On Logic-based Self-Explainable Graph Neural
Networks

Alessio Ragno Marc Plantevit
INSA Lyon, CNRS, LIRIS UMR 5205, EPITA Research Laboratory (LRE),
F-69621 Villeurbanne, France F-94276, Le Kremlin-Bicétre, France
alessio.ragno@insa-lyon.fr marc.plantevit@epita.fr

Céline Robardet
INSA Lyon, CNRS, LIRIS UMR 5205,
F-69621 Villeurbanne, France
celine.robardet@insa-lyon.fr

Abstract

Graphs are complex, non-Euclidean structures that require specialized models,
such as Graph Neural Networks (GNNs), Graph Transformers, or kernel-based
approaches, to effectively capture their relational patterns. This inherent com-
plexity makes explaining GNNs decisions particularly challenging. Most existing
explainable AI (XAI) methods for GNNs focus on identifying influential nodes
or extracting subgraphs that highlight relevant motifs. However, these approaches
often fall short of clarifying how such elements contribute to the final prediction.
To overcome this limitation, logic-based explanations aim to derive explicit log-
ical rules that reflect the model’s decision-making process. Current logic-based
methods are limited to post-hoc analyzes and are predominantly applied to graph
classification, leaving a significant gap in intrinsically explainable GNN architec-
tures. In this paper, we explore the potential of integrating logic reasoning directly
into graph learning. We introduce LogiX-GIN, a novel, self-explainable GNN
architecture that incorporates logic layers to produce interpretable logical rules
as part of the learning process. Unlike post-hoc methods, LogiX-GIN provides
faithful, transparent, and inherently interpretable explanations aligned with the
model’s internal computations. We evaluate LogiX-GIN across several graph-based
tasks and show that it achieves competitive predictive performance while delivering
clear, logic-based insights into its decision-making process.

1 Introduction

Graph Neural Networks (GNNs) are powerful models for learning from graph-structured data,
excelling in tasks like node classification and graph classification [25}29]. However, their complex
message-passing mechanisms make it difficult to interpret how individual graph components influence
predictions, limiting their use in critical domains that require transparency.

Several Explainable AI (XAI) techniques have been proposed to address the opacity of GNNs,
typically falling into post-hoc and ante-hoc approaches. Post-hoc methods aim to explain an already
trained black-box GNN by identifying influential graph components (e.g., nodes, edges, or sub-
graphs) that contribute to a specific decision [31} 20, [15]. These methods include perturbation-based
approaches, gradient-based attribution, and concept-based methods that aim to extract meaningful
graph patterns. Although effective, they often lack fidelity to the internal reasoning of the model, as
they hardly capture the internal process of the model and can generate inconsistent or misleading

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

explanations [24]]. Ante-hoc, or self-explainable, models, on the other hand, integrate interpretability
into the learning process. Self-explainable GNNs (SE-GNNs) aim to ensure that the learned represen-
tations are inherently interpretable, often by enforcing constraints on the structure of explanations or
by explicitly modeling feature importance. However, existing SE-GNNs present some limitations:
topology-based approaches [17, 18,22} 136, 21]] identify the most relevant subgraphs while providing
little insight into the logical rules underlying how the model represents graphs and makes its decisions
[18.[19]; symbolic approaches propose distillation of the models into simpler or more interpretable
architectures such as decision trees; and other approaches restrict the focus on node features, without
using information about substructures [} 3]].

To address these limitations, logic-based XAl methods provide an alternative approach by extracting
human-interpretable logical rules that govern the model’s decision-making process [26]. Unlike
gradient-based or perturbation-based explanations, logic rules explicitly define how features interact
to produce a given outcome. When applied to GNNs, these approaches aim to map high-dimensional
feature spaces to Boolean expressions that describe the presence of specific subgraph motifs or node
interactions [2} [1]. However, currently existing logic-based GNN explainers are exclusively post-hoc
or based on distillation of the GNNs using decision trees [19].

Recent advances in logic-explained networks for tabular data provide potential directions. Logic
Explained Networks (LENs) [6] and Transparent Explainable Logic Layers (TELL) [23]] propose
architectures convertible into logical rules. Particularly relevant is TELL’s approach, where non-
negative weight constraints allow direct extraction of first-order logic rules from the model parameters.
However, these architectures were designed specifically for tabular data and cannot handle the complex
relational structure of graphs. To address the lack of self-explainable logic GNN, in this work, we
design a novel architecture that is intrinsically convertible into logic rules.

The theoretical foundation for connecting GNNs with formal logic is established by Barcel6 et al.
[4]], who demonstrate that some GNN architectures can represent statements in graded modal logic
(GML) [10]. GML extends standard modal logic with numerical constraints, allowing expressions
like "at least 3 neighboring nodes satisfy property P", a natural fit for graph-based reasoning. While
Barcel6 et al. [4] prove that GNNs can express GML propositions, it does not address the reverse
problem: architecting GNNs to explicitly yield interpretable GML rules.

Constraining GNNs to adhere to logic comes with different challenges. To implement our model,
LogiX-GIN, we modify the GIN architecture [30]], such that it is possible to extract explanations in
the form of GML. The choice of the GIN layer is dictated by its aggregation scheme, which uses
the sum over neighboring nodes. This aggregation allows us to respect the counting functionality
of GML. However, in order to count over input nodes, we cannot use a simple threshold as is done
in TELL. For this reason, we introduce a preprocessing function that binarizes the input features
depending on learnable intervals. An additional challenge comes from the use of sigmoid activations
directly on the weights, as proposed in TELL. These tend to hinder gradient flow in multi-layer
settings. This limits the effective training of models with many layers, as early layers receive little to
no gradient updates. For this reason, we propose to first train a black-box model, GIN, and use it
to pretrain our LogiX-GIN model. This allows for pretraining each layer separately and therefore
avoids problems such as vanishing gradients.

Overall, the main contributions of our work are as follows: we propose LogiX-GIN, the first graph
neural network that integrates logical reasoning directly into its architecture; we introduce a novel
preprocessing function for automatic binarization of input features using intervals; we propose the
first implementation of multi layer logic-based neural architecture by applying a distillation-based
pretraining strategy to address vanishing gradient issues; we conduct extensive experiments to assess
the interpretability, predictive performance, and limitations of LogiX-GIN; we provide an open-source
implementation of our proposed approach and the conducted experiment

The remainder of this work is structured as follows: we begin by surveying the current literature on
XALI for GNNS, self-explainable models and logic-based XAI; subsequently, we detail the mathemati-
cal foundations needed to comprehend our approach; we then present LogiX-GIN; we follow with an
experimental evaluation on several datasets; finally, we summarize our findings and suggest potential
directions for future research.

"Public GitHub repository: https://github.com/spideralessio/LogiX-GIN

https://github.com/spideralessio/LogiX-GIN

2 Related Work

In this section, we present the related literature to our work. We start by introducing self-explainable
models for GNNs, and we then continue focusing on approaches that deliver explanations in the form
of logic. Finally, we focus on approaches aimed at delivering logic explanations for GNNss.

Self-Explainable GNNs. SE-GNNs are designed to generate intrinsic explanations during infer-
ence, removing the need for post-hoc interpretation methods. A central approach in this paradigm
involves the use of prototypes, intended as representative training instances, to construct inherently
interpretable models. Prototype-based SE-GNNs adapt prototypical mechanisms to the graph domain,
where the output class is determined using the similarity between the input and prototypes [36, 22, 21].
Despite the interpretability of the case-based approach, these models rely on embedding similarity,
which isn’t guaranteed to actually reflect structural similarity. Other approaches leverage information
bottleneck methods to identify maximally informative subgraphs, ensuring that the extracted explana-
tions retain only the most relevant structural components. For example, GIB [32] and VGIB [33]
utilize information-theoretic principles to compress node and edge representations while preserving
predictive performance. Kernel-based approaches such as KerGNNs [13]] take a different route by
employing graph kernels to provide explanations through kernel activations, allowing for a structured
decomposition of the learned representations.

