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Abstract

Knowledge Editing (KE) for modifying factual001
knowledge in Large Language Models (LLMs)002
has been receiving increasing attention. How-003
ever, existing knowledge editing methods are004
entity-centric, and it is unclear whether this ap-005
proach is suitable for a relation-centric perspec-006
tive. To address this gap, this paper constructs007
a new benchmark named RaKE, which focuses008
on Relation based Knowledge Editing. In this009
paper, we establish a suite of innovative metrics010
for evaluation and conduct comprehensive ex-011
periments involving various knowledge editing012
baselines. We notice that existing knowledge013
editing methods exhibit the potential difficulty014
in their ability to edit relations. Therefore, we015
further explore the role of relations in factual016
triplets within the transformer. Our research017
results confirm that knowledge related to re-018
lations is not only stored in the FFN network019
but also in the attention layers. This provides020
experimental support for future relation-based021
knowledge editing methods.022

1 Introduction023

Large Language Models (LLMs), trained on large-024

scale knowledge corpora such as Wikipedia, ex-025

hibit remarkable performance across various nat-026

ural language processing tasks (Ma et al., 2023;027

Lei et al., 2023). However, current LLMs face028

challenges posed by errors, biases, and inappropri-029

ate information (Neeman et al., 2022; Guo et al.,030

2022). Meanwhile, LLMs need to adapt to emerg-031

ing knowledge over time and eliminate outdated032

knowledge (Kasai et al., 2022; Wei et al., 2023). To033

maintain the accuracy and reliability of LLMs, the034

task of Knowledge Editing (KE)1, which involves035

modifying and updating the internal knowledge of036

language models, has recently gained significant037

attention.038

1In this paper, the term "knowledge editing" is equivalent
to "model editing" and "memory editing".
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(a) Jack Dorsey is the CEO of Twitter.
(b) Parag Agrawal is the CTO of Twitter.

Jack Dorsey resigned as Twitter's CEO, and 
Parag Agrawal assumed the role.
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Figure 1: As time progresses, relationships between
entities undergo continuous changes. In real-world sce-
narios, such as Wikipedia, updating factual knowledge
sometimes necessitates the modification of relationships
to accurately reflect evolving information.

The factual knowledge encapsulated in language 039

models can be represented as the relation between 040

subject and object in the form of (s, r, o)2. As time 041

progresses, the relations between entities also un- 042

dergo changes, as illustrated in Figure 1 (b). For 043

instance, consider the evolution of Parag Agrawal’s 044

role at Twitter3: “From 2015, Parag Agrawal is the 045

CTO of Twitter,” transforms into “In 2021, Parag 046

Agrawal is the CEO of Twitter.” The intuitive need 047

arises to directly modify the relation (“CTO” to 048

“CEO”) to accurately reflect this evolving knowl- 049

edge. However, existing attempts focuses on edit- 050

ing from the entity perspective (De Cao et al., 2021; 051

Mitchell et al., 2021, 2022; Dong et al., 2022; 052

Huang et al., 2023; Dai et al., 2021; Meng et al., 053

2022a,b; Zheng et al., 2023; Zhong et al., 2023), ig- 054

noring the modification of factual knowledge from 055

the relation perspective. 056

To fill this gap, we construct a Relation-based 057

2Knowledge triples: (subject entity, relation, object entity).
3https://en.wikipedia.org/wiki/Twitter,_Inc.
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Knowledge Editing benchmark called RaKE, and058

