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Abstract001

Retrieved documents containing noise will hin-002
der Retrieval-Augmented Generation (RAG)003
from detecting answer clues, necessitating004
noise filtering mechanisms to enhance accuracy.005
Existing methods use reranking or summariza-006
tion to identify the most relevant sentences, but007
directly and accurately locating answer clues008
from these large-scale and complex documents009
remains challenging. Unlike these document-010
level operations, we treat noise filtering as a011
sentence-level MinMax optimization problem:012
first identifying potential clues from multiple013
documents, then ranking them by relevance,014
and finally retaining the minimum number of015
clues through truncation. In this paper, we pro-016
pose FineFilter, a novel fine-grained noise fil-017
tering mechanism for RAG, consisting of a clue018
extractor, a reranker, and a truncator. We opti-019
mize each module to tackle complex reasoning020
challenges: (1) The clue extractor first uses021
sentences containing the answer and similar022
ones as fine-tuning targets, aiming to extract023
sufficient potential clues; (2) The reranker is024
trained to prioritize effective clues based on the025
real feedback from the generation module, with026
clues capable of generating correct answers as027
positive samples and others as negative; (3)028
The truncator takes the minimum number of029
clues needed to answer the question (trunca-030
tion point) as fine-tuning targets, and performs031
truncation on the reranked clues to achieve fine-032
grained noise filtering. Experiments on three033
QA datasets demonstrate that FineFilter signif-034
icantly improves QA performance over base-035
lines on both LLaMA3 and Mistral. Further036
analysis confirms its effectiveness in complex037
reasoning, robustness to unreliable retrieval,038
and generalization to different scenarios1.039

1 Introduction040

Retrieval-Augmented Generation (RAG) (Lewis041

et al., 2020; Gao et al., 2023) has demon-042

1Our code is available at https://anonymous.4open.
science/r/FineFilter-5BE0

Figure 1: An illustration of the challenge in locating
accurate answer clues from retrieved documents. Both
baselines RECOMP and RichRAG select an incorrect
clue from the 1st document, whereas our FineFilter
identifies the correct clue from the 4th document via
extraction, reranking, and truncation.

strated impressive performance across various NLP 043

tasks (Chen et al., 2022; Huang et al., 2023; Gao 044

et al., 2023), but its effectiveness heavily depends 045

on the relevance of retrieved documents (Yu et al., 046

2023; Zhang et al., 2024a). When retrieved docu- 047

ments contain noise or irrelevant information (Shi 048

et al., 2023; Liu et al., 2024), the generation model 049

struggles to detect answer clues because noise in- 050

terferes with self-attention’s ability to reason over 051

the correct context. Therefore, it is crucial to filter 052

out irrelevant and low-value contexts. 053

Current noise filtering methods primarily utilize 054

reranking (Wang et al., 2025; Ke et al., 2024; Qin 055

et al., 2024) or summarization (Xu et al., 2024; Zhu 056

et al., 2024) models to identify the most relevant 057

sentences, aiming at increasing the information 058

density for RAG reasoning. The former reranks 059

the retrieval results based on metrics such as an- 060

swer contribution or user preference (Zhu et al., 061

2023). The latter retains the query-relevant sen- 062

tences through summarization models. However, 063

directly and accurately locating answer clues from 064

the retrieved documents remains challenging, espe- 065

cially in complex reasoning scenarios. As shown 066
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in Figure 1, all the five documents retrieved by067