Logic-based XAI. Logic-based explainability methods [9] aim to improve model interpretability by
incorporating logical constraints or symbolic reasoning directly into the learning process. Traditional
machine learning models, like decision trees and rule-based classifiers, inherently provide logical
explanations by explicitly representing decision boundaries. Although these models are transparent,
they typically struggle with complex, high-dimensional data and cannot be easily integrated into
deep learning frameworks due to their non-differentiability, which prevents the use of gradient-based
optimization. This limitation has led to the development of neural architectures that incorporate
logical reasoning while remaining compatible with backpropagation. A prominent example is
represented by LENSs [6]], a class of neural networks that can be interpreted through logical rules.
LENs are built on binary inputs and employ strong regularization, allowing the construction of truth
tables from which logical rules can be derived. However, due to the post-hoc truth table procedure,
these rules may not always faithfully represent the model’s true behavior [23]. To overcome this
issue, Ragno et al. [23] introduce TELL. TELL is an architecture with positive-weight constraints
that ensure direct and faithful translation into logical rules. Furthermore, TELL is capable of handling
continuous input data through a preprocessing function that automatically learns thresholds over
features.

Logic-based Explanations for GNNs. Among the first logic-based approaches for GNNs, GLGEx-
plainer [2] proposes to extract logical rules over explanations generated by another post-hoc method,
such as PGExplainer [[15]. This is achieved through the application of LENs over concept activation
vector that encode the presence of specific subgraphs. While innovative, this approach relies on the
application of an instance-level post-hoc procedure and on LENS, that were demonstrated to not be
properly faithful [23][1]. With GraphTrail, Armgaan et al. [[1] propose to overcome these issues by
using computation trees to identify relevant subgraphs and avoiding the need of post-hoc methods.
These approaches primarily aim to identify rules over subgraphs in order to gain insight into the
model’s behavior. Taking a different direction, Pluska et al. [[19] propose distilling a symbolic model
from a GNN using iterative decision trees. Despite this difference, their method is also post-hoc, as
the rules are extracted from graph embeddings. Additionally, the final model is no longer a GNN and
cannot be reused in other neural network settings, thus losing the advantages of neural representations.

Although we share with the aforementioned works the goal of incorporating logic-based reasoning,
our approach differs from current literature in a key aspect: rather than extracting rules in a post-hoc
fashion, we aim to directly design a GNN model that is self-interpretable by construction. For this
reason, in our case, distillation is used solely as a means to pre-initialize the self-interpretable model,
not as an end in itself.

3 Background

‘We now introduce the key concepts and notations underlying our approach, focusing on how each
element supports our logic-based self-explainable GNN. We start by formalizing GNNs, the base
model we build upon. We then show how architectural constraints can enable direct extraction of logic
rules from neural layers, introducing the core ideas of TELL. Finally, we present the mathematical
foundations of GML, the formal system we use to express the logic rules produced by our model.

Graph Neural Networks. GNNs are neural networks designed for graph-structured data. They
generally operate via message passing, where at each layer k a node v aggregates messages from its
neighbors and updates its representation. Formally, this process can be written as:

B =6 (KD 1 (R0 u e N@)})) M

Here, h,(,k) denotes the updated representation of node v at layer k, using the ones at layer k£ — 1,
hqgkfl). In the first layer, hqgkfl) directly correspond to node features. The message function (%)
aggregates information from the neighborhood, and the update function ¢(*) combines it with the
node’s current state. Since nodes in a graph have no inherent ordering, the aggregation function must
be permutation-invariant.

We use GIN [30] model, where the aggregation function is the sum, and the update function is a
multi-layer perceptron (MLP) as this combination has been theoretically shown to achieve maximum
discriminative power among message-passing GNNs. The sum aggregation can distinguish between
different neighborhood structures and the MLP update function provides the necessary expressive
capacity to obtain meaningful representations, enabling GIN to approximate the 1-WL (Weisfeiler-
Lehman) graph isomorphism test, which is a strong baseline for distinguishing non-isomorphic
graphs. In this architecture, each layer computes:

hiF) = MLP) | (14 e®)nlE=1 4 3~ a1). 2)
ueN (v)

with (%) a learnable parameter. Multiple layers are stacked to capture increasingly abstract features.
For node-level tasks, the resulting node embeddings are directly used. For graph-level tasks, a readout
function (e.g., sum, mean, or max) aggregates node embeddings into a global representation for
classification.

Transparent Explainable Logic Layer. TELL is a neural component designed to be interpretable
through a direct conversion into first-order logic formulas. It constrains a standard linear layer, with 1
input neurons and O output ones, by enforcing non-negative weights and applying a threshold-based
activation. Given an input X € R, it computes the output y = o(XW+ +b) € RO, W+ € RLX©
is a weight matrix constrained to have only non-negative entries, b € R is a bias term, and o is the
sigmoid activation function.

A key feature of TELL is that it allows to be interpreted through logic rules. Considering the j-th
binarized output y""[j] =]ly[]]>0 5, it can then be associated with a rule in disjunctive normal form

(DNF): P[] =1 <= Y ,cs Wi, j] > —b[j]. S denotes the minimal subsets w.r.t set inclusion

of the input sufficient to activate the neuron y[j] [23]. Following this, E; = \/ g, s; Nics i can be

defined as the logic rule for y[j], where S; contains all the minimal subsets of inputs that satisfy
the threshold —b[j]. This ensures a direct and interpretable mapping from network parameters to
logical expressions. To extend TELL to handle continuous inputs, a preprocessing binarization step

introduces an adaptive thresholding mechanism. This is done using X = 0(X ® exp(W) + b), with
©® representing element-wise multiplication, and W eR and b e RY being learnable parameters.

Each transformed feature can then be interpreted as a binary predicate where x[i] =]lz[i]>7 5]

oxp(Wil)
These binary features can be incorporated into logical expressions, preserving TELL’s explainability
while enabling it to process real-valued data effectively.

Graded Modal Logic. GML is a fragment of first-order logic (FO) designed to express local
properties of nodes in relational structures such as graphs, with support for counting. It restricts
quantification to the immediate neighborhood of a node and ensures that formulas are evaluated
locally, which makes it well-suited for graph-structured data.

Let us consider a first-order language that includes a symbol E(z,y), for a binary relation between
representing adjacency between nodes x and y of an undirected graph, and a finite collection of
unary predicate symbols { Py (z), ..., Pr(x)} of size I, which represent properties, features or types
associated with individual nodes.

A graph structure G = (V, E, { P; }icr) consists of: a finite set of nodes V'; a symmetric edge relation
E CV x V;and, a collection of unary relations P; C V interpreting each predicate symbol.

Formulas of GML are a syntactic restriction of FO with exactly one free variable x. The set of
formulas (z) is defined inductively by:

p(2) = P(@) | =) [2(2) A va(@) | 91(2) V(@) | 37Ny (Blz,9) Avs(), 3)
where N € Ny, and ¢(z), 1 (x), ¥2(x), 13(y) are GML formulas.

Given a graph G and a node v, the relation G, v |= ¢(x) that indicates that v € G satisfies a generic
GML formula ¢(2) is defined as follows:

* G,v |= P(x): node v satisfies the atomic predicate P (i.e., v belongs to the unary predicate
P)7

* G,v = —p(z): node v does not satisfy the formula () (negation),

* G,v = Y1(x) A pa(x): node v satisfies both subformulas ;(x) and (x) (logical
conjunction),

* G,v = ¥1(x) V (x): node v satisfies at least one of the subformulas 17 (x) or 12 (x)
(logical disjunction),

s G,v = 32Ny (E(z,y) Abs3(y)): node v has at least N neighbors u such that (v, u) € E
and each w satisfies 13(y) (quantified neighborhood condition).

A distinctive feature of GML is that all quantification is conditioned by the adjacency predicate
E(x,y). This ensures that the evaluation of any formula at a node v depends only on v and its
neighborhood, not on the entire graph. Consequently, the logic is strictly less expressive than full
FO, but computationally more tractable and naturally suited for expressing local patterns in graphs.
For concrete examples of GML formulas, we refer the reader to Appendix B} The correspondence
between GML and local properties of graphs plays a central role in recent work by Barcel6 et al. [4],
where the authors show that it precisely characterizes the class of node properties computable by a
certain class of graph neural networks.

4 LogiX-GIN

In this section, we formalize LogiX-GIN. We start by defining the different components of the
architecture and then we present implementation and training details.

