

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 URBANFEEL: A COMPREHENSIVE BENCHMARK FOR TEMPORAL AND PERCEPTUAL UNDERSTANDING OF CITY SCENES THROUGH HUMAN PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Urban development impacts over half of the global population, making human-centered understanding of its structural and perceptual changes essential for sustainable development. While Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various domains, existing benchmarks that explore their performance in urban environments remain limited, lacking systematic exploration of temporal evolution and subjective perception of urban environment that aligns with human perception. To address these limitations, we propose UrbanFeel, a comprehensive benchmark designed to evaluate the performance of MLLMs in urban development understanding and subjective environmental perception. UrbanFeel comprises 14.3K carefully constructed visual questions spanning three cognitively progressive dimensions: Static Scene Perception, Temporal Change Understanding, and Subjective Environmental Perception. We collect multi-temporal single-view and panoramic street-view images from 11 representative cities worldwide, and generate high-quality question-answer pairs through a hybrid pipeline of spatial clustering, rule-based generation, model-assisted prompting, and manual annotation. Through extensive evaluation of 20 state-of-the-art MLLMs, we observe that Gemini-2.5 Pro achieves the best overall performance, with its accuracy approaching human expert levels and narrowing the average gap to just 1.5%. Most models perform well on tasks grounded in scene understanding. In particular, some models even surpass human annotators in pixel-level change detection. However, performance drops notably in tasks requiring temporal reasoning over urban development. Additionally, in the subjective perception dimension, several models reach human-level or even higher consistency in evaluating dimension such as beautiful and safety. Our results suggest that MLLMs are demonstrating rudimentary emotion understanding capabilities. Our UrbanFeel benchmark will be made publicly available.

1 INTRODUCTION

With over half of the global population now living in urban areas (World Bank, 2024), understanding the dynamics of urban development has become increasingly critical for designing sustainable governance strategies, guiding urban policy, and promoting human-centric smart cities (Yuan et al., 2024; Van Etten et al., 2021; Zhang et al., 2024b). Compared to satellite imagery, which provides macro-scale, top-down observations, street-view imagery offers fine-grained, street-level perspectives that are more aligned with human visual perception (Biljecki & Ito, 2021; Naik et al., 2017; Wang et al., 2025). This unique characteristic enables it to capture subtle environmental changes within cities, making it a valuable data source for analyzing intra-urban transformation.

Recent research has explored the use of deep learning models in conjunction with street-view imagery to assess urban development stages (Zhang et al., 2018; Alpherts et al., 2025), visual quality (Ito et al., 2024; Benidir et al., 2025), and perceived livability (Dubey et al., 2016; Yang et al., 2024; Li et al., 2025). However, these approaches face challenges in terms of generalization across modalities and cities. More importantly, they struggle to effectively quantify and interpret human subjective perception—an essential component of real-world urban understanding.

The advent of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) has introduced new possibilities for tackling these limitations (Zhang et al., 2024a; Xuan et al., 2025; Ye et al., 2025). By leveraging massive amounts of multimodal pretraining data, MLLMs exhibit strong capabilities in spatial reasoning, visual-linguistic alignment, and commonsense inference. Initial attempts have applied these models to urban imagery tasks, such as vehicle trajectory prediction (Liu et al., 2025; Lai et al., 2025) or scene understanding (Yan et al., 2024; Feng et al., 2025b;a), and several early benchmarks have emerged to evaluate their performance on objective tasks such as image geolocalization (Zhou et al., 2025) and infrastructure inference (Feng et al., 2025c).

Prior work has largely been confined to static snapshots, focusing on objective recognition tasks such as autonomous driving or urban planning, while overlooking the historical dynamics of cities and thus failing to capture trajectories of development, renewal, and transformation. At the same time, physical changes in the built environment—such as renovation or decay—often reshape human perceptions of safety, beauty, and liveliness. However, existing benchmarks rarely examine how these perceptual shifts are linked to temporal urban evolution, leaving a critical gap in understanding the interaction between physical change and human experience.

To bridge these gaps, we present **UrbanFeel**, a novel human-centric benchmark for evaluating MLLMs in the context of urban change perception. UrbanFeel defines 11 tasks across three dimensions—*static scene perception*, *temporal change understanding*, and *subjective environmental perception*—to assess models’ capabilities in recognition, reasoning, and alignment with human perception. Our benchmark emphasizes multi-view integration, temporal-spatial consistency, and perceptual alignment, aiming to push the boundaries of MLLMs toward more human-aligned urban understanding, [to help MLLMs provide a reference for continuous monitoring and prediction capabilities in sustainable cities](#).

Our main contributions are summarized as follows:

- We introduce **UrbanFeel**, a multi-perspective, multi-dimensional benchmark designed to evaluate MLLMs’ performance on tasks related to urban development and human perception. UrbanFeel carefully designs 11 subtasks, focusing on evaluating the model’s perception and understanding capabilities in three dimensions: Static Scene Perception, Temporal Change Understanding, and Subjective Environmental Perception.
- We design a scalable and interpretable task-querying framework, incorporating a diverse range of evaluation formats including binary classification, multiple-choice, sorting, and open-ended reasoning. To enhance explainability, we introduced manual annotation based on local visual evidence into the benchmark management process.
- We conduct a comprehensive evaluation of 20 state-of-the-art MLLMs on UrbanFeel, quantifying model differences across task categories and revealing that current models still fall short of human-level performance in spatial reasoning and subjective perception within urban change scenarios.

2 RELATED WORK

2.1 URBAN TEMPORAL CHANGE ASSESSMENT FROM STREET-VIEW IMAGERY

With the accelerating pace of global urbanization, cities have undergone profound spatial and environmental transformations, prompting growing research interest in urban evolution (Pandey & Seto, 2015; Hatab et al., 2019; Follmann et al., 2021). In recent years, street-view imagery has emerged as a valuable data source for urban change detection due to its close alignment with human perspectives (Biljecki & Ito, 2021; Ito et al., 2024). For instance, ChangeScore (Naik et al., 2017) utilized deep networks to correlate visual changes with socioeconomic variables. Subsequent studies focused on quantifying the built environment’s physical fabric: Street2Vec measured physical structural shifts via latent space embeddings (Stalder et al., 2024b), while CityPulse constructed semantic label sequences to detect binary environmental changes (Huang et al., 2024b). Similarly, Stalder et al. (Stalder et al., 2024a) quantified urban decay dynamics using detected objects in different years as a proxy. While establishing street-view time series as high-resolution proxies for physical change, these methods predominantly frame urban evolution as binary classification. Recently, Visual Chronicles (Deng et al., 2025) employed VLMs to mine co-occurring visual trends

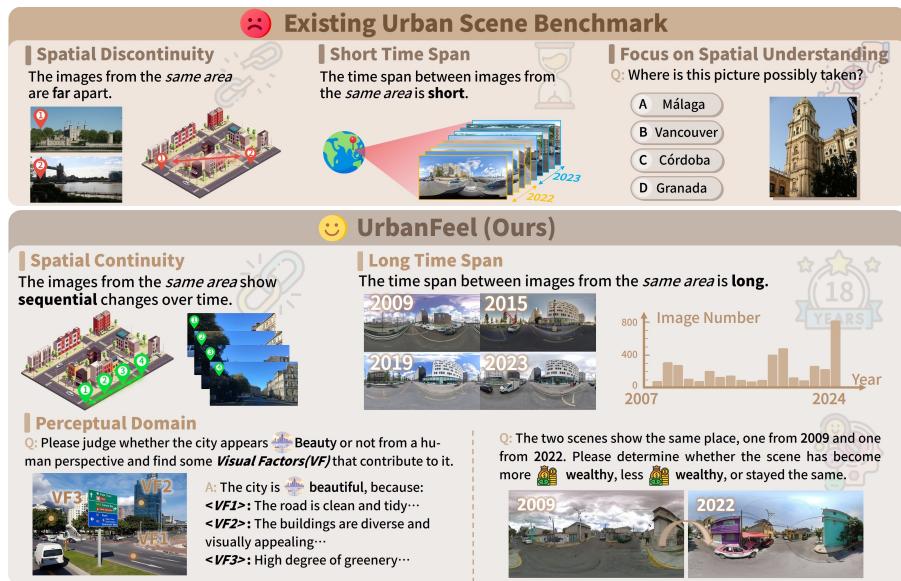


Figure 1: Comparison with existing urban scene benchmarks. UrbanFeel introduces three key innovations: (1) spatially continuous street-view data that includes both single-view and panoramic imagery, (2) long-term temporal coverage spanning over 15 years, and (3) a novel evaluation dimension focused on subjective human perception (e.g., safety, beauty), enabling human-centered assessment beyond conventional spatial understanding.

from open-ended queries. However, existing research remains largely confined to describing objective visual elements change within limited regions, rather than systematically evaluating model capabilities in controlled temporal reasoning tasks across diverse urban contexts.

2.2 SUBJECTIVE PERCEPTION ASSESSMENT OF URBAN ENVIRONMENTS

Parallel to physical change detection, extensive research utilizes street-view imagery and deep learning to quantify subjective urban perceptions and their socioeconomic correlations (He et al., 2023; van Veghel et al., 2024; Rui & Xu, 2024). The foundational Place Pulse project (Dubey et al., 2016) established this paradigm by crowdsourcing pairwise comparisons to train deep learning models for large-scale prediction. Subsequent studies expanded this frontier: Yao et al. (Yao et al., 2019) improved alignment via adversarial learning, while Wei et al. (Wei et al., 2022) and Fan et al. (Fan et al., 2023) linked perceptual attributes to planning metrics and socioeconomic outcomes. Notably, Wang et al. (Wang et al., 2025) applied interpretable machine learning to uncover functional zone-dependent nonlinear associations and threshold effects between environmental features and perception. Crucially, however, these approaches remain confined to static image snapshots and traditional discriminative models. They lack a comprehensive benchmarking framework to evaluate MLLMs’ capacity to capture how human subjective perception evolves dynamically alongside long-term physical transformations.

2.3 MULTIMODEL LARGE LANGUAGE MODELS

In recent years, Multimodal Large Language Models (MLLMs) such as Qwen (Bai et al., 2023), GPT-4o (OpenAI, 2024), and Gemini-2.5-pro (Comanici et al., 2025) have achieved remarkable progress in image generation (Anonymous, 2025), visual reasoning (Zhang et al., 2025a), and cross-modal alignment (Wu et al., 2024a). Leveraging large-scale pretraining and instruction tuning, these models show strong generalization in open-domain visual understanding (Li et al., 2024b; Wu et al., 2024b), though their performance on domain-specific applications remains limited. In urban contexts, recent studies explored MLLMs’ zero-shot spatial reasoning. UrbanCLIP (Yan et al., 2024) aligns imagery with textual semantics via contrastive learning, while UrbanLLaVA (Feng et al., 2025b) integrates street-view, structured data, and trajectories, achieving strong generalization on UBench. Despite these advances, a systematic framework for evaluating MLLMs on subjective ur-

ban perception or urban change assessment remains lacking. Prior efforts, such as (Zhang et al., 2025b), focus on isolated dimensions like safety, without addressing temporal coherence or perceptual consistency. Overall, existing work emphasizes static reasoning or functional classification, overlooking human-centric perceptual responses and their evolution over time.

2.4 MLLM BENCHMARKS IN URBAN SCENE

With Multimodal Large Language Models (MLLMs) advance in image understanding (Ma et al., 2024) and cross-modal reasoning (Huang et al., 2024a), benchmark datasets have evolved accordingly. Early benchmarks centered on basic Visual Question Answering (VQA), but such tasks no longer capture the full potential of modern MLLMs. To address this, several expert-level benchmarks have been introduced for domain-specific tasks with greater semantic and spatial complexity, especially in urban contexts. For example, V-IRL (Yang et al., 2024) focuses on street-view navigation and recognition; CityBench (Feng et al., 2025c) targets urban identity and navigation, though with limited task diversity. UrBench (Zhou et al., 2025) incorporates multi-view imagery from street and remote sensing sources for spatial reasoning. CityLens (Liu et al., 2025) evaluates urban function modeling using socio-economic indicators, and USTBench (Lai et al., 2025) assesses spatial planning via traffic and road network data. Despite these advances in modeling objective urban scenarios, most existing benchmarks are limited to static snapshots in time. They lack a comprehensive evaluation of models’ ability to capture the spatiotemporal evolution of urban environments, particularly how physical transformations affect human subjective perception responses.

3 URBANFEEL

3.1 OVERVIEW

We present **UrbanFeel**, a comprehensive benchmark designed to evaluate the capabilities of Multimodal Large Language Models (MLLMs) in both physical understanding and subjective perception within the context of urban development. Built upon multi-view and multi-temporal street-view imagery collected from diverse global cities over the past 18 years, UrbanFeel simulates real-world urban evolution by capturing fine-grained visual and perceptual changes. As illustrated in Fig. 2, UrbanFeel includes four types of question format—binary judgment, multiple-choice, open-ended reasoning, and a novel temporal sorting format—resulting in over 14,300 high-quality QA samples, with approximately 11.0 K for validation and 3.3 K for testing. Detailed statistics and examples can be found in Appendix A.

Unlike prior benchmarks that focus primarily on object detection or scene classification within urban imagery, as shown in Fig.1, UrbanFeel introduces several novel design dimensions. First, it systematically incorporates both single-view and panoramic street images captured in a certain sequence to evaluate models’ ability to capture spatial context across viewpoints. Second, it integrates long-term urban development sequences—spanning more than a decade—to support tasks that require historical reasoning and temporal ordering. Third, UrbanFeel introduces human-centered affective perception tasks, covering four dimensions: beautiful, safety, wealthy, and lively. Each sample is additionally annotated with localized visual evidence, enabling the evaluation of model explainability and alignment with human perceptual cues. Although real-world urban analysis often involves iterative workflows, UrbanFeel deliberately targets the fundamental atomic perception and reasoning capabilities that serve as essential prerequisites for such complex decision-making. UrbanFeel thus offers a challenging and comprehensive evaluation framework for MLLMs in complex urban scenarios, laying a foundation for future studies on modeling the alignment and divergence between machine and human perception.

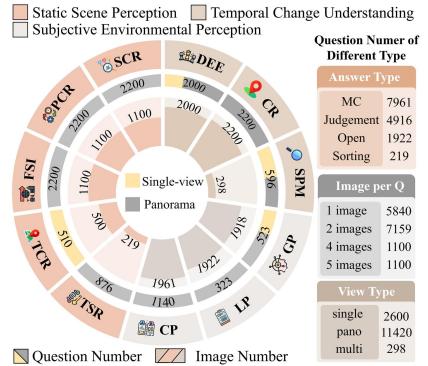


Figure 2: Data Statistics of UrbanFeel.

Figure 3: Overview of our UrbanFeel. UrbanFeel defines 11 sub-tasks spanning 3 cognitive dimensions: static scene perception, temporal change understanding, and subjective environmental perception.

3.2 BENCHMARK TASK

Guided by a cognitively progressive evaluation framework, we design 11 diverse tasks and construct **UrbanFeel**, a comprehensive benchmark for modeling urban development perception. As illustrated in Fig. 3, these tasks span three levels of cognitive depth—*Static Scene Perception*, *Temporal Change Understanding*, and *Subjective Environmental Perception*—enabling a multi-dimensional assessment of MLLMs across recognition, reasoning, and perceptual alignment.

Static Scene Perception focuses on evaluating models’ ability to recognize salient visual elements and spatial consistency in a single time frame. Tasks under this category include identifying dominant visual components in a given image and determining whether a pair of images—single-view and panoramic—depict the same geographic location. This dimension retains some classic scene perception tasks and aims to assess models’ capacity for snapshot-level spatial understanding and contextual matching.

Temporal Change Understanding targets the model’s ability to detect, differentiate, and reason about visual changes over time. Beyond identifying structural variations across temporally aligned images, models are required to classify the type of urban evolution (e.g., façade renovation, road maintenance, or vegetation growth) and to perform temporal ordering of multiple images based on perceived development stages. These tasks simulate human-like reasoning about city progression and test the model’s temporal-spatial integration abilities.

Subjective Environmental Perception emphasizes the alignment between MLLMs and human subjective evaluation. We construct affective perception tasks across four dimensions—*beautiful*, *safe*, *wealthy*, and *lively*—and require models not only to produce scalar judgments but also to provide localized visual justifications. In addition, we introduce before–after comparison tasks to examine whether models can detect perceptual shifts in changing environments. This dimension moves beyond objective recognition, probing whether MLLMs can simulate human affective responses in complex visual scenes.