the retriever contain query-relevant information.068

Both baselines RichRAG (Wang et al., 2025) and069

RECOMP (Xu et al., 2024) select the relevant sen-070

tences from the 1st document, yet fail to generate071

correct answers. This is because these documents072

contain a multitude of seemingly relevant but un-073

helpful noisy information. Such document-level074

filtering is too coarse and struggles to capture ef-075

fective answer clues precisely. Therefore, a fine-076

grained operation is required to retain sufficient077

and effective context for RAG.078

We treat fine-grained noise filtering as a079

sentence-level MinMax optimization problem.080

First, we leverage contextual information to iden-081

tify potential answer clues, which form the max-082

imal subset capable of answering the question.083

Then, we carefully compare and rerank these clues084

based on their completeness and relevance to the085

query in order to move effective clues to the fore-086

front. Finally, we retain only the most essential087

clues through truncation, with the goal of minimiz-088

ing the necessary contexts for RAG. As shown in089

Figure 1, our approach first identifies the potential090

clues with a red background, then reranks these091

clues, ultimately placing the correct answer clue at092

the top. Notably, the last three clues are redundant093

and should be filtered out to improve the informa-094

tion density of the reasoning clues for RAG.095

In this paper, we propose a novel fine-grained096

noise filtering mechanism for RAG, named Fine-097

Filter, consisting of a clue extractor, a reranker,098

and a truncator. It leverages the clue extractor099

and the reranker to provide sufficient and effec-100

tive reasoning clues to the generation model while101

employing the truncator to filter noise to reduce102

reasoning contexts. We design three optimization103

strategies for each module to tackle complex rea-104

soning challenges: (1) The clue extractor uses all105

sentences containing the answer and their similar106

sentences based on K-Nearest Neighbors (KNN)107

clustering (Guo et al., 2003; Peterson, 2009) as108

fine-tuning targets, since we find that RAG requires109

more relevant contextual information to reason the110

correct answer for multi-hop questions. Thus, the111

fine-tuned extractor can extract sufficient potential112

clues for complex reasoning. (2) The reranker is113

trained to prioritize effective clues based on the real114

feedback from the generation module, with clues115

capable of generating correct answers as positive116

samples and others as negative. (3) The trunca-117

tor takes the minimal number of clues (truncation118

point) required for RAG to generate correct an- 119

swers as the fine-tuning target. Based on the pre- 120

dicted point, the reranked clues are truncated to 121

achieve fine-grained noise filtering. 122

Experimental results on three open-domain QA 123

datasets (NQ, TriviaQA, and HotpotQA) show that 124

FineFilter, whether based on LLaMA3 or Mistral, 125

consistently outperforms baseline models in terms 126

of performance while significantly reducing the 127

context required for inference. Further analysis 128

confirms its effectiveness in complex reasoning, ro- 129

bustness to unreliable retrieval, and generalization 130

to different scenarios. 131

The innovations in this paper are as follows: 132

• We frame noise filtering as a sentence-level 133

MinMax optimization, where the extractor 134

and reranker gather sufficient and effective 135

reasoning clues, while the truncator filters out 136

noise to improve reasoning density. 137

• Three strategies tackle complex reasoning: 138

KNN-based extractor gathers sufficient rel- 139

evant context, while reranker and truncator 140

adapt quickly and effectively to RAG systems 141

using generator feedback. 142

• Experiments on three datasets show that filter- 143

ing out unimportant noisy sentences enhances 144

inference performance. 145

2 Related Work 146

Retrievers often fetch noisy content, reducing out- 147

put accuracy, while overly long contexts further 148

hinder model efficiency (Xia et al., 2024). To ad- 149

dress these challenges, some researchers utilize 150

reranking methods to prioritize more relevant sen- 151

tences. RichRAG (Wang et al., 2025) uses a genera- 152

tive list-wise ranker to generate and rank candidate 153

documents, ensuring the answer is comprehensive 154

and aligns with the model’s preferences. Ke et al. 155

(2024) propose a novel bridge mechanism to opti- 156

mize the connection between retrievers and LLMs 157

in retrieval-augmented generation, improving per- 158

formance in question-answering and personalized 159

generation tasks. CPC (Liskavets et al., 2025) ranks 160

sentence relevance with context-aware embeddings. 161

However, reranking sentences may disrupt the orig- 162

inal logical structure of the document and generate 163

unfaithful clues. 164

Other researchers utilize abstractive or extractive 165

summarization models to identify query-relevant 166

answer clues. Xu et al. (2024) propose leveraging 167
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Figure 2: The architecture of FineFilter consists of three modules: clue extractor, reranker, and truncator. The top
displays their training strategies and annotated data, while the bottom shows the noise filtering during inference.

LLMs as abstractive filters to compress retrieved168

text by targeting the most relevant sentences. Zhu169

et al. (2024) use the information bottleneck prin-170

ciple to balance conciseness and correctness, but171

this incurs significant training complexity. Xu et al.172

(2024); Wang et al. (2023) propose extractive filters173

to select relevant sentences, which reduce irrelevant174

information but may cause over-compression and175

harm accuracy. Li et al. (2023) enhance inference176

efficiency by removing redundant content based177

on self-information, though this may affect seman-178

tic coherence. AdaComp (Zhang et al., 2024b)179

adaptively adjusts document-level compression but180

applies relatively mild compression overall.181

3 Problem Formulation182

Given a query q and a set of retrieved documents183

D = {d1, . . . , dn}, where each document di con-184

sists of a set of sentences Si = {si1, . . . , sini
}, ni185

is the number of sentences in di. The objective186

of the noise filtering task is to identify an optimal187

subset S∗ ⊆
⋃n

i=1 Si such that a language model188

fθ generates the correct answer y for the query q189

with the highest probability. The optimal subset190

S∗ can be determined by the following MinMax191

optimization: 192

S∗ = argmin |S ′ |, 193

S ′
= argmax

S⊆
⋃n

i=1 Si

fθ(y|S, q), 194

where S ′
is the subset that is most capable of pro- 195

ducing the correct answer, and |S ′ | is the number 196

of sentences in S ′
. The selection of S∗ should 197

dynamically adapt to the real feedback of a RAG 198

system to balance informativeness and conciseness. 199

The problem can be formalized as an NP-hard com- 200

binatorial optimization problem (Wu et al., 2023), 201

selecting the smallest, most relevant answer clues 202

from a large set of documents to improve answer 203

accuracy. 204

4 Methodology 205

In this section, we introduce FineFilter, a three- 206

stage noise filtering mechanism for RAG, as il- 207

lustrated in Figure 2. FineFilter comprises three 208

modules: a clue extractor, a clue reranker, and an 209

adaptive truncator. The clue extractor selects poten- 210

tial answer clues from multiple documents by maxi- 211

mizing information gain, reducing the search space 212

and enhancing candidate relevance. The reranker 213

3



NQ TriviaQA HotpotQA
40

45

50

55

60

65

70
Ex

ac
t M

at
ch

 (%
)

53.12

63.39

50.52

62.85
65.65

52.55

=9.73
=2.26

=2.03

Top-5 docs
Sentences w/ answer

Figure 3: The Exact Match performance of LLaMA3-
8B-Instruct on three QA datasets, comparing Top-5
retrieved documents with all sentences containing the
ground-truth answer from those documents, regardless
of query relevance.

