
gleaming sunglasses, 
adjusting them with a 
graceful motion as faint 
candlelight flickers 
across the scene. 

Figure 2: Challenges in subject-driven generation. Current approaches struggle to simultaneously
achieve subject fidelity and semantic alignment in R2I (left) and R2V (right). Our Consis-GCPO
addresses these limitations through temporally-aware causal interventions that optimize condition-
ing effects across different denoising timesteps.

• We identify the fundamental limitation of existing GRPO methods in subject-driven gen-
eration—the inability to capture temporal dynamics of conditioning signals. Our proposed
Consis-GCPO addresses this through causal reformulation and temporal intervention to
estimate causal effect of visual and textual conditions, enabling precise quantification of
when textual semantics versus visual references are most critical during denoising.

• We introduce decoupled causal intervention and temporally-weighted advantage com-
putation mechanisms that transform instantaneous causal effects into targeted optimization
signals. This enables the model to dynamically adjust semantic alignment and subject fi-
delity based on each timestep’s actual importance rather than uniform treatment.

• We demonstrate significant improvements over state-of-the-art personalized generation
methods, achieving superior subject consistency while preserving text-following capabili-
ties. Our approach particularly excels in complex scenarios involving multiple subjects and
intricate interactions, validating the effectiveness of causal-guided optimization.

2 RELATED WORKS

Subject-Driven Generation Subject-driven generation aims to synthesize visual content that pre-
serves reference subject identity while following textual descriptions. Early works like Dream-
Booth (Ruiz et al., 2023), IP-Adapter (Ye et al., 2023) and MS-Diffusion (Wang et al., 2025)
achieved subject consistency through fine-tuning or attention mechanisms in UNet architectures,
while recent transformer-based approaches including UNO (Wu et al., 2025) and XVerse (Chen
et al., 2025) leverage in-context learning for enhanced subject preservation. Video generation intro-
duces additional temporal consistency challenges. MAGREF (Deng et al., 2025) addresses multi-
subject video synthesis through masked guidance mechanisms, Phantom proposes unified text-image
injection for cross-modal alignment, and VACE (Jiang et al., 2025) introduces an all-in-one frame-
work unifying generation and editing tasks. Despite these advances, existing methods struggle with
balancing textual adherence and visual consistency, particularly in multi-subject scenarios where
maintaining individual subject fidelity across temporal sequences remains challenging.

Reinforcement learning for image generation Reinforcement learning has recently emerged as
an effective paradigm for enhancing text-to-image generation models. Flow-GRPO (Liu et al.,
2025a) first integrated online RL into flow matching models through ODE-to-SDE conversion,
demonstrating substantial improvements in compositional generation and visual text rendering tasks.
DanceGRPO (Xue et al., 2025) adapts GRPO for visual generation, achieving consistent and stable
policy optimization across diffusion models and rectified flows while scaling effectively to large
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and diverse prompt sets. These works collectively demonstrate that RL-based optimization effec-
tively addresses fundamental challenges in text-to-image generation, particularly in improving text
adherence, compositional understanding, and human preference alignment while maintaining com-
putational efficiency and preventing reward hacking behaviors.

3 PRELIMINARY: FLOW-GRPO

The starting point of our approach is the training of a conditional flow model for reference-to-vision
generation (image or video). The typical input unit contains three components: (1) the textual
prompt P , which specifies the human instruction; (2) the reference images Ir, which inject the
intended visual identity or style; and (3) the noised latent representation, defined as:

xt = (1− t)x0 + tx1; t ∈ [0, 1], (1)

where x0 denotes the target image and x1 is a random noise sample. The conditional flow model
vθ(·) is then defined and trained to predict the velocity field that transports xt towards x0.

SDE-based iterative denoising Once trained, the conditional flow model can be applied in the
generative stage by iteratively denoising a random initialization. To enable sampling diversity and
facilitate richer exploration during generation, we adopt a Stochastic Differential Equation (SDE)
formulation:

xt−∆t = fθ(xt, P, Ir, ϵt) = xt −∆t · vθ(xt, t, P, Ir) + g(t)
√
∆t ϵt, (2)

where ϵt ∼ N (0, I) is an i.i.d. Gaussian random variable introduced at each denoising step, and g(t)
is a time-dependent diffusion coefficient. Equivalently, the transition distribution can be written as

xt−∆t ∼ N
(
xt −∆t · vθ(xt, t, P, Ir), g

2(t)∆t · I
)
. (3)

This stochastic formulation augments the deterministic ODE trajectory with Gaussian perturbations,
thereby encouraging sampling diversity while still preserving conditional guidance.

On top of SDE-based denoising, Flow-GRPO (Liu et al., 2025a) enhances flow-based generative
models through online reinforcement learning. The method treats the denoising process as a se-
quential decision problem, where the policy is defined as π(t) ≜ pθ(xt−∆t|xt) in Eqn 3. Formally,
the Flow-GRPO loss is defined as:

Lθ =
1

G

G∑
g=1

∆t

t=∆t∑
t=1

(min(rgt (θ)A
g
t , clip(rgt (θ), 1− σ, 1 + σ)Ag

t )− βDKL(πθ||πref)), (4)

where rgt (θ) =
pθ(x

g
t−∆t|x

g
t )

pθold (x
g
t−∆t|x

g
t )

and ∆t is the interval of inter time steps and clip is a clamp function

to restrict the value to the range [1− σ, 1 + σ].