3.3 BENCHMARK CURATION

Data Collection and Pre-processing. As shown in Figure 4, the UrbanFeel benchmark collects over 4,000 street-view images from 11 cities across four continents via Mapillary and the Google Street View API, covering both single-view and panoramic formats. The selected cities include representative locations from the Global South (e.g., Kuala Lumpur, Tolyatti) and the Global North

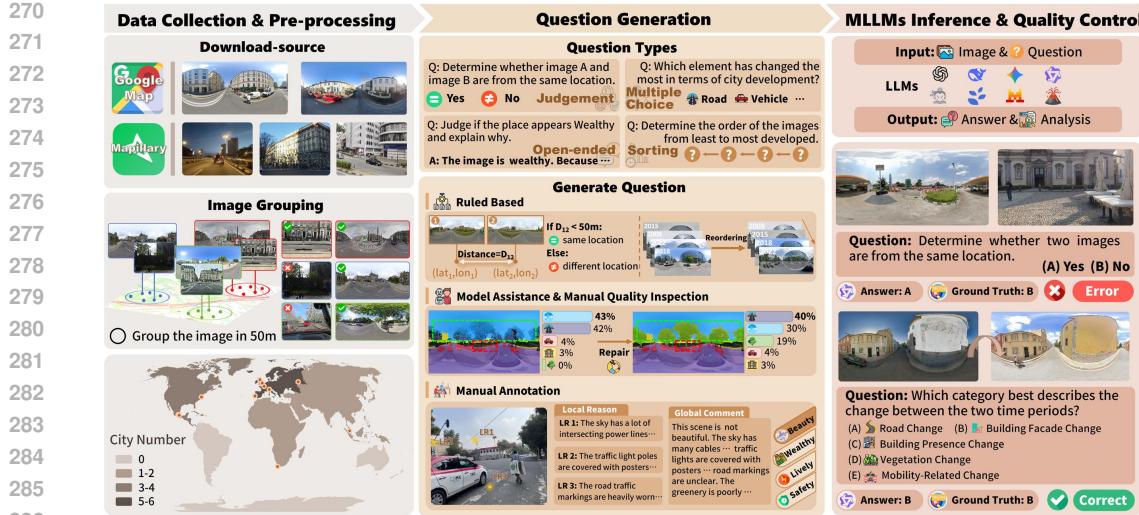


Figure 4: Benchmark construction process of UrbanFeel, including data collection and pre-processing, question generation, and MLLMs inference and quality control.

(e.g., Paris, Washington, D.C.), spanning a temporal range from 2007 to 2024 and capturing diverse stages of urban development.

During the data pre-processing stage, given the lack of precise spatial or temporal ordering in some images, we apply spatiotemporal clustering based on geolocation and timestamps to generate coherent urban evolution sequences. To ensure data quality, we use a pretrained segmentation model along with manual filtering to remove low-quality samples, such as indoor scenes, blurry captures, and heavily occluded images. Additional preprocessing details are provided in the Appendix C.

Question Generation. UrbanFeel supports four question formats: binary judgment, multiple choice, sorting, and open-ended QA. To efficiently generate diverse question sets, we adopt a hybrid strategy combining rule-based generation, model-assisted prompting, and manual authoring. For instance, tasks like same-place matching and future-view prediction are generated using temporal and spatial metadata. For change-type recognition, we initialize annotations with outputs from general-purpose segmentation models, followed by manual verification and correction. Subjective perception tasks are written entirely by human annotators and span four dimensions: beautiful, safety, wealthy, and lively. Annotators also mark localized visual evidence to support reasoning and explainability evaluation.

MLLMs Inference and Quality Control. To ensure annotation accuracy and evaluation reliability, we introduce a multi-stage validation pipeline. During model inference, strict output formatting constraints are enforced. Responses are automatically assessed using a separate language model to compare with human-provided ground truths. For ambiguous or illogical responses, manual review is conducted to reclassify or remove problematic samples. This filtering ensures the final evaluation metrics are robust and reproducible.

4 EXPERIMENTS

4.1 EVALUATED MODELS

We evaluate a total of 20 multimodal large models under a zero-shot setting using UrbanFeel, including 2 closed-source models and 18 open-source models. The closed-source models are GPT-4o (OpenAI, 2024) and Gemini 2.5 Pro (Comanici et al., 2025), accessed via their official APIs. The open-source models cover a diverse set of representative MLLM families, including DeepSeek-VL2 (Wu et al., 2024b), InternVL 3 (Zhu et al., 2025), LLaVA (Guo & Huang, 2025), Qwen2.5-VL (Yu et al., 2025), Phi (Abdin et al., 2024), Gemma-3 (Team et al., 2025), and Idefics3-8B (Laurençon et al., 2024), among others. A full list of model versions and configurations is provided in Appendix C.

324
 325 Table 1: Quantitative results for 2 closed-source and 18 open-source MLLMs, as well as those for
 326 human and random guess across 11 tasks. The overall score is computed across all tasks. The
 327 maximum value and the second largest value of model performance in each task are indicated by the
 328 **bold** and underlined text, respectively. Task names are abbreviated for brevity.

Model	Static Scene Perception			Temporal Change Perception					Subjective Perception Consistency			Overall
	DEE	CR	SPM	TCR	FSI	PCR	TSR	SCR	GP	LP	CP	
DeepSeek-vl2-tiny	44.5	18.0	44.5	48.2	25.5	31.5	3.7	24.1	59.6	53.8	43.6	36.1
DeepSeek-vl2	59.3	29.0	43.7	94.8	53.8	37.1	8.2	38.9	65.8	40.9	33.3	45.9
MiniCPM-V 2.6-8B	45.9	94.8	77.6	90.9	26.8	38.7	10.5	25.2	41.9	34.8	33.9	47.4
Qwen2.5-vl-3B	<u>61.1</u>	51.0	76.2	77.8	43.2	28.9	5.0	17.1	67.6	35.6	28.3	44.7
Qwen2.5-vl-7B	<u>52.4</u>	98.2	75.8	85.1	43.2	33.4	10.0	43.9	56.6	33.8	38.6	51.9
Qwen2.5-vl-72B	60.1	97.2	66.2	87.9	90.3	40.9	26.0	46.0	65.7	44.6	36.9	60.2
LLaVA-1.5-7B	26.3	<u>51.0</u>	49.0	88.3	25.8	24.6	3.7	17.0	59.5	39.2	53.2	39.8
LLaVA-v1.6-mistral-7B	34.9	51.0	45.5	65.0	17.5	28.0	3.7	16.1	67.2	38.7	<u>51.0</u>	38.1
InternVL3-2B	51.3	41.4	65.5	66.6	19.6	38.9	1.4	15.0	68.2	40.0	<u>25.4</u>	39.4
InternVL3-8B	39.8	67.4	53.8	78.4	31.8	33.5	7.8	32.2	<u>69.7</u>	34.1	38.8	44.3
Phi-3.5	46.0	57.2	51.4	75.4	56.9	24.8	7.8	37.4	<u>54.6</u>	37.4	36.2	44.1
Phi-4	37.7	26.2	69.7	82.9	57.4	32.1	2.3	39.9	71.0	42.2	48.1	46.3
Idefics3-8B	47.1	56.6	60.0	53.2	22.5	39.5	3.7	15.5	61.2	34.1	49.0	40.2
Mistral-Small-3.1-24B	19.6	91.6	67.9	86.6	64.3	28.9	16.0	46.7	63.3	42.4	39.9	51.6
Aria	64.8	90.0	71.7	89.0	42.7	38.9	10.5	38.1	67.7	42.1	45.9	54.7
Aya-vision-8b	18.8	51.0	38.6	51.5	26.2	24.6	3.2	33.3	69.6	43.8	39.5	36.4
Gemma-3-4b	42.5	81.6	64.1	59.5	25.9	39.0	8.2	36.5	53.1	46.1	26.7	43.9
Gemma-3-27b	50.8	80.2	66.9	58.5	76.2	37.5	18.7	44.8	64.7	39.6	41.0	52.7
GPT-4o	50.8	97.2	79.2	89.2	74.2	40.5	38.9	49.9	60.2	37.3	36.4	59.4
Gemini-2.5-pro	64.8	96.3	<u>78.2</u>	95.4	97.6	36.5	52.1	56.5	67.7	49.0	30.3	65.9
Human	71.3	88.1	76.7	96.4	96.4	21.2	70.0	69.5	66.6	32.9	53.1	67.4
Random	21.4	48.6	50.3	47.6	26.3	19.5	3.9	18.8	51.0	18.2	35.2	31.5

4.2 EVALUATION PROTOCOL

UrbanFeel includes four question types: binary judgment, multiple choice, sorting, and open-ended QA. Following the evaluation protocol of prior benchmarks such as MMMU (Yue et al., 2024) and UrBench (Zhou et al., 2025), we adopt a hybrid strategy combining exact matching, model verification, and semantic similarity evaluation.

For non-open-ended questions (i.e., judgment, multiple choice, and sorting), we first apply strict string matching—answers are considered correct only if they match the reference label. However, since some models generate verbose responses without clearly selecting an option, we employ an auxiliary language model to assess whether the prediction semantically aligns with the ground truth, ensuring fair evaluation of models that include rationale in their outputs. For open-ended questions, correctness is determined by measuring semantic similarity between the model-generated answer and reference answers.

For the human baseline, we recruited two independent groups of ten participants each, all with geography-related academic backgrounds (undergraduate, master’s, or doctoral students). One group conducted the annotations, while the other performed the evaluations, ensuring no overlap between the two. More implementation details of evaluation protocol are described in Appendix B.

4.3 MAIN RESULTS

Overall Challenge of UrbanFeel. Table 1 summarizes the overall quantitative performance of mainstream Multimodal Large Language Models (MLLMs) on UrbanFeel, revealing the significant challenges posed by our benchmark. While closed-source models such as GPT-4o and Gemini-2.5-Pro demonstrate impressive capabilities on selected tasks, their overall performance remains substantially behind human-level accuracy—particularly in tasks that require compositional reasoning and spatiotemporal understanding. This performance gap is even more pronounced for open-source models, suggesting that current MLLMs still face major limitations in practical applications related to urban development, environmental perception, and city planning.

Performance Across Task Dimensions. Table 1 further disaggregates model performance across the 11 sub-tasks in UrbanFeel. Most MLLMs exhibit strong capabilities in basic visual recognition tasks; for instance, the majority of models achieve over 60% accuracy on the Time-Consistent Recognition (TCR) task, which requires only straightforward temporal identification.

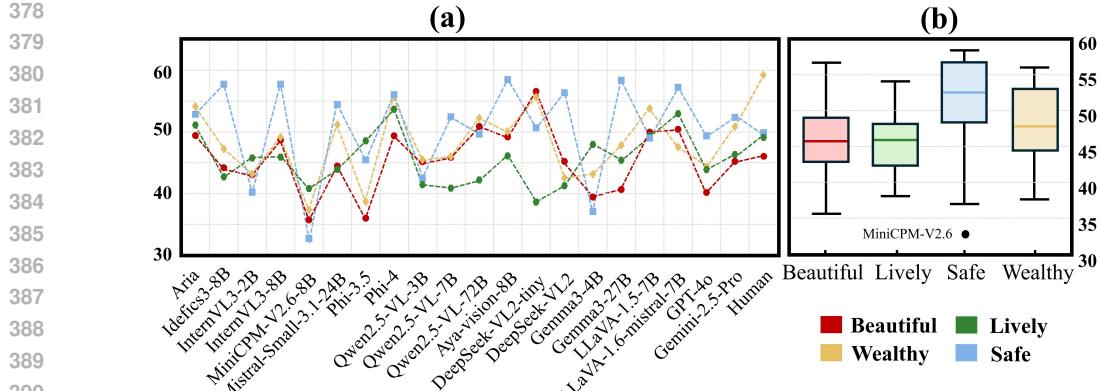


Figure 5: Quantitative comparison of MLLM performance on subjective environment perception. (a) Accuracy across four dimensions. (b) Box plots show model variance, where the horizontal lines in boxes indicate medians; box width indicates consistency.

However, model performance drops significantly when spatial and temporal reasoning must be integrated. In the TSR task, for example, most models score below 10% accuracy. Even the best-performing model—Gemini-2.5-Pro—still lags behind human performance by 17.9% in accuracy, revealing that existing models still struggle with long-range temporal ordering and scene-level alignment across time and space.

Interestingly, in the dimension of subjective environmental perception, many models show strong consistency with human judgment (CP, LP). Their visual justifications—such as cues used to infer aesthetic or safety—often align closely with those identified by human annotators, suggesting early potential for human-aligned perceptual reasoning. However, this alignment weakens substantially when temporal dynamics are introduced. On tasks involving perceptual comparison between before–after scenes, most models exhibit heightened sensitivity to visual changes, often overemphasizing fine-grained variations and diverging from human-level perceptual stability. More subjective analysis cases will be displayed in the Appendix D.

To our surprise, in the PCR task with panoramic inputs, MLLMs outperform human evaluators. This is because humans are less sensitive to pixel-level differences caused by panoramic distortions. While evaluators focus on salient foreground changes, mid- or long-range building variations occupy only a small pixel proportion and may be less noticeable than background shifts in sky or road caused by slight camera movements, leading to frequent misjudgments.

5 DISCUSSION

5.1 MODEL PERFORMANCE ACROSS SUBJECTIVE PERCEPTION DIMENSIONS

To further investigate model behavior in subjective environmental perception, Figure 5(a) presents accuracy distributions across four key dimensions. The results show that MLLMs exhibit considerable variation across dimensions. Most models achieve human-comparable or even superior accuracy in dimensions such as *Safe*, *Beautiful*, and *Lively*, suggesting promising potential for aligning with human perceptual judgments in urban scenes.

Among these, *Safe* is the dimension where most models perform best, reaching an average accuracy of 50.6%. However, this dimension also reveals the largest performance gap between models, indicating substantial inconsistency in safety-related judgments. In contrast, *Lively* displays more stable accuracy across models, despite having a slightly lower average performance, suggesting that models more consistently capture liveliness, likely by relying on broad visual cues such as vehicles and crowds. However, in the *Wealthy* dimension, the models still underperform human evaluators by an average margin of 10.1%, implying that wealth perception may involve more nuanced or culturally specific visual cues that current models struggle to capture.

The box plot in Figure 5(b) further supports these observations. Although the *Safe* dimension has the highest median accuracy (52.4%), it also exhibits the widest interquartile range and largest over-

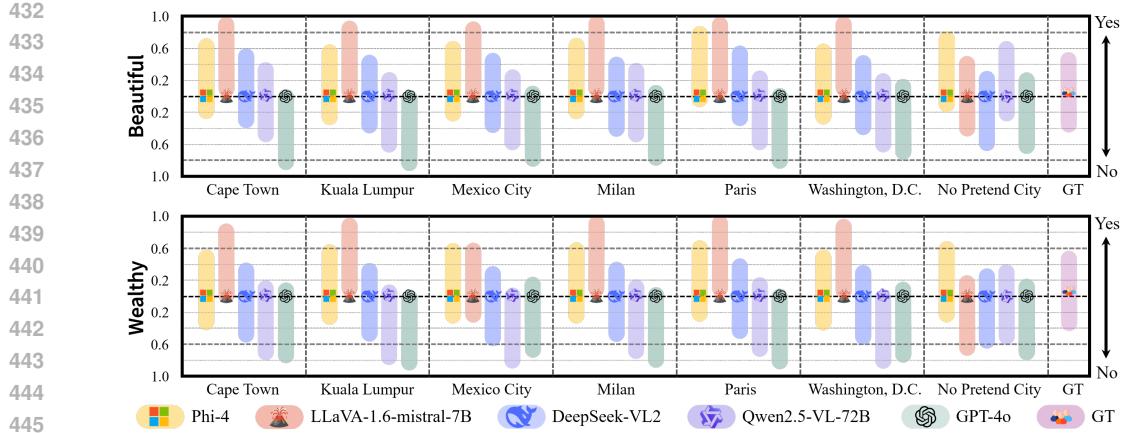


Figure 6: Quantitative comparison of different models under the assumed city identity setting. “Yes” indicates the proportion of positive evaluations made by MLLMs for the given perceptual dimension, while “No” represents the proportion of negative evaluations. The results show that LLaVA-1.6-mistral-7B and DeepSeek-vl2 yield more positive evaluations across most cities, while Qwen2.5-VL and GPT-4o show a decline under assumed city identity.

all variance, confirming the inconsistent model behavior. Conversely, the *Lively* dimension has the most concentrated distribution, indicating higher inter-model agreement. This consistency suggests that current MLLMs may rely on more universal or easily detectable signals when evaluating liveliness, whereas dimensions like safety and wealth require finer-grained perceptual reasoning or socio-cultural understanding.