LogiX-GIN components. Like the original GIN architecture, LogiX-GIN performs aggregates
embedding values through the sum, then a learnable parameterized function g binarizes the aggregated
values in order to apply a logic transformation A that is responsible to learn logic rules (as the one in
TELL). The overall operation of the k-th LogiX-GIN layer can be formulated with the notation of
Equation [T as follows:

R = AE [g | N R) “
weN (v)U{v}

The first step involves aggregating the information of node v € V and its neighbors by summing
their features: av(ﬁ) = e N(v)U{v} hgf_l). This aggregation is equivalent to the one of GIN when

setting € = 0, which is necessary to represent counting operations in GML. After summing binary

embeddings from neighboring nodes, the aggregated features become integer-valued. To apply
logic-based rules, we binarize them using a novel thresholding mechanism. Specifically, we need
a function capable to activate if its input falls within certain intervals. For this reason, we design
a parametric Fourier step function, which flexibly and differentiably activates (outputs one) when
counts fall within learnable value ranges:

i sin((2i+1) (alP oW F) 15(F)))

ak) — gk) (g (k)Y — 1| & 20+
ay” = " (ay”) = clamp | 5 (@D T +11],0,1[, 5)
1§0T

where © denotes element-wise multiplication (Hadamard product), 7 is a temperature hyperparameter

(we use 7 = 10), W*) € RZ, and b*) € RY) are learnable parameters, and d the hidden dimension.

£ is a periodic step function with respect to ag,k), where W *) and b*) modulate the width and the

displacement of the counting intervals corresponding to an activation. Specifically, the intervals can
be obtained as follows:

~7- . mn—b[i](F) mn+m)—b[i]F)
a[l]q(Jk) =1 a[l]q(Jk) € U |:2 V”V[ll]?Ek]) ’ @ ‘jri/[l)](kl;[] :| :Iﬁ(k)}i' (6)

neEZ

This enables the extraction of literals that are active only under precise counting conditions. To
better clarify the functioning of 3, we provide in Appendix [A|an example of the function varying the

parameters W (*) and (%),

The final transformation A(*) consists of the constrained linear transformation followed by a sigmoid
activation function, as proposed in TELL:
,) R R 4) _
h{E) = A(®) (ag“) —g (u) . withr =104 %)

T

Using the results of Ragno et al. [23]], we use non-negative weights W () in order to constrain the
model to be monotonic. This allows for retrieving logic rules in FO over the activations Zzg,k), which

correspond to formulas in GML over the literals hq(f_l) of each node v € V. Such logic rules are
identified by the sets of weights of W (), which sum up to a value greater than —b(*). For a more
detailed and formal demonstration, the reader can refer to Appendix

LogiX-GIN overview. Here, we describe the practical implementation details of the LogiX-GIN
architecture used in our experiments. The model is composed of five sequential LogiX-GIN layers,
whose outputs are concatenated and passed through three global readout functions: sum, mean, and
max. These aggregation functions extract global graph-level features by computing the total, average,
and maximum activations of the rules learned by the five graph layers. The resulting features are then
processed by a final TELL layer, which learns first-order logic rules over these activations to perform
the prediction.

As previously discussed, the presence of sigmoid activation functions within each LogiX-GIN layer
introduces significant challenges when training deep architectures. To address this, we adopt a
knowledge distillation strategy for pretraining. Specifically, we initialize an auxiliary model with
the same architecture, but replace the LogiX-GIN layers with standard GIN layers. To encourage
binarized representations, this GIN model uses Gumbel-sigmoid activations. After training the GIN
model, we use it as a teacher to guide the LogiX-GIN model for the first half of the training process:
we minimize the cross-entropy loss between the hidden states of the GIN and LogiX-GIN models
at each layer. This yields a layer-wise pretraining of the LogiX-GIN model. In the second half of
training, we finetune the full LogiX-GIN model using standard supervised learning. Throughout
the entire training procedure, optimization is carried out using gradient descent to minimize the
cross-entropy loss combined with an L; regularization term on the weights W™,

Since there is no built-in constraint on the size of the learned logic rules, the resulting model can
sometimes produce overly complex and less interpretable explanations. To enhance interpretability,
we apply a post-training pruning procedure. This step consists of a final optimization stage in which

each layer is trained individually in reverse order (from the last to the first) using an additional Hoyer
regularization term: Lyoyer = %, where § is a small constant to avoid division by zero. This

regularization promotes sparsity in a structured way: unlike standard L; regularization, the Hoyer

loss encourages the use of a few large weights while pushing the remaining ones toward zero. Since
the size of a logic rule is determined by how many weights need to be summed to reach the threshold
—b, this sparsity directly reduces rule complexity. By applying this pruning procedure gradually and
layer-wise, we minimize any potential impact on model performance while significantly improving
the readability and compactness of the learned rules.

LogiX-GIN can provide explanations in different forms: logic rules can be extracted for each single
layer to obtain a fine-grained set of rules that exactly reflect the model behavior; for a simpler
overview, global logic rules can be obtained by identifying motifs that when present activate class-
specific rules of the last layer; node attributions visualize node level contributions towards a prediction.
Further details on the LogiX-GIN pipeline are detailed in Appendix [C|

5 Experiments

In this section, we perform extensive experiments to evaluate our proposal. We begin by comparing
the classification performances of LogiX-GIN with respect to its black-box counterpart. Successively,
we perform an analysis of the interpretability of LogiX-GIN also in comparison with state-of-the-art
approaches. We mainly focus on a logic-based analysis by identifying the global logic rules and
layer-wise rules. For an additional analysis, we also report an experiment on node attributions in the
Appendix [El comparing with other self-interpretable models and post-hoc approaches.

As the GIN layer, which inspires this work, is mainly developed for graph classification, we focus
on this task for the experimental section. However, to offer a broader overview of the capabilities
of LogiX-GIN, we also test the accuracy performances on some node classification datasets. For
graph classification, the black-box GNNs are composed of 5 GIN layers, followed by a max, a
sum and mean readouts. The readouts are concatenated and finally fed into an 2-layer MLP. We
perform our experiments on the following 7 graph and 3 node classification datasets spanning
synthetic graphs (BA2Motifs [15], BAMultiShapes [2l], BAShapes, BACommunity and TreeGrid
[31]), molecular graphs (MUTAG [11]], Mutagenicity [14], NCI1 [28]], and BBBP [16]]), and protein
graphs (PROTEINS [[12]). We use grid-search to find the optimal hyperparameter combinations and
report the test set results of the best performing hyperparameters on the validation set. Specifically, to
ensure statistical validity, we report mean and standard deviation values over 10 different seeds.

In Table[I] we report the accuracy of the LogiX-GIN model compared to that of the black-box model
across all datasets. In all cases, LogiX-GIN achieves accuracy levels within 3% of the black-box
model, demonstrating strong performance despite the addition of logic constraints. These results
indicate that incorporating logic constraints has a limited impact on predictive accuracy overall.
While some trade-off in performance is expected, the primary goal of this work is to explore the
integration of logic for enhanced model transparency. Table [2] instead, reports the accuracy scores
of several SE-GNNs on graph classification. We observe that, compared to other self-interpretable
approaches, our method reaches state-of-the-art performances on 5 datasets out of 7. In the remainder

Table 1: Accuracy on Graph and Node Classification. Values are reported as ;2 + o over 10 seeds.
We report the accuracy of the black-box model and LogiX-GIN. For an easier comparison, the
column “Acc. Decay” indicates the difference between the mean accuracy of the black-box and the
LogiX-GIN.

Dataset Black-box GIN LogiX-GIN Acc. Decay Class. Obj.
BAMultiShapes 100.00 £ 0.00 100.00 + 0.00 0.00 Graph
BA2Motifs 100.00 £0.00 100.00 = 0.00 0.00 Graph
BBBP 87.95 +2.07 85.90 £ 0.99 2.05 Graph
MUTAG 84.74 + 8.02 82.63 +5.58 2.11 Graph
NCII 81.87 +1.39 78.93 £ 1.51 2.94 Graph
PROTEINS 72.59 +3.04 72.05+£5.77 0.54 Graph
Mutagenicity 82.21 £1.87 79.31+£1.25 2.90 Graph
BaShapes 97.14 £ 0.95 94.29 +2.52 2.85 Node
BaCommunity 81.00 £ 1.59 84.14 £4.55 -3.14 Node
TreeGrid 100.00 £0.00 98.71 £ 0.87 1.29 Node

MUTAG Mutagenicity BA2Motifs BAMultiShapes

P1V P2V (P3 A-P5)V (P4 A -P5)
e
E S e
-g_ \
o
(U] Ps P3 P4

Alignment: 0.895 Alignment: 0.737 Alignment: 1.000
HAW)V(HAG)V(WAG)
Z
R 2 3 “eue’
d EEEE
5]
|
G

Alignment: 1.000 Alignment: 1.000 Alignment: 1.000 Alignment: 1.000

Legend
. Connected Node
©® Oxygen @ Nitrogen O (not part of the pattern)

@ Carbon O Hydrogen@ General Node

Figure 1: Visual comparison between rules extracted with GraphTrail and LogiX-GIN. Alignment is
measured as the accuracy between the predictions of the model and the logic activations of the rules
following Armgaan et al. [1]]. Additional details about the explanations extraction are provided in

Appendix

of this section, we focus on the interpretability of LogiX-GIN, while in Appendix [T, J]and [H] we
detail hyperparameters settings and perform ablation studies.