4 DISCRETE-TIME CAUSAL MODELING FOR MULTI-CONDITION GUIDED
GENERATION

We reformulate the vision customization generation task through the lens of causal inference, en-
abling principled analysis of how textual and visual conditioning jointly influence the generation
process. Specifically, at each discrete timestep t in the reverse diffusion process, we model the
denoised state xt−∆t as causally determined by four parent variables: the current noisy latent xt,
the textual prompt P , the reference image Ir, and an independent noise term ϵt. This relationship
defines our structural causal model (SCM) for single-step denoising, i.e., (xt, P, Ir) → xt−∆t.

To quantify individual modal contributions, we employ causal interventions through targeted ab-
lations. Unlike global ablation methods, we introduce step-wise causal interventions that isolate
causal effects at specific timesteps.

Definition 1 (Step-wise Causal Intervention). As shown in Figure 3 (b), a step-wise causal in-
tervention at timestep t′ modifies only the transition at t′ while maintaining standard conditions
elsewhere:
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R
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𝑃
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(a) SDE denoise

(b) SDE (P = ∅) (c) SDE (Ir = ∅) 

(a) The sampling workflow of our Consis-GCPO 

RT

Reference temporal importance weights

ωIr (t) = Softmax(       -       )R Rt

Text temporal importance weights

ωP (t) = Softmax(       -       )R Rt

(c) Temporal importance re-weighting

(b) Decoupled causal intervention at t

Figure 3: Overview of Consis-GCPO framework. (a) Sampling workflow showing step-wise
counterfactual interventions where prompt P or reference Ir are selectively ablated at specific
timesteps during SDE denoising, generating multiple trajectories for causal effect quantification.
(b) Decoupled causal intervention at timestep t, illustrating how ablating prompt P or reference Ir
enables isolation of individual conditioning contributions through structural causal models. (c) Tem-
poral importance re-weighting mechanism that transforms causal effects into normalized importance
weights ωg

P (t
′) and ωg

Ir
(t′).

do(C = ∅, t′) : xt−∆t =

{
fθ(xt, ·, ·, ϵt) \ C, t = t′

fθ(xt, P, Ir, ϵt), t ̸= t′
(5)

where C ∈ {P, Ir} represents the ablated condition.

4.1 DECOUPLED CAUSAL INTERVENTION TRAJECTORIES

For comprehensive causal analysis, we generate three types of trajectories for each initial noise x(g)
1 :

Main trajectory:
{x(g)

t }t=0
t=1 : x

(g)
t−∆t = fθ(x

(g)
t , P, Ir, ϵt) (6)

Prompt-intervention trajectory at step t′:

{x(P,t′,g)
t }t=0

t=1 : x
(P,t′,g)
t−∆t =

{
fθ(x

(P,t′,g)
t ,∅, Ir, ϵt), t = t′

fθ(x
(P,t′,g)
t , P, Ir, ϵt), t ̸= t′

(7)

Reference-intervention trajectory at step t′:

{x(Ir,t
′,g)

t }t=0
t=1 : x

(Ir,t
′,g)

t−∆t =

{
fθ(x

(Ir,t
′,g)

t , P,∅, ϵt), t = t′

fθ(x
(Ir,t

′,g)
t , P, Ir, ϵt), t ̸= t′

(8)

These intervention trajectories enable systematic analysis of how each conditioning signal influences
generation at different temporal stages.

4.1.1 QUANTIFYING TEMPORAL CAUSAL EFFECTS

We measure causal effects through specialized reward functions that evaluate different aspects of
generation quality:

5
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(a) Temporal Causal Weights

t=1.0 t=0.9 t=0.8
t=0.7 t=0.6
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t=0.4 t=0.3 t=0.2 t=0.1

N
o 

R
ef

N
o 

te
xt

Normal

(b) Step-wise Intervention

Figure 4: Causal Diagnostic Analysis. (a) Statistical analysis reveals that text weights ωP dominate
early stages, while reference weights ωIr peak in late stages. (b) Visual interventions confirm this:
early text ablation collapses structure, while late reference ablation degrades identity details.

R(g)
P = ψP (x

(g)
0 , P ), R(g)

Ir
= ψIr (x

(g)
0 , Ir), (9)

where ψP measures text-image alignment and ψIr evaluates visual consistency.

We quantify the instantaneous causal contribution of each modality at timestep t′ by measuring the
performance degradation resulting from its intervention, as shown in Figure 3 (c):

δ
(g)
P (t′) = R(g)

P − ψP (x
(P,t′,g)
0 , P ), δ

(g)
Ir

(t′) = R(g)
Ir

− ψIr (x
(Ir,t

′,g)
0 , Ir). (10)

Higher values indicate stronger causal dependence on the conditioning signal at that timestep.

4.1.2 TEMPORAL IMPORTANCE RE-WEIGHTING

We convert causal effects into normalized importance weights that capture temporal dynamics:

ω
(g)
P (t′) =

exp(δ
(g)
P (t′)/τ)∑

t exp(δ
(g)
P (t)/τ)

, ω
(g)
Ir

(t′) =
exp(δ

(g)
Ir

(t′)/τ)∑
t exp(δ

(g)
Ir

(t)/τ)
, (11)

where τ is a temperature parameter controlling the sharpness of the distribution. These weights
explicitly reveal the temporal patterns of multi-modal influence during generation. We compute
advantages that incorporate both temporal importance and group-level statistics:

Key Observations. These weights ω(t) explicitly quantify the shifting reliance between modali-
ties, resolving the uniform timestep bias in standard GRPO. As illustrated in Figure 4, our causal
diagnostics reveal a distinct “Coarse-to-Fine” statistical law:

• Text Dominance (Early Steps): In high-noise stages (t → 1), the text weight ωP (t)
dominates. Visually, ablating the prompt here leads to structure collapse, confirming text
drives global layout.