5.2 DOES CITY IDENTITY AFFECT MLLMs’ SUBJECTIVE ENVIRONMENTAL JUDGMENTS?

To examine whether MLLMs exhibit geographic bias in subjective perception, we conducted a ”city identity intervention” experiment. We randomly selected 100 street-view images from the GP validation set and assigned each one of six hypothetical city identities (Cape Town, Kuala Lumpur, Mexico City, Milan, Paris, Washington, D.C.), comparing the results to those without any assigned identity (“No Pretend City”). Figure 6 shows the distributions of positive (e.g., “beautiful”) and negative (e.g., “not beautiful”) judgments under the *Beautiful* and *Wealthy* dimensions. Results for *Lively* and *Safe* are included in the Appendix C.

Overall, most models exhibit varying degrees of change in their subjective judgments when city identity is introduced. LLaVA-1.6 and DeepSeek-vl2 tend to produce more positive evaluations across most cities, suggesting a tendency to interpret identity labels favorably. In contrast, Phi-4 demonstrates high stability, indicating greater reliance on image content and robustness to added semantic labels. Notably, GPT-4o and Qwen2.5-VL show a general decline in positive judgments when city identity is provided, implying a more “cautious” or even “conservative” evaluation behavior, potentially triggered by the activation of learned stereotypes or expectations.

When comparing “Global North” and “Global South” city identities, we observe that **a northern identity does not necessarily lead to more favorable evaluations**. Although the average score for northern cities is slightly higher, GPT-4o’s perception of wealth for “Paris” and “Milan” drops significantly—sometimes even below that of cities like “Cape Town.” This counterintuitive result may stem from a mismatch between the semantic label and the actual image content; for example, ordinary or aged urban scenes labeled as “Paris” may result in greater expectation gaps, prompting the model to generate more negative evaluations. Conversely, GPT-4o’s slightly increased positive judgments for “Mexico City” may be attributed to positive visual signals such as modern buildings, clean streets, and bright lighting—combined with the lack of strong negative priors associated with the label “Mexico City” in the model’s pretraining corpus.

5.3 Do MLLMs PERCEIVE SINGLE-VIEW AND PANORAMA DIFFERENTLY?

To evaluate whether the differences in viewpoint coverage and information organization between single-view and panorama introduce perceptual biases in MLLMs, we compare model performance across the two perspectives. As shown in Figure 7, the majority of models consistently perform better on single-view images than on their panorama counterparts. On average, single-view inputs yield an accuracy improvement of 11.7% over panoramic inputs. Notably, Gemini-2.5-Pro achieves the highest accuracy on single-view images at 69.4%, closely by Qwen2.5-VL-72B with 64.9%. In terms of panoramic images, Aria shows the best performance with 55.3%, while Gemini-2.5-Pro follows closely with 54.9%.

This performance gap suggests that although panorama offer greater spatial coverage and denser visual information, their inherent geometric distortions and contextual blending may increase the “cognitive burden” on MLLMs. It also shows that MLLMs have perspective data imbalance and bias during training process.

5.4 DOES EXPLICIT REASONING ENHANCE TEMPORAL UNDERSTANDING?

To investigate whether guiding MLLMs with explicit reasoning steps enhances performance in complex urban temporal tasks, we conducted a controlled ablation study on the Temporal Sequence Reasoning (TSR) task, comparing Direct Sorting, General CoT, and Re-Thinking strategies. Contrary to the expectation that explicit reasoning consistently improves performance, our results reveal a counter-intuitive trend: for state-of-the-art models such as GPT-4o, Qwen2.5-VL-72B, and Gemini-2.5-Pro, the **Direct Sorting strategy consistently yields the highest accuracy**. Introducing verbose reasoning steps often leads to performance degradation; for instance, GPT-4o’s accuracy drops from 46.1% to 37.0% when using the Re-Thinking strategy. Qualitative analysis suggests this stems from an “over-reasoning” pitfall, where models hallucinate subtle details or over-interpret transient noise to justify an incorrect linear progression. We provide detailed quantitative results and specific case studies of this phenomenon in Appendix C.4 and D.

6 CONCLUSION

In this study, we introduce UrbanFeel, a new benchmark for evaluating the capabilities of Multimodal Large Language Models (MLLMs) in urban development understanding and subjective perception. The benchmark includes over 14.3K questions across 11 tasks, covering static scene perception, temporal change understanding, and subjective environmental perception. It is constructed using single-view and panoramic street-view images from 11 cities, spanning more than 15 years. We evaluate 20 MLLMs and identify key limitations. Current models underperform in tasks requiring joint spatial-temporal reasoning. We also observe geographic bias in subjective perception tasks, where predictions vary with city identity. In addition, models show perceptual inconsistencies across different viewpoints, particularly between single-view and panoramic inputs. We envision UrbanFeel advancing perception-aware urban intelligence. By bridging temporal evolution and human perception, this work positions MLLMs as scalable tools for the continuous monitoring and assessment required to achieve sustainable urban development goals.

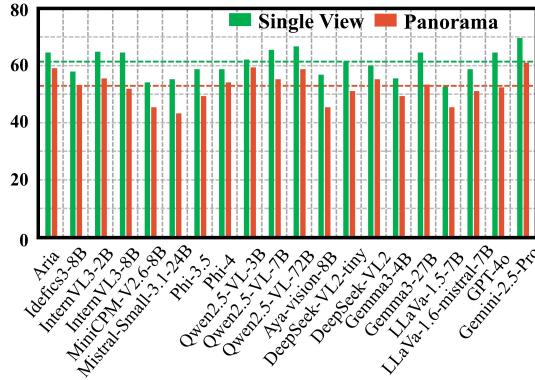


Figure 7: Quantitative results of MLLMs performance from different perspectives.

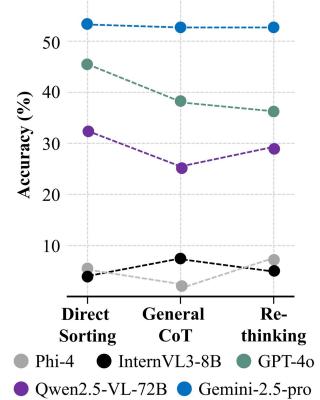


Figure 8: Quantitative results of different prompt input on TSR.

540
541
ETHICS STATEMENT

542 We developed UrbanFeel guided by principles of responsible and ethical AI research. We acknowl-
 543 edge that, despite efforts to ensure coverage and diversity, our dataset and annotations may still
 544 carry biases from source imagery, annotator backgrounds, or cultural contexts—especially in sub-
 545 jective perception tasks such as beauty, safety, wealth, and liveliness. Users should remain vigilant
 546 to these limitations. To mitigate bias, we provided annotators with standardized guidelines and
 547 training before labeling. The annotations are intended as reference labels that reflect the consensus
 548 inclinations of the annotator group, not as absolute ground truth. Moreover, we recognize the possi-
 549 bility that models built on UrbanFeel might be misused to influence public perceptions or aesthetic
 550 judgments. Our intent is for positive applications—urban analysis, perceptual model evaluation, and
 551 human–machine alignment research—and we explicitly disavow any malicious uses. By releasing
 552 our data, code, and evaluation tools, we hope to foster transparency, accountability, and further work
 553 toward fairer, cross-cultural, and ethically grounded AI in urban contexts.
 554

555
REPRODUCIBILITY STATEMENT

556 We are committed to ensuring the full reproducibility of our work. The core concepts and method-
 557 ology of our benchmark design are detailed in Section 3, including the three task dimensions and
 558 the benchmark curation. Our experimental setup, including datasets, evaluation procedures, and
 559 baseline MLLMs, is described in Section 4 and Appendix C. Additional details on the manual an-
 560 notation process, human evaluation settings, and operational guidelines for subjective perception
 561 tasks are provided in Appendix B. To facilitate the reproduction of our results and to support further
 562 research in urban multimodal perception, we will release the complete codebase, benchmark dataset
 563 (UrbanFeel), and evaluation scripts, along with detailed documentation and pretrained model pre-
 564 dictions.
 565

566
REFERENCES

567 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
 568 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
 569 cal report. *arXiv preprint arXiv:2412.08905*, 2024.

570 Tim Alpherts, Sennay Ghebreab, and Nanne van Noord. Emplace: Self-supervised urban scene
 571 change detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 572 pp. 1737–1745, 2025.

573 Anonymous. ICG: Improving cover image generation via MLLM-based prompting and personalized
 574 preference alignment. In *Submitted to ACL Rolling Review - May 2025*, 2025. URL <https://openreview.net/forum?id=hzBeMd5RXL>. under review.

575 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 576 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

577 Yanis Benidir, Nicolas Gonthier, and Clément Mallet. The change you want to detect: Semantic
 578 change detection in earth observation with hybrid data generationf. In *Proceedings of the Com-
 579 puter Vision and Pattern Recognition Conference*, pp. 2204–2214, 2025.

580 Filip Biljecki and Koichi Ito. Street view imagery in urban analytics and gis: A review. *Landscape
 581 and Urban Planning*, 215:104217, 2021.

582 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 583 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 584 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 585 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

586 Saurabh Dash, Yiyang Nan, John Dang, Arash Ahmadian, Shivalika Singh, Madeline Smith, Bharat
 587 Venkitesh, Vlad Shmyhlo, Viraat Aryabumi, Walter Beller-Morales, Jeremy Pekmez, Jason
 588 Ozuzu, Pierre Richemond, Acyr Locatelli, Nick Frosst, Phil Blunsom, Aidan Gomez, Ivan Zhang,
 589 Marzieh Fadaee, Manoj Govindassamy, Sudip Roy, Matthias Gallé, Beyza Ermis, Ahmet Üstün,
 590

594 and Sara Hooker. Aya vision: Advancing the frontier of multilingual multimodality, 2025. URL
 595 <https://arxiv.org/abs/2505.08751>.
 596

597 Boyang Deng, Songyou Peng, Kyle Genova, Gordon Wetzstein, Noah Snavely, Leonidas Guibas,
 598 and Thomas Funkhouser. Visual chronicles: Using multimodal llms to analyze massive collec-
 599 tions of images. *arXiv preprint arXiv:2504.08727*, 2025.

600 Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A Hidalgo. Deep learning
 601 the city: Quantifying urban perception at a global scale. In *European conference on computer*
 602 *vision*, pp. 196–212. Springer, 2016.

603 Zhuangyuan Fan, Fan Zhang, Becky PY Loo, and Carlo Ratti. Urban visual intelligence: Uncovering
 604 hidden city profiles with street view images. *Proceedings of the National Academy of Sciences*,
 605 120(27):e2220417120, 2023.

606 Jie Feng, Tianhui Liu, Yuwei Du, Siqi Guo, Yuming Lin, and Yong Li. Citygpt: Empowering urban
 607 spatial cognition of large language models. In *Proceedings of the 31st ACM SIGKDD Conference*
 608 *on Knowledge Discovery and Data Mining V*. 2, pp. 591–602, 2025a.

609 Jie Feng, Shengyuan Wang, Tianhui Liu, Yanxin Xi, and Yong Li. Urbanllava: A multi-modal large
 610 language model for urban intelligence with spatial reasoning and understanding. *arXiv preprint*
 611 *arXiv:2506.23219*, 2025b.

612 Jie Feng, Jun Zhang, Tianhui Liu, Xin Zhang, Tianjian Ouyang, Junbo Yan, Yuwei Du, Siqi Guo,
 613 and Yong Li. Citybench: Evaluating the capabilities of large language models for urban tasks. In
 614 *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V*.
 615 2, pp. 5413–5424, 2025c.

616 Alexander Follmann, Maximilian Willkomm, and Peter Dannenberg. As the city grows, what do
 617 farmers do? a systematic review of urban and peri-urban agriculture under rapid urban growth
 618 across the global south. *Landscape and Urban Planning*, 215:104186, 2021.

619 Yunfei Guo and Wu Huang. Llava-next-med: Medical multimodal large language model. In *2025*
 620 *Asia-Europe Conference on Cybersecurity, Internet of Things and Soft Computing (CITSC)*, pp.
 621 474–477. IEEE, 2025.

622 Assem Abu Hatab, Maria Eduarda Rigo Cavinato, August Lindemer, and Carl-Johan Lagerkvist.
 623 Urban sprawl, food security and agricultural systems in developing countries: A systematic review
 624 of the literature. *Cities*, 94:129–142, 2019.

625 Jialyu He, Jinbao Zhang, Yao Yao, and Xia Li. Extracting human perceptions from street view
 626 images for better assessing urban renewal potential. *Cities*, 134:104189, 2023.

627 Jinghao Huang, Yaxiong Chen, Shengwu Xiong, and Xiaoqiang Lu. Visual contextual semantic
 628 reasoning for cross-modal drone image-text retrieval. *IEEE Trans. Geosci. Remote. Sens.*, 62:
 629 1–12, 2024a. URL <https://doi.org/10.1109/TGRS.2024.3443197>.

630 Tianyuan Huang, Zejia Wu, Jiajun Wu, Jackelyn Hwang, and Ram Rajagopal. Citypulse: Fine-
 631 grained assessment of urban change with street view time series. In *Proceedings of the AAAI*
 632 *Conference on Artificial Intelligence*, volume 38, pp. 22123–22131, 2024b.

633 Koichi Ito, Yuhao Kang, Ye Zhang, Fan Zhang, and Filip Biljecki. Understanding urban perception
 634 with visual data: A systematic review. *Cities*, 152:105169, 2024.

635 Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. Oneformer:
 636 One transformer to rule universal image segmentation. In *Proceedings of the IEEE/CVF confer-
 637 ence on computer vision and pattern recognition*, pp. 2989–2998, 2023.

638 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 639 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 640 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 641 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

648 Siqi Lai, Yansong Ning, Zirui Yuan, Zhixi Chen, and Hao Liu. Ustbench: Benchmarking and
 649 dissecting spatiotemporal reasoning of llms as urban agents. *arXiv preprint arXiv:2505.17572*,
 650 2025.

651

652 Hugo Laurençon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and bet-
 653 ter understanding vision-language models: insights and future directions. *arXiv preprint*
 654 *arXiv:2408.12637*, 2024.

655

656 Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Guoyin
 657 Wang, Bei Chen, and Junnan Li. Aria: An open multimodal native mixture-of-experts model.
 658 *arXiv preprint arXiv:2410.05993*, 2024a.

659

660 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zeyun Ma, and Chunyuan Li.
 661 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 662 *preprint arXiv:2407.07895*, 2024b.

663

664 Weijia Li, Jinhua Yu, Dairong Chen, Yi Lin, Runmin Dong, Xiang Zhang, Conghui He, and Haohuan
 665 Fu. Fine-grained building function recognition with street-view images and gis map data via
 666 geometry-aware semi-supervised learning. *International Journal of Applied Earth Observation*
 667 and *Geoinformation*, 137:104386, 2025.

668

669 Tianhui Liu, Jie Feng, Hetian Pang, Xin Zhang, Tianjian Ouyang, Zhiyuan Zhang, and Yong Li.
 670 Citylens: Benchmarking large language-vision models for urban socioeconomic sensing. *arXiv*
 671 *preprint arXiv:2506.00530*, 2025.

672

673 Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual
 674 tokenization for grounding multimodal large language models. *ArXiv*, abs/2404.13013, 2024.
 675 URL <https://api.semanticscholar.org/CorpusID:269283071>.

676

677 Nikhil Naik, Scott Duke Kominers, Ramesh Raskar, Edward L Glaeser, and César A Hidalgo. Com-
 678 puter vision uncovers predictors of physical urban change. *Proceedings of the National Academy*
 679 *of Sciences*, 114(29):7571–7576, 2017.

680

681 OpenAI. Gpt-4o (may 13, 2024 version) [large language model]. [https://chat.openai.](https://chat.openai.com/)
 682 com/, 2024.

683

684 Bhartendu Pandey and Karen C Seto. Urbanization and agricultural land loss in india: Comparing
 685 satellite estimates with census data. *Journal of environmental management*, 148:53–66, 2015.

686

687 Jin Rui and Yuhua Xu. Beyond built environment: Unveiling the interplay of streetscape perceptions
 688 and cycling behavior. *Sustainable Cities and Society*, 109:105525, 2024.