Obtaining faithful global logic rules. Here, we compare the explanations produced by LogiX-GIN
with those of GraphTrail [1]. As discussed in previous sections, despite sharing a logical foundation,
the two methods differ substantially in their explanatory procedures: GraphTrail is a post-hoc method
that generates rules over computation trees, whereas LogiX-GIN embeds logical reasoning directly
into its architecture. LogiX-GIN, in fact, employs GML as its reasoning logic, which goes beyond
simply detecting the presence of specific patterns via first-order logic. Despite these significant
differences, if we narrow our focus to LogiX-GIN’s final layer, the activations of the literals after the
readout function can be interpreted as indicative patterns whose presence directly affects the final
prediction. This observation forms the basis for our comparison between LogiX-GIN and GraphTrail.

For this experiment, we employ the four datasets used in the study by Armgaan et al. [1]]. Due the 5-
layer architecture of the GIN blackbox, GraphTrail’s SHAP-based computation becomes particularly
resource-intensive. For this reason, on the BAMultiShapes dataset, GraphTrail fails to generate
explanations within a feasible time frame (2 days). In Figure[T] we illustrate the patterns learned by
both models. The LogiX-GIN patterns are extracted by analyzing the activations over the validation
set. Full activation data is provided in Appendix [F|

Notable differences emerge, especially on MUTAG and Mutagenicity. For MUTAG, GraphTrail
identifies the NO5 group, a well-known mutagenic substructure, while LogiX-GIN emphasizes
carbon-based structures, especially aromatic atoms, which also play a key role in mutagenicity
[L,[11]. However, we also anticipate that a deeper analysis reveals that LogiX-GIN does recognize

Table 2: Comparison of SE-GNNs across graph classification datasets.

Dataset LogiX-GIN PiGNN GIB KerGNN GNAN

Ba2Motifs 100.00+£0.00 99.89+0.31 100.00+0.00 98.80+0.75 49.10 +0.66
BaMultiShapes 100.00 £0.00 85.40+5.08 97.60+2.06 83.20+1.94 49.10+0.66
MUTAG 82.63 £5.58 82.51+1048 90.53+6.14 82.11+9.18 55.79+16.43
Mutagenicity 7931125 8239+1.68 80.14+098 7332+293 5536+0.52
NCIl1 7893 £1.51 7854+274 78.15+132 69.00+138 50.80+1.15
PROTEINS 72.05+£5.77 70.00+244 6847500 7297+487 57.67+2.62
BBBP 8590+099 8354037 84.78+2.57 84.12+2.09 22.80%0.86

LogiX-GIN Legend
Layer 1 Ego-Graph of node

(@1 Yeontainsatieast
Vo 1 node with the
0= S@<1 A Z@=111< T @<2 feature Qactivated
Jenmuw vexnuw venmum
ventub e

Graph contains
<5(Os24
VeV ,
TELL

.gw.ng at least 9 nodes
Figure 2: Layer-wise explanation of a LogiX-GIN model trained on the MUTAG dataset.

Egograph of Node 17

with the feature @
activated

Input Graph

e LogiX-GIN
Layer 2

ST r———— =01 1sT-@s2n 3< S@<4
os{-’sw\(S@-=1vI :4) :e ggw v};g.rm
fonon \ventum ventum

@ Oxygen @ Niogen @ Carbon

eSS

the NO, group, although this occurs within its inner layers. This illustrates that our pattern-based
analysis, when limited to the last layer, may offer only a partial view of the model’s reasoning. On
the Mutagenicity dataset, LogiX-GIN identifies simpler patterns such as successive nitrogen atoms
and the NOs group. GraphTrail similarly detects these patterns in the black-box model, while also
uncovering additional carbon-related structures. On BA2Motifs, both identify the house motif, while
on BAMultiShapes, only LogiX-GIN recovers the ground-truth rule.

Overall, although both methods highlight chemically and structural meaningful patterns, Logix-GNN
exhibits less complexity and higher versatility than GraphTrail. More importantly, the key difference
lies in the “alignment” between the model’s behavior and the explanations. Alignment is defined as
the accuracy between the model’s predictions and the rule activations. GraphTrail, being post-hoc,
may misalign with model behavior, while LogiX-GIN’s explanations are fully aligned by design.

Explaining the single layers of LogiX-GIN. In this section, we analyze the core functionality
of our approach, which enables inspection of the model at each individual layer. In Figure 2] we
present a real-world example showing the actual rules learned by LogiX-GIN on the MUTAG dataset.
This example provides insight into how the model learns to predict molecular mutagenicity through
interpretable rule-based reasoning.

As a first observation, although the architecture consists of 5 convolutional layers, only 2 are actively
used in the decision process. Notably, the first layer captures low-level features, such as atom type
and connectivity, which are then leveraged to identify functional groups. The first rule (green), in
fact, detects the NO, group by counting the number of nitrogens, oxygens, and carbons. Interestingly,
to enhance specificity, the model also checks on the number of carbons to detect the NO,. The
second rule (violet) is instead more complex, likely related to aromatic rings: the model counts the
number of carbon atoms in each atom’s neighborhood. Additionally, it also focuses on non-carbon
atoms connected to only one carbon, which may help in identifying cyclic functional groups. The
third feature (orange) activates across all nodes. While this might initially seem trivial, it serves an
important role in the subsequent layer. In the second layer, in fact, features from the first layer are
combined, and this feature is used for counting node connections. This offers valuable insight into
the model’s internal logic, showing how features that appear unrelated to the final prediction can still
play a critical role.

Ultimately, the model’s decision is determined by counting the number of nodes that activate a
specific feature (pink) in the second convolutional layer. This mechanism sheds light on an important
phenomenon: “removing graph parts may not affect predictions if key activations stay within the
learned range”. Consequently, even when a model appears to have lower fidelity w.r.t. node removal,
this may be due not to reduced explainability, but to its reliance on counting-based decision logic.

Analyzing rules’ complexity. We now analyze how the models use the layers to learn logic rules.
With this aim, we analyze the models after the pruning procedure and study how layers learn rules.
Figure 3] reports the amount of rules learned by each layer of the models. For each dataset, we select
only one seed and one class and plot the number of rules extracted by each layer. In the cases of
multiple classes, we use class O as the target. From this analysis, we exclude rules that provide no

Ba2Motifs BaMultiShapes MUTAG Mutagenicity PROTEINS
60

15 20
40 6
10 2 La 8 2
2 220 2 2 21
5 2
0 0 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Layer Layer Layer Layer Layer
NCI1 BBBP TreeGrid BaCommunity BaShapes
60 20
40
g4 B, 8
3 =1 3
& 20 & 220
0 0 0 .
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 2 3 4 5
Layer Layer Layer Layer Layer

Figure 3: Amount of rules extracted by each convolutional layer on the 10 datasets in exam.

activations or activate on all the nodes, as they are mainly used to count node degrees. This analysis
shows how models extract information from the graphs. Specifically, we observe that the first layers
generally contain more rules, thus confirming the findings of the previous section. Indeed, the first
layers tend to identify low-level patterns, which are then combined in the successive layers. We also
see that in most cases the model does not use all the layers as the information extracted in the first
layers is enough to perform the prediction. Contrarily, Mutagenicity and NCI1 are the datasets that
require the highest amount of literals to describe the activity. This is most likely due to the higher
complexity of the tasks and the high variability of the molecular graphs.

Overall, this analysis highlights the hierarchical nature of logic rules in the models. Early layers
are densely populated with rules that extract fundamental features, while deeper layers serve a
more selective role. This result is also confirmed when analysing rules activations (Appendix [G).
Furthermore, the redundancy of deeper layers in several datasets suggests a degree of architectural
overcapacity, which pruning helps to address. Finally, the number of literals required across datasets
underscores the varying complexity of the tasks and the richness of the input graphs, particularly in
chemically diverse datasets. These interpretable insights directly inform model design: “no rules
after layer 2 imply excess layers can be removed”.

6 Conclusions

In this work, we introduced LogiX-GIN, a novel GNN architecture that incorporates logic-based
reasoning directly into its layers to achieve self-explainability. We demonstrated that each layer of
the architecture can be converted into logical formulas in GML formalism, offering a transparent and
faithful representation of the model’s reasoning. Through a series of experiments on both synthetic
and real-world datasets for graph and node classification, we showed that LogiX-GIN maintains
competitive performance while offering a new level of interpretability.

