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ABSTRACT

Urban development impacts over half of the global population, making human-
centered understanding of its structural and perceptual changes essential for sus-
tainable development. While Multimodal Large Language Models (MLLMs) have
shown remarkable capabilities across various domains, existing benchmarks that
explore their performance in urban environments remain limited, lacking system-
atic exploration of temporal evolution and subjective perception of urban envi-
ronment that aligns with human perception. To address these limitations, we
propose UrbanFeel, a comprehensive benchmark designed to evaluate the per-
formance of MLLMs in urban development understanding and subjective envi-
ronmental perception. UrbanFeel comprises 14.3K carefully constructed visual
questions spanning three cognitively progressive dimensions: Static Scene Per-
ception, Temporal Change Understanding, and Subjective Environmental Per-
ception. We collect multi-temporal single-view and panoramic street-view im-
ages from 11 representative cities worldwide, and generate high-quality question-
answer pairs through a hybrid pipeline of spatial clustering, rule-based generation,
model-assisted prompting, and manual annotation. Through extensive evaluation
of 20 state-of-the-art MLLMs, we observe that Gemini-2.5 Pro achieves the best
overall performance, with its accuracy approaching human expert levels and nar-
rowing the average gap to just 1.5%. Most models perform well on tasks grounded
in scene understanding. In particular, some models even surpass human annota-
tors in pixel-level change detection. However, performance drops notably in tasks
requiring temporal reasoning over urban development. Additionally, in the subjec-
tive perception dimension, several models reach human-level or even higher con-
sistency in evaluating dimension such as beautiful and safety. Our results suggest
that MLLMs are demonstrating rudimentary emotion understanding capabilities.
Our UrbanFeel benchmark will be made publicly available.

1 INTRODUCTION

With over half of the global population now living in urban areas (World Bankl 2024]), understand-
ing the dynamics of urban development has become increasingly critical for designing sustainable
governance strategies, guiding urban policy, and promoting human-centric smart cities (Yuan et al.,
2024; Van Etten et al., 2021} |Zhang et al., 2024b). Compared to satellite imagery, which provides
macro-scale, top-down observations, street-view imagery offers fine-grained, street-level perspec-
tives that are more aligned with human visual perception (Biljecki & Ito) |2021; Naik et al., 2017}
Wang et al., |2025). This unique characteristic enables it to capture subtle environmental changes
within cities, making it a valuable data source for analyzing intra-urban transformation.

Recent research has explored the use of deep learning models in conjunction with street-view im-
agery to assess urban development stages (Zhang et al 2018} |Alpherts et al., 2025)), visual qual-
ity (Ito et al., 2024; |Benidir et al., [2025), and perceived livability (Dubey et al., |2016; |Yang et al.,
2024; [Li et al} 2025). However, these approaches face challenges in terms of generalization across
modalities and cities. More importantly, they struggle to effectively quantify and interpret human
subjective perception—an essential component of real-world urban understanding.
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The advent of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) has introduced
new possibilities for tackling these limitations (Zhang et al., 2024a; | Xuan et al.l 2025; Ye et al.,
2025). By leveraging massive amounts of multimodal pretraining data, MLLMs exhibit strong ca-
pabilities in spatial reasoning, visual-linguistic alignment, and commonsense inference. Initial at-
tempts have applied these models to urban imagery tasks, such as vehicle trajectory prediction (Liu
et al., 2025; |[Lai et al.l 2025) or scene understanding (Yan et al., 2024; Feng et al., [2025bga), and
several early benchmarks have emerged to evaluate their performance on objective tasks such as
image geolocalization (Zhou et al., [2025) and infrastructure inference (Feng et al., 2025c)).

Prior work has largely been confined to static snapshots, focusing on objective recognition tasks
such as autonomous driving or urban planning, while overlooking the historical dynamics of cities
and thus failing to capture trajectories of development, renewal, and transformation. At the same
time, physical changes in the built environment—such as renovation or decay—often reshape human
perceptions of safety, beauty, and liveliness. However, existing benchmarks rarely examine how
these perceptual shifts are linked to temporal urban evolution, leaving a critical gap in understanding
the interaction between physical change and human experience.

To bridge these gaps, we present UrbanFeel, a novel human-centric benchmark for evaluating
MLLMs in the context of urban change perception. UrbanFeel defines 11 tasks across three di-
mensions—static scene perception, temporal change understanding, and subjective environmental
perception—to assess models’ capabilities in recognition, reasoning, and alignment with human
perception. Our benchmark emphasizes multi-view integration, temporal-spatial consistency, and
perceptual alignment, aiming to push the boundaries of MLLMs toward more human-aligned ur-
ban understanding, to help MLLMs provide a reference for continuous monitoring and prediction
capabilities in sustainable cities.

Our main contributions are summarized as follows:

* We introduce UrbanFeel, a multi-perspective, multi-dimensional benchmark designed to
evaluate MLLMs’ performance on tasks related to urban development and human percep-
tion. UrbanFeel carefully designs 11 subtasks, focusing on evaluating the model’s percep-
tion and understanding capabilities in three dimensions: Static Scene Perception, Temporal
Change Understanding, and Subjective Environmental Perception.

* We design a scalable and interpretable task-querying framework, incorporating a diverse
range of evaluation formats including binary classification, multiple-choice, sorting, and
open-ended reasoning. To enhance explainability, we introduced manual annotation based
on local visual evidence into the benchmark management process.

* We conduct a comprehensive evaluation of 20 state-of-the-art MLLMs on UrbanFeel, quan-
tifying model differences across task categories and revealing that current models still fall
short of human-level performance in spatial reasoning and subjective perception within
urban change scenarios.

2 RELATED WORK

2.1 URBAN TEMPORAL CHANGE ASSESSMENT FROM STREET-VIEW IMAGERY

With the accelerating pace of global urbanization, cities have undergone profound spatial and envi-
ronmental transformations, prompting growing research interest in urban evolution (Pandey & Setol
2015} Hatab et al.l 2019; [Follmann et al.,|2021). In recent years, street-view imagery has emerged
as a valuable data source for urban change detection due to its close alignment with human per-
spectives (Biljecki & Itol 2021} [Ito et al., [2024). For instance, ChangeScore (Naik et al.l 2017)
utilized deep networks to correlate visual changes with socioeconomic variables. Subsequent stud-
ies focused on quantifying the built environment’s physical fabric: Street2Vec measured physical
structural shifts via latent space embeddings (Stalder et al., 2024b), while CityPulse constructed
semantic label sequences to detect binary environmental changes (Huang et al.| 2024b). Similarly,
Stalder et al. (Stalder et al.| 2024a)) quantified urban decay dynamics using detected objects in dif-
ferent years as a proxy. While establishing street-view time series as high-resolution proxies for
physical change, these methods predominantly frame urban evolution as binary classification. Re-
cently, Visual Chronicles (Deng et al.| [2025) employed VLMs to mine co-occurring visual trends
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Figure 1: Comparison with existing urban scene benchmarks. UrbanFeel introduces three key in-
novations: (1) spatially continuous street-view data that includes both single-view and panoramic
imagery, (2) long-term temporal coverage spanning over 15 years, and (3) a novel evaluation di-
mension focused on subjective human perception (e.g., safety, beauty), enabling human-centered
assessment beyond conventional spatial understanding.

from open-ended queries. However, existing research remains largely confined to describing ob-
jective visual elements change within limited regions, rather than systematically evaluating model
capabilities in controlled temporal reasoning tasks across diverse urban contexts.

2.2  SUBJECTIVE PERCEPTION ASSESSMENT OF URBAN ENVIRONMENTS

Parallel to physical change detection, extensive research utilizes street-view imagery and deep learn-
ing to quantify subjective urban perceptions and their socioeconomic correlations (He et al.| 2023
van Veghel et al.}, 2024} [Rui & Xu|,[2024). The foundational Place Pulse project (Dubey et al.,[2016
established this paradigm by crowdsourcing pairwise comparisons to train deep learning models for
large-scale prediction. Subsequent studies expanded this frontier: Yao et al. (Yao et al| im-
proved alignment via adversarial learning, while Wei et al. [2022) and Fan et al.
[2023) linked perceptual attributes to planning metrics and socioeconomic outcomes. No-
tably, Wang et al. [Wang et al.| (2023)) applied interpretable machine learning to uncover functional
zone-dependent nonlinear associations and threshold effects between environmental features and
perception. Crucially, however, these approaches remain confined to static image snapshots and
traditional discriminative models. They lack a comprehensive benchmarking framework to evalu-
ate MLLMs’ capacity to capture how human subjective perception evolves dynamically alongside
long-term physical transformations.

2.3 MULTIMODEL LARGE LANGUAGE MODELS

In recent years, Multimodal Large Language Models (MLLMs) such as Qwen (Bai et al., [2023),

GPT-40 (OpenAl, 2024), and Gemini-2.5-pro (Comanici et all [2025) have achieved remarkable

progress in image generation (Anonymous} [2025)), visual reasoning (Zhang et al}[20254), and cross-
modal alignment (Wu et al.,|2024a). Leveraging large-scale pretraining and instruction tuning, these

models show strong generalization in open-domain visual understanding (Li et al.|[2024b}; [Wu et al.}
[2024b), though their performance on domain-specific applications remains limited. In urban con-
texts, recent studies explored MLLMs’ zero-shot spatial reasoning. UrbanCLIP
aligns imagery with textual semantics via contrastive learning, while UrbanL.LaVA (Feng et al.,
[2025b) integrates street-view, structured data, and trajectories, achieving strong generalization on
UBench. Despite these advances, a systematic framework for evaluating MLLMs on subjective ur-
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ban perception or urban change assessment remains lacking. Prior efforts, such as (Zhang et al.|
2025b), focus on isolated dimensions like safety, without addressing temporal coherence or per-
ceptual consistency. Overall, existing work emphasizes static reasoning or functional classification,
overlooking human-centric perceptual responses and their evolution over time.

2.4 MLLM BENCHMARKS IN URBAN SCENE

With Multimodal Large Language Models (MLLMs) advance in image understanding (Ma et al.,
2024) and cross-modal reasoning (Huang et al., | 2024a), benchmark datasets have evolved accord-
ingly. Early benchmarks centered on basic Visual Question Answering (VQA), but such tasks no
longer capture the full potential of modern MLLMs. To address this, several expert-level bench-
marks have been introduced for domain-specific tasks with greater semantic and spatial complexity,
especially in urban contexts. For example, V-IRL (Yang et al.| [2024) focuses on street-view naviga-
tion and recognition; CityBench (Feng et al., 2025c) targets urban identity and navigation, though
with limited task diversity. UrBench (Zhou et al.,|2025) incorporates multi-view imagery from street
and remote sensing sources for spatial reasoning. CityLens (Liu et al.| 2025) evaluates urban func-
tion modeling using socio-economic indicators, and USTBench (Lai et al., 2025) assesses spatial
planning via traffic and road network data. Despite these advances in modeling objective urban
scenarios, most existing benchmarks are limited to static snapshots in time. They lack a compre-
hensive evaluation of models’ ability to capture the spatiotemporal evolution of urban environments,
particularly how physical transformations affect human subjective perception responses.

3 URBANFEEL

3.1 OVERVIEW

We present UrbanFeel, a comprehensive benchmark de- [ tatic Scene Perception [ Temporal Change Understanding
[] Subjective Environmental Perception
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Unlike prior benchmarks that focus primarily on object detection or scene classification within urban
imagery, as shown in Fig[T] UrbanFeel introduces several novel design dimensions. First, it system-
atically incorporates both single-view and panoramic street images captured in a certain sequence
to evaluate models’ ability to capture spatial context across viewpoints. Second, it integrates long-
term urban development sequences—spanning more than a decade—to support tasks that require
historical reasoning and temporal ordering. Third, UrbanFeel introduces human-centered affective
perception tasks, covering four dimensions: beautiful, safety, wealthy, and lively. Each sample is
additionally annotated with localized visual evidence, enabling the evaluation of model explainabil-
ity and alignment with human perceptual cues. Although real-world urban analysis often involves
iterative workflows, UrbanFeel deliberately targets the fundamental atomic perception and reason-
ing capabilities that serve as essential prerequisites for such complex decision-making. UrbanFeel
thus offers a challenging and comprehensive evaluation framework for MLLMs in complex urban
scenarios, laying a foundation for future studies on modeling the alignment and divergence between
machine and human perception.
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Figure 3: Overview of our UrbanFeel. UrbanFeel defines 11 sub-tasks spanning 3 cognitive di-
mensions: static scene perception, temporal change understanding, and subjective environmental
perception.