extend previous evaluation principles (Mitchell059

et al., 2021; Elazar et al., 2021) to the perspective of060

relation. Then, we empirically investigate the out-061

comes of existing methods on relation-based edit-062

ing. Surprisingly, the experimental results reveal063

that relation-based editing lags far behind entity-064

based editing, contradicting the expectation of their065

consistency as they pertain to the same factual066

knowledge. To delve into the reasons causing such067

inconsistency, we conduct a causal tracing analysis068

on the relation r within the factual knowledge and069

investigate how and where the relation memories070

are stored in LLMs. The results show evidence071

that the relation memories are not only related to072

the feed-forward network (FFN) but also to the073

attention layer. Due to the fact that entity-based074

methods primarily modify parameters within the075

feed-forward network (FFN), our experiments indi-076

cate that the underperformance of current relation-077

based editing stems from a lack of modification to078

knowledge neurons associated with the attention079

layer. We hope that our work can provide the NLP080

community with insights.081

Our main contributions are summarized as fol-082

lows:083

• For the first time, we identify the impor-084

tance of knowledge editing from a relational085

perspective and construct a new benchmark,086

RaKE, tailored for relation-based editing.087

• We conduct extensive experiments using var-088

ious baseline methods, and the results re-089

veal significant limitations in the current ap-090

proaches to relation-based editing.091

• Our results confirm the crucial role of not only092

the feed-forward network but also the atten-093

tion modules in storing relational knowledge.094

This insight provides valuable guidance for095

future KE research.096

2 Preliminaries097

In this section, we will illustrate the proposed098

relation-based editing task in Figure 2. We will099

discuss the task definition (§2.1), and explain the100

evaluation metrics (§2.2).101

2.1 Task Definition102

Following the work of (Petroni et al., 2019), we103

adopt the definition that a large language model104

possesses knowledge of a fact P in the form of 105

(s, r, o). In this context, s represents a subject entity 106

(e.g., Lyon), r represents a relation (e.g., twin city), 107

and o represents an object (e.g., Beirut). We also 108

use a few variations of the data for the fact (s, r, o). 109

The additional variables include: 110

1. s∗ represents a neighboring entity to the sub- 111

ject s (e.g. “Cairo” is a neighboring entity to 112

“Lyon”), for which (s∗, r, o) is a true fact like 113

(s, r, o). 114

2. r∗ is a paraphrase of the relation r between 115

the subject s and object o, such as “[s] works 116

in the field of [o]” for “[s] works in the area 117

of [o].” 118

3. oc is the original object that correctly com- 119

pletes the fact (s, r, ·), and o∗ is a new object 120

after editing updates. 121

As show in Figure 2, we can establish the logical 122

equivalence of the factual knowledge P between 123

entity perspective and relation perspective. In this 124

paper, we propose that the fact P signifies the natu- 125

ral language prompt “The relation between Lyon 126

and Beirut is ___” where the relation r needs to be 127

completed. The main objective of the model editing 128

task is to modify a base model fθ, parameterized 129

by θ, to gain control over the model’s prediction 130

outputs. Specifically, the base model fθ is repre- 131

sented by a function f : X 7→ Y that associates 132

an input P with its corresponding prediction r, as 133

show in Equation 1. 134

fθ(P ) =


argmax

θ
pθ(r | s, o) if o ∈ o∗

argmin
θ

pθ(r | s, o) if o ∈ oc
(1) 135

To achieve control over the model’s output, 136

we aim for the model’s conditional probability 137

pθ(r|s, o∗) to be maximized and pθ(r|s, oc) to be 138

minimized. Here, oc represents the original object 139

entity, and o∗ represents the modified object entity. 140

2.2 Evaluation Metrics 141

Model editing methods are commonly evaluated 142

according to three aspects: Efficacy: their effec- 143

tiveness in altering the model prediction for the 144

input prompt P . Generalization: generalize to para- 145

phrases of the prompt P . Specificity: avoid side 146

effects on irrelevant fact knowledge. 147
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Entity-based Editing Input Prompt Objective

Relation-based Editing

Add Object 𝑜∗ What is the twin city of Lyon? It is  _______ argmax
𝜃

𝑝𝜃(𝑜
∗|Input)

Add Relation 𝑟 The relation between Lyon and Manila is ___ argmax
𝜃

𝑝𝜃(𝑟|Add Input)

Delete Relation 𝑟 The relation between Lyon and Beirut is ___ argmin
𝜃

𝑝𝜃(𝑟|Del Input)

What is the twin city of Lyon? It is  _______Delete Object 𝑜𝑐 argmin
𝜃

𝑝𝜃(𝑜
𝑐 |Input)

Input Prompt Objective

𝑜𝑐

𝑜∗

Figure 2: Depiction of editing problem variants, where r represents the relation P190 "twin city," oc and o∗

respectively represent the original object and the new object after editing. We can establish the logical equivalence
of the editing results from both perspectives. Instead of modifying a new object fact within the model (Entity-based
Editing), we consider directly modifying the relation output (Relation-based Editing).