• Reference Handover (Late Steps): In low-noise stages (t → 0), the reference weight
ωIr (t) takes over. Ablating the reference here preserves structure but loses identity details,
confirming visual signals anchor fine-grained textures.

By incorporating these weights into the advantage calculation (Eq. 17), we ensure gradients are
amplified precisely at the critical decision points for each modality.

A(g)
P (t′) = ω

(g)
P (t′) ·

R(g)
P − µP

σP
, A(g)

Ir
(t′) = ω

(g)
Ir

(t′) ·
R(g)

Ir
− µIr

σIr
, (12)

where µP = Mean[{R(j)
P }Gj=1] and σP = Std[{R(j)

P }Gj=1] are group statistics.
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In a bright room, a kitten is
playing with a robot toy.

A dog chasing a toy car across
the surface of the moon.

A dog in a chef’s hat cooking
in a kitchen, standing behind
a table with a bowl on it.

A toy bear standing on a
surfboard, surfing across the sea

A can, a plushie and a clock
are placed on the table.

Reference Consist-GCPO UNO DreamOMS-Diffusion XVerse

Figure 5: Qualitative comparison of image generation results. Consis-GCPO achieves state-of-the-
art consistency and text fidelity in both single-reference and multi-reference image scenarios.

The total advantage combines both modalities:

A(g)(t′) = λPA(g)
P (t′) + λIrA

(g)
Ir

(t′), (13)

where λP and λIr are balancing coefficients that control the relative importance of each modality.

4.2 PROXIMAL POLICY OPTIMIZATION WITH CAUSAL WEIGHTING

The objective incorporates weighted advantages into a proximal policy optimization framework:

LConsis-GCPO(θ) = − 1

G

G∑
g=1

∑
t′

(min(rgt (θ)Ag(t′), clip(rgt (θ), 1−σ, 1+σ)Ag(t′))−βDKL(πθ||πref)),

(14)

where rgt′ =
pθ(x

g

t′−∆t
|xg

t′ )

pθold (x
g

t′−∆t
|xg

t′ )
, σ controls clipping for stability, and β weights the KL regularization,

keeping the same as Eqn 4. This formulation achieves targeted credit assignment by upweighting
gradients at timesteps where each conditioning modality demonstrates high causal influence, leading
to more efficient and interpretable multi-modal alignment.

Design Rationale. Although we aggregate objectives (L ∝ AP +AIr ), disentanglement is achieved
at the advantage estimation level. Since AP and AIr derive from independent counterfactuals
(Eq. 10), their gradients are mathematically isolated. Summing them guides the optimizer along a
Pareto-optimal direction, avoiding the gradient oscillation and overhead of alternating strategies.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model Architecture and Reward Configuration. We evaluate Consis-GCPO across image and
video generation using a unified framework. For image synthesis, we employ UNO (Wu et al., 2025)

7
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Table 1: Image quantitative comparison on DreamBench benchmark. The best results are in bold,
and second-best are underlined. Ours includes standard deviation (±) over 5 runs. ∗ indicates
statistical significance (p < 0.05) against the best baseline.

Method Subject CLIP-T ↑ CLIP-I ↑ DINO ↑

MS-Diffusion (Wang et al., 2025) Single 0.311 0.808 0.703
DreamO (Mou et al., 2025) Single 0.306 0.833 0.760
XVerse (Chen et al., 2025) Single 0.302 0.832 0.754
UNO (Wu et al., 2025) Single 0.304 0.835 0.760
UNO + Flow-GRPO (Ruiz et al., 2023) Single 0.314 0.839 0.766
UNO + Dance-GRPO (Li et al., 2023) Single 0.301 0.841 0.772
Consis-GCPO Single 0.325±0.003∗ 0.848±0.002∗ 0.781±0.004∗

MS-Diffusion (Wang et al., 2025) Multiple 0.319 0.726 0.525
DreamO (Mou et al., 2025) Multiple 0.321 0.733 0.522
XVerse (Chen et al., 2025) Multiple 0.312 0.735 0.537
UNO (Wu et al., 2025) Multiple 0.322 0.733 0.542
UNO + Flow-GRPO (Wu et al., 2025) Multiple 0.325 0.742 0.551
UNO + Dance-GRPO (Wu et al., 2025) Multiple 0.320 0.750 0.561
Consis-GCPO Multiple 0.331±0.004∗ 0.772±0.005∗ 0.572±0.004∗

for single-reference and multi-subject scenarios, while video generation uses Vace-1.3B (Jiang et al.,
2025). For reward design, we implement domain-specific mechanisms targeting semantic alignment
and visual consistency. For R2I generation, ImageReward (Xu et al., 2023) serves as text-image
alignment evaluator RP , while DINOv3 (Siméoni et al., 2025) computes visual similarity between
reference and generated images asRIr . For R2V generation, VideoAlign (Liu et al., 2025b) provides
text-video alignment assessment as RP , and DINOv3 processes sampled frames (initial, middle,
final) for efficient RIr evaluation.