3.2 BENCHMARK TASK

Guided by a cognitively progressive evaluation framework, we design 11 diverse tasks and construct
UrbanFeel, a comprehensive benchmark for modeling urban development perception. As illus-
trated in Fig.[3] these tasks span three levels of cognitive depth—Static Scene Perception, Temporal
Change Understanding, and Subjective Environmental Perception—enabling a multi-dimensional
assessment of MLLMs across recognition, reasoning, and perceptual alignment.

Static Scene Perception focuses on evaluating models’ ability to recognize salient visual elements
and spatial consistency in a single time frame. Tasks under this category include identifying dom-
inant visual components in a given image and determining whether a pair of images—single-view
and panoramic—depict the same geographic location. This dimension retains some classic scene
perception tasks and aims to assess models’ capacity for snapshot-level spatial understanding and
contextual matching.

Temporal Change Understanding targets the model’s ability to detect, differentiate, and reason
about visual changes over time. Beyond identifying structural variations across temporally aligned
images, models are required to classify the type of urban evolution (e.g., facade renovation, road
maintenance, or vegetation growth) and to perform temporal ordering of multiple images based on
perceived development stages. These tasks simulate human-like reasoning about city progression
and test the model’s temporal-spatial integration abilities.

Subjective Environmental Perception emphasizes the alignment between MLLMs and human sub-
jective evaluation. We construct affective perception tasks across four dimensions—beautiful, safe,
wealthy, and lively—and require models not only to produce scalar judgments but also to provide
localized visual justifications. In addition, we introduce before—after comparison tasks to examine
whether models can detect perceptual shifts in changing environments. This dimension moves be-
yond objective recognition, probing whether MLLMs can simulate human affective responses in
complex visual scenes.

3.3 BENCHMARK CURATION

Data Collection and Pre-processing. As shown in Figure [] the UrbanFeel benchmark collects
over 4,000 street-view images from 11 cities across four continents via Mapillary and the Google
Street View API, covering both single-view and panoramic formats. The selected cities include
representative locations from the Global South (e.g., Kuala Lumpur, Tolyatti) and the Global North
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Figure 4: Benchmark construction process of UrbanFeel, including data collection and pre-
processing, question generation, and MLLMs inference and quality control.

(e.g., Paris, Washington, D.C.), spanning a temporal range from 2007 to 2024 and capturing diverse
stages of urban development.

During the data pre-processing stage, given the lack of precise spatial or temporal ordering in some
images, we apply spatiotemporal clustering based on geolocation and timestamps to generate co-
herent urban evolution sequences. To ensure data quality, we use a pretrained segmentation model
along with manual filtering to remove low-quality samples, such as indoor scenes, blurry captures,
and heavily occluded images. Additional preprocessing details are provided in the Appendix [C]

Question Generation. UrbanFeel supports four question formats: binary judgment, multiple
choice, sorting, and open-ended QA. To efficiently generate diverse question sets, we adopt a hy-
brid strategy combining rule-based generation, model-assisted prompting, and manual authoring.
For instance, tasks like same-place matching and future-view prediction are generated using tempo-
ral and spatial metadata. For change-type recognition, we initialize annotations with outputs from
general-purpose segmentation models, followed by manual verification and correction. Subjective
perception tasks are written entirely by human annotators and span four dimensions: beautiful,
safety, wealthy, and lively. Annotators also mark localized visual evidence to support reasoning and
explainability evaluation.

MLLM:s Inference and Quality Control. To ensure annotation accuracy and evaluation reliability,
we introduce a multi-stage validation pipeline. During model inference, strict output formatting
constraints are enforced. Responses are automatically assessed using a separate language model to
compare with human-provided ground truths. For ambiguous or illogical responses, manual review
is conducted to reclassify or remove problematic samples. This filtering ensures the final evaluation
metrics are robust and reproducible.

4 EXPERIMENTS

4.1 EVALUATED MODELS

We evaluate a total of 20 multimodal large models under a zero-shot setting using UrbanFeel,
including 2 closed-source models and 18 open-source models. The closed-source models are
GPT-40 and Gemini 2.5 Pro (Comanici et all, [2025)), accessed via their official
APIs. The open-source models cover a diverse set of representative MLLM families, including
DeepSeek-VL2 (Wu et all, 2024b), InternVL 3 2025), LLaVA 2025),

Qwen2.5-VL (Yu et al.l 2025)), Phi (Abdin et al.,[2024), Gemma-3 2025), and Idefics3-
8B (Laurencon et al., [2024), among others. A full list of model versions and configurations is

provided in Appendix




Under review as a conference paper at ICLR 2026

Table 1: Quantitative results for 2 closed-source and 18 open-source MLLMs, as well as those for
human and random guess across 11 tasks. The overall score is computed across all tasks. The
maximum value and the second largest value of model performance in each task are indicated by the
bold and underlined text, respectively. Task names are abbreviated for brevity.

Model | Static Scene Perception | Temporal Change Perception | Subjective Perception Consistency | Overall
| DEE CR SPM |TCR FSI PCR TSR SCR| GP LP CP \
DeepSeek-vI2-tiny 445 18.0 445 482 255 315 37 241 59.6 53.8 43.6 36.1
DeepSeek-vI2 59.3  29.0 437 94.8 538 37.1 82 389 65.8 40.9 333 459
MiniCPM-V 2.6-8B 459 948 716 90.9 26.8 38.7 10.5 252 41.9 34.8 339 47.4
Qwen2.5-v1l-3B 61.1 51.0 762 778 432 289 50 17.1 67.6 35.6 28.3 44.7
Qwen2.5-vl-7B 524 982 758 85.1 432 334 100 439 56.6 33.8 38.6 51.9
Qwen2.5-v-72B 60.1 972 662 | 879 903 409 260 460| 657 44.6 36.9 60.2
LLaVA-1.5-7B 263 51.0 49.0 88.3 258 246 3.7 170 59.5 39.2 53.2 39.8
LLaVA-v1.6-mistral-7B | 349 51.0 45.5 650 175 28.0 3.7 16.1 67.2 38.7 51.0 38.1
InternVL3-2B 513 414 655 66.6 19.6 389 14 150 68.2 40.0 25.4 39.4
InternVL3-8B 398 674 538 784 31.8 335 7.8 322 69.7 34.1 38.8 443
Phi-3.5 46.0 572 514 754 569 248 78 374 54.6 374 36.2 44.1
Phi-4 377 262  69.7 829 574 321 23 399 71.0 422 48.1 46.3
Idefics3-8B 471 566 60.0 532 225 395 37 155 61.2 34.1 49.0 40.2
Mistral-Small-3.1-24B 19.6 91.6 679 86.6 64.3 289 160 46.7 63.3 42.4 39.9 51.6
Aria 648 90.0 717 89.0 42.7 389 105 38.1 67.7 42.1 459 54.7
Aya-vision-8b 18.8 51.0 38.6 51.5 262 246 32 333 69.6 43.8 39.5 36.4
Gemma-3-4b 425 816 64.1 59.5 259 39.0 82 365 53.1 46.1 26.7 439
Gemma-3-27b 50.8 802 669 585 762 375 18.7 448 64.7 39.6 41.0 52.7
GPT-4o 508 972 792 | 892 742 40.5 389 49.9| 602 37.3 364 59.4
Gemini-2.5-pro 648 963 782 954 97.6 36.5 521 56.5 67.7 49.0 30.3 65.9
Human 713 88.1 76.7 964 96.4 212 70.0 69.5 66.6 329 53.1 67.4
Random 214 486 503 47.6 263 195 39 188 51.0 18.2 352 31.5

4.2 EVALUATION PROTOCOL

UrbanFeel includes four question types: binary judgment, multiple choice, sorting, and open-ended
QA. Following the evaluation protocol of prior benchmarks such as MMMU (Yue et al.| [2024)
and UrBench (Zhou et al, [2025), we adopt a hybrid strategy combining exact matching, model
verification, and semantic similarity evaluation.

For non-open-ended questions (i.e., judgment, multiple choice, and sorting), we first apply strict
string matching—answers are considered correct only if they match the reference label. However,
since some models generate verbose responses without clearly selecting an option, we employ an
auxiliary language model to assess whether the prediction semantically aligns with the ground truth,
ensuring fair evaluation of models that include rationale in their outputs. For open-ended questions,
correctness is determined by measuring semantic similarity between the model-generated answer
and reference answers.

For the human baseline, we recruited two independent groups of ten participants each, all with
geography-related academic backgrounds (undergraduate, master’s, or doctoral students). One
group conducted the annotations, while the other performed the evaluations, ensuring no overlap
between the two. More implementation details of evaluation protocol are described in Appendix [B}

4.3 MAIN RESULTS

Overall Challenge of UrbanFeel. Table [T] summarizes the overall quantitative performance of
mainstream Multimodal Large Language Models (MLLMs) on UrbanFeel, revealing the significant
challenges posed by our benchmark. While closed-source models such as GPT-40 and Gemini-2.5-
Pro demonstrate impressive capabilities on selected tasks, their overall performance remains sub-
stantially behind human-level accuracy—particularly in tasks that require compositional reasoning
and spatiotemporal understanding. This performance gap is even more pronounced for open-source
models, suggesting that current MLLMs still face major limitations in practical applications related
to urban development, environmental perception, and city planning.

Performance Across Task Dimensions. Table [I| further disaggregates model performance across
the 11 sub-tasks in UrbanFeel. Most MLLMs exhibit strong capabilities in basic visual recogni-
tion tasks; for instance, the majority of models achieve over 60% accuracy on the Time-Consistent
Recognition (TCR) task, which requires only straightforward temporal identification.
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Figure 5: Quantitative comparison of MLLM performance on subjective environment perception.
(a) Accuracy across four dimensions. (b) Box plots show model variance, where the horizontal lines
in boxes indicate medians; box width indicates consistency.

However, model performance drops significantly when spatial and temporal reasoning must be in-
tegrated. In the TSR task, for example, most models score below 10% accuracy. Even the best-
performing model—Gemini-2.5-Pro—still lags behind human performance by 17.9% in accuracy,
revealing that existing models still struggle with long-range temporal ordering and scene-level align-
ment across time and space.

Interestingly, in the dimension of subjective environmental perception, many models show strong
consistency with human judgment (CP, LP). Their visual justifications—such as cues used to in-
fer aesthetic or safety—often align closely with those identified by human annotators, suggesting
early potential for human-aligned perceptual reasoning. However, this alignment weakens substan-
tially when temporal dynamics are introduced. On tasks involving perceptual comparison between
before—after scenes, most models exhibit heightened sensitivity to visual changes, often overempha-
sizing fine-grained variations and diverging from human-level perceptual stability. More subjective
analysis cases will be displayed in the Appendix D]

To our surprise, in the PCR task with panoramic inputs, MLLMs outperform human evaluators.
This is because humans are less sensitive to pixel-level differences caused by panoramic distortions.
While evaluators focus on salient foreground changes, mid- or long-range building variations occupy
only a small pixel proportion and may be less noticeable than background shifts in sky or road caused
by slight camera movements, leading to frequent misjudgments.

5 DISCUSSION

5.1 MODEL PERFORMANCE ACROSS SUBJECTIVE PERCEPTION DIMENSIONS

To further investigate model behavior in subjective environmental perception, Figure [5(a) presents
accuracy distributions across four key dimensions. The results show that MLLMs exhibit consider-
able variation across dimensions. Most models achieve human-comparable or even superior accu-
racy in dimensions such as Safe, Beautiful, and Lively, suggesting promising potential for aligning
with human perceptual judgments in urban scenes.

Among these, Safe is the dimension where most models perform best, reaching an average accuracy
of 50.6%. However, this dimension also reveals the largest performance gap between models, indi-
cating substantial inconsistency in safety-related judgments. In contrast, Lively displays more stable
accuracy across models, despite having a slightly lower average performance, suggesting that mod-
els more consistently capture liveliness, likely by relying on broad visual cues such as vehicles and
crowds. However, in the Wealthy dimension, the models still underperform human evaluators by an
average margin of 10.1%, implying that wealth perception may involve more nuanced or culturally
specific visual cues that current models struggle to capture.