In particular, we gather a set of more difficult148

false facts (s, r, o∗), these counterfactuals start with149

low scores compared to the correct facts (s, r, oc).150

Our editing objective is to establish a relationship151

r between s and o∗ while severing the connec-152

tion r between s and oc. To assess the efficacy153

of changes about relation, we divide the evaluation154

metrics into two: Success and Magnitude. The Suc-155

cess is the proportion of cases for which we have156

p(r∗) > p(rc) (or p(o∗) > p(oc)) post-edit, and157

Magnitude is the average difference p(r∗)− p(rc)158

(or p(o∗) − p(oc)). In details, we report Efficacy159

Success (ES) and Efficacy Magnitude (EM) to as-160

sess the efficacy of changes about relation, we col-161

lect a set of rephrased prompts equivalent to P and162

report Paraphrase Scores (PS) and (PM), we collect163

a set of nearby subjects sn for which (sn, r, o
c)164

holds true to measure Neighborhood Score NS165

and NM , computed similarly to ES and EM. To166

test three metrics tradeoff, we report the harmonic167

mean of ES, PS, NS as Score (S).168

3 RaKE: Relation-based Knowledge169

Editing170

A factual knowledge can be represented by a triplet171

(s, r, o). In the entity perspective, the current172

approach predicts the object based on the given173

prompt (s, r). In the relation perspective, it is174

equivalent to completing the relationship between175

the subject and object given (s, o). For example,176

“What is the twin city of Lyon? It is ___”, for which177

the expected completion is o = “Beirut”. Equiva-178

lent to: “The relation between Lyon and Beirut179

is ___”, for which the expected completion is r = 180

“twin city”. To evaluate the editing capability of the 181

current editing method for relation knowledge, we 182

follow the dataset COUNTERFACT (Meng et al., 183

2022a) and construct an equivalent relation per- 184

spective dataset named RaKE. We first present the 185

data construction process for the dataset. Then, we 186

present the data statistics and evaluation settings 187

of the RaKE, followed by evaluation metrics in the 188

end. 189

3.1 Dataset Construction 190

Generalization Dataset Construction. To com- 191

pare and assess semantic generalization of the lan- 192

guage model in the relation perspective, we col- 193

lect relations based on Wikidata (Vrandečić and 194

Krötzsch, 2014), a knowledge base consisting of 195

fact triples associated with thousands of relations. 196

We first manually select 34 common relations from 197

wikidata and then leverage the PARAREL dataset 198

(Elazar et al., 2021) to get paraphrase for rela- 199

tions. Finally, we construct relation paraphrase 200

prompts using manually designed templates, such 201

as: “When it comes to subject and object, the rela- 202

tion can be defined as ___”. We also adopt GPT3.5- 203

turbo model to ensure that the sampled fact triples 204

are coherent and lead to natural questions about re- 205

lations, such as: “What is the correlation between 206

Danielle Darrieux and English?”. 207

Efficay Dataset Construction. In this paper, 208

we define the knowledge editing task from a re- 209

lational perspective using two atomic operations. 210

1) Delete operation: Removing the relation r be- 211

tween s and o. 2) Add operation: Adding the rela- 212
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Criterion zsRE PARAREL COUNTERFACT Calibration MQuAKE RIPPLEEDITS RaKE
Entity Efficacy ✓ ✓ ✓ ✓ ✓ ✓ ✓