Datasets and Benchmarks. Training data combines Subject200K (Tan et al., 2024) and
FFHQ (Karras et al., 2019), with GPT generating 5,000 diverse text-image pairs covering various
semantic concepts and visual styles. We evaluate on DreamBench (Ruiz et al., 2023) for image gen-
eration and introduce Dream-VBench—extending DreamBench subjects with GPT-generated action
prompts—yielding 500 video test samples (with reward ablation and model efficient in Appendix).

Evaluation Protocol. Our comprehensive framework spans multiple dimensions: CLIP-T measures
semantic alignment through cosine similarity between CLIP (Radford et al., 2021) text and image
embeddings; CLIP-I quantifies cross-modal consistency using CLIP visual features; DINO-I (Oquab
et al., 2024) evaluates fine-grained visual similarity via ViT-S/16 features for identity preservation.
For videos, we extend these to per-frame analysis and introduce Temporal Consistency, measuring
inter-frame coherence through consecutive CLIP embedding similarities.

5.2 COMPARISON ON IMAGE CONSISTENCY GENERATION TASKS

We evaluate Consis-GCPO against state-of-the-art methods including MS-Diffusion (Wang et al.,
2025), DreamO (Mou et al., 2025), XVerse (Chen et al., 2025), UNO (Wu et al., 2025), and GRPO
variants on DreamBench. Table 1 demonstrates our method achieves superior performance across
all metrics in both single-subject and multi-subject scenarios, with particularly pronounced im-
provements in complex multi-reference conditioning—obtaining CLIP-T (0.331), CLIP-I (0.772),
and DINO (0.572) for multi-subject generation. Figure 5 provides qualitative validation, showing
Consis-GCPO’s excellence in instruction adherence while maintaining subject consistency. No-
tably, only our method correctly generates the “standing” posture for the teddy bear rather than
replicating the sitting reference pose, and uniquely captures the dynamic “chasing” behavior be-
tween dog and toy car as specified in prompts. These results demonstrate Consis-GCPO’s capability
for subject fidelity with precise text-following.

5.3 EVALUATION ON VIDEO CONSISTENCY.

We compare Consis-GCPO against recent leading video generation frameworks, including
VACE (Jiang et al., 2025), MAGREF (Deng et al., 2025), Phantom (Liu et al., 2025c), and Video-
Booth (Jiang et al., 2024). To provide a more comprehensive analysis, we also include comparisons
with two reinforcement learning–based optimization strategies: Flow-GRPO (Liu et al., 2025a) and
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A woman is standing in a kitchen, preparing food. The 
kitchen has black cabinets and a wooden countertop. 
On the counter, there is a blender with a clear plastic 
lid, a bowl of green leafy vegetables, a plate of bread, 
and a bottle of olive oil. 
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A golden-hued dawn bathes the quiet park in a soft, 
amber glow as a dog, clad in a cheerful yellow shirt, 
trots through the dew-kissed grass, its tail wagging 
subtly in rhythm with the cool morning breeze.

Figure 6: Qualitative comparison of video generation results. Consis-GCPO achieves superior
subject consistency and temporal coherence while maintaining precise text alignment, demonstrating
robust performance across diverse multi-subject scenarios with complex motions and interactions.

Table 2: Video quantitative comparison for single- and multi-subject on Dream-VBench benchmark.
The best results are in bold, and second-best are underlined. Consis-GCPO includes standard
deviation (±) over 5 runs. ∗ indicates statistical significance (p < 0.05) against the best baseline.

Methods Subject CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Consistency ↑
VideoBooth (Jiang et al., 2024) Single 0.267 0.523 0.634 0.938
MAGREF (Deng et al., 2025) Single 0.278 0.669 0.675 0.965
Phantom-1.3B (Liu et al., 2025c) Single 0.266 0.601 0.710 0.963
Vace-1.3B (Jiang et al., 2025) Single 0.277 0.727 0.697 0.970
Vace-1.3B + Flow-GRPO (Liu et al., 2025a) Single 0.271 0.759 0.719 0.978
Vace-1.3B + DanceGRPO (Xue et al., 2025) Single 0.287 0.755 0.732 0.981
Consis-GCPO Single 0.305±0.004∗ 0.790±0.003∗ 0.746±0.003∗ 0.984±0.001∗

Vace-1.3B (Jiang et al., 2025) Multiple 0.274 0.615 0.589 0.966
Vace-1.3B + Flow-GRPO (Liu et al., 2025a) Multiple 0.265 0.645 0.587 0.974
Vace-1.3B + DanceGRPO (Xue et al., 2025) Multiple 0.281 0.642 0.594 0.972
Consis-GCPO Multiple 0.300±0.005∗ 0.674±0.005∗ 0.608±0.007∗ 0.981±0.002∗

DanceGRPO (Xue et al., 2025). The evaluation considers three dimensions central to reference-
guided video generation: (i) reference-video visual fidelity, (ii) text-video semantic alignment, and
(iii) temporal consistency. Figure 6 illustrates these improvements qualitatively. Quantitative results
are summarized in Table 2. Our method achieves consistent improvements across all settings. In
semantic alignment, Consis-GCPO attains a CLIP-T score of 0.305, which surpasses the strongest
baseline (VACE+DanceGRPO: 0.287) by 6.3%. For identity preservation, our DINO-I score of
0.746 exceeds the prior best (0.732), highlighting stronger reference fidelity. Most notably, our
temporal consistency reaches 0.984, outperforming all variants including Flow-GRPO and Dance-
GRPO, whose best results plateau at 0.978 and 0.981, respectively.