The box plot in Figure [5(b) further supports these observations. Although the Safe dimension has
the highest median accuracy (52.4%), it also exhibits the widest interquartile range and largest over-
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Figure 6: Quantitative comparison of different models under the assumed city identity setting.“Yes”
indicates the proportion of positive evaluations made by MLLMs for the given perceptual dimension,
while “No” represents the proportion of negative evaluations. The results show that LLaVA-1.6-
mistral-7B and DeepSeek-v12 yield more positive evaluations across most cities, while Qwen2.5-VL
and GPT-4o show a decline under assumed city identity.

all variance, confirming the inconsistent model behavior. Conversely, the Lively dimension has
the most concentrated distribution, indicating higher inter-model agreement. This consistency sug-
gests that current MLLMSs may rely on more universal or easily detectable signals when evaluating
liveliness, whereas dimensions like safety and wealth require finer-grained perceptual reasoning or
socio-cultural understanding.

5.2 DOES CITY IDENTITY AFFECT MLLMS’ SUBJECTIVE ENVIRONMENTAL JUDGMENTS?

To examine whether MLLMs exhibit geographic bias in subjective perception, we conducted a “city
identity intervention” experiment. We randomly selected 100 street-view images from the GP val-
idation set and assigned each one of six hypothetical city identities (Cape Town, Kuala Lumpur,
Mexico City, Milan, Paris, Washington, D.C.), comparing the results to those without any assigned
identity (“No Pretend City”). Figure [6] shows the distributions of positive (e.g., “beautiful””) and
negative (e.g., “not beautiful”’) judgments under the Beautiful and Wealthy dimensions. Results for
Lively and Safe are included in the Appendix [C|

Overall, most models exhibit varying degrees of change in their subjective judgments when city
identity is introduced. LLaVA-1.6 and DeepSeek-vI2 tend to produce more positive evaluations
across most cities, suggesting a tendency to interpret identity labels favorably. In contrast, Phi-4
demonstrates high stability, indicating greater reliance on image content and robustness to added
semantic labels. Notably, GPT-40 and Qwen2.5-VL show a general decline in positive judgments
when city identity is provided, implying a more “cautious” or even “conservative” evaluation behav-
ior, potentially triggered by the activation of learned stereotypes or expectations.

When comparing “Global North” and “Global South” city identities, we observe that a northern
identity does not necessarily lead to more favorable evaluations. Although the average score
for northern cities is slightly higher, GPT-40’s perception of wealth for “Paris” and “Milan” drops
significantly—sometimes even below that of cities like “Cape Town.” This counterintuitive result
may stem from a mismatch between the semantic label and the actual image content; for example,
ordinary or aged urban scenes labeled as “Paris” may result in greater expectation gaps, prompting
the model to generate more negative evaluations. Conversely, GPT-40’s slightly increased positive
judgments for “Mexico City” may be attributed to positive visual signals such as modern buildings,
clean streets, and bright lighting—combined with the lack of strong negative priors associated with
the label “Mexico City” in the model’s pretraining corpus.

5.3 Do MLLMS PERCEIVE SINGLE-VIEW AND PANORAMA DIFFERENTLY ?



Under review as a conference paper at ICLR 2026

. L 80 - -
To evaluate whether the differences in view- B Single View B Panorama

point coverage and information organization g }y-i--i3-4 1] 1 1
between single-view and panorama introduce H U8 'R | ol S Bk e | | £ | R | i (e (R | k8 pmn | o 4 4R R
perceptual biases in MLLMs, we compare 4
model performance across the two perspectives.

As shown in Figure [7} the majority of models 5o
consistently perform better on single-view im-
ages than on their panorama counterparts. On

average, single-view inputs yield an accuracy ng%?&%:&%s&b?%&ﬁ‘?&b‘vﬁf@&?i&;“@4&«& f\?@g&&z%‘zf‘@
improvement of 11.7% over panoramic inputs. & G ST SV FSE é;i@,\g@ s
Notably, Gemini-2.5-Pro achieves the high- V& Qié@ 4@1&"‘2&255%@5 @«?eié‘:y“’,\@' &

est accuracy on single-view images at 69.4%, 4\‘2@ Sog Q@@ N Vqﬁ%

closely by Qwen2.5-VL-72B with 64.9%. In > hd

terms of panoramic images, Aria shows the
best performance with 55.3%, while Gemini-
2.5-Pro follows closely with with 54.9%.

Figure 7: Quantitative results of MLLMs perfor-
mance from different perspectives.

This performance gap suggests that although panorama offer greater spatial coverage and denser
visual information, their inherent geometric distortions and contextual blending may increase the
“cognitive burden” on MLLMs. It also shows that MLLMs have perspective data imbalance and
bias during training process.

5.4 DOES EXPLICIT REASONING ENHANCE TEMPORAL UNDERSTANDING?

To investigate whether guiding MLLMs with explicit reasoning

steps enhances performance in complex urban temporal tasks, 50 h Si— ) S— 4
we conducted a controlled ablation study on the Temporal Se- o
quence Reasoning (TSR) task, comparing Direct Sorting, Gen- =W B S by
eral CoT, and Re-Thinking strategies. Contrary to the expectation = o
that explicit reasoning consistently improves performance, our re- £ 30 . hd
sults reveal a counter-intuitive trend: for state-of-the-art models g -
such as GPT-40, Qwen2.5-VL-72B, and Gemini-2.5-Pro, the Di-
rect Sorting strategy consistently yields the highest accuracy. 10
Introducing verbose reasoning steps often leads to performance o P *
degradation; for instance, GPT-40’s accuracy drops from 46.1% T T .

. Coq. e e Direct  General Re-
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to justify an incorrect linear progression. We provide detailed

quantitative results and specific case studies of this phenomenon Figure 8: Quantitative results of
in Appendix C.4 and D. different prompt input on TSR.

6 CONCLUSION

In this study, we introduces UrbanFeel, a new benchmark for evaluating the capabilities of Mul-
timodal Large Language Models (MLLMs) in urban development understanding and subjective
perception. The benchmark includes over 14.3K questions across 11 tasks, covering static scene
perception, temporal change understanding, and subjective environmental perception. It is con-
structed using single-view and panoramic street-view images from 11 cities, spanning more than 15
years. We evaluate 20 MLLMs and identify key limitations. Current models underperform in tasks
requiring joint spatial-temporal reasoning. We also observe geographic bias in subjective perception
tasks, where predictions vary with city identity. In addition, models show perceptual inconsistencies
across different viewpoints, particularly between single-view and panoramic inputs. We envision
UrbanFeel advancing perception-aware urban intelligence. By bridging temporal evolution and hu-
man perception, this work positions MLLMs as scalable tools for the continuous monitoring and
assessment required to achieve sustainable urban development goals.

10
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ETHICS STATEMENT

We developed UrbanFeel guided by principles of responsible and ethical Al research. We acknowl-
edge that, despite efforts to ensure coverage and diversity, our dataset and annotations may still
carry biases from source imagery, annotator backgrounds, or cultural contexts—especially in sub-
jective perception tasks such as beauty, safety, wealth, and liveliness. Users should remain vigilant
to these limitations. To mitigate bias, we provided annotators with standardized guidelines and
training before labeling. The annotations are intended as reference labels that reflect the consensus
inclinations of the annotator group, not as absolute ground truth. Moreover, we recognize the possi-
bility that models built on UrbanFeel might be misused to influence public perceptions or aesthetic
judgments. Our intent is for positive applications—urban analysis, perceptual model evaluation, and
human-machine alignment research—and we explicitly disavow any malicious uses. By releasing
our data, code, and evaluation tools, we hope to foster transparency, accountability, and further work
toward fairer, cross-cultural, and ethically grounded Al in urban contexts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our work. The core concepts and method-
ology of our benchmark design are detailed in Section [3] including the three task dimensions and
the benchmark curation. Our experimental setup, including datasets, evaluation procedures, and
baseline MLLMs, is described in Section 4] and Appendix [C] Additional details on the manual an-
notation process, human evaluation settings, and operational guidelines for subjective perception
tasks are provided in Appendix [B| To facilitate the reproduction of our results and to support further
research in urban multimodal perception, we will release the complete codebase, benchmark dataset
(UrbanFeel), and evaluation scripts, along with detailed documentation and pretrained model pre-
dictions.
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UrbanFeel: A Comprehensive Benchmark for Temporal and Perceptual Understanding of
City Scenes through Human Perspective

Supplementary Material

In this appendix, we present supplementary materials that could not be included in the main paper
due to space constraints. These materials offer extended details on the benchmark construction,
evaluation protocols, and additional experimental results to support reproducibility and inspire future
research. Specifically, we provide:

* Additional Benchmark Statistics: Including detailed question distributions and compar-
ative analysis with existing urban perception benchmarks.

* Benchmark Construction Details: Covering the entire pipeline from data collection and
pre-processing to manual annotation and evaluation protocols.

* Experiment Details and Additional Results: Listing all evaluated baseline models, pre-
senting extended experimental results, and analyzing whether reasoning-augmented mod-
els outperform standard baselines on UrbanFeel. We also provide detailed results on how
assigned city identities influence model perception across different dimensions.

* Case Studies: Illustrative examples showcasing model responses and human annotations
across UrbanFeel’s 11 task types.

* Limitations and Future Work: Discussing current constraints of UrbanFeel and outlining
directions for further expansion and refinement.

» Use of Large Language Models: Describe the main uses of LLM in the writing of this
manuscript.

A ADDITIONAL BENCHMARK STATISTICS

A.1 QUESTION STATISTICS

Table 2] summarizes the number of test and validation instances across different subtasks. Urban-
Feel comprises a carefully curated set of 14.3K visual questions, with 11K in the test set and 3.3K
in the validation set. Our benchmark provides a comprehensive suite of representative questions
under three evaluation dimensions, enabling a holistic assessment of MLLMs’ capabilities in un-
derstanding spatiotemporal urban dynamics and aligning with human perception in complex urban
development scenarios.

Table 2: Question Distribution in Test and Val Sets

Evaluation Dimension ‘ Task ‘ Test Val
DEE 1600 400
Static Scene Perception CR 400 100

SPM 238 60

TCR | 1760 440
FSI 880 220
Temporal Change Perception PCR 880 220
TSR 160 40
SCR 880 220

GP 1358 560
Subjective Perception Consistency | LP 1638 280
CP 1241 720

Total | — | 11035 3260
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Table 3: Comparison of Existing Urban Scene Benchmarks. Our UrbanFeel designs a variety of
question types over a longer time span, comprehensively evaluating the perception ability of differ-
ent MLLMs on the physical space and human subjective dimensions of the environment in urban
development scenarios.

Feature CityBench CityGPT USTBench Urbanch UrbanFeel
(Ours)
Judgements X X X X v
Multi-Choice v v v v v
Open-Ended X X X v v
Sorting X X X X v
Static Scene v v v v v
Historical Data X X X X v
Subjective Perception X X X X v
Temporal Resolution Hourly or Hourly or Hourly with Event-based Yearly
Event-based event-based planning loops sequence

A.2 BENCHMARK COMPARISON

Table [3| presents a systematic comparison between UrbanFeel and existing urban perception bench-
marks. Current benchmarks such as CityBench (Feng et al., [2025¢)), CityGPT (Feng et al., 2025a)),
and USTBench (La1 et al., 2025) primarily focus on single-timestamp static images or tasks at the
hourly or event level, aiming to assess models’ understanding of urban infrastructure or real-time
dynamics. These tasks are often constructed using short-term trajectories, single-frame imagery, or
synthetic datasets, and lack modeling or reasoning over real-world urban evolution.

In contrast, UrbanFeel emphasizes evaluating MLLMs’ multimodal perception capabilities within
the long-term context of urban development. It introduces street-view image sequences spanning 17
years, capturing visual transformations across phases of urban planning, expansion, and renovation.
More importantly, UrbanFeel goes beyond physical spatial changes by systematically incorporating
subjective environmental perception, designing tasks that assess perceptions of beautiful, lively, safe,
and wealthy—thus exploring how human perceptions of environmental quality shift across different
urban contexts, and how well models align with such perceptions.

Additionally, UrbanFeel supports diverse task formats—including multiple choice, open-ended rea-
soning, and ranking—and covers both static scene understanding and dynamic urban transforma-
tions. It fills critical gaps in spatiotemporal reasoning and human-centric perception evaluation,
establishing the first comprehensive multimodal benchmark framed from the perspective of hu-
man-—city interaction.

B BENCHMARK CONSTRUCTION DETAILS

B.1 DATA COLLECTION DETAILS

This section outlines the data collection pipeline for all street-view imagery used in UrbanFeel.
The dataset comprises two main components: single-view images and panoramic images. We first
obtained the vector boundaries of 11 representative cities using OpenStreetMap.