Despite these promising results, our work has some limitations. First, LogiX-GIN does not take
into account edge features, limiting its potential expressiveness. Moreover, the usage of sigmoid
activations and learnable binarization introduces training challenges, particularly in deeper networks
or larger graphs. Although we mitigate these issues with a distillation-based pretraining strategy,
the computational cost remains significant as the training is composed of multiple steps. Also,
thresholding on input features might not be interpretable in cases where they are not attributed with
specific semantic meanings. Future work could investigate case the integration with prototype-based
or concept-based techniques that could improve interpretability thanks to their case-based reasoning.
Another important limitation concerns the expressivity of the model itself: since LogiX-GIN relies on
GML, its reasoning capabilities are constrained by what GML can express. As a result, the model may
not be suitable for tasks that require more expressive or higher-order forms of reasoning beyond the
scope of GML. Future research can address these limitations by exploring more scalable architectures
and optimization techniques that preserve interpretability while improving computational efficiency.
Additionally, extending the model to support a broader range of graph tasks or other logic formalisms
might be interesting. In this case, combining logic-based reasoning with other forms of explanation,
such as prototypes, may further enhance performance and interpretability.

10

Acknowledgments and Disclosure of Funding

This work was supported by French state aid managed by the National Research Agency under the
France 2030 program, with the references “WAIT4 ANR-22-PEAE-0008”, “PANDORA ANR-24-
CE23-0950", and "PORTRAIT ANR-22-CE23-0006".

References

[1] Burouj Armgaan, Manthan Dalmia, Sourav Medya, and Sayan Ranu. Graphtrail: Translating
gnn predictions into human-interpretable logical rules. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[2] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, Andrea Passerini, et al. Global
explainability of gnns via logic combination of learned concepts. In ICLR 2023, pages 1-19.
online, 2023.

[3] Steve Azzolin, SAGAR MALHOTRA, Andrea Passerini, and Stefano Teso. Beyond topological
self-explainable gnns: A formal explainability perspective. In Forty-second International
Conference on Machine Learning, 2025.

[4] Pablo Barceld, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations (ICLR 2020), 2020.

[5] Maya Bechler-Speicher, Amir Globerson, and Ran Gilad-Bachrach. The intelligible and
effective graph neural additive network. Advances in Neural Information Processing Systems,
37:90552-90578, 2024.

[6] Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Li6, Marco
Maggini, and Stefano Melacci. Logic explained networks. Artificial Intelligence, 314:103822,
2023.

[7] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved
algorithm for matching large graphs. In IJAPR-TC15, 2001.

[8] Enyan Dai and Suhang Wang. Towards prototype-based self-explainable graph neural network.
ACM Transactions on Knowledge Discovery from Data, 2022.

[9] Adnan Darwiche. Logic for explainable ai. In 2023 38th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1-11. IEEE, 2023.

[10] Maarten De Rijke. A note on graded modal logic. Studia Logica, 64(2):271-283, 2000.

[11] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
Medicinal Chemistry, 34(2):786-797, Feb 1991. ISSN 0022-2623.

[12] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771-783, 2003. ISSN 0022-2836.

[13] Aosong Feng, Chenyu You, Shigiang Wang, and Leandros Tassiulas. Kergnns: Interpretable
graph neural networks with graph kernels. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(6):6614-6622, Jun. 2022. doi: 10.1609/aaai.v36i6.20615. URL https:
//o0js.aaai.org/index.php/AAAI/article/view/20615,

[14] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores
for mutagenicity prediction. Journal of Medicinal Chemistry, 48(1):312-320, December 2004.
ISSN 1520-4804.

[15] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information
processing systems, 33:19620-19631, 2020.

11

https://ojs.aaai.org/index.php/AAAI/article/view/20615
https://ojs.aaai.org/index.php/AAAI/article/view/20615

[16] Ines Filipa Martins, Ana L. Teixeira, Luis Pinheiro, and Andre O. Falcao. A bayesian approach
to in silico blood-brain barrier penetration modeling. Journal of Chemical Information and
Modeling, 52(6):1686-1697, jun 2012.

[17] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In International Conference on Machine Learning, pages 15524—-15543.
PMLR, 2022.

[18] Peter Miiller, Lukas Faber, Karolis Martinkus, and Roger Wattenhofer. Graphchef: Learning the
recipe of your dataset. In ICML 3rd Workshop on Interpretable Machine Learning in Healthcare
(IMLH), 2023.

[19] Alexander Pluska, Pascal Welke, Thomas Gértner, and SAGAR MALHOTRA. Logical distilla-
tion of graph neural networks. In ICML 2024 Workshop on Mechanistic Interpretability, 2024.
URL https://openreview.net/forum?id=TfYnD2gYRO.

[20] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoff-
mann. Explainability methods for graph convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10772-10781, 2019.

[21] Alessio Ragno and Roberto Capobianco. Impo: Interpretable memory-based prototypical
pooling. In Proceedings of the Eighteenth ACM International Conference on Web Search
and Data Mining, WSDM 25, page 625-632, New York, NY, USA, 2025. Association for
Computing Machinery. ISBN 9798400713293. doi: 10.1145/3701551.3703543. URL https:
//doi.org/10.1145/3701551.3703543,

[22] Alessio Ragno, Biagio La Rosa, and Roberto Capobianco. Prototype-based interpretable graph
neural networks. IEEE Transactions on Artificial Intelligence, 5(4):1486-1495, 2022.

[23] Alessio Ragno, Marc Plantevit, Celine Robardet, Roberto Capobianco, et al. Transparent
explainable logic layers. In ECAI 2024-27th European Conference on Artificial Intelligence,
19-24 October 2024, Santiago de Compostela, Spain—Including 13th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2024), volume 392, pages 914-921. Ios Press, 2024.

[24] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nat. Mach. Intell., 1(5):206-215, 2019. doi: 10.1038/
S42256-019-0048-X. URL https://doi.org/10.1038/s42256-019-0048-x|

[25] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

[26] Thomas Schnake, Farnoush Rezaei Jafari, Jonas Lederer, Ping Xiong, Shinichi Nakajima, Stefan
Gugler, Grégoire Montavon, and Klaus-Robert Miiller. Towards symbolic xai—explanation
through human understandable logical relationships between features. Information Fusion, 118:
102923, 2025.

[27] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319-3328. PMLR, 2017.

[28] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347-375,
August 2007.

[29] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km,

[31] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

12

https://openreview.net/forum?id=TfYnD2gYRO
https://doi.org/10.1145/3701551.3703543
https://doi.org/10.1145/3701551.3703543
https://doi.org/10.1038/s42256-019-0048-x
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

[32]

[33]

[34]

[35]

[36]

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
bottleneck for subgraph recognition. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=bM4Iqfg8M2k.

Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph
information bottleneck. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 19396-19405, June 2022. URL https://openaccess,
thecvf.com/content/CVPR2022/papers/Yu_Improving_Subgraph_Recognition_
With_Variational Graph_Information_Bottleneck_CVPR_2022_paper.pdf!

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pages
12241-12252. PMLR, 2021.

Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. Gstarx: Explaining graph neural
networks with structure-aware cooperative games. Advances in Neural Information Processing
Systems, 35:19810-19823, 2022.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqgiang Lu, and Cheekong Lee. Protgnn: Towards
self-explaining graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 9127-9135, 2022.