Entity Paraphrase ✗ ✓ ✓ ✓ ✓ ✓ ✓

Specificity ✗ ✗ ✓ ✗ ✓ ✓ ✓

Multi-hop ✗ ✗ ✗ ✗ ✓ ✗ ✗

Relation Efficacy ✗ ✗ ✗ ✗ ✗ ✗ ✓

Relation Paraphrase ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparison to Existing Benchmarks. While previous benchmarks have defined factual knowledge in the
form of triples (s, r, o), existing paradigms assess whether an "entity-based" edit (s, r → o∗) is successful, but lack
evaluation for the equivalent knowledge (s, o∗ → r).

tion r between s and o∗, as illustrated in Figure 2.213

By utilizing these two atomic operations, we have214

achieved the logical equivalence to the entity-based215

editing method. We manually designed templates216

for these two atomic operations and constructed217

efficacy prompts for all facts by filling the slots.218

3.2 Dataset Comparison219

Table 1 shows a comprehensive comparison of re-220

lated datasets. RaKE is the first dataset to study221

relation-based knowledge editing over language222

models. Due to the fact that factual knowledge is223

composed of tuple (s, r, o), any change in one of224

these components will result in a transformation225

of the associated knowledge. Therefore, for the226

expression of the same factual knowledge, there227

are two perspectives: the relation perspective and228

the entity perspective. There exists a mutual depen-229

dence and feedback relationship between these two230

perspectives. Compared with previous benchmarks,231

RaKE takes into account editing problem variants232

and incorporates evaluation prompts related to re-233

lation editing. It assesses the effectiveness of edits234

from a relational perspective, rather than solely235

measuring the accuracy of predicting the tail entity.236

3.3 Dataset Statistics237

The RaKE dataset consists of 21,919 editing sam-238

ples, each of which can be categorized as ei-239

ther entity-based or relation-based. Each sam-240

ple includes editing prompts for modifying knowl-241

edge, as well as Paraphrase Prompts and Neigh-242

borhood Prompts. Specifically, the entity-based243

category contains 21,919 Edit Prompts, 82,650244

Neighborhood Prompts, and 43,838 Paraphrase245

Prompts. The relation-based category includes246

43,838 Edit Prompts, 284,102 Paraphrase Prompts.247

Both categories share the entity-based Neighbor-248

hood Prompts to assess the impact on unrelated249

knowledge. The dataset statitics are summarized in250

Table 2.251

Type NEntity NRelation

Edit Prompts 21919 43838
Neighborhood Prompts 82650 -
Paraphrase Prompts 43838 284102

Table 2: Statistics of RaKE. NEntity and NRelation

represent the number of samples in the entity perspective
and relation perspective, respectively.

4 Experiments 252

In this section, we compare the performance dif- 253

ferences between entity-based editing and relation- 254

based editing and identify weaknesses in LLMs 255

with respect to editing relations. The results of 256

these comparisons are displayed in Table 3. Fur- 257

thermore, we analyze the storage and recall of rela- 258

tion memory in LLMs through Casual Tracing, as 259

show in Figure 4. 260

4.1 Experimental Setup 261

Language models. We use GPT-2 XL (1.5B) and 262

GPT-J (6B) as the baseline models to assess model 263

editing methods. In our experiment, we utilize 264

four NVIDIA RTX A6000 GPUs and ten NVIDIA 265

GeForce RTX 3090 GPUs to run model editing 266

approaches. 267

Model editing methods. In this paper, our focus 268

is on transformer-based language models, specif- 269

ically exploring the connection between model 270

parameters and memory. Therefore, we employ 271

memory-based and Locate-Then-Edit paradigms as 272

our model editing methods. 273

• Finetune. Fine-tuning is a commonly used 274

approach for adapting pre-trained language 275

models to specific tasks or domains.In this 276

paper, we compare with a naive fine-tuning 277

approach that uses weight decay to prevent 278

forgetfulness (FT). 279
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Editor
Score E-Efficacy R-Efficacy Specificity E-Generalization R-Generalization
S ↑ ES ↑ EM ↑ ES ↑ EM ↑ NS ↑ NM ↑ PS ↑ PM ↑ PS ↑ PM ↑

