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Abstract—The current polyp segmentation methods mainly
use the saliency map to obtain the uncertain region, foreground
region, and background region of the polyp image, and then they
learn the semantic information from each other, to enhance the
edge segmentation ability of the network. However, there is great
instability in the quality of the saliency map and the error
information brought by low-quality saliency maps will interfere
with the segmentation ability of the network. To this end, this
paper proposes a strong-guided, pixel-wise, supervised
contrastive learning method (SGP-SCL), which enhance the
model to identify the polyp boundary by strengthening
foreground and background guidance for polyp boundary.
Specifically, the SGPS-CL method fully utilizes the ground truth
label to obtain high-confidence and representative samples to
guide the learning of boundary regions with low confidence, thus
reducing the impact of the instability of the preliminary
prediction probability map quality on the network performance.
Experiments are conducted on CVC-300, CVCClinicDB, Kvasir,
CVC-ColonDB, and ETIS polyp segmentation datasets, and the
proposed method achieves competitive results.
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I. INTRODUCTION

Colorectal polyps, as significant precancerous lesions, hold
the key to averting the onset of colorectal cancer through
timely detection and removal [1]. Historically, manual
screening via colonoscopy has proven effective in identifying
precursor lesions and early stages of colorectal cancer [2].
Nevertheless, the efficacy of colonoscopy screening is heavily
reliant on the clinician's clinical surgical experience and
professional knowledge reservoir. Prolonged exposure to this
work can lead to subjective judgment and emotional influences,
potentially resulting in instances of missed diagnoses and
misdiagnoses of polyps. Consequently, provide automated,
accurate, and computer-aided detection techniques with
dependable predictive capabilities becomes paramount.

In recent years, deep learning-based semantic segmentation
have proven highly effective for diagnosing colorectal lesions,
owing to their emphasis on pixel-wise classification and dense
prediction [3]. For example, UNet [4] uses the U-shaped
architecture and the jump connection to join the semantic
information and the deeper features, so that the details are
recovered more refined. And UNet++ [5] based on UNet

variants are also proposed. Through semantic segmentation,
clinicians and researchers can swiftly and precisely identify the
location and extent of colorectal lesions. Nevertheless, polyp
segmentation presents two formidable challenges [6]. On one
hand, colorectal polyps exhibit diverse sizes, shapes, and
appearances. On the other hand, the similarities in color, shape,
and texture between polyp foreground and background result in
indistinct boundaries. To address the first challenge, some
methods incorporate multi-scale feature fusion to enhance
network robustness. SFANet [7], for instance, introduces
adaptive scale context module and semantic global context
module to extract multi-scale context features, thereby
bolstering feature fusion between high-level and low-level
features. Polypseg [8] adopts a selective kernel module,
enabling the adaptive selection of kernels of various sizes to
extract multiple receptive field features. While these
approaches allow the polyp segmentation network to focus on
multi-scale information and improve detailed information
learning, they do not entirely resolve the issue of fuzzy
boundaries. Researchers have also explored methods to address
the challenge of fuzzy boundaries. For instance, in [9], a dual-
branch structure is employed to formalize boundary-sensitive
loss by inferring the target boundary through the region branch,
and predicting the target contour through the boundary branch.
Another approach, proposed in [10], introduces a novel
boundary constraint network (BCNet) that achieves more
precise polyp segmentation through joint supervision of polyp
regions and boundaries. However, it's important to note that
this method, which incorporates additional boundary
segmentation information. Recently, some studies have
incorporated the concept of saliency detection to identify
objects in polyp segmentation images, and subsequently
enhance target boundaries in a bottom-up fashion. For instance,
the Parallel Reverse Attention Network (PraNet) [6] was
introduced, which aggregates features into the decoder to
generate a guided saliency map. The reverse attention module
establishes relationships between boundaries and regions,
extracting boundary clues and thereby improving segmentation
accuracy. Another approach, the Uncertainty Augmented
Context Attention Network (UACANet) [11] partitions the
foreground, background, and uncertain regions using the
saliency map. Following mapping and aggregation, the network
enhances the context representation ability of the uncertain
region through a novel self-attention mechanism. However,
relying solely on the saliency map to devide image foreground,
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Figure.1. The framework of the proposed method.

background, and uncertain regions for contextual semantic
learning is deemed unreliable. The inaccuracies in the saliency
map can result in insufficient guided learning ability of the
network, thereby impacting overall performance. Consequently,
mitigating the negative impact caused by saliency map
misguidance, and effectively directing the uncertain region
become pivotal in addressing the challenge of fuzzy boundaries
in colorectal polyp segmentation.