13

https://openreview.net/forum?id=bM4Iqfg8M2k
https://openaccess.thecvf.com/content/CVPR2022/papers/Yu_Improving_Subgraph_Recognition_With_Variational_Graph_Information_Bottleneck_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yu_Improving_Subgraph_Recognition_With_Variational_Graph_Information_Bottleneck_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yu_Improving_Subgraph_Recognition_With_Variational_Graph_Information_Bottleneck_CVPR_2022_paper.pdf

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and introduction clearly outline the contributions of the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are addressed in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors shouldindeed if u look at the rule in discuss the computational efficiency
of the proposed algorithms and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: We provide a proof of our theoretical result in Supplementary Section
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide in the Supplementary Material the code and all the necessary
information to reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We do provide open access to the code. The data is already publicly available
and we cited the proper sources.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Experimental Settings are detailed in Supplementary Section]and in the
code.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do replicate experiments on different seeds and report mean and standard
deviation of the results for statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We do report such information in the Supplementary Section[l]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the datasets and techniques are cited in the references.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The background, proposal and experimental sections document the setting
used. The code and the assets is also available as supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Fourier Step Function

In this section, we analyze the functionality of the 3 function of LogiX-GIN as defined in Equation [3]
Figure] shows three examples illustrating how the parameters w (width) and b (bias or displacement)
affect the shape and position of the intervals. The first case (w = 1,b = 0) shows a baseline case
where, in this interval of input values (—5 < x < 5), the output corresponds to a 1 if z < —3 or
0 < z < 3. The second case (w = 2, b = 0) highlights how w can be used to modify the width of the
intervals. Finally, the third case (w = 1,b = —2) shows how the parameter b is instead responsible to
apply a displacement of the thresholds (in this case of —2).

w=1bh=0
1.0+
0.8 1
v
2
£ 0.6
o
[
N
5 04
S
o
0.2
0.0
T T T T T T T T T T T
-5 -4 -3 -2 -1 0 1 2 3 4 5
Input Value
w=2,b=0
104 f‘ﬂ
0.8+
L
=)
2 064
=
v
N
5 044
£
@
0.2 1
0.0 w
T T T T T T T T T T T
-5 -4 =3 =2 -1 0 1 2 3 4 5
Input Value
w=1b=-2
104
0.8
L
=)
£ 06
-l
o
N
5 0.4
£
@
0.2
0.0
T T T T T T T T T T T
-5 -4 -3 -2 -1 o] 1 2 3 4 5
Input Value

Figure 4: Examples of the binarization using the Fourier step function in Equation

B Examples of Graded Modal Logic Formulas

Following Barcel6 et al. [4], we use colors as unary predicates: Blue(x), Red(x), and Green(x) denote
that node x is respectively blue, red, or green.

Example 1: Atomic predicate.
p(z) := Blue(x)
This formula holds if x is blue.

Example 2: At least two red neighbors.

o(x) := 37y (E(x,y) A Red(y))

This states that « has at least two neighbors that are red.

21

Example 3: Blue node without red neighbors.

©(x) := Blue(z) A ~3=1y (E(z,y) A Red(y))

This expresses that z is blue and has no red neighbors.

Example 4: Disjunction of neighborhood conditions.
p(z) = (37°y (B(z,y) A Red(y))) vV (37'y (E(z,y) A Green(y)))

This means that = has either at least three red neighbors, or at least one green neighbor.

Example 5: Nested neighborhood property.
o(x) == 321y (B(z,y) A IZ 2 (E(y, 2) A Green(z)))

This states that « has a neighbor y which itself has at least one green neighbor z.

These examples illustrate how GML formulas, written with colored predicates, capture local structural
patterns in graphs using counting quantifiers and logical connectives.

C LogiX-GIN Explanation Procedure

Sum Aggregation Fourier Thresholding Symbolic Prediction
EREN y = 0(2xq + x5 + X3 - 2.5)
ToTe] 4 | . i jI
A (X2 V X3)

L AL \ \\ j
>()23A(1sT()=avy

V'EN(v) U {v} V'EN(V) U {v} V'EN(V) U {v}

Figure 5: Diagram of LogiX-GIN layer information flow and explanation procedure. At the first step,
the aggregated node features of node v are obtained by summing up over its neighbors. Successively,
Fourier thresholding allows to activate only when features lie in specific intervals by generating a
binary representation. Finally, a TELL-like classifier outputs a value whose activation can be directly
converted into a DNF formula. Finally an overall rule is obtained by merging the thresholds into the
DNF extracted by the last step. In The final rule, the output feature of for node v will be one if and
only if the neighboorhod contains at least 3 nodes with the green feature activated and either there
are at most two nodes with the red feature activated or between 1 and 4 nodes with the blue features
activated.

Overview and pipeline. Figure[5|shows the LogiX-GIN pipeline. Node features from a target node
and its neighborhood are first aggregated by summation. These aggregated values are then binarized
by a learnable Fourier step function, which converts counts into discrete on/off literals. The binarized
signals are passed through a logic layer with non-negative weights, producing interpretable logical
activations. During training, a teacher GIN model is used for distillation, and Hoyer-style pruning
can be applied to remove redundant rules. From this pipeline, we can extract explanations at different
levels of granularity:

» Layer-by-layer explanations provide a fine-grained analysis representing the exact model

behavior. Each hidden layer corresponds to a set of logic rules that are directly readable from
the parameters of its logic transformation. For every output unit, the threshold conditions

22

on its binary inputs define minimal logical clauses. Presenting rules per layer allows us to
reconstruct how evidence is accumulated step by step, without needing to collapse the entire
network into a single formula.

* Global logic rules identify logic formulas over subgraphs that globally approximate the
model’s behavior. To obtain them, at the final classifier, we extract global rules that
summarize the decision process for the whole graph. The extraction procedure follows the
following step:

1. Apply rule extraction to the final logic layer, obtaining global rules associated with
each class.

2. Identify the nodes in a given graph that activate these rules.

b

Collect the induced neighborhoods of these nodes and compute canonical subgraphs.
4. Use a standard graph isomorphism algorithm [7] to merge isomorphic subgraphs and
identify recurring motifs.

The resulting set of global rules provides human-readable summaries such as graphs contain-
ing motif M are classified as class ¢”. To evaluate these rules, we measure their alignment,
that is, the agreement between the rule activations and the model’s predictions on held-out
data.

* Node attributions from global rules provide scores for nodes of a graph which measure
their contribution towards a prediction. When a global rule is activated for a graph, we can
attribute responsibility to the specific nodes that support its conditions. A node is considered
relevant if it appears in at least one minimal conjunct that satisfies the rule. In this way, the
explanation highlights the exact part of the graph that triggered the decision. This yields
node-level attributions that are directly derived from the logic rules, avoiding the need for
post-hoc gradient or perturbation methods.

D Demonstration

Proposition 1. Ler hq(]k) denote the output of the k-th layer of the LogiX-GIN architecture, de{‘ined

as in Equation where \¥) is a monotonic logic transformation as in Equation El and %) is a
differentiable binarization function over learned activation intervals as in Equation[d] Then, for each

k, there exists a set of formulas {gp§-k) (x)}; in the syntax of GML such that

AR =1 <« (G,v) = ¢§k)($)a

where G is the input graph and x is the free variable corresponding to node v.

Proof. We proceed by structural correspondence between the computational components of hg,k) and
the semantic constructs of GML:

* Aggregation. Given a node v € V, the expression
a, =y A (8)
weN (v)U{v}

computes, for each feature index ¢ € {1, ..., d}, with d the hidden dimension, the number
of neighbors u such that hgk_l) [¢] = 1. This results in a count vector a,, € N4, where each
entry encodes the multiplicity of a property among the neighbors.
» Binarization. The function 3(*) applies learnable thresholding to each coordinate a,[i],
producing:
al® = " (a,) € {0,1}7.)

Each output aE,’“ [i] = 1 encodes the satisfaction of a threshold condition:

APl =1 <= ali] €0; < [{ue N@)U{v}:hF D[] =1} € Tyw ;0 (10)

23

where Zgx) ; is a learnable interval determined by /3 (%) for the i-th dimension, as defined in

Equation @ By inductive hypothesis, for each i, there exists a formula wg’“*” (x) such that
hgl,kfl)[i] =1 < (G,u) wl(k*l)(x). Therefore:

APl =1 = Gk V(3 (Bey eV w))
(thTi)eIﬁ(k,) (1)

Ay (By) Al VW) -
(k)

Hence, each a,, [i] corresponds to a valid graded modality in GML.

* Monotonic Logic Layer. As shown by Ragno et al. [23]], due to non—neativity of weights

and the monotonicity of o, each output neuron hg,k) [7] from Equation
logic formula in disjunctive normal form (DNF):

P =1 = \/ A\aPu =1, (12)
Ses;ies

corresponds to a

wher S; is the set of subsets of features with corresponding weights that sum up to a value
(

greater than —bjk). Since each ag,k) [i] corresponds to a GML formula as shown above, it

follows that: .
WP =1 <= (Gv) ¢l (),

where

=\ NV ((Hz“y (E(%y)Awl(k*l)(y)))

SES; €S (t:,T1)ET (1) (13)
A (HSTY'y (E(x, y) A @k_l)(y)))) :

By induction on k, and given that the base case (input binarization) is definable by unary predicates,

we conclude that all 4" [4] are convertible into GML formulas. Thus, the output of the LogiX-GIN
architecture is fully convertible in GML. O

E Node Attribution Evaluation

Here, we perform an analysis to evaluate the explanations proposed by different approaches when
simply focus on node attributions. We perform our comparison with 5 post-hoc methods (GNNEx-
plainer [31], PGExplainer [[15]], Integrated Gradients [27]], SubgraphX [34], and GStarX [35]) applied
on the black-box GIN model and 2 self-interpretable models (PiGNN [22] and GIB [32]]) We perform
the evaluation in terms of the Fidelity of the attributions. Fidelity is defined as the ratio of graphs
whose prediction is shifted when removing the most important nodes.