5.4 ANALYSIS ON STEP-WISE COUNTERFACTUAL INTERVENTIONS

To assess our decoupled causal intervention mechanism, we conduct ablation studies examining
four configurations: (1) baseline Flow-GRPO without interventions, (2) prompt-only interventions
do(P = ∅, t′), (3) reference-only interventions do(Ir = ∅, t′), and (4) our complete framework. Ta-
ble 3 presents quantitative results for image and video generation. For multi-subject image genera-
tion, baseline Flow-GRPO yields suboptimal performance (CLIP-T: 0.325, DINO-I: 0.551), demon-
strating limitations of uniform temporal optimization. Prompt-only intervention improves text align-
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Table 3: Ablation study on causal interventions in multi-subject R2I and R2V generation scenarios.

Method R2I Generation R2V Generation

CLIP-T ↑ CLIP-I ↑ DINO-I ↑ CLIP-T ↑ CLIP-I ↑ DINO-I ↑
No Interventions (Flow-GRPO) 0.325 0.742 0.551 0.265 0.645 0.587
Prompt-only Interventions 0.338 0.736 0.544 0.310 0.628 0.556
Reference-only Interventions 0.322 0.780 0.570 0.255 0.670 0.615
Full Interventions (Ours) 0.331 0.772 0.572 0.300 0.674 0.608

ment (CLIP-T: 0.338) but shows marginal identity preservation gains (DINO-I: 0.544), indicating
temporal credit assignment for textual conditioning alone is insufficient. Reference-only interven-
tion significantly enhances visual consistency (CLIP-I: 0.780) while maintaining reasonable text
alignment (CLIP-T: 0.322). Our complete framework outperforms all partial configurations (CLIP-
T: 0.331, DINO-I: 0.572), empirically validating that independent temporal credit assignment for
both conditioning modalities is essential for optimal subject-driven generation performance.

5.5 COMPARISON OF OPTIMIZATION STRATEGIES

To validate the design rationale discussed in Section 4.2, we compare our Joint Optimization against
two baselines: Alternating Optimization (updating text and image rewards alternately every 2
steps) and Sequential Optimization (optimizing text first for 50% steps, then visual consistency).

As shown in Table 4, the Joint strategy yields superior performance and efficiency. The Alternating
method suffers from gradient oscillation, resulting in suboptimal convergence (DINO-I: 0.762). The
Sequential approach exhibits catastrophic forgetting, evidenced by the sharp drop in text alignment
(CLIP-T: 0.308) during the second phase. Furthermore, Joint Optimization is 1.8× faster than
alternating methods by sharing the backward pass, empirically confirming it as the Pareto-optimal
choice for stability and training cost.

Table 4: Ablation on optimization strategies. Joint optimization achieves superior stability and
efficiency compared to alternating or sequential methods.

Strategy CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Efficiency

Alternating (Text ↔ Image) 0.317 0.837 0.762 1.8× (Slower)
Sequential (Text → Image) 0.308 0.842 0.770 1.5× (Slower)
Ours (Joint) 0.325 0.848 0.781 1.0×

6 CONCLUSION

We presented Consis-GCPO, a causal reinforcement learning framework that addresses fundamen-
tal limitations in multimodal personalized generation. Through step-wise causal interventions, we
enable precise quantification of when textual semantics versus visual references are most critical dur-
ing denoising. Through temporally-weighted advantage computation, we transform instantaneous
causal effects into targeted optimization signals that decouple text and reference contributions. Our
experiments demonstrate that Consis-GCPO achieves superior subject consistency while preserving
strong text-following capabilities, particularly excelling in complex multi-subject scenarios.

Limitations. While our method achieves significant improvements, current experiments focus on
algorithmic innovations rather than reward model enhancements. Future work will explore incor-
porating multi-modal rewards from more powerful foundation models to develop comprehensive
reward frameworks for enhanced multi-dimensional performance.

Use of LLMs. We utilize LLMs to assist with formula derivations and writing refinement.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

A.1.1 DATA PREPROCESSING PIPELINE

To ensure reproducibility and consistency with standard community protocols, we adopted a mini-
mal preprocessing pipeline:

• Visual Preprocessing: All images were resized such that the shortest side is 512, fol-
lowed by a center crop to 512× 512 resolution. Pixel values were normalized to the range
[−1, 1]. No random augmentations (e.g., flipping, rotation) were applied during fine-tuning
to maintain precise alignment between the prompt and visual content.

• Text Preprocessing: Text prompts were tokenized using the standard CLIP tokenizer with
a context length of 77 tokens. Sequences exceeding this limit were truncated, and shorter
ones were padded, consistent with the pre-trained text encoder’s requirements.

A.1.2 VIDEO DATA CONSTRUCTION PIPELINE

For video generation experiments, we constructed a specialized dataset of 5,000 motion-aware text-
image pairs. We utilized the same visual references from Subject200K and FFHQ but synthe-
sized dynamic temporal instructions. Representative examples demonstrating the dataset quality
are shown in Figure 7.

• Motion-Aware Prompt Generation: We employed an automated pipeline using GPT-4
to act as a “Video Director.” It converted static image captions into dynamic scripts by
injecting temporal predicates (e.g., “turning,” “running”) and cinematic instructions (e.g.,
“zoom in,” “pan right”).

• Filtering Criteria: Generated prompts were filtered based on strict inclusion criteria: (1)
Must contain at least one dynamic verb; (2) Length constraint of 20-50 words for concise-
ness; (3) Semantic consistency with the reference object class.