Fortunately, some researchers have introduced Cross-Image
Pixel-wise Supervised Contrastive Learninng (CIP-SCL) [12],
which does not require saliency maps for segmentation. CIP-
SCL utilizes the ground truth label of each pixel to determine
positive and negative samples, learning feature similarity in the
embedding space to enhance global feature constraints, and
improve network segmentation performance. However, CIP-
SCL also poses limitations in the context of polyp
segmentation. The sampling strategy involves hard samples
combined with random samples, wherein positive samples
include pixels belonging to the same class but predicted
incorrectly and random pixels of the same class, and negative
samples comprise pixels belonging to other classes but
predicted incorrectly and random pixels of other classes. This
sampling strategy fails to focus attention on the boundary
information of the polyps and focuses on the segmentation of
the overall target, which leads to insufficient sensitivity of the
model to the polyp boundary information, thus affecting the
segmentation effect. Hence, further research and promotion of
polyp segmentation methods based on CIP-SCL are warranted.

To address the aforementioned challenges, this paper
introduces a Strong-Guided Pixel Supervised Contrast (SGP-
SCL) approach for polyp segmentation. The key features of
this method are outlined as follows: (1) A novel strong-guided
pixel-wise supervised contrastive learning method is presented.
Leveraging ground truth information for each pixel, this
method explores semantic relationships among the polyp's
uncertain region, foreground region, and background region. (2)
A strong-guided sampling strategy is proposed to tackle the
issue of fuzzy polyp boundaries. By selecting reliable positive
and negative samples, along with sampling anchor points from
uncertain regions, this strategy establishes strong-guided
learning objectives for the following contrastive learning. (3) A
dynamic symmetric contrastive learning loss function is
proposed, which symmetricly conducts contrastive learning for

anchor points in the foreground region, and anchor points in the
background region. Meanwhile, it utilizes a dynamic weight
factor to balance supervision between the main loss function
and the auxiliary loss function. (4) We validate our approach
by performing experiments on widely recognized polyp
segmentation datasets, including CVC-300, CVC-ClinicDB,
Kvasir, CVC-ColonDB, and ETIS-LaribPolypDB, and achieve
remarkable results.

II. METHODS

A. Overall Architecture
Our method primarily emphasizes the sampling strategy

and the construction of SGP-SCL. Our contrastive loss is
inspired by CIP-SCL, and the specific formula for the contrast
loss (cf.Eq(1)) in CIP-SCL is as follows:
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where, LNCE called InfoNCE , is a popular loss function for
contrastive learning [12], Pi and Ni denote the pixel embedding
colections of positive and negative samples of pixel i,
respectively, and τ >0 is a temperature hyper-parameter.

Specifically, as depicted in Figure.1, the proposed method
is based on the encoder-decoder segmentation network. For an
input image I, upon entering the segmentation network, the
saliency map (m) is generated. Subsequently, m enters two
branches for supervised training. In the first branch, m
undergoes segmentation head to produce the prediction map,
followed by the application of the cross-entropy loss. The
specific operation of the segmentation head is mapping the
feature map into a prediction map. In the second branch,
employing the strong-guided sampling strategy, m selects
positive and negative samples along with anchors, which are
then projected into the embedding space. Ultimately, a
dynamic symmetric contrastive loss is executed.