For single-view imagery, we utilized the Mapillary API provided by the Global
Streetscapes dataset to download images. Each image was renamed using a standard-
ized format based on the provided timestamp, geographic coordinates, and image ID:
{lat, lon} {year} {month} {image_id}.jpg, to facilitate streamlined preprocessing
and file management. We strictly adhere to the CC BY-SA license for Mapillary data, using official
tools for acquisition and ensuring that all released content satisfies the attribution and share-alike
requirements.

For panoramic imagery, we employed the Google Street View API to retrieve data and aligned the
naming convention with that of the single-view images. This ensures consistency across spatial
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Figure 9: An example of the user interface of LabelU.

and temporal dimensions, enabling cross-view and temporal comparisons in subsequent benchmark
tasks.To ensure full compliance with Google’s Terms of Service and copyright regulations, the open-
source version of UrbanFeel does not distribute raw Google Street View imagery. Instead, we re-
lease only the unique Panorama IDs and metadata, accompanied by a retrieval script that allows
researchers to legally fetch the images via the official API using their own credentials.

B.2 DATA PRE-PROCESSING DETAILS

During data preprocessing, we first standardized the orientation of all street-view images by rotating
them to face true north based on camera heading metadata, minimizing the impact of viewpoint
variation in panoramic images on downstream MLLM perception. Since the images lack explicit
spatial relationships, we performed spatial clustering by calculating pairwise geodesic distances
using image coordinates, with a 50-meter threshold to identify multi-view, multi-temporal image
sequences from the same urban location.

We then applied the OneFormer(Jain et al., 2023) semantic segmentation model to preprocess the
images, discarding those with less than 5% sky coverage, which were likely captured indoors. Fi-
nally, we manually filtered out low-quality images affected by motion blur, overexposure, or other
visual defects.

B.3 MANUAL ANNOTATION AND EVALUATION DETAILS

During the annotation phase, acknowledging the inherent subjectivity of perception-related tasks,
we recruited a group of 10 undergraduate and master’s students with geography-related academic
backgrounds. Annotators were provided with standardized written guidelines (as shown in Table )
and a short training session with representative examples prior to the formal labeling process. They
were instructed to identify localized visual evidence from the images that supported their global
perceptual judgments. The resulting annotations are treated as reference labels rather than absolute
ground truth, reflecting the consensus tendencies of this annotator group. All annotation work was
conducted using the LabelU platform. Fig.[9]illustrates an annotation case in the Local Perception
task of the Beauty dimension.

For the evaluation phase, we recruited an independent group of 10 volunteers, entirely distinct
from the annotators, comprising undergraduate, master’s, and doctoral students in geography-related
fields. This separation ensured that annotation and evaluation were performed by different popula-
tions, thereby reducing potential bias introduced by overlapping roles. All human assessments were
conducted on the LabelLLLM platform, which provided a standardized interface for task interaction
and response collection.

It is important to note that subjective concepts such as beauty, safety, or wealth are inevitably in-
fluenced by cultural and personal perspectives. While the provision of operational guidelines and
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Table 4: Annotation guidelines for subjective perception dimensions. These guidelines were pro-
vided to annotators as operational references rather than absolute criteria.

Dimension ‘ Description (Instruction for Annotators)

Annotators were instructed to focus on the overall aesthetic impression of the scene, considering
whether the environment appears visually harmonious, orderly, and pleasant. They were asked to
pay attention to greenery, landscaping, architectural style and maintenance, cleanliness of streets,
balance of colors, and whether the layout looks uncluttered. Example: a tree-lined avenue with
well-maintained modern buildings should be labeled as more beautiful than a cluttered street with
graffiti and broken infrastructure.

Beauty

Annotators were instructed to evaluate whether the environment gives a sense of security,
especially from a pedestrian’s perspective. They were asked to check for cues such as adequate
Safety street lighting, visible sidewalks, orderly traffic, the presence of surveillance cameras or other
visible security measures, and the absence of disorder (e.g., litter, vandalism). Example: a well-lit
commercial street with open shops and visible security cameras should be labeled as safer than a

dark, narrow alley with poor visibility and signs of decay.

Annotators were instructed to judge the degree of perceived economic prosperity in the
environment. They were asked to consider the quality and modernity of buildings, the presence of
Wealth commercial activity (e.g., branded shops), the maintenance of infrastructure, and visible
indicators of affluence (e.g., luxury cars). Example: a district with glass office towers and upscale
retail should be labeled as wealthier than a neighborhood with dilapidated housing and cracked

pavements.

Annotators were instructed to assess the vibrancy and human activity in the scene. They were
asked to pay attention to pedestrians, cyclists, vehicles, open businesses, street vendors, or public
Liveliness events, as well as infrastructure supporting activity (benches, playgrounds). Example: a busy
marketplace with crowds and open shops should be labeled as more lively than an empty street

with little visible activity.

training sessions was intended to minimize ambiguity and promote consistency across participants,
these annotations should be regarded as references produced by a specific annotator population,
rather than universal ground truth. Future work will extend this framework through cross-cultural
annotation campaigns and inter-annotator agreement analyses to further address cultural bias and
subjective variability.

B.4 EVALUATION PROTOCOLS

Given the varying structures and formats of different question types in UrbanFeel, we adopt tailored
evaluation strategies for each to ensure fairness and reproducibility.

To provide a rigorous quantitative assessment, we adopt Accuracy (ACC) as the primary evaluation
metric across all tasks. The accuracy is computed as:

N, rrect Predictions
ACC = Correct Predict (1)

N- Total Predictions
where Total Predictions denotes the total number of evaluated instances, and Correct Predictions
denotes the number of instances for which the model output satisfies the task-specific correctness
criterion.

1. Exact Matching for Objective Tasks (MCQ, Binary, Sorting). For multiple-choice, binary
judgment, and sorting tasks, the correctness criterion corresponds to strictly matching the objec-
tive ground truth label or sequence. To handle verbose model outputs (e.g., when a model outputs
reasoning alongside the option), we employ a two-step normalization process: first, we attempt rule-
based parsing to extract the option label; if this fails, we use a lightweight LLM call solely to extract
the predicted label (e.g., "Option A”) without altering the semantic content. The extracted label is
then compared against the ground truth using exact string matching.

2. Semantic Similarity for Open-Ended Tasks. For open-ended questions where exact string
matching is too rigid, we employ a semantic similarity metric. We consider a prediction correct

19



Under review as a conference paper at ICLR 2026

if the cosine similarity between the Sentence-BERT embedding of the predicted answer ¢; and the
ground-truth text y; exceeds a pre-defined threshold 7. This is formally expressed as:

Correct(g;) = 1(sim(g;,y;) > 7) 2

where 1(-) is the indicator function returning 1 if the condition is satisfied and O otherwise, and
sim(-, -) denotes the cosine similarity computed using a pre-trained Sentence-BERT model. In our
experiments, we set the threshold 7 = 0.6 ensuring that correct but phrased-differently answers are
accepted while irrelevant hallucinations are rejected.

C EXPERIMENT DETAILS & ADDITIONAL RESULTS

C.1 BASELINE MODELS

We evaluate a total of 20 state-of-the-art Multimodal Large Language Models (MLLMs), encom-
passing both open-source and closed-source models with diverse model sizes and capabilities. All
models are capable of processing visual inputs and are assessed under a unified evaluation pipeline.
The list of baseline models used in UrbanFeel includes:

1. GPT (OpenAl, [2024): We adopt the latest version of GPT-40 as the representative model
from the GPT series.

2. Gemini(Comanici et al., [2025): Gemini-2.5-Pro is selected as the representative of the
Gemini family.

3. Qwen (Yu et al.,|2025): We evaluate three variants of Qwen2.5-VL, including the 3B, 7B,
and 72B checkpoints.

4. InternVL (Zhu et al., 2025): InternVL3-2B and InternVL3-8B are included as vision-
language expert models.

5. MiniCPM (Yao et al.,2024): MiniCPM-V-2.6 is used to represent lightweight MLLMs.

6. DeepSeek (Wu et al., 2024b)): Both DeepSeek-VL2-tiny and DeepSeek-VL2 are included
to explore performance scaling trends.

7. LLaVA (L1 et al., 2024b): We include LLaVA-1.5 (7B) and LLaVA-1.6-mistral as repre-
sentatives of this popular open-source family.

8. Mistral (Jiang et al) [2023): Mistral-Small-3.1-24B-Instruct is evaluated as a strong
language-focused baseline.

9. Gemma (Team et al., 2025): Both Gemma-3-4B and Gemma-3-27B checkpoints are as-
sessed.

10. Aya (Dash et al.| 2025): The Aya-vision-8B checkpoint is included.
11. Phi (Abdin et al., [2024): We evaluate multimodal variants of Phi-3.5 and Phi-4.
12. Aria (L1 et al.,2024a): We also include the open-source Aria model.

All models are accessed via their official APIs or released checkpoints, and evaluated using a stan-
dardized prompt structure and visual input protocol to ensure fairness and consistency. To ensure
reproducibility, we set the temperature to 0 and perform greedy decoding.

C.2 DO REASONING-AUGMENTED MODELS OUTPERFORM BASELINES ON URBANFEEL?

To systematically assess the benefits of reasoning capabilities for urban perception tasks, we conduct
a comparative analysis of various base MLLMs and their reasoning-augmented counterparts across
five sub-tasks of the UrbanFeel benchmark(SPM, TCR, TSR, SCR, LP). As shown in Table E], these
tasks span a wide spectrum, from static scene understanding and cross-view matching to temporal
semantic consistency reasoning and fine-grained local perception.

Experimental results indicate that reasoning-augmented models (e.g., QVQ, GPT-03, Gemini-2.5-
Pro-thinking) generally perform better on tasks emphasizing spatial understanding. For instance, in
SPM and TCR—tasks that require scene consistency and localized judgment—GPT-03 achieves ac-
curacy rates of 86.2% and 93.8%, respectively. In the subjective perception task (LP), QVQ brought

20



Under review as a conference paper at ICLR 2026

Table 5: Quantitative comparison results of reasoning-augmented model and the non-reasoning-
augmented model. The maximum value and the second largest value of model performance in each
task are indicated by the bold and underlined text, respectively. Task names are abbreviated for
brevity.

Model | SPM TCR TSR SCR LP
Qwen2.5VL-72B 66.2 879 260 46.0 369
QVQ 68.3 764 175 245 487
GPT-40 814 892 389 499 373
03 86.2 938 37.0 255 370
Gemini-2.5-Pro 80.3 954 521 56.5 49.0
Gemini-2.5-Pro-thinking | 75.9 96.3 39.5 244 426
Human | 767 964 70.0 69.5 329

an 11.8% increase in accuracy compared to Qwen2.5-VL-72B, suggesting a stronger alignment with
human perception.

However, reasoning does not consistently lead to performance gains across all tasks. In the tem-
porally ordered TSR task, the reasoning-augmented models exhibit varying degrees of performance
degradation, which may be attributed to the extended reasoning span required when processing
multiple images, thereby limiting the models’ ability to effectively capture and model the relation-
ships among these images. In the scene change-sensitive SCR task, several reasoning-augmented
models even show significant declines, with an average accuracy drop of 51.2% compared to their
non-reasoning counterparts. This suggests that reasoning models may overemphasize fine-grained
differences when facing abrupt scene transitions, thereby overlooking global semantic coherence
and resulting in perceptual misjudgments.

C.3 Do MLLMs POSSESS ROBUST GENERALIZATION ACROSS DIVERSE CITIES?

Due to space limitations, this appendix provides the quantitative results of MLLMs on different
perception dimensions across the six cities mentioned in the main paper, under the Global Perception
(GP) task without city identity intervention, as shown in Table [T0]to Table T3]

To assess model robustness across diverse urban environments, we analyzed performance variations
at the city level, revealing two distinct generalization patterns. In beautiful dimension (table[T0) of
global perception (GP task), leading closed-source models exhibit an “inverse geographic bias’’; for
instance, Gemini-2.5-Pro aligns more closely with human perception in Global South cities (aver-
aging 67.1%) than in the Global North (52.4%), suggesting a reduced tendency to idealize Western
aesthetics. Conversely, open-source models demonstrate severe city-specific overfitting. LLaVA-
1.5-7B achieves near-perfect accuracy in Washington (98.1%) but drops drastically to 38.9% in
Kuala Lumpur, indicating a reliance on US-centric training data rather than true perceptual general-
ization.