689

690 Steven Stalder, Michele Volpi, Nicolas Büttner, Stephen Law, Kenneth Harttgen, and Esra Suel.
 691 Self-supervised learning unveils urban change from street-level images. *Computers, Environment*
 692 and *Urban Systems*, 112:102156, 2024a.

693

694 Steven Stalder, Michele Volpi, Nicolas Büttner, Stephen Law, Kenneth Harttgen, and Esra Suel.
 695 Self-supervised learning unveils urban change from street-level images. *Computers, Environment*
 696 and *Urban Systems*, 112:102156, 2024b.

697

698 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 699 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 700 report. *arXiv preprint arXiv:2503.19786*, 2025.

701

702 Adam Van Etten, Daniel Hogan, Jesus Martinez Manso, Jacob Sermeyer, Nicholas Weir, and Ryan
 703 Lewis. The multi-temporal urban development spacetnet dataset. In *Proceedings of the IEEE/CVF*
 704 *Conference on Computer Vision and Pattern Recognition*, pp. 6398–6407, 2021.

705

706 Joppe van Veghel, Gamze Dane, Giorgio Agugiaro, and Aloys Borgers. Human-centric computa-
 707 tional urban design: optimizing high-density urban areas to enhance human subjective well-being.
 708 *Computational Urban Science*, 4(1):13, 2024.

702 Zixuan Wang, Xiang Zhang, Yuchuan Zhou, Yiyi Jiang, and Haibin Xu. Exploring functional zone-
 703 dependent nonlinear associations between objective features and subjective perceptions: A case
 704 study in beijing. *International Journal of Applied Earth Observation and Geoinformation*, 142:
 705 104682, 2025.

706 Jingxian Wei, Wenze Yue, Mengmeng Li, and Jiabin Gao. Mapping human perception of urban
 707 landscape from street-view images: A deep-learning approach. *International Journal of Applied*
 708 *Earth Observation and Geoinformation*, 112:102886, 2022.

709 World Bank. Urban population (<https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS>, 2024. Accessed: 2024-08-07.

710 Tao Wu, Mengze Li, Jingyuan Chen, Wei Ji, Wang Lin, Jinyang Gao, Kun Kuang, Zhou Zhao, and
 711 Fei Wu. Semantic alignment for multimodal large language models. *Proceedings of the 32nd ACM*
 712 *International Conference on Multimedia*, 2024a. URL <https://api.semanticscholar.org/CorpusID:271947050>.

713 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 714 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 715 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024b.

716 Weihao Xuan, Junjue Wang, Heli Qi, Zihang Chen, Zhuo Zheng, Yanfei Zhong, Junshi Xia, and
 717 Naoto Yokoya. Dynamicvl: Benchmarking multimodal large language models for dynamic city
 718 understanding. *ArXiv*, abs/2505.21076, 2025. URL <https://api.semanticscholar.org/CorpusID:278911698>.

719 Yibo Yan, Haomin Wen, Siru Zhong, Wei Chen, Haodong Chen, Qingsong Wen, Roger Zimmer-
 720 mann, and Yuxuan Liang. Urbanclip: Learning text-enhanced urban region profiling with con-
 721 trastive language-image pretraining from the web. In *Proceedings of the ACM Web Conference*
 722 2024, pp. 4006–4017, 2024.

723 Jihan Yang, Runyu Ding, Ellis Brown, Xiaojuan Qi, and Saining Xie. V-irl: Grounding virtual
 724 intelligence in real life. In *European conference on computer vision*, pp. 36–55. Springer, 2024.

725 Yao Yao, Zhaotang Liang, Zehao Yuan, Penghua Liu, Yongpan Bie, Jinbao Zhang, Ruoyu Wang,
 726 Jiale Wang, and Qingfeng Guan. A human-machine adversarial scoring framework for urban per-
 727 ception assessment using street-view images. *International Journal of Geographical Information*
 728 *Science*, 33(12):2363–2384, 2019.

729 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 730 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 731 *arXiv:2408.01800*, 2024.

732 Junyan Ye, Jun He, Xiang Zhang, Yi Lin, Honglin Lin, Conghui He, and Weijia Li. Satellite image
 733 synthesis from street view with fine-grained spatial textual guidance: A novel framework. *IEEE*
 734 *Geoscience and Remote Sensing Magazine*, 2025.

735 Yueyang Yu, Chuanwei Shi, Jiuqi Tang, and Sicheng Zheng. Qwen-vl2 model with neftune tech-
 736 nique for medical report generation. In *2025 4th International Symposium on Computer Applica-
 737 tions and Information Technology (ISCAIT)*, pp. 165–168. IEEE, 2025.

738 Shuai Yuan, Guancong Lin, Lixian Zhang, Runmin Dong, Jinxiao Zhang, Shuang Chen, Juepeng
 739 Zheng, Jie Wang, and Haohuan Fu. Fusu: A multi-temporal-source land use change segmen-
 740 tation dataset for fine-grained urban semantic understanding. *Advances in Neural Information*
 741 *Processing Systems*, 37:132417–132439, 2024.

742 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 743 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 744 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 745 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

756 Congzhi Zhang, Jiawei Peng, Zhenglin Wang, Yilong Lai, Haowen Sun, Heng Chang, Fei Ma, and
757 Weijiang Yu. Vrest: Enhancing reasoning in large vision-language models through tree search and
758 self-reward mechanism. In *ACL (1)*, pp. 3922–3941, 2025a. URL <https://aclanthology.org/2025.acl-long.199>.

759

760 Fan Zhang, Bolei Zhou, Liu Liu, Yu Liu, Helene H Fung, Hui Lin, and Carlo Ratti. Measuring
761 human perceptions of a large-scale urban region using machine learning. *Landscape and Urban
762 Planning*, 180:148–160, 2018.

763

764 Jiaxin Zhang, Yunqin Li, Tomohiro Fukuda, and Bowen Wang. Urban safety perception assessments
765 via integrating multimodal large language models with street view images. *Cities*, 2024a. URL
766 <https://api.semanticscholar.org/CorpusID:271534593>.

767

768 Jiaxin Zhang, Yunqin Li, Tomohiro Fukuda, and Bowen Wang. Urban safety perception assessments
769 via integrating multimodal large language models with street view images. *Cities*, 165:106122,
770 2025b.

771

772 Maomao Zhang, Shukui Tan, Jinshui Liang, Cheng Zhang, and Enqing Chen. Predicting the im-
773 pacts of urban development on urban thermal environment using machine learning algorithms in
774 nanjing, china. *Journal of Environmental Management*, 356:120560, 2024b.

775

776 Baichuan Zhou, Haote Yang, Dairong Chen, Junyan Ye, Tianyi Bai, Jinhua Yu, Songyang Zhang,
777 Dahua Lin, Conghui He, and Weijia Li. Urbench: A comprehensive benchmark for evaluating
778 large multimodal models in multi-view urban scenarios. In *Proceedings of the AAAI Conference
779 on Artificial Intelligence*, volume 39, pp. 10707–10715, 2025.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811 **UrbanFeel: A Comprehensive Benchmark for Temporal and Perceptual Understanding of**
812 **City Scenes through Human Perspective**813 Supplementary Material
814815 In this appendix, we present supplementary materials that could not be included in the main paper
816 due to space constraints. These materials offer extended details on the benchmark construction,
817 evaluation protocols, and additional experimental results to support reproducibility and inspire future
818 research. Specifically, we provide:819 • **Additional Benchmark Statistics:** Including detailed question distributions and comparative
820 analysis with existing urban perception benchmarks.
821
822 • **Benchmark Construction Details:** Covering the entire pipeline from data collection and
823 pre-processing to manual annotation and evaluation protocols.
824
825 • **Experiment Details and Additional Results:** Listing all evaluated baseline models, pre-
826 senting extended experimental results, and analyzing whether reasoning-augmented mod-
827 els outperform standard baselines on UrbanFeel. We also provide detailed results on how
828 assigned city identities influence model perception across different dimensions.
829
830 • **Case Studies:** Illustrative examples showcasing model responses and human annotations
831 across UrbanFeel’s 11 task types.
832
833 • **Limitations and Future Work:** Discussing current constraints of UrbanFeel and outlining
834 directions for further expansion and refinement.
835
836 • **Use of Large Language Models:** Describe the main uses of LLM in the writing of this
837 manuscript.838 A ADDITIONAL BENCHMARK STATISTICS
839

840 A.1 QUESTION STATISTICS

841 Table 2 summarizes the number of test and validation instances across different subtasks. Urban-
842 Feel comprises a carefully curated set of 14.3K visual questions, with 11K in the test set and 3.3K
843 in the validation set. Our benchmark provides a comprehensive suite of representative questions
844 under three evaluation dimensions, enabling a holistic assessment of MLLMs’ capabilities in un-
845 derstanding spatiotemporal urban dynamics and aligning with human perception in complex urban
846 development scenarios.847 Table 2: Question Distribution in Test and Val Sets
848849
850

Evaluation Dimension	Task	Test	Val
Static Scene Perception	DEE	1600	400
	CR	400	100
	SPM	238	60
Temporal Change Perception	TCR	1760	440
	FSI	880	220
	PCR	880	220
	TSR	160	40
	SCR	880	220
Subjective Perception Consistency	GP	1358	560
	LP	1638	280
	CP	1241	720
Total	-	11035	3260

864
 865 Table 3: Comparison of Existing Urban Scene Benchmarks. Our UrbanFeel designs a variety of
 866 question types over a longer time span, comprehensively evaluating the perception ability of differ-
 867 ent MLLMs on the physical space and human subjective dimensions of the environment in urban
 868 development scenarios.

Feature	CityBench	CityGPT	USTBench	Urbanch	UrbanFeel (Ours)
Judgements	✗	✗	✗	✗	✓
Multi-Choice	✓	✓	✓	✓	✓
Open-Ended	✗	✗	✗	✓	✓
Sorting	✗	✗	✗	✗	✓
Static Scene	✓	✓	✓	✓	✓
Historical Data	✗	✗	✗	✗	✓
Subjective Perception	✗	✗	✗	✗	✓
Temporal Resolution	Hourly or Event-based	Hourly or event-based	Hourly with planning loops	Event-based	Yearly sequence

882 A.2 BENCHMARK COMPARISON

883
 884 Table 3 presents a systematic comparison between UrbanFeel and existing urban perception bench-
 885 marks. Current benchmarks such as CityBench (Feng et al., 2025c), CityGPT (Feng et al., 2025a),
 886 and USTBench (Lai et al., 2025) primarily focus on single-timestamp static images or tasks at the
 887 hourly or event level, aiming to assess models’ understanding of urban infrastructure or real-time
 888 dynamics. These tasks are often constructed using short-term trajectories, single-frame imagery, or
 889 synthetic datasets, and lack modeling or reasoning over real-world urban evolution.

890 In contrast, UrbanFeel emphasizes evaluating MLLMs’ multimodal perception capabilities within
 891 the long-term context of urban development. It introduces street-view image sequences spanning 17
 892 years, capturing visual transformations across phases of urban planning, expansion, and renovation.
 893 More importantly, UrbanFeel goes beyond physical spatial changes by systematically incorporating
 894 subjective environmental perception, designing tasks that assess perceptions of *beautiful*, *lively*, *safe*,
 895 and *wealthy*—thus exploring how human perceptions of environmental quality shift across different
 896 urban contexts, and how well models align with such perceptions.

897 Additionally, UrbanFeel supports diverse task formats—including multiple choice, open-ended rea-
 898 soning, and ranking—and covers both static scene understanding and dynamic urban transfor-
 899 mations. It fills critical gaps in spatiotemporal reasoning and human-centric perception evaluation,
 900 establishing the first comprehensive multimodal benchmark framed from the perspective of hu-
 901 man–city interaction.

902 B BENCHMARK CONSTRUCTION DETAILS

903 B.1 DATA COLLECTION DETAILS

904
 905 This section outlines the data collection pipeline for all street-view imagery used in **UrbanFeel**.
 906 The dataset comprises two main components: *single-view images* and *panoramic images*. We first
 907 obtained the vector boundaries of 11 representative cities using *OpenStreetMap*.

908 For single-view imagery, we utilized the *Mapillary API* provided by the Global
 909 Streetscapes dataset to download images. Each image was renamed using a standard-
 910 ized format based on the provided timestamp, geographic coordinates, and image ID:
 911 $\{\text{lat}, \text{lon}\}_{\{\text{year}\}}_{\{\text{month}\}}_{\{\text{image_id}\}}.\text{jpg}$, to facilitate streamlined preprocessing
 912 and file management. **We strictly adhere to the CC BY-SA license for Mapillary data, using official**
 913 **tools for acquisition and ensuring that all released content satisfies the attribution and share-alike**
 914 **requirements.**

915 For panoramic imagery, we employed the *Google Street View API* to retrieve data and aligned the
 916 naming convention with that of the single-view images. This ensures consistency across spatial

Figure 9: An example of the user interface of LabelU.

and temporal dimensions, enabling cross-view and temporal comparisons in subsequent benchmark tasks. To ensure full compliance with Google’s Terms of Service and copyright regulations, the open-source version of UrbanFeel does not distribute raw Google Street View imagery. Instead, we release only the unique Panorama IDs and metadata, accompanied by a retrieval script that allows researchers to legally fetch the images via the official API using their own credentials.

B.2 DATA PRE-PROCESSING DETAILS

During data preprocessing, we first standardized the orientation of all street-view images by rotating them to face true north based on camera heading metadata, minimizing the impact of viewpoint variation in panoramic images on downstream MLLM perception. Since the images lack explicit spatial relationships, we performed spatial clustering by calculating pairwise geodesic distances using image coordinates, with a 50-meter threshold to identify multi-view, multi-temporal image sequences from the same urban location.

We then applied the OneFormer(Jain et al., 2023) semantic segmentation model to preprocess the images, discarding those with less than 5% sky coverage, which were likely captured indoors. Finally, we manually filtered out low-quality images affected by motion blur, overexposure, or other visual defects.

B.3 MANUAL ANNOTATION AND EVALUATION DETAILS

During the annotation phase, acknowledging the inherent subjectivity of perception-related tasks, we recruited a group of 10 undergraduate and master’s students with geography-related academic backgrounds. Annotators were provided with standardized written guidelines (as shown in Table 4) and a short training session with representative examples prior to the formal labeling process. They were instructed to identify localized visual evidence from the images that supported their global perceptual judgments. The resulting annotations are treated as *reference labels* rather than absolute ground truth, reflecting the consensus tendencies of this annotator group. All annotation work was conducted using the **LabelU** platform. Fig. 9 illustrates an annotation case in the Local Perception task of the *Beauty* dimension.

For the evaluation phase, we recruited an independent group of 10 volunteers, entirely distinct from the annotators, comprising undergraduate, master’s, and doctoral students in geography-related fields. This separation ensured that annotation and evaluation were performed by different populations, thereby reducing potential bias introduced by overlapping roles. All human assessments were conducted on the **LabelLLM** platform, which provided a standardized interface for task interaction and response collection.

It is important to note that subjective concepts such as *beauty*, *safety*, or *wealth* are inevitably influenced by cultural and personal perspectives. While the provision of operational guidelines and

972 Table 4: Annotation guidelines for subjective perception dimensions. These guidelines were pro-
 973 vided to annotators as operational references rather than absolute criteria.
 974

975 Dimension	976 Description (Instruction for Annotators)
977 Beauty	978 Annotators were instructed to focus on the overall aesthetic impression of the scene, considering 979 whether the environment appears visually harmonious, orderly, and pleasant. They were asked to 980 pay attention to greenery, landscaping, architectural style and maintenance, cleanliness of streets, 981 balance of colors, and whether the layout looks uncluttered. <i>Example:</i> a tree-lined avenue with 982 well-maintained modern buildings should be labeled as more beautiful than a cluttered street with 983 graffiti and broken infrastructure.
984 Safety	985 Annotators were instructed to evaluate whether the environment gives a sense of security, 986 especially from a pedestrian’s perspective. They were asked to check for cues such as adequate 987 street lighting, visible sidewalks, orderly traffic, the presence of surveillance cameras or other 988 visible security measures, and the absence of disorder (e.g., litter, vandalism). <i>Example:</i> a well-lit 989 commercial street with open shops and visible security cameras should be labeled as safer than a 990 dark, narrow alley with poor visibility and signs of decay.
991 Wealth	992 Annotators were instructed to judge the degree of perceived economic prosperity in the 993 environment. They were asked to consider the quality and modernity of buildings, the presence of 994 commercial activity (e.g., branded shops), the maintenance of infrastructure, and visible 995 indicators of affluence (e.g., luxury cars). <i>Example:</i> a district with glass office towers and upscale 996 retail should be labeled as wealthier than a neighborhood with dilapidated housing and cracked 997 pavements.
998 Liveliness	999 Annotators were instructed to assess the vibrancy and human activity in the scene. They were 1000 asked to pay attention to pedestrians, cyclists, vehicles, open businesses, street vendors, or public 1001 events, as well as infrastructure supporting activity (benches, playgrounds). <i>Example:</i> a busy 1002 marketplace with crowds and open shops should be labeled as more lively than an empty street 1003 with little visible activity.