B. Strong-Guided Sampling Strategy
When applying the contrast learning method to polyp

segmentation images, three challenges emerge: (1) Reduced
sensitivity to small targets. When the segmentation target is
small, the model's sensitivity to the foreground diminishes.
Additionally, the target size may further decrease or disappear



during the downsampling across multiple network layers,
leading to a failure to obtain samples from foreground class. (2)
Imbalance in sampling positive and negative samples. Due to
the small proportion of foreground areas and their similar
features, only a limited number of positive samples are required
for the network to learn foreground features. In contrast, the
background region, with its larger proportion and diverse
features, demands a substantial number of negative samples for
the network to effectively distinguish between positive and
negative samples. (3) Challenges with the uncertain region.The
uncertain region in polyp images (which does not belong to the
positive and negative samples) is the key reason for the low
segmentation performance, and the previous methods applied
to semantic segmentation failed to solve this problem.

In response to these challenges, this paper introduces a
strong-guided strategy. Specifically, leveraging the encoder-
decoder segmentation backbone network denoted as f(*), the
feature map Fl (cf.Eq(2)), which includes the last layer feature
map, is extracted before each upsampling operation in the
decoder of f(*) is extracted for feature sample selection.

( ), [1,2,3,4]lF f I l  

Where l represents the label output of the four levels of the
decoder, and I represents the input image. Moreover, the
obtained Fl are all passed through the classifier to obtain the
saliency map ml (cf.Eq(3)).

( )l lm Classifer F 

Furthermore, in order to obtain the foreground region ml,f
and the background region ml,b respectively in the saliency map
ml, the ground truth label ŷ is used to divide the saliency map
ml into ml,f and ml,b (cf.Eq(4)).

,ˆ ˆ (1 )l, f l l b lm = m y, m m y    

Sampling positive and negative samples. Based on the
obtained ml,f and ml,b, an active sampling strategy is constructed.
Firstly designs a lower bound for positive samples collection,
which aims to make the selected samples collection include as
many foreground sample points with high confidence as
possible. Similarly, designs the upper bound of negative
samples collection, which aims to make the selected sample
collection include as many background sample points with high
confidence as possible. By selecting ml,f and ml,b, the most
reliable samples can be filtered, preventing unreliable samples
from affecting the judgment of foreground and background
regions. Specifically, suppose that the collection of selected
positive samples is SP (cf.Eq(5)), and the collection of selected
negative samples is SN cf.Eq(6).
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Where, ɑ represents the selected probability value, typically
falling within the range of ɑ∈[0.5,1]. In the background region,
given that the highest confidence often corresponds to the
lowest confidence in the saliency map, 1-ɑ is employed during
selection. In this study, ɑ is set to 0.95, ensuring both the
quality of the selected samples, and the balanced of positive
and negative samples. Following the selection of positive and
negative samples, two reliable sample collections, SP and SN,
are obtained. However, the prediction of uncertain regions
remains indistinct, often resulting in the challenge of blurred
edges in segmentation.

Sampling anchors. This paper selects the anchors at the
boundary between positive and negative samples, and allows
positive and negative samples to guide these critical anchors
during model updates. The paper utilizes the intermediate
probability value (0.5) from the saliency map as the critical
point, where the uncertain region samples on both sides of the
critical point are most abundant. Specifically, it is assumed that
the anchors in the uncertain region are divided into two
collections, AP and AN (cf.Eq(7)), where AP represents the the
collecion closer to the positive samples, and AN represents the
collecion closer to the negative samples.
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where θ represents a boundary value, we choose θ = 0.6, in
order to select a moderate number of anchors from uncertain
region.

Following the active sampling strategy, the samples are
categorized into four sets, namely SP, SN, AP and AN. AP and AN
represent the anchors of the uncertain region, which blur the
boundary of the segmentation object, resulting in the
degradation of segmentation performance. Leveraging the two
reliable collections of positive and negative samples SP and SN,
the model is proactively guided to effectively partition the
samples within the uncertain region, thereby enhancing the
segmentation performance of the boundary. Specifically, this
paper proposes a dynamic symmetric contrastive loss to
achieve SP and SN guided models to alleviate the issue of fuzzy
boundaries.