• Example: Static Input: “A girl smiling.” → Dynamic Output: “Cinematic shot of a girl
slowly breaking into a warm smile, wind blowing her hair, 4k detail.”

Reference Image Source Dataset R2I Caption R2V Caption

Subject200K

A parked military helicopter with a 
desert camo scheme, sitting on a 
dusty tarmac under bright daylight, 
detailed mechanical textures.

A dramatic aerial view of the military helicopter banking 
sharply through a misty mountain valley. The side door is 
open as it maneuvers past rocky cliffs, with pine trees 
rushing by below. The camera follows the aircraft as it 
accelerates towards the horizon under a cloudy sky.

Subject200K

A detailed full-body photograph of 
the penguin standing upright on an 
icy surface with a blurred Antarctic 
snow background.

An underwater shot showing the penguin diving from an ice 
shelf into clear blue water. It swims gracefully using its 
flippers, leaving a trail of bubbles behind it, as light filters 
down from the surface, illuminating the icy environment.

FFHQ

A medium-shot portrait of a
woman standing in a blooming 
garden, holding a woven basket 
full of colorful flowers. She is 
facing the camera with a bright 
smile, bathed in warm afternoon 
sunlight.

A medium shot as the woman slowly turns her head from 
looking off-camera to directly facing the lens. She smiles 
gently and nods her head once, with sunlight filtering 
through a window, catching her hair.

Figure 7: Data samples illustrating our task-specific caption construction. We show repre-
sentative reference images from different source datasets (FFHQ, Subject200K) alongside their
corresponding textual conditions. The table contrasts the Static R2I Captions (focusing on visual
appearance) with the Motion-Aware R2V Captions (incorporating specific temporal dynamics and
cinematic instructions).
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Figure 8: Temporal evolution of causal importance weights. The crossover demonstrates that text
guidance drives early structure while reference guidance drives late refinement.

B EMPIRICAL VALIDATION OF CAUSAL INSIGHTS

A core hypothesis of our work is the “Coarse-to-Fine” multi-modal interaction. We provide two
forms of empirical evidence to validate this insight.

B.1 QUANTITATIVE EVIDENCE: TEMPORAL WEIGHT DISTRIBUTION

We analyzed the average normalized causal weights, ωP (t) and ωIr (t), across 500 random genera-
tion trajectories (see Figure 8).

Experimental Setup: We set the total sampling steps to N = 10 to clearly visualize the tempo-
ral evolution trend without excessive granularity, and fixed the temperature parameter at τ = 1.0
to ensure a balanced credit assignment baseline without artificially sharpening or smoothing the
weights.

• Text Dominance (Early Steps): The text weight ωP (t) dominates in the high-noise stages
(t ∈ [0.8, 1.0]), confirming its role in establishing global semantic layout.

• Reference Handover (Late Steps): A clear “modal handover” is observed where ωIr (t)
not only surpasses the text weight but also reaches its peak magnitude in the low-noise
stages (t ∈ [0.1, 0.3]). This empirical trend confirms that visual references exert their
strongest influence during the final refinement phase to anchor fine-grained details.

B.2 QUALITATIVE EVIDENCE: STEP-WISE INTERVENTION

To intuitively verify the causal contribution of each modality, we conducted a step-wise ablation
analysis. Experimental Setup: For a generation trajectory with N = 10 steps, we generated
N distinct counterfactual outcomes. For each outcome, we ablated a specific condition (Text or
Reference) at exactly one timestep t ∈ {1, . . . , N}, while keeping the condition active at all other
steps. This allows us to isolate the instantaneous impact of each modality at every stage.

Comparing these N counterfactuals with the main trajectory (Figure 9) reveals:

• Text Criticality (Early Steps): Ablating the text prompt at early steps (t ∈ [0.8, 1.0])
leads to a complete semantic collapse (e.g., wrong object or layout), identifying this stage
as critical for structural formation.

• Reference Criticality (Late Steps): Ablating the reference image at late steps (t ∈
[0.1, 0.3]) preserves the layout but results in the loss of specific identity textures.
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Figure 9: Visual effects of step-wise causal interventions. Comparing the impact of ablating Text
vs. Reference at different denoising stages.

• Minimal Impact Areas: Conversely, removing text at late steps or reference at early steps
results in generated images that are visually nearly identical to the main trajectory, con-
firming their low causal influence in those respective phases.

C ADDITIONAL ANALYSIS

C.1 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We conducted extensive ablation studies to evaluate the robustness of our method to key hyperpa-
rameters.

C.1.1 BALANCING COEFFICIENTS (λP , λIr ).

We fixed λP = 1.0 and varied λIr . As shown in Table 5, the balanced setting (λP = λIr = 1.0)
achieves the optimal trade-off. Increasing λIr yields diminishing returns in identity metrics while
significantly degrading text alignment.

Table 5: Impact of balancing coefficients. We report CLIP-I, CLIP-T and DINO-I to explicitly
evaluate visual quality.

λP λIr CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Avg. ↑
1.0 0.5 0.332 0.835 0.760 0.642
1.0 1.0 0.325 0.848 0.781 0.651
1.0 1.2 0.318 0.850 0.783 0.650
1.0 2.0 0.305 0.852 0.788 0.648

C.1.2 TEMPERATURE PARAMETER (τ ).