In literature, node attribution evaluation is mainly designed of post-hoc instance-level approaches,
which focus on finding the most important nodes that lead to a specific prediction. On the contrary, self-
interpretable models are designed to provide visual explanations thanks to architectural constraints.
For these reasons, node attributions represent only an approximation of the explanatory power of
self-interpretable models and this evaluation setting can end up being unfair to them. This is primarily
due to a lack of evaluation methods for self-interpretable models in literature for several reasons. First,
these type of models are still highly unexplored, second, there is often a high diversity between the
various approaches. For instance, prototype-based approaches use the similarity between prototypes
and subgraphs of the input graph to determine the class. Node attributions for these methods are
obtained by extracting such similarities. However, it is not guaranteed that removing the portions
of the input graphs that actually led to a specific prediction cause a shift in the prediction. On
the contrary, optimization-based methods such as GStarX that specifically aims to find subgraphs
that when removed provoke shifts in the prediction. Additionally, while with post-hoc methods are
generally compared when applied on the same model, in the case of self-explainable models, we have
different models under analysis.

24

NCI1 Mutagenicity MUTAG

0.4 081 056
2 2%%7 2
§ 0.3 E E 0.4
= =4 x)
0.2 A
0.21 0.2
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Sparsity Sparsity Sparsity
BA2Motifs BAMultiShapes BBBP
0.6
0.5

o
S
L

—

0.5 1 0.6 1
] 0.5

)

Fidelity
o o o o
- N w »
L N | L

Fidelity
o o o
NoWw B

Fidelity
o o o
i N w

0.8 0.9 0.5 0.6 0.7 0.8 0.9

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7
Sparsity Sparsity Sparsity
PROTEINS

0.8 0.9

o
~

Fidelity
e o o o o
NoWws o

0.5 0.6
Sparsity

—— GNNExpl. —— PGExpl. — IG —— SubGraphX —— GStarX —— GIB PIGNN —— LogiX-GIN

Figure 6: Fidelity.

Figure |6[shows the Fidelity score on the graph classification datasets. Since the different methods
report continuous attribution score, the fidelity is calculated on the hard masks at different sparsity
level. In particular, we vary the sparsity between 0.5 and 0.95.

We observe that on four cases, namely NCI1, MUTAG, BA2Motifs and BAMultiShapes, LogiX-GIN
produces Fidelity scores that are comparable or better that the state-of-the-art post-hoc approaches,
specifically with optimization-based ones. On BBBP, Mutagenicity and PROTEINS, instead we
observe better values from GStarX and PiGNN. However, as already underlined, in the case of
LogiX-GIN, explanations are obtained by simply looking at the rules activated on the last layer,
which might not truly indicate its true behavior. For this reason, we believe that a more thorough
examination of the model through inspection of its complete logic rules can actually provide better
transparency of the model.

F Last Layer Rule Activations

This section reports the activations of the logic rules of the last layers on the datasets of the global
rules experiment. Figure[7]shows graphs of the validation set highlighting the nodes that activate the
rules of the last layer. In order to provide a compact representations, activations are aggregated using
isomorphism. Therefore, for each dataset, only non-isomorphic activations are shown. We observe
that the rules capture patterns that are generally known to be related with the predicted class.

25

—&& @) e p
.) &) o P g
‘5—4}’?"(xj/ \xﬁ\ ?

!
@—a—@ e

(d) BAMultiShapes

Figure 7: Last layer rules activations for obtaining global explanations. For each dataset, we show
validation set graphs that activate for the rules and highlight in red the nodes corresponding to such
activations.

G Logic Rules Activations

This section reports the activations of the logic rules on the 10 datasets. For each model we extract
the rules of each layer and we plot in Figure[§]the distribution on the percentage of the nodes that are

26

Layer 1 Layer 2
6 3
2 2
CER | | I]2,
© ©
[s] 2]
0 0
0 50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
g g *
Q 6 [}
2w 20
no4 ue,
53 53
3%, ST
3 3
@ 0 2 0
0 50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
3 1
Qun2 Q0
=T sc
0 0.0
0 50 100 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
z B Fl
%, =
oo 10 7R
oA 822
2% 5 8
2 2
ol dulub e 1 0
0 50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
wn 715 0w ©
Z Z
woso woa
= =
oz oz
£ 25 €2
0.0 0
50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
30 6
S g 20 S 8 4
22y ze,
P TP | o
0 50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
10
4
awn a
@0 TI o
[l o3
o&? &
. A
50 100 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
T 2 z
2 210 g 2
0 | 0
50 100 0 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
_,E 20 ‘E 10
3w S wn
EQ EQ
£210 EZ S
o o
% 2
o A | G T |]
0 50 100 50 100
% Activated Nodes % Activated Nodes
Layer 1 Layer 2
1.0 0.0
0 0
&g &g
© ©
505 2 000
G2 G2
© ©
. o
0.0 -0.05
50 100 50 100

% Activated Nodes

% Activated Nodes

MUTAG
Rules

Rules

BaShapes

Ba2Motifs

BaMultiShapes

Mutagenicity

TreeGrid

BaCommunity

Layer 3

~

all

Rules
=

o
o

50 100
% Activated Nodes

Layer 3

~

=

Rules

o

50 1
% Activated Nodes

Layer 3
0.05

—-0.05

o

50 1
% Activated Nodes

Layer 3

Rules
=) N IS
S

o

50 100
% Activated Nodes

Layer 3

IS

Rules

PROTEINS
~

50 1
% Activated Nodes

Layer 3

T

50 100
% Activated Nodes

Layer 3

I

50 1
% Activated Nodes

Layer 3

~

Rules
o >

)

50 100
% Activated Nodes

Layer 3

Rules
i
0 o

s

o
o
o

50 100
% Activated Nodes

Layer 3

o
=)
3

—-0.05

50 1
% Activated Nodes

Layer 4
1.0
2
=
So
505
]2
©
o
0.0
50 100
% Activated Nodes
Layer 4
0
[}
a
=
[}
£3
S &
=
T
[:s]
0 50 100
% Activated Nodes
Layer 4
0.05
9y
E 2 000
s -4
—0.05
50 100
% Activated Nodes
Layer 4
1.0
z
z,
€
805
© o
]
5
=
0.0
50 100
% Activated Nodes
Layer 4
1.0
()
2y
w o
=505
E -4
Q.
0.0
50 100
% Activated Nodes
Layer 4
=82
93
Z2x 1
0 50 100
% Activated Nodes
Layer 4
1.0
58
@505
)4
0.0
50 100
% Activated Nodes
Layer 4
o
T2
R
g
0 50 100
% Activated Nodes
Layer 4
> 15
c
2850
£3
[4
§%2s
o4
Y
o 50 100
% Activated Nodes
Layer 4
0.05
«
&an
22 o000
G2
©
2]
-0.05
50 100

% Activated Nodes

Layer 5

1.0
2
S0
So
505
A2
©
[:a]
0.0
50 1
% Activated Nodes
Layer 5
o 10
o
a
2w
nu
5305
S
=
©
2 o0 % I
% Activated Nodes
Layer 5
0.05
Qun
EL o0
2&
-0.05
50 1
% Activated Nodes
Layer 5
0.05
z
g,
c
gL o000
ST
8
5
= _oo0s
50 1
% Activated Nodes
Layer 5
0.05
7]
Z
o)
E2 000
3 -4
a
—0.05
50 1
% Activated Nodes
Layer 5
-
— o
S1
22
0 50 1
% Activated Nodes
Layer 5
0.05
53
@2 000
o0&
-0.05
50 1
% Activated Nodes
Layer 5
1.0
hed
=i
2205
g -4
00 50 bt
% Activated Nodes
Layer 5
S 1o
2
5
o
E Los
S 0.
s&
)
©
2 o0
o 50 1
% Activated Nodes
Layer 5
0.05
0
<
]
_EU‘:E 0.00
SE
o
—0.05
50 1

% Activated Nodes

Figure 8: Analysis on percentage rules activations for each layer in LogiX-GIN.

activated. We observe as a general pattern that early layers have high variations on the activations,
most likely due to the fact that they tend to recognise more general patterns. On the contrary later
layers focus on more detailed patterns, drastically reducing the percentage of nodes that are activated.