C. Dynamic Symmetric Contrast Loss
Positive and negative samples (certain regions) are used to

guide anchors (uncertain regions) for contrastive learning, so
that the network can learn how to better distinguish the same
class features and different class features. For the foreground,
anchor i∈AP, positive sample i+∈SP, and negative sample i-
∈SN. For the background, anchor i∈AN, positive samples
i+∈SN, and negative samples i-∈SP. To this end, we construct
a symmetric contrastive loss (cf.Eq.(8)).
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Moreover, to ensure a balanced representation ability
across different stages of model updates, we introduce a
dynamic weighting factor λ. The value of λ is kept small in the
early stages of model updates, and begins to increase during
the middle and late stages. This choice is informed by the
observation that, in the initial stages of model updates, the
model's representation ability for the data is not well-
established, and an excessively strong Lsym may impede the
learning process. The overall loss function as follows:

ce symL L L  

where Lce is the cross-entropy loss function and λ is the
dynamic adjustment factor.

Lsym is dynamically introduced to co-supervise training
after a period of Lce. This is aimed at directing the network's
primary focus towards accurately classifying pixels during the
initial stage. As training epochs progress, the network's feature
expression ability improves. Subsequently, Lsym is incorporated,
with its weight gradually increased, to resegment the uncertain
region. This process enhances the network's refined
segmentation ability for polyp boundaries.

Figure.2. Comparison of adding SGP-SCL at different starting epochs.

TABLE I. COMPARISON OF DIFFERENT CONTRAST LEARNING METHODS

Method
CVC-300 CVC-ClinicDB Kvasir ETIS-LaribPolypDB

mDic mIoU mae mDic mIoU mae mDic mIoU mae mDic mIoU mae

UCACNet 84.3 77.5 0.9 92.6 88.1 0.8 90.7 85.3 2.4 55.1 48.7 7.5
UCACNet + CIP-SCL 84.7 77.3 0.8 89.8 83.4 1.0 90.3 84.7 2.5 50.8 45.6 1.7
UCACNet + SGP-SCL 86.3 79.4 0.7 92.7 87.8 0.7 91.6 86.3 2.6 66.0 58.1 1.9

TABLE II. PERFORMANCE OF DIFFERENT Λ IMPLEMENTATIONS

λ
CVC-300 CVC-ClinicDB Kvasir CVC-ColonDB ETIS-LaribPolypDB

mDic mIoU mae mDic mIoU mae mDic mIoU mae mDic mIoU mae mDic mIoU mae

0 84.3 77.5 0.9 92.6 88.1 0.8 90.7 85.3 2.4 74.5 67.3 4.1 55.1 48.7 7.5
5×10-3 83.8 75.9 1.5 91.0 85.3 0.9 90.2 84.9 2.8 69.8 61.6 4.7 50.9 42.7 9.7

10-4 84.8 76.7 1.0 89.4 84.6 0.8 89.1 83.3 3.0 71.3 63.7 4.3 51.5 43.9 4.9
5×10-4 86.1 77.9 0.8 91.5 86.8 0.8 89.5 84.4 2.9 72.6 64.7 4.1 59.2 51.0 2.4

10-5 86.7 79.2 0.9 92.4 88.1 0.8 91.3 86.3 2.3 74.1 66.9 4.0 55.6 48.9 1.0
5×10-5 86.3 79.4 0.7 92.7 87.8 0.7 91.6 86.3 2.6 72.4 64.9 3.9 66.0 58.1 1.9

10-6 86.7 79.2 0.9 92.4 88.1 0.8 91.3 86.3 2.3 74.1 66.9 4.0 55.6 48.9 1.0
5×10-6 87.7 81.1 0.8 92.3 87.3 0.7 91.2 86.2 2.1 71.4 64.3 5.4 53.5 46.2 3.9