then applies pairwise loss to prioritize the most rel-214

evant clues. Finally, the adaptive truncator selects215

the minimal necessary context to increase inference216

density, thus improving answer accuracy.217

4.1 Clue Extractor218

The clue extractor aims to identify potential an-219

swer clues from multiple documents to construct220

a smaller, query-relevant candidate set, thereby re-221

ducing the search space. As shown in Figure 3, we222

compare downstream performance using answer-223

containing sentences versus full retrieved docu-224

ments. Filtering out low-value content enhances225

RAG reasoning. While not all answer-containing226

sentences are query-relevant, they approximate the227

maximal subset capable of answering queries and228

thus serve as a suitable optimization target.229

To guide the extraction of informative sen-230

tences, we first introduce the concept of informa-231

tion gain. Given a query q and a set of candidate232

sentences S = {s1, s2, . . . , sn}, the information233

gain IG(q, si) of sentence si is defined as:234

IG(q, si) = H(q)−H(q | si),235

where H(q) denotes the entropy of the query q,236

quantifying its inherent uncertainty; and H(q | si)237

represents the uncertainty of the query given the238

sentence si. In question answering tasks, infor-239

mation gain reflects how much a sentence reduces240

uncertainty about the query. Typically, sentences241

containing the answer directly reduce the unre-242

solved part of the query, helping the model better243

focus on the core intent and improving the accuracy244

of the downstream generation module.245

Based on the concept of information gain, we246

first extract sentences from the retrieved docu-247

ment collection that contain the ground-truth an- 248

swer as targets for extraction. Given a query q, 249

the ground-truth answer y and retrieved sentences 250

S = {s1, s2, . . . , sn}, the answer-containing sen- 251

tences are defined as: 252

Sa = {sj |y ⊑ sj , sj ∈ S}, 253

where y ⊑ sj indicates that y is a substring of sj . 254

Then, we fine-tune an LLM as the clue 255

Extractor to generate answer-containing sen- 256

tences Sa based on the query q and the retrieved 257

sentences S with a specific prompt (see Ap- 258

pendix B.2). The loss function of Extractor 259

model is defined as: 260

Lextra = − logPθ(Sa|q,S). 261

Finally, the clue extractor is capable of generat- 262

ing the potential candidate clues based on the user 263

query and retrieved documents during inference: 264

Sc = Extractor(q,S). 265

KNN-based Extraction We observe that answer- 266

containing sentences significantly improve perfor- 267

mance on simple QA datasets, i.e., NQ, but yield 268

smaller gains on complex ones, i.e., TriviaQA and 269

HotpotQA, as shown in Figure 3. Therefore, we 270

propose a KNN-based strategy for extracting se- 271

mantically similar sentences in complex reasoning 272

scenarios. For simple questions, we directly se- 273

lect answer-containing sentences as the extractor’s 274

optimization targets, as they provide essential infor- 275

mation and help reduce uncertainty. For more com- 276

plex questions, we first select sentences containing 277

the answer and then further select sentences seman- 278

tically similar to these answer-containing sentences 279

using the KNN method. Although these sentences 280

may not contain the answer directly, they offer con- 281

textual clues that help the model better interpret 282

the question and produce a more accurate response. 283

We use both answer-containing and KNN-based 284

similar sentences as the extractor’s optimization 285

targets, allowing the extractor to adapt to queries 286

of varying complexity while improving accuracy 287

and reducing necessary contexts. 288

4.2 Clue Reranker 289

The clue extractor often selects sentences with mul- 290

tiple relevant clues of varying importance, neces- 291

sitating reranking. We address this by training a 292

reranker with pairwise loss to prioritize the most 293

relevant sentences. 294
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Training We use the real RAG-generated feed-295

back to annotate the training data for the reranker,296

as the QA performance on complex questions heav-297

ily depends on the characteristics of the genera-298

tion module. First, we pair each of the extracted299

clue sentences scj ∈ Sc with the query q as (scj , q),300

where sentence scj that enables the downstream gen-301

eration module to produce the correct answer for302

q is considered as positive sample spositive, while303

other sentences are treated as negative samples304

snegative
2. The Reranker aims to minimize the305

following pairwise loss function (Karpukhin et al.,306

2020) to improve relevance ranking:307

Lrerank = − log
esim(q,spositive)

esim(q,spositive) + esim(q,snegative)
,308

where sim(q, ∗) represents the semantic simi-309

larity between the query q and the sentence ∗ by310

Reranker model. Minimizing this loss function311

enables the Reranker model to effectively identify312

and prioritize the most relevant clues.313

Inference Given the query q and the extracted314

sentences Sc, the Reranker model calculates the315

relevance score between every sentence scj ∈ Sc316

and query q. The reranked clues are defined as:317

Sr = Reranker(q,Sc).318

4.3 Adaptive Truncator319

The adaptive truncator aims to capture the minimal320

necessary clues based on the complexity of the321

question and the documents, ensuring sufficient322

clues for accurate answer generation.323

Training To determine the optimal clues sub-324

set St for each query q, we perform data anno-325

tation based on the reranked answer clues Sr ob-326

tained from the previous reranking step. Given a327

query q and its reranked clues Sr = {sr1, . . . , srn},328

the objective is to identify the smallest subset329

St such that the RAG system’s generation model330

M can generate the correct answer y based on331

q and St. We define Dk = {sr1, . . . , srk}, where332

1 ≤ k ≤ n. The performance on each subset Dk333

is evaluated by checking if the generation model’s334

output M(q,Dk) matches the ground truth y. The335

correctness condition is defined as:336

Correct(q,Dk) =

{
1, if M(q,Dk) = y

0, otherwise
.337

2If no candidate clues can generate the correct answer, or
if all samples can generate the correct answer, the sample will
be removed from the annotated data.

Since the reranker cannot guarantee that the most 338

relevant sentences are always ranked first, espe- 339

cially for complex questions, we iterate over the 340

subsets from largest to smallest, starting with Dn 341

and continuing to D1. The optimal subset St is the 342

smallest subset that generates the correct answer: 343

St = {sr1, . . . , srK}, 344

K = argmin
k

{k | Correct(q,Dk) = 1}. 345

If the RAG system cannot generate a correct 346

answer from any subset, then St = ∅, indicating 347

no subset suffices. This method ensures the use of 348

minimal necessary context St. 349

During the model training stage, we fine-tune 350

an LLM based on the data annotations. The 351

Truncator is trained to predict the smallest index 352

K of Sr that needed to answer the query: 353

Ltruc = − logPθ(K|q,Sr). 354

Inference During inference, given a new query 355

q and its reranked sentences Sr, the Truncator 356

predicts the minimal index Kg and truncates Sr 357

to St = {Sr
1 , . . . , S

r
Kg

}. Finally, the generation 358

module of RAG concatenates the query q with 359

the filtered answer clues St as a prompt (see Ap- 360

pendix B.1) to reason the answer. 361

5 Experiments 362

5.1 Experimental Setup 363

Datasets We evaluate our method on three 364

QA benchmark datasets: Natural Questions 365

(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi 366

et al., 2017) and HotpotQA (Yang et al., 2018). 367

We utilize the adversarial Dense Passage Retriever 368

(DPR) (Karpukhin et al., 2020) to retrieve the Top- 369

5 passages from the full Wikipedia passages for 370

each question in these datasets. 371

Evaluation Metrics We evaluate answer qual- 372

ity on three open-domain QA datasets using Exact 373

Match (EM) for strict correctness and F1 score for 374

partial overlap. To assess computational cost, we re- 375

port compression ratio (CR) and inference through- 376

put (TP) (Cao et al., 2024; Hwang et al., 2024) on a 377

single A6000-48G GPU. CR is defined as the ratio 378

of original to compressed context length, and TP 379

refers to the number of examples the generator can 380

process or generate per second during inference. 381
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NQ TriviaQA HotpotQA

Method EM F1 CR TP EM F1 CR TP EM F1 CR TP

Closed-book 26.98 62.51 - - 30.54 68.86 - - 19.96 55.84 - -
Retrieval without Filtering

Top-1 document 36.81 69.21 5.17× 2.17 42.74 77.13 5.32× 3.11 25.54 60.09 4.83× 3.11
Top-5 documents 40.21 70.95 1.0× 1.69 48.32 80.16 1.0× 2.90 25.07 59.57 1.0× 1.82

LLAMA3-8B-INSTRUCT

Retrieval with Filtering
RECOMP(Xu et al., 2024) 37.12 69.43 11.97× 3.54 43.41 77.61 10.91× 3.25 24.59 59.26 12.95× 4.97
LongLLMLingua(Jiang et al., 2024) 36.96 69.25 4.56× 1.97 47.56 79.15 4.18× 3.04 24.31 58.93 4.45× 3.39
FILCO (Wang et al., 2023) 32.43 64.78 17.43× 3.82 38.96 74.14 13.93× 3.47 20.12 56.03 11.77× 5.39
BottleNeck (Zhu et al., 2024) 39.72 70.14 14.32× 3.36 48.16 79.83 21.26× 4.32 25.64 60.23 13.21× 5.51
Ours 42.17 71.31 19.56× 3.72 48.81 80.33 20.77× 4.91 26.47 61.15 14.37× 5.73