Entity Perspective

GPT-2
XL

FT 72.98 99.28 92.1 97.19 0.12 70.06 3.6 48.21 0.38 76.14 0.09
KN 46.42 30.45 -2.08 83.42 0.08 69.19 1.98 28.8 -1.92 72.93 0.05

MEND 67.81 93.8 45.27 97.91 0.12 44.44 -6.61 58.0 7.88 76.22 0.08
ROME 87.01 99.93 97.94 96.12 0.17 75.36 4.4 96.6 62.91 74.46 0.09
MEMIT 83.78 93.88 64.06 97.28 0.13 76.75 4.97 79.6 26.24 76.0 0.09

GPT-J
MEND 69.0 97.43 72.12 91.91 0.11 53.15 -5.44 53.53 11.12 72.34 0.08
ROME 87.51 99.99 99.49 91.37 0.13 78.61 5.3 99.49 77.21 74.52 0.09
MEMIT 87.43 99.81 97.05 92.36 0.14 80.97 6.81 95.07 50.73 74.2 0.10

Relation Perspective

GPT-2
XL

FT 42.76 23.92 -4.76 98.79 29.19 76.69 5.05 25.44 -4.13 79.03 2.19
KN 41.23 22.53 -4.92 97.52 0.12 77.72 5.17 24.61 -4.09 76.16 0.08

MEND 41.57 22.33 -4.94 100.0 14.78 77.63 5.2 24.63 -4.13 83.24 1.7
ROME 47.27 27.92 -3.7 99.99 86.7 77.88 5.09 28.12 -3.76 84.47 15.16
MEMIT 42.03 24.15 -4.11 91.36 3.84 77.66 5.13 24.63 -4.04 76.24 0.73

GPT-J
MEND 32.38 15.51 -7.26 100.0 45.96 82.77 7.58 17.99 -6.65 81.52 5.11
ROME 51.98 30.95 -3.83 100.0 98.51 82.75 7.54 31.87 -3.76 95.97 28.18
MEMIT 36.27 18.92 -7.62 100.0 91.76 82.81 7.54 19.37 -7.82 88.5 13.21

Table 3: The performance of knowledge editing approaches. In the table, the prefix R represents relation, and E
represents Entity.