10-7 88.4 81.1 0.9 91.0 86.4 0.8 91.3 86.5 2.4 74.3 66.4 4.2 66.0 57.4 3.2

TABLE III. QUANTITATIVE SEGMENTATION RESULTS

Method
CVC-300 CVC-ClinicDB Kvasir CVC-ColonDB ETIS-LaribPolypDB

mDic mIoU mae mDic mIoU mae mDic mIoU mae mDic mIoU mae mDic mIoU mae

UNet 80.0 70.8 1.5 89.2 83.1 1.4 87.7 80.8 3.5 64.8 56.9 4.6 50.1 42.4 3.3
UNet++ 81.0 72.4 1.4 88.3 83.7 1.3 88.2 81.7 3.3 65.2 56.7 4.9 43.7 36.5 4.8
PraNet 87.4 80.1 0.8 91.0 86.2 0.8 91.4 86.4 2.4 74.6 66.6 3.7 65.9 59.2 3.2

UCACNet 84.3 77.5 0.9 92.6 88.1 0.8 90.7 85.3 2.4 74.5 67.3 4.1 55.1 48.7 7.5
UCACNet+SGP-SCL 86.3 79.4 0.7 92.7 87.8 0.7 91.6 86.3 2.6 72.4 64.9 3.9 66.0 58.1 1.9

LDNet 83.5 76.3 1.2 90.5 85.0 1.1 91.2 85.7 2.4 76.2 68.7 3.6 66.0 58.0 2.9
LDNet+SGP-SCL 85.4 78.6 1.1 91.9 87.1 0.8 90.9 85.4 2.6 76.4 69.1 3.7 68.3 60.8 2.1



III. EXPERIMENT

A. Dataset
We use the same training data as [11] to make a fair

comparison. That is, 550 images from CVC-ClinicDB [13],
and 900 images from kvasir [14] were selected as training set.
The remaining 62 images in CVC-ClinicDB, and 100 images
in kvasir served as the test set. All images from the CVC-300,
CVC-ColonDB [15], and ETIS-LaribPolypDB [16] datasets
were used as test sets to test the network's generalization
performance on previously unseen datasets.

CVC-300, is a dataset from EndoScene [17]. EndoScene
contains 912 images of 44 colonoscopy sequences from 36
patients. The CVC-300 dataset is the 60 images in
EndoScene and their corresponding real labels.

CVC-ClinicDB, also known as CVC-612. The dataset
contains 612 images and corresponding real labels with
image sizes of 384 × 288.

Kvasir, an endoscopic dataset for pixel-level
segmentation of colon polyps, consists of 1000 images of
gastrointestinal polyps and their corresponding
segmentation masks, which are personally labeled and
verified by senior gastroenterologists.

CVC-ColonDB, was derived from 15 different
colonoscopy sequences, and 380 images were sampled from
these sequences.

ETIS-LaribPolypDB, a dataset containing 196 images
collected from 34 colonoscopy videos. The size of the image
is, which is the largest in other data sets. The polyps in this
dataset are all small and difficult to find, making this dataset
even more challenging.

B. Experimental details
Our data enhancement is consistent with [11], using the

Adam [18] optimizer, and sets the initial vector to 10-4, vector
polynomial attenuation factor [19] to 0.9max(1 ( / ) )epoch epoch ,
training epoch to 240, input image compression to 352 × 352,
training batch size to 16. In particular, the test results are
calculated by upsampling the prediction map of size 352 × 352
back to the original size.

C. Ablation experiment
In this study, UCACNet serves as our foundational

segmentation network, and we conduct a comprehensive
ablation experiment with 240 epochs for each experiment while
maintaining constant values for other hyperparameters. The
evaluation metrics employed in this analysis encompass mDice,
mIoU, and MAE. These metrics offer insights into the accuracy,
degree of overlap, and overall quality of the segmentation
results generated by each method.

Comparison of different contrast learning methods.
In this paper, we initially investigated the efficacy of our
SGP-SCL, and CIP-SCL in polyp image segmentation.
Ablation experiments were conducted on the CVC-300,
CVC-ClinicDB, Kvasir, and ETIS datasets. As depicted in

Table I, when considering SGP-SCL in segmentation
network learning—utilizing reliable positive and negative
samples to guide anchors learning—it demonstrates notable
performance improvements across the four datasets
compared to the "baseline (no contrast)" approach.
Particularly noteworthy is the substantial enhancement on
the most challenging ETIS-LaribPolypDB dataset, where
the mIOU index increases by 10.9%. Conversely, the CIP-
SCL method, which samples difficult and random samples
without targeted guided learning, does not exhibit
significant performance improvement, and even reduces
performance on most datasets.