MISTRAL-7B-INSTRUCT

Retrieval with Filtering
RECOMP(Xu et al., 2024) 36.95 69.25 13.83× 3.25 43.39 77.51 10.91× 3.17 24.34 59.16 7.24× 4.35
LongLLMLingua(Jiang et al., 2024) 37.45 69.67 4.09× 1.58 47.84 79.23 4.31× 3.01 24.05 58.75 4.22× 3.36
FILCO (Wang et al., 2023) 32.59 64.83 16.35× 3.09 38.47 73.87 12.83× 3.31 21.34 56.91 13.00× 4.73
BottleNeck (Zhu et al., 2024) 39.48 70.05 12.53× 3.01 48.03 79.97 15.24× 4.28 25.47 59.97 11.06× 4.75
Ours 41.93 71.12 17.43× 3.47 48.64 80.21 16.49× 4.49 26.03 60.78 14.89× 4.77

Table 1: Experimental results on NQ, TriviaQA, and HotpotQA using two base models: LLaMA3-8B-Instruct and
Mistral-7B-Instruct.

Implementation Details We use LLaMA3-8B-382

Instruct (Dubey et al., 2024) and Mistral-7B-383

Instruct (Jiang et al., 2023) as backbone LLMs.384

We fine-tune the two models with LORA (Hu385

et al., 2021) as the clue extractor and adaptive386

truncator for 16 epochs on a single A6000-48G387

GPU. The initial learning rate is set to 5e-4,388

and the batch size is set to 4. We select the389

best model based on the performance of the val-390

idation set. For clue reranker, we implement391

Sentence-BERT (Reimers and Gurevych, 2020) us-392

ing distilbert-base-uncased3. In the final genera-393

tion phase, we utilize the LLaMA2-7B (Touvron394

et al., 2023) model. More details can be seen in395

Appendix A.396

5.2 Baselines397

We consider three baseline strategies:398

Without Filtering (i) Closed-book, which relies399

solely on the generator’s parametric knowledge;400

(ii) Top-1, which uses only the highest-ranked doc-401

ument for generation; (iii) Top-5, which concate-402

nates the top five retrieved documents as input.403

Extractive Methods (i) RECOMP (Xu et al.,404

2024), which employs a fine-tuned cross-encoder405

to select salient sentences through dense retrieval;406

(ii) LongLLMLingua(Jiang et al., 2024), which407

prunes irrelevant tokens in long contexts via a dy-408

3https://huggingface.co/distilbert/
distilbert-base-uncased

namic programming algorithm guided by question- 409

aware perplexity scores. 410

Abstractive Methods (i) FILCO (Wang et al., 411

2023), which trains a context filtering model to dy- 412

namically select key sentences and jointly learns 413

with the generator for end-to-end distillation; (ii) 414

BottleNeck (Zhu et al., 2024), which employs re- 415

inforcement learning and information bottleneck 416

theory to improve both filtering and generation. 417

5.3 Main Results 418

The comparison results on three QA datasets are 419

shown in Table 1. The results indicate the follow- 420

ing: (i) RAG improves downstream task per- 421

formance across all datasets. Using Top-5 doc- 422

uments generally outperforms Top-1, indicating 423

that incorporating more contextual information im- 424

proves model performance; (ii) Noise filtering 425

is crucial for further improving performance. 426

Across multiple datasets, filtering methods signifi- 427

cantly reduce context length while preserving per- 428

formance close to that of Top-5 documents, effec- 429

tively removing irrelevant information and enhanc- 430

ing accuracy; (iii) FineFilter outperforms base- 431

lines across multiple models and datasets. Fine- 432

Filter consistently outperforms all filtering base- 433

lines across LLaMA3 and Mistral, i.e., it improves 434

EM by 6% and CR by 37% over BottleNeck on NQ 435

with LLaMA3; (iv) FineFilter performs remark- 436

ably better than Top-5 documents on complex 437

multi-hop tasks. FineFilter shows the largest im- 438
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LLaMA2-7B (NQ) Flan-T5-Large (HotpotQA)

Method EM F1 EM F1

FineFilter 42.17 71.31 23.79 58.44
w/o clue extractor 39.70 70.13 20.35 56.31
w/o clue reranker 41.64 71.05 22.94 57.79
w/o adaptive truncator 42.03 71.17 22.62 57.41

Table 2: Ablation study on NQ and HotpotQA test set.
We use LLaMA2-7B and Flan-T5-Large as the genera-
tors, respectively.

Method EM ↑ F1 ↑ Latency (s.) ↓

LongLLMLingua 36.96 69.25 3.43
BottleNeck 39.72 70.14 3.63
RECOMP 37.12 69.43 0.97
FILCO 32.43 64.78 2.64
FineFilter (Ours) 42.17 71.31 3.18

Table 3: Latency Analysis. We report end-to-end in-
ference latency and QA performance (EM, F1) on NQ
test set using LLaMA3-8B-Instruct. Experiments are
conducted on a single A6000 GPU.

provement on HotpotQA, with a 5.4% EM gain439

over Top-5 using LLaMA3, followed by a 4.8%440

on NQ and 1.0% on TriviaQA, underscoring its441

superior performance in handling multi-hop QA.442

6 Analysis443

In this section, we will conduct the ablation study,444

system latency evaluation, robustness analysis and445

generalization of FineFilter. Additional analysis446

can be seen in Appendix C and D.447

6.1 Ablation Study448

To explore the impact of different components, we449

use LLaMA3-8B-Instruct as the base LLM and450

introduce the following variants of FineFilter for451

ablation study: 1) w/o clue extractor. directly uses452

LLaMA3-8B-Instruct without fine-tuning for clue453

extraction; 2) w/o clue reranker. kips reranking454

and retains the original sentence order; 3) w/o455

adaptive truncator. disables adaptive truncation of456

the reranked clues. As shown in Table 2, removing457

any single component leads to a performance drop458

in both EM and F1, confirming that all modules are459

essential to the overall effectiveness. Additional460

ablation results are presented in Appedix C.461

6.2 System Latency Evaluation462

To assess the overall system efficiency, we measure463

the average total inference time (Latency, in sec-464

onds) required for all components in each method465

to process a single sample on the NQ test set. As466

shown in Table 3, RECOMP has the lowest latency467

Dataset Method EM F1

NQ
Direct Extraction 39.41 69.98

Fine-tuned Extraction 41.43 71.01

TriviaQA
Direct Extraction 45.54 78.01

Fine-tuned Extraction 48.36 80.16

HotpotQA
Direct Extraction 24.71 59.29

Fine-tuned Extraction 26.01 60.73

Table 4: Performance comparison between Direct Ex-
traction and Fine-tuned Extraction across three QA
datasets using LLaMA3-8B-Instruct.