1004 training sessions was intended to minimize ambiguity and promote consistency across participants,
 1005 these annotations should be regarded as references produced by a specific annotator population,
 1006 rather than universal ground truth. Future work will extend this framework through cross-cultural
 1007 annotation campaigns and inter-annotator agreement analyses to further address cultural bias and
 1008 subjective variability.

1009 B.4 EVALUATION PROTOCOLS

1010 Given the varying structures and formats of different question types in UrbanFeel, we adopt tailored
 1011 evaluation strategies for each to ensure fairness and reproducibility.

1012 **To provide a rigorous quantitative assessment, we adopt Accuracy (ACC) as the primary evaluation
 1013 metric across all tasks. The accuracy is computed as:**

$$1014 ACC = \frac{N_{\text{Correct Predictions}}}{N_{\text{Total Predictions}}} \quad (1)$$

1015 where Total Predictions denotes the total number of evaluated instances, and Correct Predictions
 1016 denotes the number of instances for which the model output satisfies the task-specific correctness
 1017 criterion.

1018 **1. Exact Matching for Objective Tasks (MCQ, Binary, Sorting).** For multiple-choice, binary
 1019 judgment, and sorting tasks, the correctness criterion corresponds to strictly matching the objec-
 1020 tive ground truth label or sequence. To handle verbose model outputs (e.g., when a model outputs
 1021 reasoning alongside the option), we employ a two-step normalization process: first, we attempt rule-
 1022 based parsing to extract the option label; if this fails, we use a lightweight LLM call solely to extract
 1023 the predicted label (e.g., “Option A”) without altering the semantic content. The extracted label is
 1024 then compared against the ground truth using exact string matching.

1025 **2. Semantic Similarity for Open-Ended Tasks.** For open-ended questions where exact string
 1026 matching is too rigid, we employ a semantic similarity metric. We consider a prediction correct

1026 if the cosine similarity between the Sentence-BERT embedding of the predicted answer \hat{y}_i and the
 1027 ground-truth text y_i exceeds a pre-defined threshold τ . This is formally expressed as:
 1028

$$\text{Correct}(\hat{y}_i) = \mathbf{1}(\text{sim}(\hat{y}_i, y_i) > \tau) \quad (2)$$

1030 where $\mathbf{1}(\cdot)$ is the indicator function returning 1 if the condition is satisfied and 0 otherwise, and
 1031 $\text{sim}(\cdot, \cdot)$ denotes the cosine similarity computed using a pre-trained Sentence-BERT model. In our
 1032 experiments, we set the threshold $\tau = 0.6$ ensuring that correct but phrased-differently answers are
 1033 accepted while irrelevant hallucinations are rejected.
 1034

1035 C EXPERIMENT DETAILS & ADDITIONAL RESULTS

1036 C.1 BASELINE MODELS

1039 We evaluate a total of 20 state-of-the-art Multimodal Large Language Models (MLLMs), encom-
 1040 passing both open-source and closed-source models with diverse model sizes and capabilities. All
 1041 models are capable of processing visual inputs and are assessed under a unified evaluation pipeline.
 1042 The list of baseline models used in UrbanFeel includes:

1. **GPT** (OpenAI, 2024): We adopt the latest version of GPT-4o as the representative model
 from the GPT series.
2. **Gemini**(Comanici et al., 2025): Gemini-2.5-Pro is selected as the representative of the
 Gemini family.
3. **Qwen** (Yu et al., 2025): We evaluate three variants of Qwen2.5-VL, including the 3B, 7B,
 and 72B checkpoints.
4. **InternVL** (Zhu et al., 2025): InternVL3-2B and InternVL3-8B are included as vision-
 language expert models.
5. **MiniCPM** (Yao et al., 2024): MiniCPM-V-2.6 is used to represent lightweight MLLMs.
6. **DeepSeek** (Wu et al., 2024b): Both DeepSeek-VL2-tiny and DeepSeek-VL2 are included
 to explore performance scaling trends.
7. **LLaVA** (Li et al., 2024b): We include LLaVA-1.5 (7B) and LLaVA-1.6-mistral as repre-
 sentatives of this popular open-source family.
8. **Mistral** (Jiang et al., 2023): Mistral-Small-3.1-24B-Instruct is evaluated as a strong
 language-focused baseline.
9. **Gemma** (Team et al., 2025): Both Gemma-3-4B and Gemma-3-27B checkpoints are as-
 sessed.
10. **Aya** (Dash et al., 2025): The Aya-vision-8B checkpoint is included.
11. **Phi** (Abdin et al., 2024): We evaluate multimodal variants of Phi-3.5 and Phi-4.
12. **Aria** (Li et al., 2024a): We also include the open-source Aria model.

1066 All models are accessed via their official APIs or released checkpoints, and evaluated using a stan-
 1067 dardized prompt structure and visual input protocol to ensure fairness and consistency. To ensure
 1068 reproducibility, we set the temperature to 0 and perform greedy decoding.
 1069

1070 C.2 DO REASONING-AUGMENTED MODELS OUTPERFORM BASELINES ON URBANFEEL?

1072 To systematically assess the benefits of reasoning capabilities for urban perception tasks, we conduct
 1073 a comparative analysis of various base MLLMs and their reasoning-augmented counterparts across
 1074 five sub-tasks of the UrbanFeel benchmark(SPM, TCR, TSR, SCR, LP). As shown in Table 5, these
 1075 tasks span a wide spectrum, from static scene understanding and cross-view matching to temporal
 1076 semantic consistency reasoning and fine-grained local perception.

1077 Experimental results indicate that reasoning-augmented models (e.g., QVQ, GPT-o3, Gemini-2.5-
 1078 Pro-thinking) generally perform better on tasks emphasizing spatial understanding. For instance, in
 1079 SPM and TCR—tasks that require scene consistency and localized judgment—GPT-o3 achieves ac-
 curacy rates of 86.2% and 93.8%, respectively. In the subjective perception task (LP), QVQ brought

1080 Table 5: Quantitative comparison results of reasoning-augmented model and the non-reasoning-
 1081 augmented model. The maximum value and the second largest value of model performance in each
 1082 task are indicated by the **bold** and underlined text, respectively. Task names are abbreviated for
 1083 brevity.

1084

Model	SPM	TCR	TSR	SCR	LP
Qwen2.5VL-72B	66.2	87.9	26.0	46.0	36.9
QVQ	<u>68.3</u>	76.4	17.5	24.5	<u>48.7</u>
GPT-4o	<u>81.4</u>	89.2	38.9	<u>49.9</u>	<u>37.3</u>
o3	86.2	93.8	37.0	25.5	37.0
Gemini-2.5-Pro	80.3	<u>95.4</u>	52.1	56.5	49.0
Gemini-2.5-Pro-thinking	75.9	96.3	<u>39.5</u>	24.4	42.6
Human	76.7	96.4	70.0	69.5	32.9

1092

1093

1094 an 11.8% increase in accuracy compared to Qwen2.5-VL-72B, suggesting a stronger alignment with
 1095 human perception.

1096

1097 However, reasoning does not consistently lead to performance gains across all tasks. In the tem-
 1098 porally ordered TSR task, the reasoning-augmented models exhibit varying degrees of performance
 1099 degradation, which may be attributed to the extended reasoning span required when processing
 1100 multiple images, thereby limiting the models’ ability to effectively capture and model the relation-
 1101 ships among these images. In the scene change-sensitive SCR task, several reasoning-augmented
 1102 models even show significant declines, with an average accuracy drop of 51.2% compared to their
 1103 non-reasoning counterparts. This suggests that reasoning models may overemphasize fine-grained
 1104 differences when facing abrupt scene transitions, thereby overlooking global semantic coherence
 1105 and resulting in perceptual misjudgments.

1106

C.3 DO MLLMs POSSESS ROBUST GENERALIZATION ACROSS DIVERSE CITIES?

1107

1108 Due to space limitations, this appendix provides the quantitative results of MLLMs on different
 1109 perception dimensions across the six cities mentioned in the main paper, under the Global Perception
 1110 (GP) task without city identity intervention, as shown in Table 10 to Table 13.

1111

1112 To assess model robustness across diverse urban environments, we analyzed performance variations
 1113 at the city level, revealing two distinct generalization patterns. In beautiful dimension (table 10) of
 1114 global perception (GP task), leading closed-source models exhibit an “inverse geographic bias”; for
 1115 instance, Gemini-2.5-Pro aligns more closely with human perception in Global South cities (aver-
 1116 aging 67.1%) than in the Global North (52.4%), suggesting a reduced tendency to idealize Western
 1117 aesthetics. Conversely, open-source models demonstrate severe city-specific overfitting. LLaVA-
 1118 1.5-7B achieves near-perfect accuracy in Washington (98.1%) but drops drastically to 38.9% in
 1119 Kuala Lumpur, indicating a reliance on US-centric training data rather than true perceptual general-
 1120 ization.

1121

1122 This geographic variance extends to objective recognition tasks (PCR and DEE), distinguishing ro-
 1123 bust generalists from brittle systems. As shown in table 8 and 9 In pixel-level detection (PCR), while
 1124 models like Aria maintain consistency (e.g., 53% in Washington vs. 47% in Tolyatti), others suffer
 1125 catastrophic collapse; notably, Aya-vision-8b plummets from 41% to 6%. Furthermore, the Dom-
 1126 inant Element Extraction (DEE) task reinforces the “inverse bias” phenomenon even in objective
 1127 settings: GPT-4o surprisingly achieves 70% accuracy in Cape Town versus just 35% in Washington.
 1128 These sharp contrasts underscore the critical value of UrbanFeel’s multi-city framework, as aggre-
 1129 gate metrics frequently mask significant regional failures that only granular geographic evaluation
 1130 can reveal.

1131

C.4 ADDITIONAL CITY IDENTITY INTERVENTION RESULTS

1132

1133 In Discussion section of the main paper, we analyzed how different models’ perceptions of the
 Beautiful and Wealthy dimensions shift under hypothetical city identity interventions. Due to space
 1134 limitations, this appendix provides the quantitative results of MLLMs on different perception di-
 1135 mensions across the six cities mentioned in the main paper, under the Global Perception (GP) task

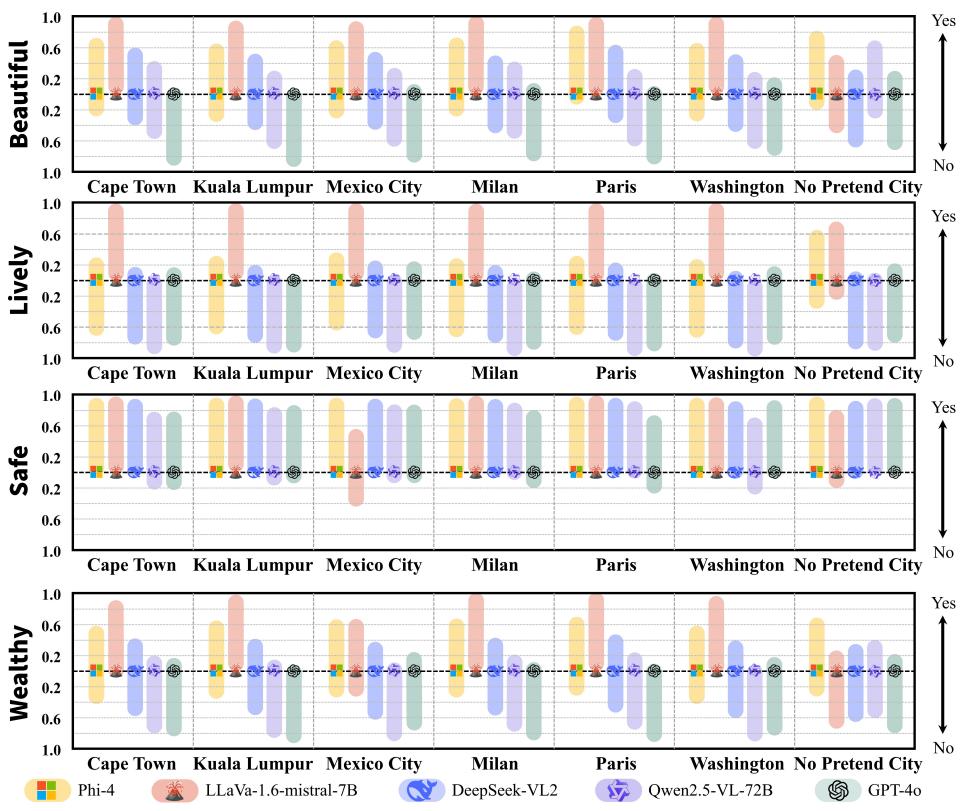


Figure 10: Quantitative comparison of different models under the assumed city identity setting. “Yes” indicates the proportion of positive evaluations made by the model for the given perceptual dimension, while “No” represents the proportion of negative evaluations.

without city identity intervention, as shown in Table 10 to Table 13. Fig. 10 supplements the experimental results of City Identity Intervention under the *Lively* and *Safe* dimensions.

Our findings reveal significant inter-dimensional differences in model sensitivity to identity prompts. For the *Lively* dimension, most models exhibit a consistent tendency toward negative judgments. GPT-4, Qwen2.5-VL-72B, and DeepSeek-VL2 remain largely stable before and after city identity assignment, suggesting minimal perceptual bias. In contrast, Phi-4 shows a notable decline in positive evaluations—dropping from around 60% to below 30% after identity intervention. Interestingly, LLaVA-1.6 demonstrates the opposite trend, labeling almost all images as “Lively,” indicating high susceptibility to identity cues.

For the *Safe* dimension, most models maintain a high rate of positive judgments regardless of city identity, suggesting more robust safety perception. The only exception is LLaVA-1.6, which shows a marked decrease when the identity “Mexico City” is assigned—potentially reflecting latent safety-related stereotypes learned from training data.

C.5 ADDITIONAL DETAILS ON REASONING ABLATION STUDY

This section provides the experimental details and supplementary data for the reasoning ablation study discussed in Section 5.4. As noted in the main text, we compared three prompting strategies to evaluate the efficacy of explicit reasoning in the Temporal Sequence Reasoning (TSR) task.

The specific contents of the prompts used for each strategy are illustrated in Figure 11. The strategies are designed as follows:

- **Direct Sorting (P0):** A concise prompt asking only for the final chronological sequence (e.g., “[Image A → Image B → ...]”) without intermediate reasoning steps.

1188
1189
1190
1191
1192
1193

Direct Sorting Prompt

Question: You are given four street-view images (Image A, B, C, and D), each captured at a different point in time from the same location. These images reflect different stages of urban development. Your task is to determine the correct chronological order of the images, from the earliest captured (oldest) to the latest captured (most recent). Please respond only with the image order in this format: [Image X → Image Y → Image Z → Image W]

1194
1195
1196
1197
1198
1199
1200

General CoT Prompt

Question: You are given four street-view images (Image A, B, C, and D), each taken at a different point in time from the same location. These images reflect different stages of urban development. Your task is to determine the correct chronological order of the images from the earliest captured (oldest) to the latest captured (most recent).

To complete this task, first analyze each image based on visual cues such as building construction, road quality, greenery, public infrastructure, and signs of modernization.

Please follow this format in your response:

1. **Answer:** List the image order from the earliest captured (oldest) to the latest captured (most recent), using this format:
[Image X → Image Y → Image Z → Image W]
2. **Reasoning:** Briefly explain why you chose this order, referring to the key urban development features you observed in the images.

Let's think step by step.

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

Re-thinking Prompt

Question: You are given four street-view images (Image A, B, C, and D) from the same location, each captured at a different time. They show different stages of urban development. Your task is to determine the correct chronological order of the images, from the earliest captured (oldest) to the latest captured (most recent).

Step 1 — Initial order:

Propose an initial order of the images from earliest to latest. Base your decision on permanent features such as building construction, infrastructure, and long-term changes in greenery.

Ignore transient factors such as cars, pedestrians, or weather.