Comparison of different starting-epochs. In the
method proposed in this paper, the choice of the number of
starting epochs significantly influences the model's
performance. As illustrated in Figure.2, it shows that adding
auxiliary functions to the model at 50 epochs yields optimal
test results in more datasets, and provides the best overall
performance on all datasets, without the occurrence of
notably poor performance on any specific dataset. Notably,
adding auxiliary functions either too late or too early leads
to suboptimal test results. This phenomenon can be
attributed to the fact that the model's representation ability is
not fully established with a small number of training epochs,
and the introduction of Lsym may disrupt the process of
representation learning. Conversely, with more training
epochs, the representation power of the model approaches
steady levels and is therefore not susceptible to Lsym.

Comparison of different dynamic weighting factors.
To investigate the impact of the loss weight of Lsym, we
varied the sizes of the weighting factors (λ), and observed
the corresponding changes in model performance. As shown
in Table Ⅱ, when λ is excessively large, the model becomes
overly influenced by Lsym, hindering the establishment of
basic data representation ability. When λ > 10-5, the model
can show better results on most of the data sets. In this paper,
considering the performance on all the data sets, λ = 5×10-5

is finally selected as the weighting factor of the proposed
method.

D. Comparative experiments
The experiments on the polyp image segmentation task

used five different datasets including CVC-300, CVC-
ClinicDB, Kvasir, CVC-ColonDB and ETIS-LaribPolyPDB to
evaluate the performance of different segmentation methods.
Experimental results have been summarized in Table Ⅲ.
Which compares the segmentation results of the classical
semantic segmentation methods UNet, UNet++, the leading
polyp segmentation method PraNet, UCACNet, LDNet [56],
and experiments combined with the proposed method in this
paper UCACNet + SGP-SCL and LDNet + SGP-SCL.

It is obvious that the polyp segmentation method combined
with SGP-SCL can obtain more accurate segmentation results
in the face of most challenges. On the CVC-300 and ETIS-
LaribPolypDB dataset, the segmentation effect of the SGP-
SCL method is more significant, providing better test results
for the performance of the model. In particular, UCACNet +



SGP-SCL, which was improved by 9.4% on the mIou index on
the ETIS dataset over methods that did not use SGP-SCL.

In addition, the visualization results of some of the
experiments are shown in Figure.3. For the CVC-300 dataset,
the polyp target accounted for a small proportion of the area in
the colonoscopy image, and LDNet showed the phenomenon
of redundant recognition, but was solved when the SGP-SCL
method was introduced. In the CVC-ClinicDB dataset, the
polyp target accounts for a large proportion of the area in the
colonoscopy image, most models can segment it well. For the
Kvasir dataset, the intestinal environment is complex, which
leads to a large number of incorrectly segmented regions for
the target in the UACANet and LDNet models. After the
introduction of the SGP-SCL method, the segmentation
accuracy of the model has been significantly improved. In the
CVC-ColonDB dataset, the model with the addition of SGP-
SCL method achieves higher segmentation performance,
which effectively supplements the original missing
segmentation. In the ETIS-LaribPolypDB dataset, the model
with the SGP-SCL method can also effectively reduce the
missegmentation phenomenon and make up for the missing
segmentation area. In summary, it is confirmed that the SGP-
SCL method can indeed improve the segmentation accuracy of
polyp images of the model.

Figure.3. Performance visualization.

IV. CONCLUSION

In this paper, we propose a novel pixel-wise supervised
contrastive learning method called SGP-SCL, which enhances
polyp boundary by leveraging reliable positive and negative
samples guide uncertain anchors learning. Additionally, the
dynamic symmetric contrast loss enhances the learning effect
of the segmentation network through contrastive learning of the
foreground and background. In a series of contrast and ablation
experiments, our method demonstrates promising
results.However, our method also deserves further discussion
and research, and we hope to achieve better results in a wider
data set in the future.
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