but worse EM. FineFilter achieves the highest EM 468

with only 0.52s more latency than the baselines, 469

owing to its lightweight reranker and truncator that 470

add minimal overhead, and the clue extractor with 471

comparable complexity to existing methods. Thus, 472

FineFilter offers a better trade-off between accu- 473

racy and efficiency. 474

6.3 Direct vs. Fine-tuned Extraction 475

We analyze the effect of fine-tuning on Clue Ex- 476

traction by comparing two approaches: 1) Direct 477

Extraction. Using LLM without fine-tuning to 478

extract clue sentences from retrieved documents 479

based on the given prompt (see Appendix B.2); 2) 480

Fine-tuned Extraction. Using fine-tuned LLM to 481

select answer-containing sentences. As shown in 482

Table 4, Fine-tuned Extraction consistently outper- 483

forms Direct Extraction by leveraging task-specific 484

knowledge to identify more relevant sentences. 485

6.4 Threshold of KNN-Based Extraction 486

We assess the KNN-based extraction by varying 487

the threshold, which controls the cosine similarity 488

to answer-containing sentences. A threshold of 489

0 selects only the answer sentences, while higher 490

thresholds allow semantically similar sentences to 491

expand the context with additional relevant infor- 492

mation. As shown in Figure 4, we compare the 493

model’s performance at different threshold values. 494

For simple questions such as NQ, the KNN ex- 495

traction strategy does not improve performance, as 496

answers can typically be obtained directly from 497

sentences containing the answers. For more com- 498

plex questions such as HotpotQA and TriviaQA, 499

the KNN strategy improves performance at lower 500

thresholds but declines at higher thresholds due to 501

increased noise. It is worth noting that KNN-based 502

extraction plays a supplementary role. While the 503

threshold setting impacts FineFilter’s performance, 504

it does not change the experimental result that Fine- 505

Filter outperforms the best noise filtering baseline. 506
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Figure 4: An illustration of clue extraction performance using LLaMA3-8B-Instruct on NQ, TriviaQA, and
HotpotQA. The x-axis shows the KNN threshold and higher values introduce more contextual sentences.

Dataset Recall-1 (%) Hit-2@1 (%) Recall-3 (%)

NQ 81.96 77.16 80.17
TriviaQA 91.94 83.25 85.28
HotpotQA 84.54 77.90 80.54

Table 5: Cascading errors analysis of extractor (Recall-
1), reranker (Hit-2@1) and truncator (Recall-3) on three
datasets using LLaMA3-8B-Instruct.

6.5 Robustness Analysis507

Cascading Errors Resilience Analysis For high-508

quality retrieval scenarios, we conduct experiments509

on NQ test set with gold-standard answers to eval-510

uate cascading errors. Recall-1 measures whether511

the extractor can retrieve the gold-standard answer.512

Hit-2@1 measures the probability that the reranker513

places the gold-standard answer as Top-1. Recall-3514

measures whether the truncator can continue to re-515

tain the gold-standard answer. As shown in Table 5,516

FineFilter maintains a low error rate in the filtering517

components, indicating that cascading errors are518

kept within a controllable range.519

Performance under Unreliable Retrieval The520

truncator not only shortens context but also helps521

filter out unreliable contents. We conduct experi-522

ments on samples from HotpotQA test set without523

gold-standard answers to simulate unreliable re-524

trieval. As shown in Table 6, FineFilter’s truncator525

effectively suppresses noise and prevents answer526

degradation. This is because FineFilter is trained to527

allow empty outputs, whereas baseline models per-528

form poorly under unreliable retrieval conditions,529

as they must choose an output answer clue.530

6.6 Cross-Task Generalization531

To evaluate FineFilter’s generalization, we test it532

on 1,200 random samples from the Conversational533

Method EM F1

RECOMP 15.51 51.33
FILCO 14.47 50.46
Ours (w/o Truncator) 15.63 51.42
Ours (w/ Truncator) 16.20 51.94

Table 6: Results under unreliable retrieval on HotpotQA
test set using LLaMA3-8B-Instruct.

Method ROUGE-1 ROUGE-2 ROUGE-L

RECOMP 0.3051 0.1022 0.1668
FILCO 0.2743 0.0976 0.1428
BottleNeck 0.3708 0.1529 0.2158
LongLLMLingua 0.4082 0.1775 0.2369
Top-1 0.3532 0.1275 0.2103
Top-5 0.3769 0.1546 0.2234
FineFilter (Ours) 0.4211 0.1842 0.2556

Table 7: Comparison of cross-task generalization ability
across different baselines, evaluated using ROUGE-1,
ROUGE-2, and ROUGE-L.

Multi-Doc QA dataset 4, after training on Hot- 534

potQA. As shown in Table 7, FineFilter maintains 535

strong performance in this new dataset, demonstrat- 536

ing its generalization across diverse QA tasks. 537

7 Conclusion 538

We propose FineFilter, a fine-grained noise filtering 539

mechanism to enhance performance and efficiency 540

in RAG. By framing noise filtering as a sentence- 541

level MinMax optimization problem, it effectively 542

identifies relevant clues in complex reasoning sce- 543

narios. Its three optimized modules use KNN clus- 544

tering to gather sufficient context and retain key 545

clues based on generator feedback. Experiments 546

show FineFilter outperforms baselines in perfor- 547

mance and efficiency on three QA datasets. Future 548

work can explore adaptive noise filtering that dy- 549

namically adjusts based on query complexity or 550

retrieval quality for complex reasoning tasks. 551

4https://sites.google.com/view/wsdm24-docqa
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Limitations552