Step 2 — Consistency check:

Check whether any image in your order appears to reverse development in time (e.g., a partly demolished building after a fully completed one, or a newly built structure appearing before an empty lot). If such cases exist, adjust the order and briefly explain why.

Final response format:

Initial order: [Image X → Image Y → Image Z → Image W]

Checked order: [Image X → Image Y → Image Z → Image W]

Reasoning: a short explanation referring to permanent features and any non-monotonic changes you considered when deciding the final earliest-to-latest order.

Figure 11: Different prompt type of TSR ablation study.

1224
1225
1226
1227
1228
1229
1230
1231
1232

- **General CoT (P2):** A structured prompt requiring the model to first list “permanent features” (buildings, infrastructure) and explicitly ignore “transient factors” (cars, weather) before deriving the order.
- **Re-Thinking (P3):** A multi-step prompt where the model first proposes an initial order, then performs a “consistency check” for non-monotonic changes (e.g., reverse development), and finally outputs the corrected sequence.

1233
1234
1235
1236

Table 6 lists the detailed accuracy scores for all seven evaluated models across the three strategies. The results confirm that while reasoning strategies (P2, P3) offer marginal gains for smaller models like Phi-4 (improving from 5.5% to 7.3%), they consistently degrade the performance of high-capacity models (GPT-4o, Qwen2.5-VL-72B) compared to the Direct Sorting baseline.

1237
1238
1239
1240
1241

To further illustrate the “over-reasoning” phenomenon, Figure 12 visualizes a representative failure case. Despite correctly identifying some features, the General CoT prompt leads the model to hallucinate a “linear growth” narrative—specifically, claiming that vegetation in Image A is “visibly larger” than in Image D to justify a later timestamp—while ignoring the definitive structural evidence of a new blue building in Image D. This confirms that verbose reasoning can induce confirmation bias, overriding visual evidence with plausible-sounding but incorrect logical chains.

1242 Table 6: Full ablation results on the TSR task. Consistent with the discussion in Section 5.4, the
 1243 **Direct Sorting** strategy yields the highest accuracy for all SOTA models.

1244

1245 Model	1246 Direct Sorting	1247 General CoT	1248 Re-Thinking
1246 Phi-4	1247 5.5	1248 4.1	1249 7.3
1247 InternVL3-8B	1248 4.6	1249 3.2	1250 5.0
1248 Qwen2.5-VL-72B	1249 32.0	1250 24.7	1251 29.7
1249 GPT-4o	1250 46.1	1251 38.4	1252 37.0
1250 Gemini-2.5-Pro	1251 52.5	1252 52.1	1253 52.1
1251 o3	1252 60.3	1253 59.8	1254 60.7
1252 Gemini-2.5-Pro-Thinking	1253 54.8	1254 49.8	1255 51.1

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

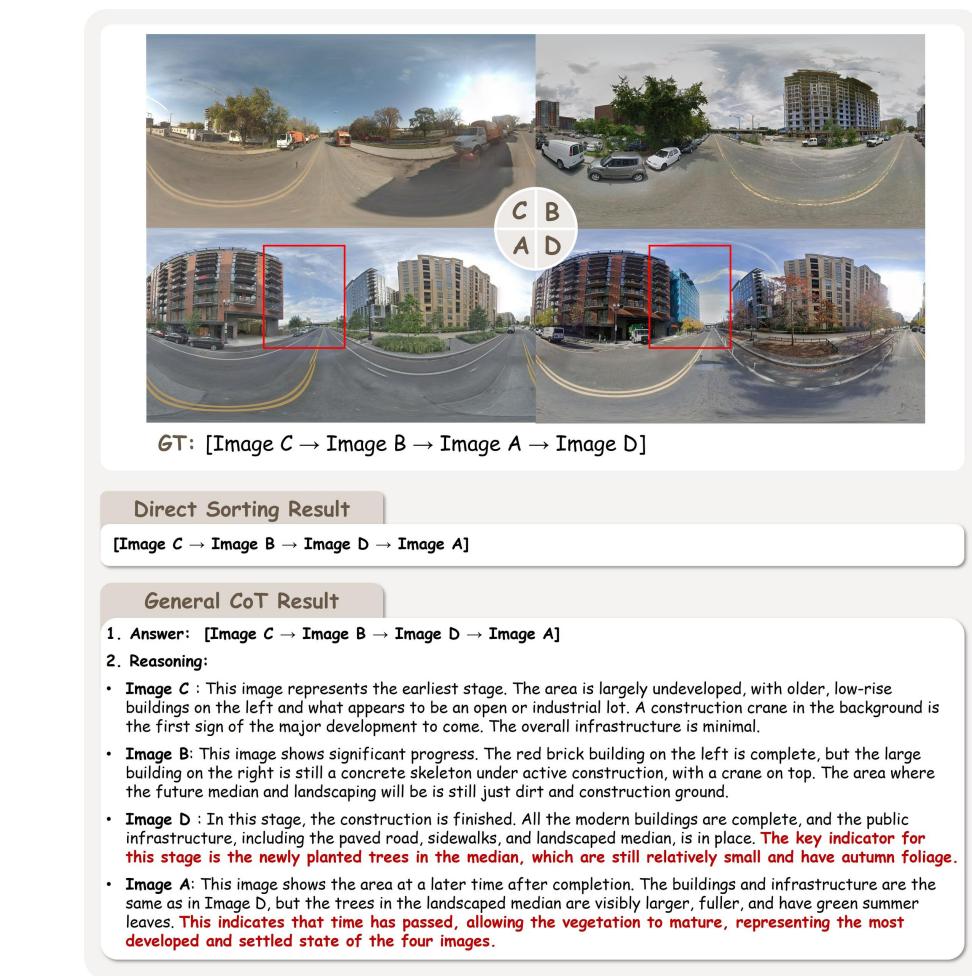
1282

1283

1284

1285

1286



1285 Figure 12: A failure case of TSR tasks using different type of prompt. The red text indicates incorrect
 1286 reasoning results from Gemini-2.5-pro.

1287

1288

C.6 STATISTICAL SIGNIFICANCE ANALYSIS

1289

1290

1291

1292

1293

1294

1295

To validate the robustness of our findings regarding model performance gaps and human-level consistency, we conducted a formal statistical analysis based on the sample sizes reported in Table 2. We calculated 95% Confidence Intervals (CIs) for accuracy using the Wilson score interval and performed two-proportion z-tests to assess the significance of performance differences.

Table 7 summarizes the statistical comparison between Human evaluators and the best-performing model (Gemini-2.5-Pro) across two representative tasks: Temporal Sequence Reasoning (TSR) and Global Perception (GP).

1296
 1297 Table 7: Statistical significance analysis of performance gaps between Human evaluators and the
 1298 best-performing MLLMs. The analysis reveals three distinct distinct capability regimes: **Signifi-**
 1299 **cant Inferiority** in temporal reasoning (TSR), **Statistical Parity** in subjective perception (GP), and
 1300 **Significant Superiority** in pixel-level detection (PCR).

Task	Sample Size (N)	Subject	Accuracy (%)	95% CI	Significance
TSR	219	Human	70.0	[64.0, 76.0]	$p < 0.01$
		Gemini-2.5-pro	52.1	[45.5, 58.7]	
GP	1,918	Human	66.6	[64.5, 68.7]	Not Significant
		Phi-4	67.7	[65.6, 69.8]	
PCR	1,100	Human	21.2	[18.8, 23.6]	$p < 0.001$
		Qwen2.5-vl-72B	40.9	[38.0, 43.8]	

1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310 **1. Temporal Reasoning Gap (TSR):** For the TSR task ($N = 219$), the 95% CIs for Humans and
 1311 Gemini-2.5-Pro are clearly separated (Human: [64.0, 76.0] vs. Gemini: [45.5, 58.7]). The non-
 1312 overlapping intervals and a z-test ($p < 0.01$) indicate that the 17.9% performance difference is
 1313 statistically significant, statistically supporting our conclusion that current MLLMs achieve substan-
 1314 tially lower accuracy than humans on long-range temporal ordering.

1315
 1316 **2. Human-Level Parity in Perception (GP):** For the GP task ($N = 1,918$), the large sample size
 1317 yields narrow error margins ($\approx \pm 2.1\%$). The overlapping CIs indicate that the accuracies of Gemini-
 1318 2.5-Pro and human annotators are statistically indistinguishable in this setting. This validates our
 1319 statement that state-of-the-art MLLMs have reached a level of consistency comparable to human
 1320 annotators for general scene perception.

1321
 1322 **3. Surpassing Humans in detection (PCR):** Interestingly, for the PCR task ($N = 1,100$), models
 1323 significantly outperform humans (40.9% vs. 21.2%). The distinct separation of CIs ([38.0, 43.8]
 1324 vs. [18.8, 23.6]) and a z-test ($p < 0.001$) provide robust statistical evidence of this advantage. As
 1325 discussed, this is likely because human evaluators struggle to identify subtle pixel-level changes
 1326 obscured by the geometric distortions inherent in panoramic imagery, whereas MLLMs maintain
 1327 high sensitivity to such fine-grained variations.

D CASE STUDY

1328
 1329 In this section, we present illustrative examples of model responses and corresponding ground-truth
 1330 labels across the 11 distinct sub-tasks designed in UrbanFeel (Figure 13 to Figure 41). The exam-
 1331 ples span a wide range of perception categories—including static scene understanding, temporal
 1332 change understanding, and subjective environmental consistency—revealing both the strengths and
 1333 limitations of current models in handling real-world urban dynamics.

D.1 QUALITATIVE ERROR ANALYSIS

1334
 1335 Based on the qualitative breakdown of model reasoning chains across these tasks, we identify four
 1336 primary categories of failure modes that limit the performance of current MLLMs in urban contexts:

1337
 1338 **Over-reliance on surface semantics over spatial invariance (Temporal Context).** In tasks requir-
 1339 ing temporal context understanding, models often prioritize salient surface-level semantic features
 1340 while neglecting spatial geometric invariance. For instance, in the Temporal Co-location Recog-
 1341 nition task (Figure 19), when an empty lot evolved into a developed residential block, models such
 1342 as Mistral-Small and Aria incorrectly classified the pair as “Different Locations” solely due to the
 1343 emergence of new buildings. This indicates a deficiency in utilizing invariant cues—such as road
 1344 layout and curvature—to recognize that the images depict the same geographic location despite
 1345 drastic semantic shifts over time.

1346
 1347 **“Linear development” assumption in urban evolution and neglect of urban decay (Temporal**
 1348 **Reasoning).** Regarding temporal reasoning, models frequently exhibit a “linear development” bias,
 1349 often operating under the heuristic that newer or cleaner infrastructure always corresponds to a later
 timestamp. This leads to failures in accounting for urban decay or complex maintenance cycles.

1350 In the sorting example shown in Figure 28, GPT-4o chronologically misplaced an image showing
 1351 worn road markings before a pristine one, ignoring critical alignment cues like speed bumps. This
 1352 limitation is further illustrated in the urban renewal scenario in Figure 29. Here, models consistently
 1353 identified the intermediate demolition/construction phase as the earliest stage, placing it chronolog-
 1354 ically before the original standing building. This reveals a rigid “Tabula Rasa” heuristic—assuming
 1355 that any construction site represents the genesis of development—thereby failing to recognize non-
 1356 monotonic processes where established neighborhoods undergo decline or renewal.

1357 **Spatial-perspective misalignment (Static Spatial Perception).** In static spatial perception, mod-
 1358 els demonstrate significant difficulties in cross-view mapping, particularly between single-view and
 1359 panoramic imagery. In the Single-to-Pano Matching task (Figure 13), models like Aria failed to
 1360 match a single-view crop to its corresponding panorama. This failure suggests that models treat the
 1361 geometric distortions inherent in panoramic projections as semantic differences rather than perspec-
 1362 tival variations, revealing limitations in performing spatial transformations on 360° imagery.

1363 **Hallucinated visual evidence in subjective reasoning (Subjective Perception).** Finally, in sub-
 1364 jective perception tasks, models occasionally hallucinate negative visual cues to justify conservative
 1365 or biased classifications. For example, in the Local Perception task (Figure 35), GPT-4o categorized
 1366 a scene as “not wealthy” by citing non-existent “shuttered storefronts” and “lack of investment,”
 1367 despite visual evidence of well-maintained infrastructure. This reveals a disconnect between the
 1368 reasoning chain and the actual pixel data, where models generate plausible-sounding but factually
 1369 incorrect evidence to support a high-level prior impression.

1371 E LIMITATIONS & FUTURE WORK

1373 While *UrbanFeel* provides a comprehensive benchmark for evaluating MLLMs in urban develop-
 1374 ment understanding and human-centered perception, several limitations remain. First, although the
 1375 dataset spans 11 cities across different continents, it suffers from geographic imbalance, with under-
 1376 representation of regions such as Africa and South America. This may affect the generalizability of
 1377 models in culturally sensitive subjective perception tasks. Second, the annotations for affective per-
 1378 ception tasks are statically defined, potentially failing to capture the temporal diversity and evolving
 1379 nature of human opinions. Moreover, despite covering 18 years of visual urban change, *Urban-
 1380 Feel* lacks explicit causal labels or structured socio-environmental metadata, limiting its capacity to
 1381 support deeper reasoning about the underlying drivers of urban transformation.

1382 In future work, we plan to address these limitations through a concrete roadmap focused on geo-
 1383 graphic inclusivity and causal depth:

1384 **Geographic Expansion and Cultural Grounding.** We are actively expanding *UrbanFeel* to include
 1385 cities with emerging temporal coverage, focusing on urban development tasks to mitigate regional
 1386 representation bias. Furthermore, to address cultural bias in subjective perception, future iterations
 1387 will aim to diversify the annotator pool to include local residents and refine annotation guidelines
 1388 with region-specific examples. We plan to report perception scores in a stratified manner, ensuring
 1389 that labels like “safety” or “beauty” reflect locally grounded interpretations rather than a single
 1390 cultural perspective.

1391 **Towards Causal Spatiotemporal Reasoning.** While *UrbanFeel* currently emphasizes visually veri-
 1392 fiable changes, we aim to bridge the gap between pixel-level observation and socio-economic causal-
 1393 ity. Inspired by recent trends in urban analytics, we plan to align street-view segments with external
 1394 urban datasets—such as land-use layers, POIs, and census statistics—to enable models to contextu-
 1395 alize physical changes. For cities with accessible records, we will introduce coarse-grained causal
 1396 event annotations (e.g., new transit line openings, policy-driven redevelopment projects) to support
 1397 reasoning about the drivers of urban evolution. Building on this, we will also explore how *Urban-
 1398 Feel* tasks can be composed into multi-turn, scenario-based evaluations that more closely resemble
 1399 real planning and policy workflows.

1400 F USE OF LARGE LANGUAGE MODELS

1401 During the preparation of this manuscript, Large Language Models (LLMs) were used solely for
 1402 grammar checking and language polishing. The use of LLMs was strictly limited to improving

1404 the clarity, readability, and overall presentation quality of the text. All aspects related to research
1405 idea, experimental code development, and result analysis were strictly conceived and completed
1406 independently by the authors.

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460 Table 8: Quantitative comparison of different MLLMs in the Pixel-level Change Recognition (PCR)
1461 task across cities. City names are replaced with abbreviations.

1462

Model	Cam.	Cap.	Edi.	K.L.	Lis.	Mex.	Mil.	Par.	Tol.	Tyl.	Was.
DeepSeek-vl2-tiny	31	29	33	35	26	30	26	39	21	29	48
DeepSeek-vl2	34	36	33	35	25	43	30	44	27	48	54
MiniCPM-V 2.6-8B	38	49	35	40	34	34	44	30	42	53	37
Qwen2.5-vl-3B	35	30	35	35	31	33	31	41	22	33	47
Qwen2.5-vl-7B	39	30	31	33	25	41	37	47	26	33	50
Qwen2.5-vl-72B	37	39	36	34	32	37	45	48	42	51	49
LLaVA-1.5-7B	22	20	21	31	21	38	16	38	17	6	41
LLaVA-v1.6-mistral-7B	26	19	28	33	23	40	21	43	19	12	44
InternVL3-2B	41	44	29	36	28	42	32	45	27	53	51
InternVL3-8B	34	33	27	34	24	40	19	47	23	43	48
Phi-3.5	23	18	21	31	21	40	15	40	17	6	41
Phi-4	30	27	27	34	25	40	19	43	25	40	43
Idefics3-8B	39	32	39	40	35	35	34	44	26	51	59
Mistral-Small-3.1-24B	25	22	29	30	23	40	19	45	20	21	43
Aria	45	33	42	36	28	39	30	44	30	47	53
Aya-vision-8b	22	18	21	31	21	40	15	39	17	6	41
Gemma-3-4b	39	30	40	42	36	36	30	46	28	50	54
Gemma-3-27b	37	41	32	35	28	26	41	42	34	47	49
GPT-4o	30	41	30	40	29	46	43	49	43	48	47
Gemini-2.5-pro	30	35	25	33	35	38	34	54	34	42	41

1483

1484

1485

1486

1487 Table 9: Quantitative comparison of different MLLMs in the dominant element extraction (DEE)
1488 task across cities. City names are replaced with abbreviations.

