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Abstract

Retrieved documents containing noise will hin-
der Retrieval-Augmented Generation (RAG)
from detecting answer clues, necessitating
noise filtering mechanisms to enhance accuracy.
Existing methods use reranking or summariza-
tion to identify the most relevant sentences, but
directly and accurately locating answer clues
from these large-scale and complex documents
remains challenging. Unlike these document-
level operations, we treat noise filtering as a
sentence-level MinMax optimization problem:
first identifying potential clues from multiple
documents, then ranking them by relevance,
and finally retaining the minimum number of
clues through truncation. In this paper, we pro-
pose FineFilter, a novel fine-grained noise fil-
tering mechanism for RAG, consisting of a clue
extractor, a reranker, and a truncator. We opti-
mize each module to tackle complex reasoning
challenges: (1) The clue extractor first uses
sentences containing the answer and similar
ones as fine-tuning targets, aiming to extract
sufficient potential clues; (2) The reranker is
trained to prioritize effective clues based on the
real feedback from the generation module, with
clues capable of generating correct answers as
positive samples and others as negative; (3)
The truncator takes the minimum number of
clues needed to answer the question (trunca-
tion point) as fine-tuning targets, and performs
truncation on the reranked clues to achieve fine-
grained noise filtering. Experiments on three
QA datasets demonstrate that FineFilter signif-
icantly improves QA performance over base-
lines on both LLaMA3 and Mistral. Further
analysis confirms its effectiveness in complex
reasoning, robustness to unreliable retrieval,

and generalization to different scenarios'.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Gao et al.,, 2023) has demon-

'0ur code is available at https://anonymous.4open.
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1 Doc4:4 Gary Player holds the record for most appearances, with 52... |
LDDC5: Novak Djokovic is the only player to... :

.......................................................................... N
Y RECOMP and RichRAG Methods

? FineFilter Method /

[After Extraction:1 2 3 4 "Reader LLM——>Answer: Jack Nicklaus €
E After Rerank: 4 1 2 3 ;
| After Truncation: 4

_______________________________

Answer: Gary Player &

Figure 1: An illustration of the challenge in locating
accurate answer clues from retrieved documents. Both
baselines RECOMP and RichRAG select an incorrect
clue from the 1% document, whereas our FineFilter
identifies the correct clue from the 4** document via
extraction, reranking, and truncation.

strated impressive performance across various NLP
tasks (Chen et al., 2022; Huang et al., 2023; Gao
et al., 2023), but its effectiveness heavily depends
on the relevance of retrieved documents (Yu et al.,
2023; Zhang et al., 2024a). When retrieved docu-
ments contain noise or irrelevant information (Shi
et al., 2023; Liu et al., 2024), the generation model
struggles to detect answer clues because noise in-
terferes with self-attention’s ability to reason over
the correct context. Therefore, it is crucial to filter
out irrelevant and low-value contexts.

Current noise filtering methods primarily utilize
reranking (Wang et al., 2025; Ke et al., 2024; Qin
et al., 2024) or summarization (Xu et al., 2024; Zhu
et al., 2024) models to identify the most relevant
sentences, aiming at increasing the information
density for RAG reasoning. The former reranks
the retrieval results based on metrics such as an-
swer contribution or user preference (Zhu et al.,
2023). The latter retains the query-relevant sen-
tences through summarization models. However,
directly and accurately locating answer clues from
the retrieved documents remains challenging, espe-
cially in complex reasoning scenarios. As shown
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in Figure 1, all the five documents retrieved by
the retriever contain query-relevant information.
Both baselines RichRAG (Wang et al., 2025) and
RECOMP (Xu et al., 2024) select the relevant sen-
tences from the 1% document, yet fail to generate
correct answers. This is because these documents
contain a multitude of seemingly relevant but un-
helpful noisy information. Such document-level
filtering is too coarse and struggles to capture ef-
fective answer clues precisely. Therefore, a fine-
grained operation is required to retain sufficient
and effective context for RAG.

We treat fine-grained noise filtering as a
sentence-level MinMax optimization problem.
First, we leverage contextual information to iden-
tify potential answer clues, which form the max-
imal subset capable of answering the question.
Then, we carefully compare and rerank these clues
based on their completeness and relevance to the
query in order to move effective clues to the fore-
front. Finally, we retain only the most essential
clues through truncation, with the goal of minimiz-
ing the necessary contexts for RAG. As shown in
Figure 1, our approach first identifies the potential
clues with a red background, then reranks these
clues, ultimately placing the correct answer clue at
the top. Notably, the last three clues are redundant
and should be filtered out to improve the informa-
tion density of the reasoning clues for RAG.