• KN. The Knowledge Neuron (KN) method280

(Dai et al., 2021) introduces a knowledge attri-281

bution technique to identify the “knowledge282

neuron” (a key-value pair in the Feed-Forward283

Network matrix) encapsulate important mem-284

ory. These neurons are then updated to incor-285

porate relevant knowledge.286

• MEND. Model Editor Networks with Gradi-287

ent Decomposition (Mitchell et al., 2021) en-288

ables efficient local edits to language models289

by transforming the gradients of fine-tuned290

models. It achieves this by utilizing a low-291

rank decomposition of the gradients.292

• ROME. Meng et al. (2022a) applies causal293

mediation analysis to locate the specific areas294

requiring modifications. Instead of modify-295

ing individual knowledge neurons in the FFN,296

ROME iteratively updates one fact at a time297

by altering the entire matrix.298

• MEMIT. Meng et al. (2022b) is a method299

that allows for simultaneous modification of300

a sequence of layers in a language model. It301

facilitates thousands of alterations to be exe-302

cuted efficiently.303

4.2 Results and Analysis304

Efficacy. Entity-based editing centers on the305

task of completing the object based on a prompt306

comprising a subject and relation. Conversely, 307

relation-based editing pertains to the task of final- 308

izing the relationship between a subject and ob- 309

ject, given a prompt containing the subject and 310

object. Grounded in the presumption of an inherent 311

equivalence relationship between these two edit- 312

ing paradigms, we posit that altering the object 313

is fundamentally tantamount to introducing a 314

relation between the head entity and the tail en- 315

tity. However, according to Table 3, we observe 316

that current model editing methods are not applica- 317

ble to relation perspective. Specifically, R-Efficacy 318

shows a significant decrease in performance com- 319

pared to E-Efficacy in terms of the EM metric. This 320

suggests that the existing editing methods, which 321

work well for entity perspective tasks, do not ef- 322

fectively handle relation perspective tasks. There 323

is a clear performance gap when it comes to edit- 324

ing relations, indicating the limitations of LLMs in 325

accurately capturing and generating complex rela- 326

tionships between entities. This finding highlights 327

the need for further research and development of 328

editing methods specifically tailored for relation 329

perspective tasks, aiming to improve the perfor- 330

mance and efficacy of LLMs in relation completion 331

and understanding. 332

Geralization. We evaluate all methods on GPT-2 333

XL with knowledge edit in RaKE. The evaluation 334

results are shown in Table 3. From the results of 335

the Entity based Generalization and Relation based 336
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(A) (B) (C)

Figure 3: Figures (A), (B), and (C) demonstrate the advantages of relation editing over entity editing, based on the
GPT-J model.

Generalization metrics, we can conclude that both337

entity-based and relation-based methods improve338

the generalization within their respective perspec-339

tives. However, their impact on generalization from340

the other perspective is relatively limited. Despite341

the logical equivalence of the knowledge edited342

from the entity and relation perspectives in terms343

of triple representation, they exhibit surprising dif-344

ferences in effectiveness. This leads us to speculate345

that entity-based knowledge and relation-based346

knowledge are not equivalent in language mod-347

els. Specifically, entity knowledge and relation348

knowledge demonstrate a certain level of indepen-349

dence and are stored in different parts of the model.350

4.3 Advantages and Disadvantages of the351

Relation Perspective352

Based on Figure 3, the advantages of the rela-353

tion perspective in editing can be observed in354

three aspects: R-Efficacy, Specificity, and R-355

Generalization. This indicates that by modifying356

relation rather than entity, we can enhance the suc-357

cess rate of relation updates, which is consistent358

with intuition, updating relationships through rela-359

tion perspective editing is more efficient; and re-360

duce side effects on unrelated knowledge, which361

limit the editing effect to the specified knowledge362

only; and improve the generalization of relation-363

related information, which modifies the knowl-364

edge level rather than the surface text level.365

Based on the performance of existing editing366

methods, the relation perspective editing also has367

significant drawbacks. For example, the Score met-368

ric results show a significant decrease. Specifically,369

the knowledge updated through relation editing is370

difficult to transfer to entity, resulting in a substan-371

tial decline in E-Efficacy and E-Generalization, as372

show in Table 3.373

4.4 Casual Tracing 374

To explore the role of relations in factual triplets 375

(s, r, o) within model parameters, we need to ana- 376

lyze and identify the knowledge neurons that have 377

the strongest causal effect on relations. We uti- 378

lized causal tracing for this purpose, involving three 379

steps as follow: 380

• Clean run: we pass a factual prompt x into 381

a model fθ and collect all hidden activations 382

{h(l)i | i ∈ [1, T ], l ∈ [1, L]}, where T is num- 383

ber of input tokens and L is number of layers 384

within model fθ. 385

• Corrupted run: The relation embeddings are 386

obfuscated from fθ before the network runs, 387

after x is embedded as [h
(0)
1 , h

(0)
2 , . . . , h

(0)
T ], 388

we set h(0)i := h
(0)
i +ϵ for all indices i that cor- 389

respond to the relation, where ϵ ∼ N (0, ν)4, 390

and then we get a set of corrupted activations 391

{h(l)i∗ | i ∈ [1, T ], l ∈ [1, L]}. 392

• Corrupted-with-restoration run: Let fθ 393

runs computations on the noisy embeddings 394

as in the corrupted baseline, except at some 395

token î and layer l̂. There, we hook fθ so that 396

it is forced to output the clean state h
(l)

î
, and 397

future computations execute without further 398

intervention. 399

In our settings, P[r], P∗[r], and P∗,cleanh
(l)
i

[r] 400

is defined as the probability of final prediction 401

r under the clean, corrupted, and corrupted-with- 402

restoration runs, respectively. The indirect effect 403

(IE) of a particular hidden state hli is calculated as: 404

IE = P∗,cleanh
(l)
i

[r]− P∗[r] (2) 405

4We select ν to be 3 times larger than the empirical stan-
dard deviation of embeddings.
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Figure 4: Causal tracing results of individual model components. In this paper, we use a sample of 1207 factual
statements from (Meng et al., 2022a) as knowledge queries to explore the knowledge contained within GPT-2 XL.