1489

Model	Cam.	Cap.	Edi.	K.L.	Lis.	Mex.	Mil.	Par.	Tol.	Tyl.	Was.
DeepSeek-vl2-tiny	42	32	40	49	35	66	41	45	31	45	59
DeepSeek-vl2	57	51	58	56	48	79	67	62	49	51	68
MiniCPM-V 2.6-8B	38	55	52	45	34	58	37	42	33	38	54
Qwen2.5-vl-3B	56	70	51	59	61	72	69	61	56	45	62
Qwen2.5-vl-7B	38	65	61	60	43	62	47	43	48	45	45
Qwen2.5-vl-72B	53	62	61	64	46	74	64	54	50	54	67
LLaVA-1.5-7B	23	21	29	29	18	33	23	27	20	29	33
LLaVA-v1.6-mistral-7B	35	26	28	42	31	52	40	37	26	23	41
InternVL3-2B	35	39	60	41	48	71	50	51	46	41	70
InternVL3-8B	37	55	43	44	27	45	28	35	27	36	41
Phi-3.5	46	31	43	46	39	70	40	47	33	40	66
Phi-4	37	31	35	41	32	46	37	36	26	43	47
Idefics3-8B	41	60	50	47	37	49	34	41	46	56	42
Mistral-Small-3.1-24B	6	27	30	24	13	11	18	22	10	32	11
Aria	58	65	62	57	57	75	72	68	63	59	66
Aya-vision-8b	8	29	25	24	13	12	16	21	10	26	9
Gemma-3-4b	40	54	58	33	28	48	26	31	40	48	41
Gemma-3-27b	42	65	66	41	41	50	45	41	50	58	41
GPT-4o	42	70	72	43	42	52	36	36	53	54	35
Gemini-2.5-pro	52	76	72	66	55	71	59	62	70	61	53

1510

1511

1512

1513 Table 10: Quantitative comparison results of different MLLMs in the Beautiful dimension under
1514 GP tasks. The maximum value and the second largest value of model performance in each city are
1515 indicated by the **bold** and underlined text, respectively.

1516

Model	Cape Town	Kuala Lumpur	Mexico City	Milan	Paris	Washington
DeepSeek-vl2-tiny	57.5	44.4	62.9	<u>69.5</u>	69.7	94.3
DeepSeek-vl2	55.0	72.2	<u>74.2</u>	48.8	63.6	71.7
MiniCPM-V 2.6-8B	42.5	66.7	54.8	39.0	39.4	20.8
Qwen2.5-vl-3B	57.5	88.9	71.0	53.7	65.2	81.1
Qwen2.5-vl-7B	<u>72.5</u>	66.7	69.4	64.6	63.6	81.1
Qwen2.5-vl-72B	75.0	50.0	69.4	64.6	65.2	84.9
LLaVA-1.5-7B	62.5	38.9	59.7	67.1	66.7	98.1
LLaVA-v1.6-mistral-7B	47.5	88.9	66.1	64.6	62.1	64.2
InternVL3-2B	60.0	72.2	72.6	<u>69.5</u>	<u>68.2</u>	<u>96.2</u>
InternVL3-8B	70.0	88.9	<u>79.0</u>	56.1	59.1	75.5
Phi-3.5	47.5	<u>83.3</u>	66.1	25.6	50.0	41.5
Phi-4	57.5	<u>83.3</u>	62.9	68.3	62.1	88.7
Idefics3-8B	60.0	77.8	<u>74.2</u>	50.0	50.0	58.5
Mistral-Small-3.1-24B	70.0	88.9	<u>79.0</u>	56.1	59.1	75.5
Aria	57.5	66.7	64.5	72.0	63.6	88.7
Aya-vision-8b	57.5	72.2	64.5	64.6	68.2	83.0
Gemma-3-4b	57.5	72.2	61.3	35.4	51.5	54.7
Gemma-3-27b	60.0	55.6	71.0	41.5	56.1	66.0
GPT-4o	60.0	72.2	72.6	42.7	53.0	47.2
Gemini-2.5-pro	55.0	72.2	74.2	41.5	59.1	56.6

1538

1539

1540

1541 Table 11: Quantitative comparison results of different MLLMs in the Lively dimension under GP
1542 tasks. The maximum value and the second largest value of model performance in each city are
1543 indicated by the **bold** and underlined text, respectively.

1544

Model	Cape Town	Kuala Lumpur	Mexico City	Milan	Paris	Washington
DeepSeek-vl2-tiny	70.0	83.3	80.0	34.1	56.7	55.6
DeepSeek-vl2	75.0	55.6	68.3	29.3	55.2	35.2
MiniCPM-V 2.6-8B	67.5	38.9	66.7	41.5	46.3	46.3
Qwen2.5-vl-3B	77.5	<u>77.8</u>	63.3	42.7	68.7	38.9
Qwen2.5-vl-7B	77.5	66.7	55.0	36.6	56.7	40.7
Qwen2.5-vl-72B	77.5	66.7	53.3	28.0	49.3	37.0
LLaVA-1.5-7B	75.0	33.3	75.0	26.8	50.7	46.3
LLaVA-v1.6-mistral-7B	70.0	72.2	63.3	81.7	70.1	63.0
InternVL3-2B	77.5	66.7	73.3	52.4	73.1	<u>59.3</u>
InternVL3-8B	<u>80.0</u>	66.7	83.3	39.0	65.7	63.0
Phi-3.5	72.5	61.1	68.3	41.5	56.7	40.7
Phi-4	57.5	66.7	70.0	<u>78.0</u>	<u>76.1</u>	63.0
Idefics3-8B	<u>80.0</u>	72.2	68.3	40.2	53.7	37.0
Mistral-Small-3.1-24B	72.5	72.2	70.0	25.6	47.8	46.3
Aria	75.0	<u>77.8</u>	80.0	50.0	67.2	48.1
Aya-vision-8b	70.0	72.2	75.0	57.3	80.6	57.4
Gemma-3-4b	65.0	55.6	<u>81.7</u>	56.1	<u>76.1</u>	57.4
Gemma-3-27b	77.5	55.6	73.3	31.7	59.7	44.4
GPT-4o	75.0	66.7	76.7	25.6	61.2	42.6
Gemini-2.5-pro	82.5	61.1	75.0	37.8	68.7	46.3

1563

1564

1565

1566

1567 Table 12: Quantitative comparison results of different MLLMs in the Safe dimension under GP
1568 tasks. The maximum value and the second largest value of model performance in each city are
1569 indicated by the **bold** and underlined text, respectively.

1570

Model	Cape Town	Kuala Lumpur	Mexico City	Milan	Paris	Washington
DeepSeek-vl2-tiny	32.5	27.8	24.2	19.5	25.4	7.7
DeepSeek-vl2	70.0	61.1	<u>68.1</u>	82.9	<u>74.6</u>	87.2
MiniCPM-V 2.6-8B	25.0	33.3	20.9	22.0	23.9	15.4
Qwen2.5-vl-3B	65.0	<u>66.7</u>	<u>68.1</u>	81.7	71.6	<u>85.9</u>
Qwen2.5-vl-7B	70.0	<u>66.7</u>	70.3	84.1	73.1	<u>85.9</u>
Qwen2.5-vl-72B	70.0	<u>66.7</u>	69.2	84.1	<u>74.6</u>	87.2
LLaVA-1.5-7B	35.0	38.9	30.8	32.9	43.3	42.3
LLaVA-v1.6-mistral-7B	70.0	<u>55.6</u>	69.2	79.3	73.1	84.6
InternVL3-2B	67.5	61.1	65.9	76.8	70.1	82.1
InternVL3-8B	67.5	<u>66.7</u>	65.9	<u>82.9</u>	73.1	84.6
Phi-3.5	65.0	<u>66.7</u>	53.8	47.6	64.2	61.5
Phi-4	67.5	<u>66.7</u>	70.3	80.5	<u>74.6</u>	<u>85.9</u>
Idefics3-8B	75.0	72.2	60.4	78.0	67.2	<u>85.9</u>
Mistral-Small-3.1-24B	<u>72.5</u>	<u>66.7</u>	61.5	80.5	68.7	87.2
Aria	70.0	72.2	67.6	77.4	77.8	84.6
Aya-vision-8b	60.0	61.1	67.0	73.2	68.7	79.5
Gemma-3-4b	30.0	27.8	20.9	18.3	16.4	10.3
Gemma-3-27b	70.0	61.1	58.2	79.3	68.7	84.6
GPT-4o	65.0	<u>66.7</u>	59.3	74.4	68.7	76.9
Gemini-2.5-pro	75.0	<u>66.7</u>	64.8	79.3	73.1	80.8

1592

1593

1594

1595 Table 13: Quantitative comparison results of different MLLMs in the Wealthy dimension under GP
1596 tasks. The maximum value and the second largest value of model performance in each city are
1597 indicated by the **bold** and underlined text, respectively.

1598

Model	Cape Town	Kuala Lumpur	Mexico City	Milan	Paris	Washington
DeepSeek-vl2-tiny	67.5	55.6	65.0	36.6	50.7	48.1
DeepSeek-vl2	80.0	72.2	70.0	63.4	77.6	77.8
MiniCPM-V 2.6-8B	50.0	22.2	45.0	22.0	17.9	25.9
Qwen2.5-vl-3B	77.5	<u>66.7</u>	70.0	57.3	70.1	<u>79.6</u>
Qwen2.5-vl-7B	75.0	72.2	<u>73.3</u>	53.7	70.1	77.8
Qwen2.5-vl-72B	<u>80.0</u>	<u>66.7</u>	63.3	52.4	70.1	<u>79.6</u>
LLaVA-1.5-7B	77.5	61.1	71.7	67.1	71.6	64.8
LLaVA-v1.6-mistral-7B	70.0	72.2	61.7	52.4	64.2	61.1
InternVL3-2B	75.0	72.2	58.3	47.6	67.2	74.1
InternVL3-8B	77.5	<u>66.7</u>	<u>73.3</u>	<u>75.6</u>	74.6	70.4
Phi-3.5	62.5	38.9	51.7	26.8	44.8	42.6
Phi-4	70.0	55.6	58.3	87.8	<u>80.6</u>	74.1
Idefics3-8B	67.5	50.0	50.0	40.2	32.8	68.5
Mistral-Small-3.1-24B	70.0	<u>66.7</u>	<u>73.3</u>	41.5	62.7	75.9
Aria	60.0	61.1	66.7	52.4	71.6	72.2
Aya-vision-8b	82.5	72.2	76.7	68.3	79.1	68.5
Gemma-3-4b	70.0	61.1	53.3	42.7	70.1	74.1
Gemma-3-27b	66.7	64.7	56.8	57.9	81.2	86.5
GPT-4o	60.0	44.4	45.0	45.1	55.2	72.2
Gemini-2.5-pro	77.5	72.2	71.7	54.9	74.6	<u>79.6</u>

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

Question

Determine whether **panorama** and **single view image** are from the *same location* or *different location*.

Option: (A) **Same Location** (B) **Different Location**

 (Aria) Answer: (B) **Different Location**

 (Mistral-Small-3.1-24B-Instruct) Answer: (B) **Different Location**

 (DeepSeek-VL2) Answer: (A) **Same Location**

 Ground Truth: (A) **Same Location**

Figure 13: A question case of the **Single-to-Pano Matching(SPM)** task in UrbanFeel responses from *Aria*, *Mistral-Small-3.1-24B-Instruct*, *DeepSeek-VL2*

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

Question

Determine whether **panorama** and **single view image** are from the *same location* or *different location*.

Option: (A) Same Location (B) Different Location

 (MiniCPM-V-2_6) Answer: (A) Same Location

 (InternVL3-8B) Answer: (B) Different Location

 (Qwen2.5-VL-7B-Instruct) Answer: (B) Different Location

 Ground Truth: (B) Different Location

Figure 14: A question case of the **Single-to-Pano Matching(SPM)** task in UrbanFeel responses from *MiniCPM-V-2_6*, *InternVL3-8B*, *Qwen2.5-VL-7B-Instruct*

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

SSP: CR [Judgement]

 Question

Determine whether **single view image 1** and **single view image 2** are from the *same street* or *different street*.

Option: (A) Same Street (B) Different Street

 (Idenfics3-8B-Llama3) Answer: (A) Same Street

 (Phi-3.5-vision-instruct) Answer: (B) Different Street

 (Gemma-3-27B-it) Answer: (B) Different Street

 Ground Truth: (B) Different Street

Figure 15: A question case of the **Co-location Recognition(CR)** task in UrbanFeel responses from *Idenfics3-8B-Llama3*, *Phi-3.5-vision-instruct*, *Gemma-3-27B-it*

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

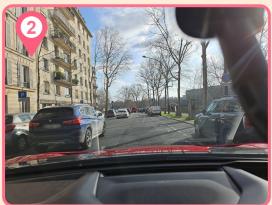
1798

1799

 Question

Determine whether **single view image 1** and **single view image 2** are from the *same street* or *different street*.

Option: (A) Same Street (B) Different Street



 (Aya-vision-8B) Answer: (A) Same Street

 (Llava-1.5-7B-HF) Answer: (A) Same Street

 (Qwen2.5-VL-72B-Instruct) Answer: (B) Different Street

 Ground Truth: (B) Different Street

Figure 16: A question case of the **Co-location Recognition(CR)** task in UrbanFeel responses from *Aya-vision-8B*, *Llava-1.5-7B-HF*, *Qwen2.5-VL-72B-Instruct*

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

Question

Which element occupies the most visible area in the **panorama** ?

Option: (A) Road (B) Vehicle (C) Sky
 (D) Vegetation (E) Building

 (GPT-4o) Answer: (D) Vegetation

 (Gemini-2.5-pro) Answer: (A) Road

 (Human) Answer: (A) Road

 Ground Truth: (A) Road

Figure 17: A question case of the **Dominant Element Extraction(DEE)** task in UrbanFeel responses from *GPT-4o*, *Gemini-2.5-pro*, *Human*

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

Question

Which element occupies the most visible area in the [single view image](#) ?

Option: (A) Road (B) Vehicle (C) Sky
 (D) Vegetation (E) Building

(InternVL-3-2B) Answer: (C) Sky

(Qwen2.5-VL-3B-Instruct) Answer: (C) Sky

(DeepSeek-VL2) Answer: (E) Building

Ground Truth: (E) Building

Figure 18: A question case of the **Dominant Element Extraction(DEE)** task in UrbanFeel responses from *InternVL-3-2B*, *Qwen2.5-VL-3B-Instruct*, *DeepSeek-VL2*

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

Question

Determine whether **panorama 1** and **panorama 2** are from the *same location* or *different location*.

Option: (A) **Same Location** (B) **Different Location**

(Aria_cut) Answer: (B) **Different Location**

(Mistral-Small-3.1-24B-Instruct) Answer: (B) **Different Location**

(Qwen2.5-VL-72B-Instruct) Answer: (A) **Same Location**

Ground Truth: (A) **Same Location**

Figure 19: A question case of the **Temporal Co-location Recognition(TCR)** task in UrbanFeel responses from *Aria_cut*, *Mistral-Small-3.1-24B-Instruct*, *Qweb2.5-VL-72B-Instruct*

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

TCU: TCR [Judgement]

Question

Determine whether **panorama 1** and **panorama 2** are from the *same location* or *different location*.

Option: (A) **Same Location** (B) **Different Location**

2011

2023

 (DeepSeek-VL2-Tiny) Answer: (B) **Different Location**

 (InternVL-8B) Answer: (B) **Different Location**

 (Mistral-Small-3.1-24B-Instruct) Answer: (A) **Same Location**

 Ground Truth: (A) **Same Location**

Figure 20: A question case of the **Temporal Co-location Recognition(TCR)** task in UrbanFeel responses from *DeepSeek-VL2-Tiny*, *InternVL-8B*, *Mistral-Small-3.1-24B-Instruct*

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

TCU: 🔄PCR [MC]

Question

Based on the changes between 1 and 2, which urban element has undergone the most significant transformation in terms of city development?