This geographic variance extends to objective recognition tasks (PCR and DEE), distinguishing ro-
bust generalists from brittle systems. As shown in table[8]and[9]In pixel-level detection (PCR), while
models like Aria maintain consistency (e.g., 53% in Washington vs. 47% in Tolyatti), others suffer
catastrophic collapse; notably, Aya-vision-8b plummets from 41% to 6%. Furthermore, the Dom-
inant Element Extraction (DEE) task reinforces the “inverse bias” phenomenon even in objective
settings: GPT-40 surprisingly achieves 70% accuracy in Cape Town versus just 35% in Washington.
These sharp contrasts underscore the critical value of UrbanFeel’s multi-city framework, as aggre-
gate metrics frequently mask significant regional failures that only granular geographic evaluation
can reveal.

C.4 ADDITIONAL CITY IDENTITY INTERVENTION RESULTS

In Discussion section of the main paper, we analyzed how different models’ perceptions of the
Beautiful and Wealthy dimensions shift under hypothetical city identity interventions. Due to space
limitations, this appendix provides the quantitative results of MLLMs on different perception di-
mensions across the six cities mentioned in the main paper, under the Global Perception (GP) task
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Figure 10: Quantitative comparison of different models under the assumed city identity setting.“Yes”
indicates the proportion of positive evaluations made by the model for the given perceptual dimen-
sion, while “No” represents the proportion of negative evaluations.

without city identity intervention, as shown in Table[I0]to Table[I3] Fig.[I0|supplements the exper-
imental results of City Identity Intervention under the Lively and Safe dimensions.

Our findings reveal significant inter-dimensional differences in model sensitivity to identity prompts.
For the Lively dimension, most models exhibit a consistent tendency toward negative judgments.
GPT-40, Qwen2.5-VL-72B, and DeepSeek-VL?2 remain largely stable before and after city identity
assignment, suggesting minimal perceptual bias. In contrast, Phi-4 shows a notable decline in posi-
tive evaluations—dropping from around 60% to below 30% after identity intervention. Interestingly,
LLaVA-1.6 demonstrates the opposite trend, labeling almost all images as “Lively,” indicating high
susceptibility to identity cues.

For the Safe dimension, most models maintain a high rate of positive judgments regardless of city
identity, suggesting more robust safety perception. The only exception is LLaVA-1.6, which shows
a marked decrease when the identity “Mexico City” is assigned—potentially reflecting latent safety-
related stereotypes learned from training data.

C.5 ADDITIONAL DETAILS ON REASONING ABLATION STUDY

This section provides the experimental details and supplementary data for the reasoning ablation
study discussed in Section[5.4] As noted in the main text, we compared three prompting strategies
to evaluate the efficacy of explicit reasoning in the Temporal Sequence Reasoning (TSR) task.

The specific contents of the prompts used for each strategy are illustrated in Figure[IT] The strategies
are designed as follows:

* Direct Sorting (P0): A concise prompt asking only for the final chronological sequence
(e.g., “[Image A — Image B — ...]”) without intermediate reasoning steps.
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Direct Sorting Prompt

Question: You are given four street-view images (Image A, B, C, and D), each captured at a different point
in time from the same location. These images reflect different stages of urban development.

Your task is to determine the correct chronological order of the images, from the earliest captured (oldest)
to the latest captured (most recent).

Please respond only with the image order in this format:

[Image X — Image Y — Image Z — Image W]

General CoT Prompt

Question: You are given four street-view images (Image A, B, C, and D), each taken at a different point in
time from the same location. These images reflect different stages of urban development. Your task is to
determine the correct chronological order of the images from the earliest captured (oldest) to the latest
captured (most recent).

To complete this task, first analyze each image based on visual cues such as building construction, road
quality, greenery, public infrastructure, and signs of modernization.

Please follow this format in your response:

1. Answer: List the image order from the earliest captured (oldest) to the latest captured (most recent),
using this format:
[Image X — Image Y — Image Z — Image W]
2. Reasoning: Briefly explain why you chose this order, referring to the key urban development features
you observed in the images.
Let's think step by step.

Re-thinking Prompt

Question: You are given four street-view images (Image A, B, C, and D) from the same location, each
captured at a different time. They show different stages of urban development.

Your task is to determine the correct chronological order of the images, from the earliest captured (oldest)
to the latest captured (most recent).

Step 1 — Initial order:

Propose an initial order of the images from earliest to latest.

Base your decision on permanent features such as building construction, infrastructure, and long-term
changes in greenery.

Ignore transient factors such as cars, pedestrians, or weather.

Step 2 — Consistency check:
Check whether any image in your order appears to reverse development in time (e.g., a partly
demolished building after a fully completed one, or a newly built structure appearing before an empty lot).
If such cases exist, adjust the order and briefly explain why.

Final response format:

Initial order: [Image X — Image Y — Image Z — Image W]

Checked order: [Image X — Image ¥ — Image Z — Image W]

Reasoning: a short explanation referring to permanent features and any non-monotonic changes you
considered when deciding the final earliest-to-latest order.

Figure 11: Different prompt type of TSR ablation study.

* General CoT (P2): A structured prompt requiring the model to first list “permanent fea-
tures” (buildings, infrastructure) and explicitly ignore “transient factors” (cars, weather)
before deriving the order.

* Re-Thinking (P3): A multi-step prompt where the model first proposes an initial order,
then performs a “consistency check” for non-monotonic changes (e.g., reverse develop-
ment), and finally outputs the corrected sequence.

Table [6] lists the detailed accuracy scores for all seven evaluated models across the three strate-
gies. The results confirm that while reasoning strategies (P2, P3) offer marginal gains for smaller
models like Phi-4 (improving from 5.5% to 7.3%), they consistently degrade the performance of
high-capacity models (GPT-40, Qwen2.5-VL-72B) compared to the Direct Sorting baseline.

To further illustrate the “over-reasoning” phenomenon, Figure [T2] visualizes a representative fail-
ure case. Despite correctly identifying some features, the General CoT prompt leads the model to
hallucinate a “linear growth” narrative—specifically, claiming that vegetation in Image A is “vis-
ibly larger” than in Image D to justify a later timestamp—while ignoring the definitive structural
evidence of a new blue building in Image D. This confirms that verbose reasoning can induce con-
firmation bias, overriding visual evidence with plausible-sounding but incorrect logical chains.
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Table 6: Full ablation results on the TSR task. Consistent with the discussion in Section [5.4} the
Direct Sorting strategy yields the highest accuracy for all SOTA models.

Model | Direct Sorting General CoT Re-Thinking
Phi-4 55 4.1 73
InternVL3-8B 4.6 32 5.0
Qwen2.5-VL-72B 32.0 24.7 29.7
GPT-40 46.1 38.4 37.0
Gemini-2.5-Pro 52.5 52.1 52.1
03 60.3 59.8 60.7
Gemini-2.5-Pro-Thinking 54.8 49.8 51.1

GT: [Image C — Image B — Image A — Image D]

Direct Sorting Result |
[Image ¢ — Image B — Image D — Image A] J

General CoT Result |
1. Answer: [Image C — Image B — Image D — Image A]

N

. Reasoning:

Image C : This image represents the earliest stage. The area is largely undeveloped, with older, low-rise
buildings on the left and what appears to be an open or industrial lot. A construction crane in the background is
the first sign of the major development to come. The overall infrastructure is minimal.

Image B: This image shows significant progress. The red brick building on the left is complete, but the large
building on the right is still a concrete skeleton under active construction, with a crane on top. The area where
the future median and landscaping will be is still just dirt and construction ground.

Image D : In this stage, the construction is finished. All the modern buildings are complete, and the public
infrastructure, including the paved road, sidewalks, and landscaped median, is in place. The key indicator for
this stage is the newly planted trees in the median, which are still relatively small and have autumn foliage.

.

Image A: This image shows the area at a later time after completion. The buildings and infrastructure are the
same as in Image D, but the trees in the landscaped median are visibly larger, fuller, and have green summer
leaves. This indicates that time has passed, allowing the vegetation to mature, representing the most
developed and settled state of the four images.

v

Figure 12: A faliure case of TSR tasks using different type of prompt. The red text indicates incorrect
reasoning results from Gemini-2.5-pro.

C.6 STATISTICAL SIGNIFICANCE ANALYSIS

To validate the robustness of our findings regarding model performance gaps and human-level con-
sistency, we conducted a formal statistical analysis based on the sample sizes reported in Table 2.
We calculated 95% Confidence Intervals (CIs) for accuracy using the Wilson score interval and
performed two-proportion z-tests to assess the significance of performance differences.

Table [7] summarizes the statistical comparison between Human evaluators and the best-performing
model (Gemini-2.5-Pro) across two representative tasks: Temporal Sequence Reasoning (TSR) and
Global Perception (GP).
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Table 7: Statistical significance analysis of performance gaps between Human evaluators and the
best-performing MLLMs. The analysis reveals three distinct distinct capability regimes: Signifi-
cant Inferiority in temporal reasoning (TSR), Statistical Parity in subjective perception (GP), and
Significant Superiority in pixel-level detection (PCR).

Task  Sample Size (V) | Subject Accuracy (%) 95% CI Significance
TSR 219 ‘ GemI_iIIlllir-n;g-pro ;g(l) {ggg: gg% p <001
GP 1,918 ‘ Fluman Pl {gg:gz gg:a Not Significant
PCR L0 | ouanhios 00 [smoiiss <0001

1. Temporal Reasoning Gap (TSR): For the TSR task (N = 219), the 95% CIs for Humans and
Gemini-2.5-Pro are clearly separated (Human: [64.0,76.0] vs. Gemini: [45.5,58.7]). The non-
overlapping intervals and a z-test (p < 0.01) indicate that the 17.9% performance difference is
statistically significant, statistically supporting our conclusion that current MLLMs achieve substan-
tially lower accuracy than humans on long-range temporal ordering.

2. Human-Level Parity in Perception (GP): For the GP task (N = 1, 918), the large sample size
yields narrow error margins (~ +2.1%). The overlapping CIs indicate that the accuracies of Gemini-
2.5-Pro and human annotators are statistically indistinguishable in this setting. This validates our
statement that state-of-the-art MLLMs have reached a level of consistency comparable to human
annotators for general scene perception.

3. Surpassing Humans in detection (PCR): Interestingly, for the PCR task (N = 1, 100), models
significantly outperform humans (40.9% vs. 21.2%). The distinct separation of Cls ([38.0, 43.8]
vs. [18.8,23.6]) and a z-test (p < 0.001) provide robust statistical evidence of this advantage. As
discussed, this is likely because human evaluators struggle to identify subtle pixel-level changes
obscured by the geometric distortions inherent in panoramic imagery, whereas MLLMs maintain
high sensitivity to such fine-grained variations.

D CASE STUDY

In this section, we present illustrative examples of model responses and corresponding ground-truth
labels across the 11 distinct sub-tasks designed in UrbanFeel (Figure [I3] to Figure #T). The exam-
ples span a wide range of perception categories—including static scene understanding, temporal
change understanding, and subjective enviromental consistency—revealing both the strengths and
limitations of current models in handling real-world urban dynamics.

D.1 QUALITATIVE ERROR ANALYSIS

Based on the qualitative breakdown of model reasoning chains across these tasks, we identify four
primary categories of failure modes that limit the performance of current MLLMs in urban contexts:

Over-reliance on surface semantics over spatial invariance (Temporal Context). In tasks requir-
ing temporal context understanding, models often prioritize salient surface-level semantic features
while neglecting spatial geometric invariance. For instance, in the Temporal Co-location Recogni-
tion task (Figure [T9), when an empty lot evolved into a developed residential block, models such
as Mistral-Small and Aria incorrectly classified the pair as “Different Locations” solely due to the
emergence of new buildings. This indicates a deficiency in utilizing invariant cues—such as road
layout and curvature—to recognize that the images depict the same geographic location despite
drastic semantic shifts over time.

“Linear development” assumption in urban evolution and neglect of urban decay (Temporal
Reasoning). Regarding temporal reasoning, models frequently exhibit a “linear development” bias,
often operating under the heuristic that newer or cleaner infrastructure always corresponds to a later
timestamp. This leads to failures in accounting for urban decay or complex maintenance cycles.
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In the sorting example shown in Figure 28] GPT-40 chronologically misplaced an image showing
worn road markings before a pristine one, ignoring critical alignment cues like speed bumps. This
limitation is further illustrated in the urban renewal scenario in Figure[29] Here, models consistently
identified the intermediate demolition/construction phase as the earliest stage, placing it chronolog-
ically before the original standing building. This reveals a rigid “Tabula Rasa” heuristic—assuming
that any construction site represents the genesis of development—thereby failing to recognize non-
monotonic processes where established neighborhoods undergo decline or renewal.