Table 6 presents the quantitative ablation on the softmax temperature τ . The results confirm that
τ = 1.0 provides the optimal balance between temporal specialization and gradient density. Extreme
values degrade performance: τ = 0.8 yields overly sparse gradients, while τ = 1.2 leads to uniform
weighting that mimics the baseline GRPO.
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Table 6: Impact of temperature τ . Extreme values (too sharp or too flat) degrade performance.

τ Type CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Avg. ↑
0.8 Sharp 0.316 0.839 0.765 0.640
1.0 Ours 0.325 0.848 0.781 0.651
1.2 Flat 0.319 0.845 0.772 0.645

Visualization and Modality-Specific Analysis. To understand the underlying mechanism, we vi-
sualize the learned temporal weight curves under different τ settings in Figure 10.

• Impact of High Temperature (τ = 1.2): Increasing τ overly smoothes the distribution.
As shown in the visualization, the distinct peak of reference guidance at late stages is flat-
tened, causing the text weight to remain relatively high even when it should yield control.
This **loss of modal discrimination** prevents the model from focusing exclusively on
identity refinement, degrading DINO-I scores.

• Impact of Low Temperature (τ = 0.8): Conversely, decreasing τ makes the distribution
overly sharp. While it highlights the peak steps, it forces the weights of adjacent supportive
steps to near zero. This **gradient sparsity** means the model receives no optimization
signal for valid transitional timesteps, leading to unstable training and a drop in overall
performance.

(2) 𝜏 = 1.0

(3) 𝜏 = 1.2

(1) 𝜏 = 0.8

Figure 10: Visualization of causal weights under different temperatures τ . τ = 1.0 (Ours)
achieves a clear separation of modal influence. τ = 1.2 leads to over-smoothing (leakage), while
τ = 0.8 leads to over-sharpening (information loss).
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Figure 11: Training reward trajectories of FlowGRPO and Consis-GCPO.

C.2 ANALYSIS ON REWARD MODEL

We further investigate the impact of different reward models on video and image generation under
the single-reference setting. As shown in Table 7, reward signals are divided into text-related (RP )
for semantic alignment and reference-related (RIr ) for identity preservation. For RP , VideoAlign
achieves the highest average performance in video generation (0.614), whereas ImageReward is
superior in image generation (0.651). CLIP-T attains the best CLIP-T score for video (0.322) but
lags on other metrics. For RIr , DINOv3 consistently outperforms CLIP-I and DINOv2, obtaining
the highest averages in both video (0.614) and image (0.651). Therefore, we adopt VideoAlign for
video generation and ImageReward for image generation asRP , together with DINOv3 asRIr , since
this combination provides the most favorable trade-off between semantic alignment and identity
consistency.

Table 7: Ablation on reward models for video and image generation. For clarity we fix the best-
performingRP (orRIr ) and report comparisons by varying the other reward model. The best
results are in bold, and the second-best are underlined.

Method R2I Generation R2V Generation
CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Avg. ↑ CLIP-T ↑ CLIP-I ↑ DINO-I ↑ Avg. ↑

RP (with RIr = DINOv3)

Qwen2.5-VL (Qwen et al., 2025) 0.303 0.779 0.727 0.603 0.297 0.738 0.704 0.580
CLIP-T Radford et al. (2021) 0.324 0.710 0.700 0.578 0.322 0.723 0.711 0.585
ImageReward (Xu et al., 2023) 0.325 0.848 0.781 0.651 - - - -
VideoAlign Liu et al. (2025b) - - - - 0.305 0.790 0.746 0.614

RIr (with Rp = ImageReward for R2I and Rp = VideoAlign for R2V)

CLIP-I Radford et al. (2021) 0.280 0.861 0.694 0.612 0.279 0.795 0.691 0.588
DINOv2 (Oquab et al., 2024) 0.291 0.829 0.786 0.635 0.288 0.720 0.782 0.597
DINOv3 Siméoni et al. (2025) 0.325 0.848 0.781 0.651 0.305 0.790 0.746 0.614

C.3 ANALYSIS OF MODEL EFFICIENCY

We assess the efficiency of the proposed framework by analyzing both computational cost and re-
ward evolution, as illustrated in Figure 11 and Figure 12.

C.3.1 TRAINING REWARD TRAJECTORIES.

As shown in Figure 11, we examine the trajectories of text-related and reference-related rewards
during training for FlowGRPO and Consis-GRPO. Our results show that, in later training stages, the
strong semantic alignment characteristic of FlowGRPO constrains consistency improvements and
even introduces detrimental side effects. In contrast, Consis-GRPO effectively circumvents these
issues by decoupling semantic adherence from consistency optimization. Furthermore, under an
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Figure 12: Evaluation rewards vs. GPU hours. Consis-GRPO reaches the same reward level about
1.4× faster than FlowGRPO, highlighting its improved computational efficiency.

identical training budget of 200 steps, Consis-GRPO achieves considerably higher reference-related
rewards compared to FlowGRPO, indicating superior consistency in generation.

C.3.2 COMPUTATIONAL EFFICIENCY AND CONVERGENCE ANALYSIS

To investigate the benefits of our timestep-aware optimization, we provide a comprehensive analysis
of the trade-off between per-step computational cost and overall convergence efficiency.

Mechanism: Inference vs. Training Cost. While our method involves calculating counterfactual
trajectories, these additional rollouts are performed in no grad mode (inference only). The com-
putationally expensive backpropagation is performed only on the main trajectory. Therefore, the
gradient computation overhead remains comparable to standard fine-tuning. Our method effectively
trades “cheap” inference compute for “expensive” training iterations.