Although FineFilter has made significant progress553

in clue extraction and computational efficiency,554

there is still the issue of system transferability. Fine-555

Filter fine-tunes the LLM based on downstream556

generator feedback, and if a new generative LLM is557

adopted, the filtering modules need to be retrained.558

This tight coupling results in increased transfer559

costs for the system.560

Ethics Statement561

This paper presents FineFilter, a fine-grained noise562

filtering mechanism that formulates RAG noise re-563

duction as a sentence-level MinMax optimization564

problem. It extracts sufficient supporting clues,565

reranks them based on answerability, and adap-566

tively truncates redundancy to enhance both answer567

accuracy and inference efficiency. Throughout this568

research, we have adhered to ethical guidelines to569

ensure the integrity and fairness of our work. All570

experiments are conducted using publicly avail-571

able datasets, and the retrieval corpus is based on572

open-domain sources such as Wikipedia, ensuring573

transparency and reproducibility.574

FineFilter does not involve any personally iden-575

tifiable information or private user data. The pro-576

posed methods are designed to enhance model effi-577

ciency and robustness without reinforcing harmful578

biases. Nevertheless, as with all RAG systems,579

the quality and neutrality of retrieved content can580

influence outputs. Future work may incorporate581

bias detection and content verification modules to582

further improve fairness and reliability.583
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A More Details of Experimental Settings817

We utilize LLaMA3-8B-Instruct (Dubey et al.,818

2024) and Mistral-7B-Instruct (Jiang et al., 2023)819

as the backbone language models, both of which820

demonstrate excellent performance across various821

tasks and exhibit high flexibility during fine-tuning.822

We apply the LORA method (Hu et al., 2021) for823

fine-tuning, which is an efficient low-rank adapta-824

tion technique that significantly reduces the com-825

putational cost of parameter updates while main-826

taining model performance. The LORA method is827

applied to the clue extractor and adaptive truncator.828

All training is conducted on a single A6000-48G829

GPU, with 16 training epochs. The initial learning830

rate is set to 5e-4, and the batch size is 4. Dur-831

ing training, we employ gradient accumulation to832

handle smaller batch sizes and improve training833

stability. The best model is selected based on the834

performance of the validation set.835

During the fine-tuning phase, we train the mod-836

els on the three QA datasets, i.e., NQ, TriviaQA,837

and HotpotQA. We employ the KNN-based sen-838

tence selection method across all datasets. The839

maximum number of samples is limited to 10000,840

and the KNN-based sentence selection varies with841

the ϵ value for each dataset: for NQ, ϵ is set to 0;842

for TriviaQA, ϵ is set to 0.05; and for HotpotQA,843

ϵ is set to 0.1. These adjustments ensure flexibil-844

ity and accuracy in clue extraction for different845

datasets. Additionally, data preprocessing is accel-846

erated during each training epoch using 16 parallel847

workers. The maximum input length is set to 7168848

to accommodate large-scale context information.849

For the clue reranker, we use Sentence-850

BERT (Reimers and Gurevych, 2020) with the851

distilbert-base-uncased model, which is effective852

for generating high-quality sentence embeddings to853

compute sentence similarity. During training, we854

apply the Adam optimizer with a batch size of 64,855

a learning rate of 2e-5, and 1000 warm-up steps.856

The training lasts for 4 epochs.857

B Prompt858

B.1 Prompt for the Generator859

We use the LLaMA2-7B (Touvron et al., 2023)860

model as the final generator. During the generation861

phase, we design a specialized generator prompt862

to ensure that the generated answers are highly863

relevant to the questions. We show our prompt in864

Table 8. The prompt guides the model in generating865

accurate and concise responses based on the given 866

question and context. 867

B.2 Prompt for the Clue Extractor 868

We show our prompt for clue extraction in Table 9, 869

which plays a crucial role in identifying and select- 870

ing relevant information from the input documents. 871

This prompt is designed to guide the model in ex- 872

tracting the most informative sentences, those most 873

likely to contain the answer to the given question. 874

B.3 Prompt for the Adaptive Truncator 875

We show our prompt for adaptive truncation in 876

Table 10. The prompt is designed to guide the 877

model in optimizing context truncation based on 878

the complexity of the question and the quality of 879

the document, thereby improving the efficiency of 880

the language model. Specifically, given a ques- 881

tion and a ranked list of sentences, the model’s 882

task is to identify and retain the most relevant sen- 883

tences while truncating those that are irrelevant to 884

the question. Through this process, the model is 885

able to maintain answer accuracy while reducing 886

unnecessary information, thus enhancing process- 887

ing efficiency. 888

Prompt for the Generator

[INST]
<<SYS>>
You are a helpful, respectful, and honest
assistant. Please use the documents
provided to answer the query.
Documents:
{Documents}
<</SYS>>

{Question}
[/INST]

Table 8: Prompt for the Generator.

C Additional Experimental Analysis 889

C.1 Impact of Different Rerankers 890

To select a more effective reranking base model, 891

we compare BM25 (Robertson et al., 2009), 892

BGE-rerank (Xiao et al., 2024), and Sentence- 893

BERT(Reimers and Gurevych, 2020). As shown 894

in Table 11, the results demonstrate that Sentence- 895

BERT outperforms all baseline models in both EM 896
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Prompt for the Clue Extractor

You are a highly skilled assistant special-
izing in extracting relevant information
from provided documents. Your task is
to identify and extract sentences from the
documents as much as possible that are
most directly useful for answering the given
question. Rank the sentences in order of
relevance, with the most relevant sentence
listed first. Preface each sentence with its
sequence number as follows:
Sentence 1:
......
Sentence n:

Question:
{Question}

Documents:
{Documents}

Table 9: Prompt for the Clue Extractor.

Prompt for the Adaptive Truncator

You are a highly skilled assistant specializ-
ing in optimizing language model efficiency
by truncating context based on question
complexity and document quality. Given
a question and a ranked list of sentences,
identify and retain the most relevant ones
while truncating the irrelevant sentences.

Question:
{Question}

Ranked List:
{Ranked List}

Table 10: Prompt for the Adaptive Truncator.

Method EM F1

BM25 41.51 71.03
BGE-rerank 41.73 71.06
Sentence-BERT(Ours) 42.03 71.21

Table 11: Comparison of different reranking methods
on NQ test set based on LLaMA3-8B-Instruct.