Spatial-perspective misalignment (Static Spatial Perception). In static spatial perception, mod-
els demonstrate significant difficulties in cross-view mapping, particularly between single-view and
panoramic imagery. In the Single-to-Pano Matching task (Figure [T3), models like Aria failed to
match a single-view crop to its corresponding panorama. This failure suggests that models treat the
geometric distortions inherent in panoramic projections as semantic differences rather than perspec-
tival variations, revealing limitations in performing spatial transformations on 360° imagery.

Hallucinated visual evidence in subjective reasoning (Subjective Perception). Finally, in sub-
jective perception tasks, models occasionally hallucinate negative visual cues to justify conservative
or biased classifications. For example, in the Local Perception task (Figure[33), GPT-4o categorized
a scene as “not wealthy” by citing non-existent “shuttered storefronts” and “lack of investment,”
despite visual evidence of well-maintained infrastructure. This reveals a disconnect between the
reasoning chain and the actual pixel data, where models generate plausible-sounding but factually
incorrect evidence to support a high-level prior impression.

E LIMITATIONS & FUTURE WORK

While UrbanFeel provides a comprehensive benchmark for evaluating MLLMs in urban develop-
ment understanding and human-centered perception, several limitations remain. First, although the
dataset spans 11 cities across different continents, it suffers from geographic imbalance, with under-
representation of regions such as Africa and South America. This may affect the generalizability of
models in culturally sensitive subjective perception tasks. Second, the annotations for affective per-
ception tasks are statically defined, potentially failing to capture the temporal diversity and evolving
nature of human opinions. Moreover, despite covering 18 years of visual urban change, Urban-
Feel lacks explicit causal labels or structured socio-environmental metadata, limiting its capacity to
support deeper reasoning about the underlying drivers of urban transformation.

In future work, we plan to address these limitations through a concrete roadmap focused on geo-
graphic inclusivity and causal depth:

Geographic Expansion and Cultural Grounding. We are actively expanding UrbanFeel to include
cities with emerging temporal coverage, focusing on urban development tasks to mitigate regional
representation bias. Furthermore, to address cultural bias in subjective perception, future iterations
will aim to diversify the annotator pool to include local residents and refine annotation guidelines
with region-specific examples. We plan to report perception scores in a stratified manner, ensuring
that labels like “safety” or “beauty” reflect locally grounded interpretations rather than a single
cultural perspective.

Towards Causal Spatiotemporal Reasoning. While UrbanFeel currently emphasizes visually veri-
fiable changes, we aim to bridge the gap between pixel-level observation and socio-economic causal-
ity. Inspired by recent trends in urban analytics, we plan to align street-view segments with external
urban datasets—such as land-use layers, POIs, and census statistics—to enable models to contextu-
alize physical changes. For cities with accessible records, we will introduce coarse-grained causal
event annotations (e.g., new transit line openings, policy-driven redevelopment projects) to support
reasoning about the drivers of urban evolution. Building on this, we will also explore how Urban-
Feel tasks can be composed into multi-turn, scenario-based evaluations that more closely resemble
real planning and policy workflows.

F USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, Large Language Models (LLMs) were used solely for
grammar checking and language polishing. The use of LLMs was strictly limited to improving
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the clarity, readability, and overall presentation quality of the text. All aspects related to research
idea, experimental code development, and result analysis were strictly conceived and completed
independently by the authors.

27



Under review as a conference paper at ICLR 2026

Table 8: Quantitative comparison of different MLLMs in the Pixel-level Change Recognition (PCR)
task across cities. City names are replaced with abbreviations.

Model \Cam. Cap. Edi. K.L. Lis. Mex. Mil. Par. Tol. Tyl. Was.
DeepSeek-vI2-tiny 31 29 33 35 26 30 26 39 21 29 48
DeepSeek-v12 34 36 33 35 25 43 30 44 27 48 54
MiniCPM-V 2.6-8B 38 49 35 40 34 34 44 30 42 53 37
Qwen2.5-vl-3B 35 30 35 35 31 33 31 41 22 33 47
Qwen2.5-vl-7B 39 30 31 33 25 41 37 47 26 33 50
Qwen2.5-vl-72B 37 39 36 34 32 37 45 48 42 51 49
LLaVA-1.5-7B 22 20 21 31 21 38 16 38 17 6 41
LLaVA-v1.6-mistral-7B | 26 19 28 33 23 40 21 43 19 12 44
InternVL3-2B 41 44 29 36 28 42 32 45 27 53 51
InternVL3-8B 34 33 27 34 24 40 19 47 23 43 48
Phi-3.5 23 18 21 31 21 40 15 40 17 6 41
Phi-4 30 27 27 34 25 40 19 43 25 40 43
Idefics3-8B 39 32 39 40 35 35 34 44 26 51 59
Mistral-Small-3.1-24B 25 2229 30 23 40 19 45 20 21 43
Aria 45 33 42 36 28 39 30 44 30 47 53
Aya-vision-8b 22 18 21 31 21 40 15 39 17 6 41
Gemma-3-4b 39 30 40 42 36 36 30 46 28 50 54
Gemma-3-27b 37 41 32 35 28 26 41 42 34 47 49
GPT-4o 30 41 30 40 29 46 43 49 43 48 47
Gemini-2.5-pro 30 35 25 33 35 38 34 54 34 42 41

Table 9: Quantitative comparison of different MLLMs in the dominant element extraction (DEE)
task across cities. City names are replaced with abbreviations.

Model ‘Cam. Cap. Edi. K.L. Lis. Mex. Mil. Par. Tol. Tyl. Was.
DeepSeek-v12-tiny 42 32 40 49 35 66 41 45 31 45 59
DeepSeek-vI2 57 51 58 56 48 79 67 62 49 51 68
MiniCPM-V 2.6-8B 38 55 52 45 34 58 37 42 33 38 54
Qwen2.5-vl-3B 56 70 51 59 61 72 69 61 56 45 62
Qwen2.5-vl-7B 38 65 61 60 43 62 47 43 48 45 45
Qwen2.5-vl-72B 53 62 61 64 46 74 64 54 50 54 67
LLaVA-1.5-7B 23 21 29 29 18 33 23 27 20 29 33
LLaVA-v1.6-mistral-7B | 35 26 28 42 31 52 40 37 26 23 41
InternVL3-2B 35 39 60 41 48 71 50 51 46 41 70
InternVL3-8B 37 55 43 44 27 45 28 35 27 36 41
Phi-3.5 46 31 43 46 39 70 40 47 33 40 66
Phi-4 37 31 35 41 32 46 37 36 26 43 47
Idefics3-8B 41 60 50 47 37 49 34 41 46 56 42
Mistral-Small-3.1-24B 6 27 30 24 13 11 18 22 10 32 11
Aria 58 65 62 57 57 75 72 68 63 59 66
Aya-vision-8b 8 29 25 24 13 12 16 21 10 26 9
Gemma-3-4b 40 54 58 33 28 48 26 31 40 48 41
Gemma-3-27b 42 65 66 41 41 50 45 41 50 58 41
GPT-40 42 70 72 43 42 52 36 36 53 54 35
Gemini-2.5-pro 52 76 72 66 55 71 59 62 70 61 53
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Table 10: Quantitative comparison results of different MLLMs in the Beautiful dimension under
GP tasks. The maximum value and the second largest value of model performance in each city are
indicated by the bold and underlined text, respectively.

Model Cape Kuala Mexico Milan Paris Washington
Town Lumpur City
DeepSeek-vI2-tiny 57.5 444 62.9 69.5 69.7 94.3
DeepSeek-vI12 55.0 72.2 74.2 48.8 63.6 71.7
MiniCPM-V 2.6-8B 425 66.7 54.8 39.0 39.4 20.8
Qwen2.5-vl-3B 57.5 88.9 71.0 53.7 65.2 81.1
Qwen2.5-vl-7B 72.5 66.7 69.4 64.6 63.6 81.1
Qwen2.5-vl-72B 75.0 50.0 69.4 64.6 65.2 84.9
LLaVA-1.5-7B 62.5 38.9 59.7 67.1 66.7 98.1
LLaVA-v1.6-mistral-7B 47.5 88.9 66.1 64.6 62.1 64.2
InternVL3-2B 60.0 72.2 72.6 69.5 68.2 96.2
InternVL3-8B 70.0 88.9 79.0 56.1 59.1 75.5
Phi-3.5 47.5 83.3 66.1 25.6 50.0 41.5
Phi-4 57.5 83.3 62.9 68.3 62.1 88.7
Idefics3-8B 60.0 77.8 74.2 50.0 50.0 58.5
Mistral-Small-3.1-24B 70.0 88.9 79.0 56.1 59.1 75.5
Aria 57.5 66.7 64.5 72.0 63.6 88.7
Aya-vision-8b 57.5 72.2 64.5 64.6 68.2 83.0
Gemma-3-4b 57.5 72.2 61.3 35.4 51.5 54.7
Gemma-3-27b 60.0 55.6 71.0 415 56.1 66.0
GPT-40 60.0 72.2 72.6 42.7 53.0 472
Gemini-2.5-pro 55.0 72.2 74.2 41.5 59.1 56.6

Table 11: Quantitative comparison results of different MLLMs in the Lively dimension under GP
tasks. The maximum value and the second largest value of model performance in each city are
indicated by the bold and underlined text, respectively.

Model Cape Kuala Mexico Milan Paris Washington
Town Lumpur City
DeepSeek-vI2-tiny 70.0 83.3 80.0 34.1 56.7 55.6
DeepSeek-vI2 75.0 55.6 68.3 29.3 55.2 352
MiniCPM-V 2.6-8B 67.5 38.9 66.7 41.5 46.3 46.3
Qwen2.5-vl-3B 77.5 77.8 63.3 42.7 68.7 389
Qwen2.5-vl-7B 71.5 66.7 55.0 36.6 56.7 40.7
Qwen2.5-vl-72B 77.5 66.7 533 28.0 493 37.0
LLaVA-1.5-7B 75.0 333 75.0 26.8 50.7 46.3
LLaVA-v1.6-mistral-7B 70.0 72.2 63.3 81.7 70.1 63.0
InternVL3-2B 77.5 66.7 73.3 524 73.1 59.3
InternVL3-8B 80.0 66.7 83.3 39.0 65.7 63.0
Phi-3.5 72.5 61.1 68.3 41.5 56.7 40.7
Phi-4 57.5 66.7 70.0 78.0 76.1 63.0
Idefics3-8B 80.0 722 68.3 40.2 53.7 37.0
Mistral-Small-3.1-24B 72.5 72.2 70.0 25.6 47.8 46.3
Aria 75.0 77.8 80.0 50.0 67.2 48.1
Aya-vision-8b 70.0 722 75.0 57.3 80.6 574
Gemma-3-4b 65.0 55.6 81.7 56.1 76.1 574
Gemma-3-27b 71.5 55.6 73.3 31.7 59.7 44.4
GPT-40 75.0 66.7 76.7 25.6 61.2 42.6
Gemini-2.5-pro 82.5 61.1 75.0 37.8 68.7 46.3
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Table 12: Quantitative comparison results of different MLLMs in the Safe dimension under GP
tasks. The maximum value and the second largest value of model performance in each city are
indicated by the bold and underlined text, respectively.