IE is defined as the difference between the prob-406

ability of r under the corrupted version and the407

probability when that state is set to its clean ver-408

sion, while the relation remains corrupted. After409

averaging over all the prompts, we get the average410

average indirect effect (AIE) for each hidden state.411

The result of the causal tracing analysis is de-412

picted in Figure 4. Consistently with previous find-413

ings, we observed a high AIE in the later layers414

of the final token. This implies that restoring the415

hidden states of the MLPs in those layers recov-416

ers most of the necessary information. Addition-417

ally, we noted a significant AIE in the earlier lay-418

ers for the relation tokens that we intentionally419

corrupted. This discovery is non-trivial and un-420

derscores the significance of the earlier layers in421

predicting plausibility. Furthermore, we observed422

a pronounced AIE in the middle attention layers423

of the last corrupted token. This surprising new424

finding suggests that memory related to relations425

is not only stored in the MLPs but also in the426

attention layers. This extends the previous finding427

that emphasized the significance of the attention428

module specifically at late site.429

4.5 Severed Causal Analysis430

To obtain a clearer understanding of the impact of431

MLP and Attn layers, we perform Severed causal432

tracing analysis with a modified causal graph, again433

following the footsteps of ROME.434

Figure 5 presents a comparison of the average435

Average Individual Effect (AIE) at the last cor-436

rupted token for unmodified, severed MLP, and sev-437

ered Attention causal graphs. Notably, we observe438

a distinct difference in AIE between the unmodified439

and severed MLP graphs, particularly in the earlier440

and middle layers. This finding is consistent with441

previous research and reinforces the critical role of442

MLP layers in plausibility prediction. Interestingly,443

the restoration effect appears to be independent of444
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Figure 5: Causal effects with a modified GPT-2 XL
model. To isolate the effects of individual model com-
ponents, GPT-2 XL is modified by severing MLP and
Attention modules.

MLP activity in the higher layers, suggesting that 445

the higher MLP layers may potentially generate 446

unintended side effects. In addition, we observe 447

that the presence or absence of interruptions be- 448

tween attention modules in the range of 10 to 20 449

layers leads to significant differences in Attention- 450

based Information Extraction (AIE). This finding 451

suggests a strong correlation between the atten- 452

tion modules at layers 10 to 20 and relations. 453

Consequently, we conclude that these parameters 454

play a role in storing memory related to relations. 455

5 Related Work 456

5.1 Memory in LLMs 457

LLMs trained on extensive corpora such as 458

Wikipedia, are widely believed to encapsulate vast 459

amounts of factual knowledge (Petroni et al., 2019; 460

Jiang et al., 2020). 461

FFN Memory. Geva et al. (2020, 2022) show that 462

feed-forward layers in transformer-based language 463

models operate as key-value memories, where each 464

key correlates with textual patterns in the train- 465

ing examples, and each value induces a distribu- 466

tion over the output vocabulary. The values com- 467

plement the keys’ input patterns by inducing out- 468

put distributions that concentrate probability mass 469
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on tokens likely to appear immediately after each470