Sample Efficiency and Total Convergence Time. By extracting high-quality causal gradients,
Consis-GCPO achieves a dramatic improvement in sample efficiency compared to the baseline:

• Baseline (Flow-GRPO): Requires ≈ 15, 000 steps to converge.
• Ours (Consis-GCPO): Converges in ≈ 1, 300 steps.

Despite the increased inference load per step (approximately 8× for trajectory rollout), this 11.5×
reduction in required training steps results in a significant net gain.

Wall-Clock Speedup. We further analyze the evaluation rewards normalized by GPU hours to
measure real-world efficiency. As presented in Figure 12, Consis-GCPO attains the target evaluation
reward approximately 1.4× faster than Flow-GRPO in terms of wall-clock time. This demonstrates
that the proposed causal intervention accelerates convergence without compromising performance,
validating our design choice of investing in causal gradient quality.

D MORE VISUALIZATION

D.1 PROMPTS IN FIGURE 1.

The prompts in Figure 1 are as follows:
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1. In a park, A man is holding a camera shotting.
2. A cartoon character chasing a toy car across the surface of the moon, under natural
daylight, with realistic details of lunar soil, craters, and the vast space backdrop.
3. An anime space ranger is riding a bicycle in front of a cyberpunk skyscraper background.
4. A cinematic scene of a man wearing a t-shirt outdoors petting a dog, warm sunlight,
detailed textures, natural background.
5. The anime Spider-Man leaps across skyscrapers, clutching a roll of film.
6. A cinematic 4K video of a young woman gracefully playing the violin in a grand, opulent
concert hall adorned with golden chandeliers and ornate decorations. The camera captures
multiple angles in smooth motion: close-up shots of her hands moving the bow across the
strings, mid-shots of her calm and focused expression, and wide shots revealing the majestic
hall with its glittering lights and luxurious atmosphere.
7. A cute small dog wearing a red Christmas hat lies cozily on a fluffy rug in front of a
glowing fireplace. The warm firelight flickers softly on the walls, creating a festive and
comforting holiday atmosphere. After a moment of resting, the dog slowly gets up, shakes
its body gently, and begins to walk forward.

D.2 FAILURE CASES

We have identified two primary limitations where our method faces challenges, as visualized in
Figure 13:

• Extreme Semantic Conflict: When the text prompt and visual reference are fundamentally
contradictory (e.g., Prompt: “A cat”, Reference: [Image of a dog] ), the causal reweighting
mechanism struggles to reconcile the divergence. High causal effects are detected for both
conflicting modalities simultaneously, which confuses the optimization and often results in
hybrid artifacts or semantic oscillation.

• Micro-Detail Loss: In scenarios involving extremely small subjects within wide-angle
shots (e.g., a tiny face in a crowd), the underlying reward models (DINO/CLIP) sometimes
fail to capture identity loss accurately due to resolution limits. Consequently, even if our
method correctly upweights the relevant timesteps, the reward signal itself is too noisy to
guide the recovery of micro-details.

Figure 13: Visualization of failure cases. (Left) Hybrid artifacts resulting from extreme semantic
conflict between prompt and reference. (Right) Loss of micro-details in wide-angle shots due to
sparse reward signals.
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D.3 ADDITIONAL RESULTS

We further provide supplementary results on consistency generation. Figure 14 and Figure 15
presents examples of image-level consistency, while Figure 16 illustrates video-level consistency,
demonstrating that our Consis-GCPO maintains coherent and stable outputs across both modalities.

A deer standing beside a vintage van.

A woman and an old man are sitting together,
with a beer can on the table between them.

A vintage television is on, and there's a
cocktail and a donut on the table beside it.

A boy is standing in an open field,
with an eagle soaring in the sky above
him and a dog sitting at his feet.

A street lamp illuminates an Eevee figurine
placed next to a piggy bank on the sidewalk.

A woman with a cap playing with a puppy. A boy and a man are watching a hamster play in a cage.

In the moonlit jungle, a white tiger prowls
silently, its eye catching the glint of an
old, abandoned watch nearby.

Figure 14: More R2I Generation results.
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A hot air balloon floating in the sky
above a sneaker lying on the ground. An Eevee figurine placed inside a

leather handbag.

A rubber duck floating near a tree-
like character by a small pond.

A man is using a hair dryer.

A man is holding a vintage camera. An elephant is carrying a backpack on
its back.

A wolf is standing beside a teapot. A boy holding a bowl filled with rice.

Figure 15: More R2I Generation results.
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The video shows a man speaking to reporters in a locker room. He is wearing a 
blue shirt and appears to be addressing the media. The background features 
shelves filled with various sports equipment, including hockey gear such as 
helmets and gloves. 

The video begins with a close-up of a woman passionately singing on a brightly lit 
stage, her hand gripping the microphone. She is wearing a shimmering silver 
sequin slip dress that sparkles under the intensified stage lights. The camera 
slowly pulls back, revealing colorful spotlights. 

A small cat dressed in a flowing purple wizard robe sits at a wooden table under 
the soft glow of candlelight. The cat gazes intently at an ancient open book, its 
eyes reflecting the flickering flames. After a brief pause, the cat gently raises its 
paw and turns a page,

"A golden retriever sits calmly its fur gently ruffled by a cool morning breeze, 
while behind it a quaint blue house stands washed in the soft, golden light of 
sunrise, its windows reflecting faint glimmers of the awakening day."

Figure 16: More R2V Generation results.
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