Model Cape Kuala Mexico Milan Paris Washington
Town Lumpur City
DeepSeek-v12-tiny 32.5 27.8 242 19.5 254 7.7
DeepSeek-vI2 70.0 61.1 68.1 82.9 74.6 87.2
MiniCPM-V 2.6-8B 25.0 333 20.9 22.0 23.9 15.4
Qwen2.5-v1l-3B 65.0 66.7 68.1 81.7 71.6 859
Qwen2.5-vl-7B 70.0 66.7 70.3 84.1 73.1 85.9
Qwen2.5-vl-72B 70.0 66.7 69.2 84.1 74.6 87.2
LLaVA-1.5-7B 35.0 38.9 30.8 329 433 423
LLaVA-v1.6-mistral-7B 70.0 55.6 69.2 79.3 73.1 84.6
InternVL3-2B 67.5 61.1 65.9 76.8 70.1 82.1
InternVL3-8B 67.5 66.7 65.9 829 73.1 84.6
Phi-3.5 65.0 66.7 53.8 47.6 64.2 61.5
Phi-4 67.5 66.7 70.3 80.5 74.6 85.9
Idefics3-8B 75.0 72.2 60.4 78.0 67.2 859
Mistral-Small-3.1-24B 72.5 66.7 61.5 80.5 68.7 87.2
Aria 70.0 72.2 67.6 774 77.8 84.6
Aya-vision-8b 60.0 61.1 67.0 73.2 68.7 79.5
Gemma-3-4b 30.0 27.8 20.9 18.3 16.4 10.3
Gemma-3-27b 70.0 61.1 58.2 79.3 68.7 84.6
GPT-40 65.0 66.7 59.3 74.4 68.7 76.9
Gemini-2.5-pro 75.0 66.7 64.8 79.3 73.1 80.8

Table 13: Quantitative comparison results of different MLLMs in the Wealthy dimension under GP
tasks. The maximum value and the second largest value of model performance in each city are
indicated by the bold and underlined text, respectively.

Model Cape Kuala Mexico Milan Paris Washington
Town Lumpur City
DeepSeek-vI2-tiny 67.5 55.6 65.0 36.6 50.7 48.1
DeepSeek-vI2 80.0 72.2 70.0 63.4 77.6 77.8
MiniCPM-V 2.6-8B 50.0 222 45.0 22.0 17.9 259
Qwen2.5-vl-3B 77.5 66.7 70.0 57.3 70.1 79.6
Qwen2.5-vl-7B 75.0 72.2 73.3 53.7 70.1 77.8
Qwen2.5-vI-72B 80.0 66.7 63.3 52.4 70.1 79.6
LLaVA-1.5-7B 77.5 61.1 71.7 67.1 71.6 64.8
LLaVA-v1.6-mistral-7B 70.0 72.2 61.7 524 64.2 61.1
InternVL3-2B 75.0 72.2 58.3 47.6 67.2 74.1
InternVL3-8B 77.5 66.7 73.3 75.6 74.6 70.4
Phi-3.5 62.5 38.9 51.7 26.8 44.8 42.6
Phi-4 70.0 55.6 58.3 87.8 80.6 74.1
Idefics3-8B 67.5 50.0 50.0 40.2 32.8 68.5
Mistral-Small-3.1-24B 70.0 66.7 73.3 41.5 62.7 75.9
Aria 60.0 61.1 66.7 52.4 71.6 72.2
Aya-vision-8b 82.5 72.2 76.7 68.3 79.1 68.5
Gemma-3-4b 70.0 61.1 53.3 42.7 70.1 74.1
Gemma-3-27b 66.7 64.7 56.8 57.9 81.2 86.5
GPT-40 60.0 44 4 45.0 45.1 55.2 722
Gemini-2.5-pro 71.5 72.2 71.7 54.9 74.6 79.6
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. [ ssP: @ SPM [Judgement] N
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same location or different location.

Option: (A) € Same Location

r \

% (MiniCPM-V-2_6) Answer: (A) &) Same Location
9 (InternVL3-8B) Answer: (B) € Different Location
@ (Qwen2.5-VL-7B-Instruct) Answer: (B)eDifferent Location

¢ Ground Truth: (B) €) Different Location

—

Figure 14: A question case of the Single-to-Pano Matching(SPM) task in UrbanFeel responses
from MiniCPM-V-2_6, InternVL3-8B, Qwen2.5-VL-7B-Instruct
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. [ ssP: QCR [Judgement] N

E'? Question

Determine whether o single view image 1 and @ single view image 2 are
from the same street or different street.

(B) € Different Street

<> (Aya-vision-8B) Answer: (A) &) Same Street
A (Llava-1.5-7B-HF) Answer: (A) €) Same Street
%7 (Qwen2.5-VL-72B-Instruct) Answer: (B) € Different Street

‘@ Ground Truth: (B) € Different Street

—

Figure 16: A question case of the Co-location Recognition(CR) task in UrbanFeel responses from
Aya-vision-8B, Llava-1.5-7B-HF, Qwen2.5-VL-72B-Instruct

34



Under review as a conference paper at ICLR 2026

SSP: €2 DEE [MC]

S

D-’ Question

Which element occupies the most visible area in the ?
Option: (A) #F Road (B) & Vehicle (C) ™ Sky
(D) & Vegetation (E) i Building

® (GPT-40) Answer: (D) & Vegetation
¥ (Gemini-2.5-pro) Answer: (A) f Road
¥ (Human) Answer: (A) 4 Road

\

‘@ Ground Truth: (A) f Road

—

Figure 17: A question case of the Dominant Element Extraction(DEE) task in UrbanFeel re-
sponses from GPT-4o0, Gemini-2.5-pro, Human
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SSP: €2 DEE [MC] \

S

D-’ Question
Which element occupies the most visible area in the o single view image ?
Option: (A) @ Road (B) & Vehicle (C) ™ Sky

(D) & Vegetation (E) i Building

) (InternVL-3-2B) Answer: (C) ™ Sky
% (Qwen2.5-VL-3B-Instruct) Answer: (C) ™ Sky
& (DeepSeek-VL2) Answer: (E) [l Building

¢ Ground Truth: (E) i Building

—

Figure 18: A question case of the Dominant Element Extraction(DEE) task in UrbanFeel re-
sponses from InternVL-3-2B, Qwen2.5-VL-3B-Instruct, DeepSeek-VL2
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N\

[Tcu: 8 TCR [Judgement] | :

[”F Question

Determine whether and are from the same
location or different location.

Option: (A) € Same Location (B) €) Different Location

(2 (Aria_cut) Answer: (B) € Different Location
L (Mistral-Small-3.1-24B-Instruct) Answer: (B) € Different Location
%7 (Qwen2.5-VL-72B-Instruct) Answer: (A) £) Same Location

¢ Ground Truth: (A) €) Same Location

—

Figure 19: A question case of the Temporal Co-location Recognition(TCR) task in UrbanFeel
responses from Aria_cut, Mistral-Small-3.1-24B-Instruct, Qweb2.5-VL-72B-Instruct
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, [ TCU: €S PCR [MC] :

(" Question

Based on the changes between " and , which urban element has undergone
the most significant transformation in terms of city development?

Option: (A) ﬁ Road (B) & Vehicle (C) ® Sky
(D) & Vegetation (E) # Building

<% (Aya-vision-8B) Answer: (E) ili Building
4 (Gemini-2.5-pro) Answer: (A) @ Road
G}S (Qwen2.5-VL-72B-Instruct) Answer: (B) & Vehicle

¢® Ground Truth: (B) & Vehicle

—

Figure 21: A question case of the Pixel-level Change Recognition(PCR) task in UrbanFeel re-
sponses from Aya-vision-8B, Gemini-2.5-pro, Qwen2.5-VL-72B-Instruct

39



Under review as a conference paper at ICLR 2026

, [ TCU: %S PCR [MC]

D? Question

Based on the changes between " and , which urban element has undergone
the most significant transformation in terms of city development?

Option: (A) 4 Road (B) & Vehicle (C) ™ Sky
(D) & Vegetation (E) Building

& (Human) Answer: (E) Hil Building
@ (DeepSeek-VL2) Answer: (A) @ Road
Q (Gemini-2.5-pro) Answer: (A)ﬁRoad

¢ Ground Truth: (A) f Road

—

Figure 22: A question case of the Pixel-level Change Recognition(PCR) task in UrbanFeel re-
sponses from Human, DeepSeek-VL2, Gemini-2.5-pro
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TCU: & SCR[MC]

[”F Question

Based on the changes between " and , Which category best describes the
change between the two time periods?

Option: (A) $ Road Change
(B) ¢ Vegetation Change
(C) B Building Facade Change
(D) # Mobility-Related Change

(2 (Arial) Answer: (B) @ Vegetation Change
< (Gemma-3-27B-it) Answer: (B) @2 Vegetation Change
@ (GPT-40) Answer: (E) §

Building Presence Change

¢® Ground Truth: (E) §& Building Presence Change

—

Figure 23: A question case of the Scene-level Change Recognition(SCR) task in UrbanFeel re-
sponses from Arial, Gemma-3-27B-it, GPT-40
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2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224 .
o ( | Tcu: § SCRMC] ,
2227
2228 5 :
. D Question
2230 Based on the changes between " and , Which category best describes the
2231 change between the two time periods?

2232 Option: (A) $ Road Change

2233 i
s (B) ¢ Vegetation Change

2935 (C) B Building Facade Change

2236 (D) #: Mobility-Related Change
2237

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247 # (MiniCPM-V-2_6) Answer: (A) S Road Change
2;22 £" (Phi-3.5-vision-instruct) Answer: (E)
2250 Ll (Mistral-Small-3.1-24B-Instruct) Answer: (E)
2251 A
2252
2253
2254
2256 Figure 24: A question case of the Scene-level Change Recognition(SCR) task in UrbanFeel re-
2257 sponses from MiniCPM-V-2_6, Phi-3.5-vision-instruct, Mistral-Small-3.1-24B-Instruct

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

Building Presence Change

Building Presence Change

¢@ Ground Truth: (C) B Building Facade Change
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2268
2269

2270

2271

2272
2273
2274
2275
2276
2277
2278
2279
2280

2281

2282
2283
2284
2285 (D, ti

- " Question

2287 Given an image as a reference, which of the following images most likely shows
2288 the same location after city development?

2289
2290
2291
2292
2293
2294
2295
2296 \_ ) 4
2297 — "
2298 4 (Llava-1.5-7B-HF) Answer: Image Q

§§§§ £ (Idefics3-8B-Llama3) Answer: Image (&)

2301 G}S (Qwen2.5-VL-72B-Instruct) Answer: Image Q
2302 N

2303
2304
2305
2306
2307 Figure 25: A question case of the Future Scene Identification(FSI) task in UrbanFeel responses
o908 from Llava-1.5-7B-HF, Idenfics3-8B-Llama3, Qwen2.5-VL-72B-Instruct

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

e

TCU: ™ FSI [MC] } :

¢® Ground Truth: Image 0
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2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339 (EP ti

. " Question

234 Given an image as a reference, which of the following images most likely shows
2342 the same location after city development?

2343
2344
2345
2346
2347
2348
2349
2350
2351

2352 & (DeepSeek-VL2-Tiny) Answer: Image e

2353 5 )
2354 (InternVL3-8B) Answer: Image Q

2355 < (Gemma-3-27B-it) Answer: Image @
2356 N
2357
2358
2359
2360
2361 Figure 26: A question case of the Future Scene Identification(FSI) task in UrbanFeel responses
2962 from DeepSeek-VL2-Tiny, InternVL3-8B, Gemma-3-27B-it

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

N

TCU: ™ FSI [MC] } ‘

¢® Ground Truth: Image @
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—

TCU: EJTSR[Sorting] | \
~

[[j-’ Question

Please sort the four street-view images in chronological order from least to most
developed based on visual cues like buildings, roads, greenery, and modern
infrastructure.

J

(Aya-vnsmn-BB) Answer:
<% (Gemma-3-27B-it) Answer: Q—»@—»@—»Q
%7 (Qwen2.5-VL-72B-Instruct) Answer: 0—»@—»@—»@

‘@ Ground Truth: (& 3)—( B
—

Figure 27: A question case of the Temporal-Sequence Reasoning(TSR) task in UrbanFeel re-
sponses from Aya-vision-8B, Gemma-3-27B-it, Qwen2.5-VL-72B-Instruct
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) | Tcu: ELTSR[Sorting] .

(" Question

Please sort the four street-view images in chronological order from least to most
developed based on visual cues like buildings, roads, greenery, and modern
infrastructure.

'@ (DeepSeek-VL2) Answer: Ge0—-0—-060—-0 \
@ (GPT-40) Answer: Q—»G_,Q_,e
4 (Gemini-2.5-pro) Answer: @—»e_.e_,@

‘@ Ground Truth: (& 3)—( B
—

Figure 28: A question case of the Temporal-Sequence Reasoning(TSR) task in UrbanFeel re-
sponses from DeepSeek-VL2, GPT-40, Gemini-2.5-pro
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—

TCU: EJTSR[Sorting] | .

[”F Question

Please sort the four street-view images in chronological order from least to most
developed based on visual cues like buildings, roads, greenery, and modern
infrastructure.