Option: (A) 🚁 Road (B) 🚗 Vehicle (C) 🌄 Sky
 (D) 🌳 Vegetation (E) 🏢 Building

(Aya-vision-8B) Answer: (E) 🏢 Building
(Gemini-2.5-pro) Answer: (A) 🚁 Road
(Qwen2.5-VL-72B-Instruct) Answer: (B) 🚗 Vehicle

Ground Truth: (B) 🚗 Vehicle

Figure 21: A question case of the **Pixel-level Change Recognition(PCR)** task in UrbanFeel responses from *Aya-vision-8B*, *Gemini-2.5-pro*, *Qwen2.5-VL-72B-Instruct*

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122 **TCU: 🔄PCR [MC]**
 2123
 2124 **Question**
 2125 Based on the changes between ① and ②, which urban element has undergone
 2126 the most significant transformation in terms of city development?
 2127 **Option:** (A) 🚁 Road (B) 🚗 Vehicle (C) 🌄 Sky
 2128 (D) 🌳 Vegetation (E) 🏢 Building
 2129
 2130
 2131 ①
 2132 ②
 2133 **2009** **2019**
 2134
 2135
 2136
 2137 **(Human) Answer:** (E) 🏢 Building
 2138 **(DeepSeek-VL2) Answer:** (A) 🚁 Road
 2139 **(Gemini-2.5-pro) Answer:** (A) 🚁 Road
 2140
 2141
 2142 **Ground Truth:** (A) 🚁 Road
 2143
 2144
 2145

2146 Figure 22: A question case of the **Pixel-level Change Recognition(PCR)** task in UrbanFeel re-
 2147 sponses from *Human, DeepSeek-VL2, Gemini-2.5-pro*

2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

TCU: SCR [MC]

Question

Based on the changes between and

Option: (A) Road Change
 (B) Vegetation Change
 (C) Building Facade Change
 (D) Mobility-Related Change
 (E)

 (Arial) Answer: (B) Vegetation Change

 (Gemma-3-27B-it) Answer: (B) Vegetation Change

 (GPT-4o) Answer: (E) Building Presence Change

 Ground Truth: (E) Building Presence Change

Figure 23: A question case of the **Scene-level Change Recognition(SCR)** task in UrbanFeel responses from *Arial*, *Gemma-3-27B-it*, *GPT-4o*

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224

2225 **TCU: SCR [MC]**

2226

2227

2228 **Question**

2229 Based on the changes between and Road Change
2233 (B) Vegetation Change
2234 (C) Building Facade Change
2235 (D) Mobility-Related Change
2236 (E) Building Presence Change

2237

2238

2239
2240
2241

2242

2243

2244

2245

2246

2247 (MiniCPM-V-2_6) Answer: (A) Road Change
2248 (Phi-3.5-vision-instruct) Answer: (E) Building Presence Change
2249 (Mistral-Small-3.1-24B-Instruct) Answer: (E) Building Presence Change

2250

2251

2252 **Ground Truth:** (C) Building Facade Change

2253

2254

2255

2256 Figure 24: A question case of the **Scene-level Change Recognition(SCR)** task in UrbanFeel re-
2257 sponds from *MiniCPM-V-2_6*, *Phi-3.5-vision-instruct*, *Mistral-Small-3.1-24B-Instruct*

2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

2282
2283
2284

2285

2287
2288
2289
2290
2291
2292
2293
2294
2295
2296

2297

2298

2299

2300
2301
2302

2303

2305
2306

2307

2308

2310

2311

2313

2314

2315

2317

2318

2319

2321

 Question

Given an image as a reference, which of the following images most likely shows the same location after city development?

2008

A

B

C

D

 (Llava-1.5-7B-HF) Answer: **Image A**

 (Idefics3-8B-Llama3) Answer: **Image C**

 (Qwen2.5-VL-72B-Instruct) Answer: **Image D**

 Ground Truth: **Image D**

Figure 25: A question case of the **Future Scene Identification(FSI)** task in UrbanFeel response from *Llava-1.5-7B-HF*, *Idefics3-8B-Llama3*, *Qwen2.5-VL-72B-Instruct*.

Figure 25: A question case of the **Future Scene Identification(FSI)** task in UrbanFeel responses from *Llava-1.5-7B-HF*, *Idenfics3-8B-Llama3*, *Owen2.5-VL-72B-Instruct*

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

Given an image as a reference, which of the following images most likely shows the same location after city development?

2351
(DeepSeek-VL2-Tiny) Answer: Image A

2352
(InternVL3-8B) Answer: Image A

2353
(Gemma-3-27B-it) Answer: Image B

2354
Ground Truth: Image B

2360
2361 Figure 26: A question case of the **Future Scene Identification(FSI)** task in UrbanFeel responses
2362 from *DeepSeek-VL2-Tiny*, *InternVL3-8B*, *Gemma-3-27B-it*

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394

TCU: TSR [Sorting]

 Question

Please sort the four street-view images in chronological order from least to most developed based on visual cues like buildings, roads, greenery, and modern infrastructure.

 A

 B

 C

 D

 (Aya-vision-8B) Answer: A → B → C → D

 (Gemma-3-27B-it) Answer: C → D → B → A

 (Qwen2.5-VL-72B-Instruct) Answer: C → D → A → B

 Ground Truth: C → D → A → B

Figure 27: A question case of the **Temporal-Sequence Reasoning(TSR)** task in UrbanFeel responses from *Aya-vision-8B*, *Gemma-3-27B-it*, *Qwen2.5-VL-72B-Instruct*

2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

TCU: TSR [Sorting]

 Question

Please sort the four street-view images in chronological order from least to most developed based on visual cues like buildings, roads, greenery, and modern infrastructure.

A

B

C

D

 (DeepSeek-VL2) Answer:

 (GPT-4o) Answer:

 (Gemini-2.5-pro) Answer:

 Ground Truth:

Figure 28: A question case of the **Temporal-Sequence Reasoning(TSR)** task in UrbanFeel responses from *DeepSeek-VL2*, *GPT-4o*, *Gemini-2.5-pro*

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498 **Question**2499 Please sort the four street-view images in chronological order from least to most
2500 developed based on visual cues like buildings, roads, greenery, and modern
2501 infrastructure.
2502

2015-07

2009-02

2018-05

2022-05

 (DeepSeek-VL2) Answer: A → B → C → D

 (GPT-4o) Answer: A → B → C → D

 (Gemini-2.5-pro) Answer: A → B → C → D

 Ground Truth: B → A → C → D
2523 Figure 29: A question case of the **Temporal-Sequence Reasoning(TSR)** task in UrbanFeel re-
2524 sponds from *DeepSeek-VL2*, *GPT-4o*, *Gemini-2.5-pro*

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

TCU: GP [Judgement]

 Question

Based on the image, please judge whether the city appears **beautiful** or not from a human perspective.

Option: (A) Yes, it is beautiful (B) No, it is not beautiful

 (Arial_cut) Answer: (A) Yes, it is beautiful
 (Gemma-3-4B-it) Answer: (B) No, it is not beautiful
 (Idenfics3-8B-Llama3) Answer: (A) Yes, it is beautiful

 Ground Truth: (A) Yes, it is beautiful

Figure 30: A question case of the **Global Perception(GP)** task in UrbanFeel responses from *Arial_cut*, *Gemma-3-4B-it*, *Idenfics3-8B-Llama3*

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

TCU: GP [Judgement]

 Question

Based on the image, please judge whether the city appears **wealthy** or not from a human perspective.

Option: (A) Yes, it is wealthy (B) No, it is not wealthy

 (Aya-vision-8B) Answer: (A) Yes, it is wealthy

 (MiniCPM-V-2_6) Answer: (B) No, it is not wealthy

 (Phi-3.5-vision-instruct) Answer: (B) No, it is not wealthy

 Ground Truth: (B) No, it is not wealthy

Figure 31: A question case of the **Global Perception(GP)** task in UrbanFeel responses from *Aya-vision-8B*, *MiniCPM-V-2_6*, *Phi-3.5-vision-instruct*

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

TCU: GP [Judgement]

 Question

Based on the image, please judge whether the city appears **safe** or not from a human perspective.

Option: (A) Yes, it is safe (B) No, it is not safe

 (DeepSeek-VL2-Tiny) Answer: (B) No, it is not safe

 (Qwen2.5-VL-7B-Instruct) Answer: (B) No, it is not safe

 (Llava-1.5-7B-HF) Answer: (A) Yes, it is safe

 Ground Truth: (A) Yes, it is safe

Figure 32: A question case of the **Global Perception(GP)** task in UrbanFeel responses from *DeepSeek-VL2-Tiny*, *Qwen2.5-VL-7B-Instruct*, *Llava-1.5-7B-HF*

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

TCU: GP [Judgement]

 Question

Based on the image, please judge whether the city appears **lively** or not from a human perspective.

Option: (A) **Yes, it is lively** (B) **No, it is not lively**

 (InternVL3-8B) Answer: (A) **Yes, it is lively**

 (Gemini-2.5-pro) Answer: (A) **Yes, it is lively**

 (GPT-4o) Answer: (A) **Yes, it is lively**

 Ground Truth: (B) **No, it is not lively**

Figure 33: A question case of the **Global Perception(GP)** task in UrbanFeel responses from *InternVL3-8B*, *Gemini-2.5-pro*, *GPT-4o*

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

TCU: LP [Open] **Question**

Based on the image, please judge whether the city appears **beautiful** or not from a human perspective and find some visual factors that contribute to it.

 (Gemini-2.5-pro) Answer:

- 1. Harmonious Blend of Nature and Urbanism:** The street is lined with rows of healthy, lush green trees. This greenery provides a pleasant, organic contrast to the hard lines of the buildings and asphalt, making the urban environment feel more alive, breathable, and visually appealing.
- 2. Pleasant Atmosphere and Lighting:** The bright sunlight and clear, vibrant blue sky create a cheerful and positive atmosphere. This type of weather often enhances the perception of a place, making it seem cleaner, more energetic, and more inviting.
- 3. Interesting Architectural Mix:** The image showcases a visually engaging contrast between different architectural styles. On the left, there is a classic red-brick building with arched windows, while the right side features more modern, large-scale structures. This juxtaposition adds character and depth to the streetscape.

 Ground Truth:

- 1. A tidy and aesthetically pleasing building facade**
- 2. Good sky visibility**
- 3. Neat and dense greenery**

 Evaluation: **Correct (0.723)**

Figure 34: A question case of the **Local Perception(LP)** task in UrbanFeel responses from *Gemini-2.5-pro*

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

TCU:
LP [Open]

Question

Based on the image, please judge whether the city appears **wealthy** or not from a human perspective and find some visual factors that contribute to it.

(GPT-4o) Answer:

1. **Building Condition:** The buildings appear older and somewhat worn, suggesting a lack of recent investment.
2. **Storefronts:** Closed or shuttered storefronts indicate limited commercial activity or economic challenges.
3. **Street Maintenance:** The road and public area appear to be relatively well-maintained, but lack of luxury features such as premium sidewalks, exclusive shops, or vibrant landscaping.

Ground Truth:

1. Tall and densely packed buildings indicate a high level of urbanization
2. Well-maintained pedestrian walkways
3. Comprehensive road signage and infrastructure development

Evaluation:
False (0.523)

Figure 35: A question case of the **Local Perception(LP)** task in UrbanFeel responses from *GPT-4o*

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

TCU: LP [Open] **Question**

Based on the image, please judge whether the city appears **safe** or not from a human perspective and find some visual factors that contribute to it.

 (DeepSeek-VL2) Answer:

1. The street appears narrow and congested, which can make it difficult for pedestrians to navigate safely
2. There are multiple cars parked along the street, which could obstruct visibility and create potential hazards for both drivers and pedestrians.
3. The road surface shows some wear, lacks lane markings, and the road signs are unclear, creating potential driving hazards

 Ground Truth:

1. The high walls on both sides of the road obstruct visibility, posing safety hazards
2. The streetlight poles appear somewhat outdated, and the distribution of electrical wires is chaotic
3. The road surface shows some wear, lacks lane markings, and the road signs are unclear, creating potential driving hazards

 Evaluation: **Correct (0.691)**

Figure 36: A question case of the **Local Perception(LP)** task in UrbanFeel responses from *DeepSeek-VL2*

2916
2917
2918
2919
2920
29212922 TCU: LP [Open]
29232924
2925 **Question**2926 Based on the image, please judge whether the city appears **lively** or not from
2927 a human perspective and find some visual factors that contribute to it.
29282929
2930
2931
2932
2933
2934
2935
2936 **(Qwen2.5-VL-72B-Instruct) Answer:**

- 1. Presence of People and Activity:** There are several people visible in the image, walking across the crosswalk and along the sidewalks. This indicates active pedestrian movement, contributing to a lively atmosphere.
- 2. Market Stalls and Vendors:** The image shows market stalls with vendors and customers, suggesting a bustling market scene. The presence of these stalls adds to the vibrancy and activity of the area.
- 3. Traffic and Vehicles:** There are multiple vehicles, including cars, vans, and trucks, parked and moving along the street. This indicates a level of traffic activity, which is a sign of a busy and lively urban environment.

2949

2950
2951 **Ground Truth:**

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963 Figure 37: A question case of the **Local Perception(LP)** task in UrbanFeel responses from
2964 *Qwen2.5-VL-72B-Instruct*
2965
2966
2967
2968
2969

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982

2983 TCU: CP [MC]

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010 **Question**

3011 (1) and (2) show the same place, one from 2010 and one from 2020. Please
3012 determine whether the scene has become *more* **beautiful**, *less* **beautiful**,
3013 or *stayed the same* visually over time.

3014 Option: (A) **More beautiful** (B) **Less beautiful** (C) **No change**

3015 (Qwen2.5-VL-3B-Instruct) Answer: (A) **More beautiful**

3016 (Arial) Answer: (A) **More beautiful**

3017 (DeepSeek-VL2) Answer: (C) **No change**

3018 **Ground Truth:** (C) **No change**

3019 Figure 38: A question case of the **Comparative Perceptual analysis(CP)** task in UrbanFeel re-
3020 sponds from *Qwen2.5-VL-3B-Instruct*, *Arial*, *DeepSeek-VL2*

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

TCU: CP [MC]

 Question

① and ② show the same place, one from 2007 and one from 2018. Please determine whether the scene has become *more* **wealthy**, *less* **wealthy**, or *stayed the same* visually over time.

Option: (A) **More wealthy** (B) **Less wealthy** (C) **No change**

2007

2018

 (Aya-vision-8B) Answer: (C) **No change**

 (Gemma-3-27B-it) Answer: (A) **More wealthy**

 (GPT-4o) Answer: (A) **More wealthy**

 Ground Truth: (A) **More wealthy**

Figure 39: A question case of the **Comparative Perceptual analysis(CP)** task in UrbanFeel responses from *Aya-vision-8B*, *Gemma-3-27B-it*, *GPT-4o*

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

TCU: CP [MC] **Question**

① and ② show the same place, one from 2008 and one from 2023. Please determine whether the scene has become **safer**, **safe**, or **stayed the same** visually over time.

Option: (A) **Safer**(B) **Less safe**(C) **No change** **(MiniCPM-V-2_6) Answer:** (A) **Safer** **(Llava-v1.6-mistral-7B-HF) Answer:** (C) **No change** **(Human) Answer:** (B) **Less safe** **Ground Truth:** (B) **Less safe**

Figure 40: A question case of the **Comparative Perceptual analysis(CP)** task in UrbanFeel responses from *MiniCPM-V-2_6*, *Llava-v1.6-mistral-7B-HF*, *Human*

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

TCU: CP [MC]

 Question

① and ② show the same place, one from 2009 and one from 2024. Please determine whether the scene has become more **lively**, less **lively**, or stayed the same visually over time.

Option: (A) **More lively** (B) **Less lively** (C) **No change**

2009

2024

 (DeepSeek-VL2-Tiny) Answer: (B) **Less lively**

 (Idenfics3-8B-Llama3) Answer: (B) **Less lively**

 (Gemini-2.5-pro) Answer: (A) **More lively**

 Ground Truth: (A) **More lively**

Figure 41: A question case of the **Comparative Perceptual analysis(CP)** task in UrbanFeel responses from *DeepSeek-VL2-Tiny*, *Idenfics3-8B-Llama3*, *Gemini-2.5-pro*

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185