27

H Ablation Study on Pruning

We performe an ablation study on the BBBP and BA2MOTIFS datasets to evaluate the effect of
pruning strategies. We compare (i) layer-by-layer pruning, where the Hoyer regularization is applied
sequentially starting from the last layer, and (ii) full pruning, where it is applied jointly to all layers.
Table [3|reports the percentage decrease of non-zero weights (from the unpruned to the pruned model)
for both strategies.

Table 3: Ablation study on pruning. We report the percentage decrease of non-zero weights after
pruning. Layer-by-layer pruning consistently yields stronger reductions compared to full pruning.

Dataset Layer-by-layer Full

Ba2Motifs 83.13 78.84
BBBP 30.39 0.00

The results show that the layer-by-layer strategy better reduces the number of non-zero weights. In
contrast, jointly optimizing all layers at once leads to weaker pruning due to interdependencies among
rules: if a rule at layer ¢ depends on features from layer £ — 1, then pruning must respect this order.
For this reason, pruning all layers together may incorrectly remove weights that are still needed in
subsequent rules.

I Hyperparameters, Resources and Reproducibility

All the experiments, including those on GraphTrail, post-hoc methods and other self-explainable
architectures, are documented in the supplementary material. The experiments were performed
on a machine equipped with an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz and an NVIDIA
GeForce RTX 4090. The implementation is done in PyTorch and PyTorch-Geometric and all the
library versions are detailed in the environment specifics available in the supplementary material. In
Table @ and Table [5] we detail the hyperparameters of the models.

In Table[6 we report the average training times of GIN and LogiX-GIN. Although the LogiX-GIN
training times are much higher compared to the ones of the black-box, it is always important to keep
in mind that they allow for a full inspection of the single layers of the model. Before LogiX-GIN, no
model or technique allowed for such level of explainability. Additionally, it is also important to keep
in mind that, in the case of the GIN model, in order to have an explanation only of the last layer, we
would still need to execute GraphTrail, which might take days to generate an explanation.

Table 4: GIN Models Hyperparameters

Dataset batch_size dropout epochs hidden_dim 12 Ir
BaShapes 32 0 3000 32 0.0001 0.001
BaMultiShapes 128 0.5 3000 32 0.0001 0.001
BaCommunity 128 0.5 3000 16 0.0001 0.01
Ba2Motifs 128 0 3000 16 0.0001 0.001
BBBP 32 0.5 3000 16 0.0001 0.001
MUTAG 128 0.5 3000 32 0.0001 0.001
NCI1 128 0 3000 32 0.0001 0.001
PROTEINS 32 0 3000 32 0.0001 0.001
Mutagenicity 32 0.5 3000 32 0.0001 0.001
TreeGrid 128 0 3000 32 0.0001 0.001

J Rule Pruning Statistics

Here, we report an analysis of the effects of our pruning strategy on the LogiX-GIN model. Table
shows the test accuracy and the number of non-zero weights before and after pruning on all the
datasets in exam. We observe that the strategy does not impact the performances drastically. On the

28

Table 5: LogiX-GIN Models Hyperparameters.

Dataset batch_size conv_reg epochs fc_reg 12 Ir
BaShapes 128 0.001 5000 0.01 0 0.01
BaMultiShapes 32 0.001 5000 0.01 0.0 0.001
BaCommunity 32 0.001 5000 0.1 0.0001 0.01
Ba2Motifs 32 0.001 5000 0.01 0.0 0.001
BBBP 32 0.001 5000 0.01 0.0 0.001
MUTAG 32 0.001 5000 0.01 0.0 0.01

NCI1 32 0.001 5000 0.1 0.0001 0.0001
PROTEINS 32 0.001 5000 0.01 0.0 0.001
Mutagenicity 128 0.001 5000 0.01 0.0001 0.001
TreeGrid 32 0.001 5000 0.01 0.0 0.001

Table 6: Average and standard deviation of training times (in milliseconds) for GIN and LogiX-GIN
across datasets (updated values).

Dataset GIN (avg £std) LogiX-GIN (avg + std)
Ba2Motifs 2727.00 +207.80 6671.67 +177.83
BaMultiShapes 1193.67 + 35.37 6354.00 £ 201.92
MUTAG 279.00 + 122.06 797.00 + 26.87
Mutagenicity 3656.00 + 40.90 5748.33 £27.38
PROTEINS 1872.33 +13.89 11077.00 = 4.97
NCI1 1695.33 +48.80 49646.67 £ 636.76
BBBP 2044.00 = 77.94 19855.00 + 46.50
TreeGrid 265.33 £ 19.94 4361.00 = 12.03
BaCommunity 497.33 £11.09 21057.67 +£3.77
BaShapes 1072.67 £ 73.19 16680.67 + 4.50

Table 7: Statistics of classification performances and number of non-zero weights on the LogiX-GIN
model before and after pruning. The experiments are performed over 5 seeds and mean and standard
deviation are reported for statistical significance.

Dataset Stage Accuracy Total Non-zeros Conv-Layer 1 Conv-Layer 2 Conv-Layer3 Conv-Layer4 Conv-Layer5 FC Layer
Ba2Motifs Original 1.00 £0.00 4136 +432 252+48 937 £112 958 + 56 843 + 51 1007 + 127 137 £70
Pruned 1.00 £0.00 880 + 581 31+16 201 211 334 + 380 67+72 243 +399 2+0
BaMultiShapes ~ Original 1.00 £0.00 4546 + 119 280+ 12 1090 + 57 1013 +25 908 £ 53 1071 + 81 182+42
Pruned 0.99 £0.01 3355265 196 + 34 959 + 134 782 £ 264 550 £434 829 £ 360 3754
MUTAG Original 0.87 £0.04 2295 + 362 228 21 660 + 86 444 + 158 498 + 121 389 + 141 73+20
Pruned 0.85+0.04 711437 133+ 85 236 + 160 186 +218 107 £139 811 40+ 14
Mutagenicity Original 0.82£0.02 4643 + 280 474 £26 987 £41 1000 + 30 999 + 111 976 + 184 205 £ 15
Pruned 0.81+0.02 4133 +545 474 £26 987 £ 41 1000 + 30 957 £ 161 651 £530 61 74
NCI1 Original 0.80 £0.02 4443 + 139 495 +32 827 +46 942 + 102 952 £ 65 1061 + 68 165+9
Pruned 0.80+0.02 4197 +304 495 £32 827 £46 942 +102 952 + 65 956 + 208 23+2
PROTEINS Original 0.72£0.06 2547 + 509 14310 796 + 163 512+175 568 +256 446 + 380 80+ 10
Pruned 0.71£0.03 1346 + 468 107 £ 41 739 £ 155 190 + 224 230 +263 1£2 775
BBBP Original 0.88 £0.01 2775+510 315+ 11 913 + 68 687 + 194 587 £294 155 £303 116 £20
Pruned 0.86+0.02 1732 +250 272 £91 740 £ 373 481 327 154 £300 00 83£57
TreeGrid Original 0.98 £0.01 4014 +82 189 %15 860 + 46 965 + 74 970 + 54 1008 + 52 20+ 14
Pruned 1.00+0.01 1007 404 9+19 333 £107 317 +£243 205 + 101 46 £ 35 5+2
BaShapes Original 0.93£0.03 1016 + 104 68+9 241 £47 220 +29 220 £22 195 +27 69 +24
Pruned 0.97£0.01 482+ 124 5810 164 £ 50 133 £67 517 26+5 48 +36
BaCommunity ~ Original 0.86 +0.02 3621 272 193+ 18 739 £57 706 =110 688 + 100 767 £76 525 +77
Pruned 0.89£0.02 1248 + 341 118 £37 384 £ 177 297 £ 194 170 £ 65 99 +27 179 + 183

contrary, in some cases we also record an improvement of the performances as the pruning encourages
generalization in the model. The amount of non-zero weights reflects the number of rules identified in
the experimental section. Indeed, we observe that the number of non-zero weights is directly linked

with the number of rules that the model uses.

29

	Introduction
	Related Work
	Background
	LogiX-GIN
	Experiments
	Conclusions
	Fourier Step Function
	Examples of Graded Modal Logic Formulas
	LogiX-GIN Explanation Procedure
	Demonstration
	Node Attribution Evaluation
	Last Layer Rule Activations
	Logic Rules Activations
	Ablation Study on Pruning
	Hyperparameters, Resources and Reproducibility
	Rule Pruning Statistics