pattern. Dai et al. (2021) proposes an attribution471

method to identify knowledge neurons that express472

factual knowledge in the FFN of pre-trained Trans-473

formers. They find that suppressing or amplifying474

the activation of knowledge neurons can accord-475

ingly affect the strength of knowledge expression.476

Meng et al. (2022a,b) develop a causal intervention477

for identifying neuron activations that are decisive478

in a model’s factual predictions. and then reveals an479

important role for mid-layer feed-forward modules480

that mediate factual predictions while processing481

subject tokens.482

Attention Memory. Sparse Distributed Memory483

(SDM) provides an efficient algorithm for storing484

and retrieving memories (patterns) from brain neu-485

rons. It effectively solves the "Best Match Prob-486

lem" by quickly identifying the most suitable mem-487

ory match for a given query. Currently, Bricken488

and Pehlevan (2021) has shown that the update489

rule of the Attention module in Transformer mod-490

els closely approximates SDM. Specifically, SDM491

consists of read and write operations. In the write492

operation, we can consider patterns being written493

and stored into nearby neurons based on the Ham-494

ming distance between patterns and neurons. In495

the read operation, the query is read from nearby496

neurons based on the circular region encompassed497

by the radius of the Hamming distance. Sakarvadia498

et al. (2023) establish an algorithm for injecting499

“memories” directly into the model’s hidden activa-500

tions during inference. Through experimentation,501

they find that injecting relevant memories into the502

hidden activations of the attention heads during503

inference is an efficient way to boost model perfor-504

mance on multi-hop prompts.505

5.2 Memory Editing506

As factual information continues to evolve, the507

knowledge stored in LLMs can become outdated508

or incorrect. Hence, there is an urgent need to facil-509

itate timely updates of inappropriate knowledge in510

LLMs while preserving other valuable knowledge.511

Recently, this issue has garnered significant atten-512

tion from researchers. Certainly, both parameter-513

efficient fine-tuning and incremental learning tech-514

niques provide avenues for modifying LLMs. How-515

ever, it’s essential to note that these approaches516

may be prone to overfitting and can incur sub-517

stantial computational costs, especially when ap-518

plied to large language models (LLMs) with an ex-519

tremely large parameter scale. To address these is- 520

sues, Sinitsin et al. (2020) proposes Model Editing, 521

which aims to efficiently and accurately alter the 522

factual knowledge stored within models. Presently, 523

there are three primary types of model editing ap- 524

proaches: 1) Memory-based Method: These tech- 525

niques utilize an additional trainable parameters to 526

store memory or learn the required adjustments (∆) 527

for knowledge updating in the LLMs (De Cao et al., 528

2021; Mitchell et al., 2021, 2022; Dong et al., 2022; 529

Huang et al., 2023). 2) Locate-Then-Edit Method: 530

These approaches employ causal mediation anal- 531

ysis to locate knowledge neurons in LLMs and 532

subsequently modify these recognized regions (Dai 533

et al., 2021; Meng et al., 2022a,b). 3) In-Context 534

Knowledge Editing Method: These methods are a 535

training-free paradigm where knowledge editing is 536

achieved directly by concatenating demonstrations 537

within the input context (Zheng et al., 2023; Zhong 538

et al., 2023). 539

6 Conclusion 540

In this paper, we introduce relation-based knowl- 541

edge editing, with a new benchmark named RaKE. 542

Empirically, we analyze the effectiveness of vari- 543

ous model editing baselines and notice that existing 544

knowledge editing methods exhibit the potential 545

difficulty in their ability to edit relations. To inves- 546

tigate the fundamental reasons behind these results, 547

we conducted causal analysis on the relationships 548

within the triplets. We discovere that relational 549

knowledge is not only stored in the FFN but also in 550

the attention layer, which is a novel finding. From 551

this, our experimental results indicate that the cur- 552

rent editing methods, which focus solely on editing 553

the parameters of the FFN module, lack modifi- 554

cations to the attention module. This inadequacy 555

leads to suboptimal results in relation-based edit- 556

ing. 557

Limitations 558

The current version of the RaKE dataset lacks an as- 559

sessment of relation specificity performance, which 560

we plan to include in future versions for evaluation. 561

Furthermore, this is the first paper on relation per- 562

spective knowledge editing, and we acknowledge 563

the lack of specific methods for editing relations. 564

Our research serves as a preliminary investigation, 565

and we will gradually refine the editing methods 566

targeting relations in our subsequent work. 567
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