NQ TriviaQA HotpotQA

Method EM F1 EM F1 EM F1

LongLLMLingua 34.77 65.28 46.32 78.43 22.19 57.33
FILCO 31.96 64.05 37.71 73.24 19.76 55.74
RECOMP 35.12 68.71 42.96 77.39 23.91 58.19
BottleNeck 38.49 69.88 46.15 78.37 24.27 58.83
Top-1 36.81 69.21 42.74 77.13 25.54 60.09
Top-5 40.21 70.95 48.32 80.16 25.07 59.57
FineFiler (Ours) 39.23 69.98 46.88 78.85 24.65 59.26

Table 12: Performance comparison on NQ, TriviaQA,
and HotpotQA under a weakened setup where Fine-
Filter’s clue extractor and adaptive truncator are re-
placed with Flan-T5-Large, to simulate limited clue
processing capabilities.

and F1 scores, so we chose it as the reranking base 897

model. 898

C.2 Weaker Extractor and Truncator 899

To better assess the impact of clue extractor and 900

adaptive truncator quality on the end-to-end perfor- 901

mance of RAG systems, we conduct an experiment 902

in which FineFilter’s clue extractor and truncator 903

are replaced with a weaker model, Flan-T5-Large. 904

This setup simulates scenarios where the clue pro- 905

cessing pipeline exhibits limited reasoning or com- 906

pression capabilities, enabling us to examine the 907

extent of performance degradation under such con- 908

straints. 909

As shown in Table 12, FineFilter consistently 910

outperforms the baselines across all three datasets, 911

although it still slightly underperforms compared 912

to the Top-5 setting. This suggests that when the 913

downstream generator is sufficiently powerful (e.g., 914

LLaMA2-7B), relying solely on a simple or less 915

capable clue processing module is insufficient to 916

fully exploit the potential of the overall system. 917

Instead, only upstream components with strong 918

extraction and compression capabilities can interact 919

effectively with a powerful generator to achieve 920

high-quality question answering. 921

C.3 Weaker Downstream Generator 922

To assess the impact of generator capacity on the 923

overall performance of our RAG system, we re- 924
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NQ TriviaQA HotpotQA

Method EM F1 EM F1 EM F1

LongLLMLingua 35.71 68.89 46.28 78.31 22.06 57.13
FILCO 31.79 63.88 34.59 71.77 20.79 56.71
RECOMP 36.28 69.11 41.32 76.44 22.58 57.34
BottleNeck 37.94 69.83 45.91 77.94 23.26 58.02
Top-5 34.85 68.04 46.03 78.16 22.86 57.59
FineFiler (Ours) 38.95 69.91 47.03 78.98 23.79 58.51

Table 13: Performance comparison on NQ, TriviaQA,
and HotpotQA using Flan-T5-Large as the weaker gen-
erator, while keeping the clue processing pipeline un-
changed.

Method NQ TriviaQA HotpotQA

FineFilter 38.95 47.03 23.79
w/o clue extractor 36.18 44.72 20.35
w/o clue reranker 36.91 45.33 22.94
w/o adaptive truncator 38.09 46.21 22.62

Table 14: Ablation study on NQ, TriviaQA, and Hot-
potQA test set using EM scores. The generator is Flan-
T5-Large, and the clue processing pipeline is kept un-
changed.

Method EM CR Latency (s.)

Ours (Truncator: LLaMA3-8B-Instruct) 42.17 19.56× 3.18
Ours (Truncator: Flan-T5-Large) 42.09 18.79× 3.05

Table 15: Performance of adaptive truncators with dif-
ferent parameter sizes on the NQ dataset.

place the stronger generator (LLaMA2-7B) with a925

weaker model (Flan-T5-Large), while keeping all926

other components and configurations unchanged.927

We further conduct an ablation study on three928

datasets, as presented in Table 13 and Table 14.929

Experimental results demonstrate that replac-930

ing a strong generator with a weaker model re-931

sults in performance degradation across all datasets.932

Nevertheless, our method consistently outperforms933

the Top-5 baseline. Notably, the relative contribu-934

tion of the adaptive truncator becomes more pro-935

nounced under weaker generation conditions (Ding936

et al., 2025), particularly on reasoning-intensive937

datasets such as TriviaQA and HotpotQA. These938

findings indicate that, when the downstream gen-939

erator is less capable, upstream components like940

the adaptive truncator play a more critical role.941

Therefore, in scenarios constrained by limited com-942

putational resources or smaller model sizes, well-943

designed filtering and compression strategies can944

effectively mitigate the limitations of weaker gen-945

erators.946

C.4 Truncators with Different Parameters 947

To investigate the impact of truncator size on over- 948

all system performance, we replace the default trun- 949

cator with a smaller Flan-T5-Large model and eval- 950

uate the system on the NQ dataset. 951

As shown in Table 15, using a smaller truncator 952

leads to a slight drop in EM and CR, but provides 953

a marginal improvement in inference speed (0.13s 954

faster). These results suggest that smaller trunca- 955

tors can offer a reasonable trade-off between perfor- 956

mance and efficiency. Therefore, we recommend 957

choosing the truncator model based on application- 958

specific requirements and resource constraints. 959

D Case Study 960

We select examples from the NQ and HotpotQA 961

datasets, covering two typical question-answering 962

scenarios: one involving simple single-answer 963

questions and the other involving complex multi- 964

answer questions requiring reasoning. As shown in 965

Table 16 and Table 17 for the NQ dataset, and Ta- 966

ble 18 and Table 19 for the HotpotQA dataset, these 967

examples will demonstrate the advantages and ef- 968

fectiveness of the FineFilter method in handling 969

question answering tasks of varying complexity. 970
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Question: what kind of beast is the beast from beauty and the beast
Correct Answer: a chimera
Retrieved Documents
Document 1:
Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt Disney Animation
Studios’ 30th animated feature film "Beauty and the Beast" (1991). He also appears in the film’s two
direct-to-video followups "" and "Belle’s Magical World". Based on the hero of the French fairy tale by
Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed into a hideous beast as punishment for his
cold-hearted and selfish ways, the Beast must, in order to return to his former self, earn the love of a
Document 2:
the arms and body of a bear, the eyebrows of a gorilla, the jaws, teeth, and mane of a lion, the tusks of
a wild boar and the legs and tail of a wolf. He also bears resemblance to mythical monsters like the
Minotaur or a werewolf. He also has blue eyes, the one physical feature that does not change whether
he is a beast or a human. As opposed to his original counterpart, Disney gave him a more primal
nature to his personality and mannerisms, which truly exploited his character as an untamed animal (i.e.
alternating between walking and
Document 3:
the Beast to resemble a creature that could possibly be found on Earth as opposed to an alien. The
initial designs had the Beast as humanoid but with an animal head attached as per the original fairy tale,
but soon shifted towards more unconventional forms. The earlier sketches of the Beast2019s character
design are seen as gargoyles and sculptures in the Beast’s castle. Inspired by a buffalo head that he
purchased from a taxidermy, Keane decided to base the Beast’s appearance on a variety of wild animals,
drawing inspiration from the mane of a lion, head of a buffalo, brow
Document 4:
the villagers. Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt
Disney Animation Studios’ 30th animated feature film “Beauty and the Beast” (1991). He also appears
in the film’s two direct-to-video follow-ups and “Belle’s Magical World.” Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda
Woolverton and animated by Glen Keane. A pampered prince transformed into a hideous beast as
punishment for his cold-hearted and selfish ways, the Beast must, in order to return to his former self,
earn the love of a person
Document 5:
of a gorilla, tusks of a wild boar, legs and tail of a wolf, and body of a bear. However, he felt it important
that the Beast’s eyes remain human. In fear that Glen Keane would design the Beast to resemble voice
actor Robby Benson, Walt Disney Studios chairman Jeffrey Katzenberg did not allow Keane to see
Benson during production of the film. The Beast is not of any one species of animal, but a chimera (a
mixture of several animals), who would probably be classified as a carnivore overall. He has the head
structure and horns of a buffalo