@ (DeepSeek-VL2) Answer: (:—:—@ D

® (GPT-40) Answer: (- B C D)
4 (Gemini-2.5-pro) Answer: (:0—{: (@ D)

@ Ground Truth: (:J—{0—{@—(p,
—

Figure 29: A question case of the Temporal-Sequence Reasoning(TSR) task in UrbanFeel re-
sponses from DeepSeek-VL2, GPT-40, Gemini-2.5-pro
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TCU: JBYGP [Judgement] .

f
! L

D-’ Question
Based on the image, please judge whether the city appears '""‘“ beautiful or not

from a human perspective.

Option: (A) 2 Yes, it is beautiful
' \

(B) €9 No, it is not beautiful

(2 (Arial_cut) Answer: (A) (@ Yes, it is beautiful
< (Gemma-3-4B-it) Answer: (B) € No, it is not beautiful

& (Idefics3-8B-Llama3) Answer: (A) QYes, it is beautiful

¢@ Ground Truth: (A) & Yes, it is beautiful

Figure 30: A question case of the Global Perception(GP) task in UrbanFeel responses from Ar-
ial_cut, Gemma-3-4B-it, Idenfics3-8B-Llama3
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, [ TCU: I8 GP [Judgement] |

D-’ Question

Based on the image, please judge whether the city appears @ wealthy or not
from a human perspective.

Option: (A) € Yes, itis wealthy  (B) € No, it is not wealthy

’
(3

(Aya-vision-8B) Answer: (A) (2 Yes, it is wealthy
(MiniCPM-V-2_6) Answer: (B) €3 No, it is not wealthy
(Phi-3.5-vision-instruct) Answer: (B) Q No, it is not wealthy

7

¢® Ground Truth: (B) € No, it is not wealthy

—

Figure 31: A question case of the Global Perception(GP) task in UrbanFeel responses from Aya-
vision-8B, MiniCPM-V-2_6, Phi-3.5-vision-instruct
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- { TCU: GP [Judgement] } \

(" Question

Based on the image, please judge whether the city appears 0 safe or not from a
human perspective.

Option: (A) Q Yes, it is safe (B) Q No, it is not safe

@ (DeepSeek-VL2-Tiny) Answer: (B) €3 No, it is not safe
%7 (Qwen2.5-VL-7B-Instruct) Answer: (B) €3 No, it is not safe
x (Llava-1.5-7B-HF) Answer: (A) (2 Yes, it is safe

@ Ground Truth: (A) (2 Yes, it is safe

—

Figure 32: A question case of the Global Perception(GP) task in UrbanFeel responses from
DeepSeek-VL2-Tiny, Qwen2.5-VL-7B-Instruct, Llava-1.5-7B-HF
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2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713 _
2rid- [ TCU: GP [Judgement] | ~
2715 L : J

2716 ' “\

217 (" Question

2718
2719 Based on the image, please judge whether the city appears 0 lively or not from

2720 a human perspective.

2721 Option: (A) 2 Yes, itis lively (B) €3 No, it is not lively
2722
2723
2724
2725
2726
2727
2728
2729
2730 (= I )
2731 (InternVL3-8B) Answer: (A) (2 Yes, it is lively

2732 4 (Gemini-2.5-pro) Answer: (A) @ Yes, it is lively

2;22 © (GPT-40) Answer: (A) (D Yes, it is lively

2735
2736 ‘@ Ground Truth: (B) €3 No, it is not lively
2737

279 Figure 33: A question case of the Global Perception(GP) task in UrbanFeel responses from

2740 InternVL3-8B, Gemini-2.5-pro, GPT-40
2741

2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
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TCU:

LP [Open] \

—

[”F Question

Based on the image, please judge whether the city appears “!* beautiful or not
from a human perspective and find some visual factors that contribute to it.

-
§ (Gemini-2.5-pro) Answer:

1. Harmonious Blend of Nature and Urbanism: The street is lined with rows of

healthy, lush green trees. This greenery provides a pleasant, organic contrast to

the hard lines of the buildings and asphalt, making the urban environment feel

more alive, breathable, and visually appealing.

2. Pleasant Atmosphere and Lighting: The bright sunlight and clear, vibrant blue
sky create a cheerful and positive atmosphere. This type of weather often
enhances the perception of a place, making it seem cleaner, more energetic, and
more inviting.

3. Interesting Architectural Mix: The image showcases a visually engaging
contrast between different architectural styles. On the left, there is a classic red-
brick building with arched windows, while the right side features more modern,
large-scale structures. This juxtaposition adds character and depth to the
streetscape.

¢® Ground Truth:

1. A tidy and aesthetically pleasing building facade
2. Good sky visibility

3. Neat and dense greenery

\

&5 Evaluation: 0 Correct (0.723)
—

Figure 34: A question case of the Local Perception(LP) task in UrbanFeel responses from Gemini-
2.5-pro
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' Tcu: B LP[Open] | N

[”F Question

Based on the image, please judge whether the city appears @ wealthy or not
from a human perspective and find some visual factors that contribute to it.

@ (GPT-40) Answer:
1. Building Condition: The buildings appear older and somewhat worn,
suggesting a lack of recent investment.

2. Storefronts: Closed or shuttered storefronts indicate limited commercial activity
or economic challenges.

3. Street Maintenance: The road and public area appear to be relatively well-
maintained, but lack of luxury features such as premium sidewalks, exclusive
shops, or vibrant landscaping.

\\

7

¢® Ground Truth:

1. Tall and densely packed buildings indicate a high level of urbanization
2. Well-maintained pedestrian walkways

3. Comprehensive road signage and infrastructure development

&5 Evaluation: Q False (0.523)
—

Figure 35: A question case of the Local Perception(LP) task in UrbanFeel responses from GPT-4o
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[ .
) | Tcu:

D-’ Question

Based on the image, please judge whether the city appears O safe or not from a
human perspective and find some visual factors that contribute to it.

@ (DeepSeek-VL2) Answer:

1. The street appears narrow and congested, which can make it difficult for
pedestrians to navigate safely

2. There are multiple cars parked along the street, which could obstruct visibility
and create potential hazards for both drivers and pedestrians.

3. The road surface shows some wear, lacks lane markings, and the road signs are
unclear, creating potential driving hazards

\

p
¢® Ground Truth:

1. The high walls on both sides of the road obstruct visibility, posing safety
hazards

2. The streetlight poles appear somewhat outdated, and the distribution of
electrical wires is chaotic

3. The road surface shows some wear, lacks lane markings, and the road
signs are unclear, creating potential driving hazards

\

&) Evaluation: @ Correct (0.691)

—

Figure 36: A question case of the Local Perception(LP) task in UrbanFeel responses from
DeepSeek-VL2
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§ { Tcu: B LP [Open] N

[”F Question

Based on the image, please judge whether the city appears ‘, lively or not from
a human perspective and find some visual factors that contribute to it.

% (Qwen2.5-VL-72B-Instruct) Answer:

1. Presence of People and Activity: There are several people visible in the image,
walking across the crosswalk and along the sidewalks. This indicates active
pedestrian movement, contributing to a lively atmosphere.

2. Market Stalls and Vendors: The image shows market stalls with vendors and
customers, suggesting a bustling market scene. The presence of these stalls adds
to the vibrancy and activity of the area.

3. Traffic and Vehicles: There are multiple vehicles, including cars, vans, and
trucks, parked and moving along the street. This indicates a level of traffic activity,
which is a sign of a busy and lively urban environment.

\

4 )

¢® Ground Truth:
1. There are many pedestrians
2. There are many vehicles

3. There are many shops, and there are also many parked vehicles around,
creating a lively atmosphere

4. The buildings consist of multiple residential blocks

\,

5 evaluation: @ Correct (0.735)

—

Figure 37: A question case of the Local Perception(LP) task in UrbanFeel responses from
QOwen2.5-VL-72B-Instruct
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2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982 r . <
2983 . B

28 | Tcu: Ef CP[MC] \
2985

ose [”F Question
2987

2988 and show the same place, one from 2070 and one from 2020. Please
2089 determine whether the scene has become more ‘L'"“" beautiful, less *1"‘“ beautiful,
2990 or stayed the same visually over time.

2ot Option: (A) e More beautiful (B) e Less beautiful (C) No change

2992
2993
2994
2995
2996
2997
2998
2999
3000

222; @ (Qwen2.5-VL-3B-Instruct) Answer: (A) 9 More beautiful

3003 (2 (Arial) Answer: (A) £ More beautiful

3004 & (DeepSeek-VL2) Answer: (C) No change
3005 \

3006
3007 @ Ground Truth: (C) ~ No change

3008
e
3009

3070 Figure 38: A question case of the Comparative Perceptual analysis(CP) task in UrbanFeel re-
3011 sponses from Qwen2.5-VL-3B-Instruct, Arial, DeepSeek-VL2
3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023
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—

Tcu: B8 cpP[MC]

[”F Question

and show the same place, one from 2007 and one from 20178. Please
determine whether the scene has become more @8 wealthy, less 2 wealthy, or
stayed the same visually over time.

Option: (A) 9 More wealthy (B) G Less wealthy (C) No change

7

;’- (Aya-vision-8B) Answer: (C) No change
< (Gemma-3-27B-it) Answer: (A) £ More wealthy
@ (GPT-40) Answer: (A) £) More wealthy

@ Ground Truth: (A) £ More wealthy

—

Figure 39: A question case of the Comparative Perceptual analysis(CP) task in UrbanFeel re-
sponses from Aya-vision-8B, Gemma-3-27B-it, GPT-40
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, { TCcU: Z cP[MC] } :
(D-’ Question :

< and " show the same place, one from 2008 and one from 2023. Please
determine whether the scene has become () safer, less ) safe, or stayed the
same visually over time.

Option: (A) e Safer (B) e Less safe (C) = Nochange

# (MiniCPM-V-2_6) Answer: (A) 9 Safer
x (Llava-v1.6-mistral-7B-HF) Answer: (C) = No change
Q,f (Human) Answer: (B) G Less safe

¢® Ground Truth: (B) Q@ Less safe

—

Figure 40: A question case of the Comparative Perceptual analysis(CP) task in UrbanFeel re-
sponses from MiniCPM-V-2_6, Llava-v1.6-mistral-7B-HF, Human
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3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144 [ ]
3145 L@
e | TCU: E@CPmMC] | X
3147 - ~
3148 > -

o D Queftlon

3150 + and ' show the same place, one from 2009 and one from 2024. Please
3151 determine whether the scene has become more &) lively, less €} lively, or

3152 stayed the same visually over time.
a1 Option: (A) e More lively (B) e Less lively (C) = Nochange

3154
3155
3156
3157
3158
3159
3160

3161 \ _J
3162

2:22 @ (DeepSeek-VL2-Tiny) Answer: (B) @ Less lively

3165 (Idefics3-8B-Llama3) Answer: (B) Q@ Less lively

3166 4 (Gemini-2.5-pro) Answer: (A) € More lively
3167 \

3168
3169 ¢@ Ground Truth: (A) £) More lively

3170
—
3171

3172 Figure 41: A question case of the Comparative Perceptual analysis(CP) task in UrbanFeel re-
3173 sponses from DeepSeek-VL2-Tiny, Idenfics3-8B-Llama3, Gemini-2.5-pro
3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

59



	Introduction
	Related Work
	Urban Temporal Change Assessment from Street-View Imagery
	Subjective Perception Assessment of Urban Environments
	Multimodel Large Language Models
	MLLM Benchmarks in Urban Scene

	UrbanFeel
	Overview
	Benchmark Task
	Benchmark Curation

	Experiments
	Evaluated Models
	Evaluation Protocol
	Main Results

	Discussion
	Model Performance Across Subjective Perception Dimensions
	Does city identity affect MLLMs' subjective environmental judgments?
	Do MLLMs Perceive Single-View and Panorama Differently?
	Does Explicit Reasoning Enhance Temporal Understanding?

	Conclusion
	Additional Benchmark Statistics
	Question Statistics
	Benchmark Comparison

	Benchmark Construction Details
	Data Collection Details
	Data Pre-processing Details
	Manual Annotation and Evaluation Details
	Evaluation Protocols

	Experiment Details & Additional Results
	Baseline Models
	Do reasoning-augmented models outperform baselines on UrbanFeel?
	Do MLLMs Possess Robust Generalization Across Diverse Cities?
	Additional City Identity Intervention Results
	Additional Details on Reasoning Ablation Study
	Statistical Significance Analysis

	Case Study
	Qualitative Error Analysis

	Limitations & Future Work
	Use of Large Language Models