Table 16: An example from NQ, including Question, Correct Answer, and Top-5 Retrieved Documents.
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Method Summary Answer
Closed-book: - a bear
Top-5 Documents - a bear
Top-1 Document Beast (Beauty and the Beast) The Beast is a fictional char-

acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991). He
also appears in the film’s two direct-to-video followups ""
and "Belle’s Magical World". Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont,
the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed
into a hideous beast as punishment for his cold-hearted and
selfish ways, the Beast must, in order to return to his former
self, earn the love of a

a bear

RECOMP Beast (Beauty and the Beast) The Beast is a fictional char-
acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991).

a bear

FILCO the arms and body of a bear, the eyebrows of a gorilla, the
jaws, teeth, and mane of a lion, the tusks of a wild boar and
the legs and tail of a wolf.

a bear

Ours Sentence1:The Beast is not of any one species of animal,
but a chimera (a mixture of several animals), who would
probably be classified as a carnivore overal
Sentence2:of a gorilla, tusks of a wild boar, legs and tail of
a wolf, and body of a bear

a chimera

Table 17: Case study based on an example from NQ.
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Question: What writer worked on both The Ice Cream Man and and a 2007 fantasy comedy loosely
based on a Donald Henkel poem?
Correct Answer: David Dobkin
Retrieved Documents
Document 1:
Ice Cream Man (film) Ice Cream Man is a 1995 American horror comedy film produced and directed
by Norman Apstein, a director of pornographic films. In his first and only attempt at mainstream
filmmaking, and written by Sven Davison and David Dobkin (who later wrote and directed the films
"Wedding Crashers" and "Fred Claus"), and starring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from a psychiatric institution who opens an ice
cream factory where he begins using human flesh in his recipes. The film had an estimated 2 million
budget and was
Document 2:
“Water Tower and the Turtle” won the 39th Kawabata Yasunari Prize. The Japanese Ministry of
Education, Culture, Sports, Science and Technology recognized Tsumura’s work with a New Artist
award in 2016. Tsumura’s writing often employs Osaka-ben, a distinctive Japanese dialect spoken in
Osaka and surrounding cities. Kikuko Tsumura was born in Osaka, Japan in 1978. While commuting to
school, she read science fiction novels, especially the work of William Gibson, Philip K. Dick, and Kurt
Vonnegut, and began writing her own novel, “Manı̄ta” (“Maneater”), while still a third-year university
student. “Manı̄ta” won the 21st Dazai Osamu Prize and was
Document 3:
Sentai-style shows called “Go Sukashi!” based on a character by Shoko Nakagawa (who appears in
the films), and starring John Soares and Brooke Brodack. He has also published an online superhero-
genre-spoofing webcomic titled “Ratfist.” In September 2012, Fox Animation optioned TenNapel’s
published Graphix novel “Cardboard”, with plans for actor Tobey Maguire’s Material Pictures, graphic
novelist Doug TenNapel, and the Gotham Group to be executive producers. Fox plans to have the
picture developed under its WedgeWorks subsidiary. WedgeWorks director Chris Wedge (“Ice Age”) is
producing, and is considering directing the film as well. TenNapel has used Kickstarter to produce a
bound
Document 4:
The film industry, and his interest particularly in contemporary animated film from Eastern Europe —
particularly the work of Jan Lenica, Daniel Szczechura and Walerian Borowczyck — as well as the
Brothers Quay has been a marked influence on his work. He has published three novels. Weiner’s
1993 debut novel “The Museum of Love” was published by Bloomsbury UK and subsequently by
Kodansha in Japan, The Overlook Press in the United States and Canada, and Belfond in France. It
earned comparisons to William S. Burroughs, Céline, Jean Genet, David Lynch and Todd Haynes for
its blend of surrealism and dark
Document 5:
See her idol, Eudora Welty, Flagg won first prize in the writing contest for a short story told from the
perspective of an 11-year-old girl, spelling mistakes and all—a literary device that she figured was
ingenious because it disguised her own pitiful spelling, later determined to be an outgrowth of dyslexia.
An editor at Harper & Row approached her about expanding the story into a full-length novel. “I just
burst into tears and said, ‘I can’t write a novel,’” she told “The New York Times” in 1994. “‘I can’t
spell. I can’t diagram a sentence.’ He took my hand and

Table 18: An example from HotpotQA, including Question, Correct Answer, and Top-5 Retrieved Documents.
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Method Summary Answer
Closed-book: - Quentin Tarantino
Top-5 Documents - Grady Hendrix
Top-1 Document Ice Cream Man (film) Ice Cream Man is a 1995 American

horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films, in his first and only
attempt at mainstream filmmaking, and written by Sven
Davison and David Dobkin (who later wrote and directed
the films "Wedding Crashers" and "Fred Claus"), and star-
ring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from
a psychiatric institution who opens an ice cream factory
where he begins using human flesh in his recipes. The film
had an estimated 2 million budget and was

David Dobkin

RECOMP Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Norman Apstein

FILCO Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Norman Apstein

Ours Sentence 1:Ice Cream Man (film) Ice Cream Man is a 1995
American horror comedy film produced and directed by
Norman Apstein, a director of pornographic films.
Sentence 2:in his first and only attempt at mainstream film-
making, and written by Sven Davison and David Dobkin
(who later wrote and directed the films "Wedding Crash-
ers" and "Fred Claus"), and starring Clint Howard, Olivia
Hussey, and David Naughton.

David Dobkin

Table 19: Case study based on an example from HotpotQA.
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