In this paper, we propose a novel fine-grained
noise filtering mechanism for RAG, named Fine-
Filter, consisting of a clue extractor, a reranker,
and a truncator. It leverages the clue extractor
and the reranker to provide sufficient and effec-
tive reasoning clues to the generation model while
employing the truncator to filter noise to reduce
reasoning contexts. We design three optimization
strategies for each module to tackle complex rea-
soning challenges: (1) The clue extractor uses all
sentences containing the answer and their similar
sentences based on K-Nearest Neighbors (KNN)
clustering (Guo et al., 2003; Peterson, 2009) as
fine-tuning targets, since we find that RAG requires
more relevant contextual information to reason the
correct answer for multi-hop questions. Thus, the
fine-tuned extractor can extract sufficient potential
clues for complex reasoning. (2) The reranker is
trained to prioritize effective clues based on the real
feedback from the generation module, with clues
capable of generating correct answers as positive
samples and others as negative. (3) The trunca-
tor takes the minimal number of clues (truncation

point) required for RAG to generate correct an-
swers as the fine-tuning target. Based on the pre-
dicted point, the reranked clues are truncated to
achieve fine-grained noise filtering.

Experimental results on three open-domain QA
datasets (NQ, TriviaQA, and HotpotQA) show that
FineFilter, whether based on LLaMA3 or Mistral,
consistently outperforms baseline models in terms
of performance while significantly reducing the
context required for inference. Further analysis
confirms its effectiveness in complex reasoning, ro-
bustness to unreliable retrieval, and generalization
to different scenarios.

The innovations in this paper are as follows:

* We frame noise filtering as a sentence-level
MinMax optimization, where the extractor
and reranker gather sufficient and effective
reasoning clues, while the truncator filters out
noise to improve reasoning density.

* Three strategies tackle complex reasoning:
KNN-based extractor gathers sufficient rel-
evant context, while reranker and truncator
adapt quickly and effectively to RAG systems
using generator feedback.

* Experiments on three datasets show that filter-
ing out unimportant noisy sentences enhances
inference performance.

2 Related Work

Retrievers often fetch noisy content, reducing out-
put accuracy, while overly long contexts further
hinder model efficiency (Xia et al., 2024). To ad-
dress these challenges, some researchers utilize
reranking methods to prioritize more relevant sen-
tences. RichRAG (Wang et al., 2025) uses a genera-
tive list-wise ranker to generate and rank candidate
documents, ensuring the answer is comprehensive
and aligns with the model’s preferences. Ke et al.
(2024) propose a novel bridge mechanism to opti-
mize the connection between retrievers and LLMs
in retrieval-augmented generation, improving per-
formance in question-answering and personalized
generation tasks. CPC (Liskavets et al., 2025) ranks
sentence relevance with context-aware embeddings.
However, reranking sentences may disrupt the orig-
inal logical structure of the document and generate
unfaithful clues.

Other researchers utilize abstractive or extractive
summarization models to identify query-relevant
answer clues. Xu et al. (2024) propose leveraging
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Figure 2: The architecture of FineFilter consists of three modules: clue extractor, reranker, and truncator. The top
displays their training strategies and annotated data, while the bottom shows the noise filtering during inference.

LLMs as abstractive filters to compress retrieved
text by targeting the most relevant sentences. Zhu
et al. (2024) use the information bottleneck prin-
ciple to balance conciseness and correctness, but
this incurs significant training complexity. Xu et al.
(2024); Wang et al. (2023) propose extractive filters
to select relevant sentences, which reduce irrelevant
information but may cause over-compression and
harm accuracy. Li et al. (2023) enhance inference
efficiency by removing redundant content based
on self-information, though this may affect seman-
tic coherence. AdaComp (Zhang et al., 2024b)
adaptively adjusts document-level compression but
applies relatively mild compression overall.

3 Problem Formulation

Given a query ¢ and a set of retrieved documents
D = {di,...,d,}, where each document d; con-
sists of a set of sentences S; = {si,...,s} }, n;
is the number of sentences in d;. The objective
of the noise filtering task is to identify an optimal
subset S* C | J;"; S; such that a language model
fo generates the correct answer y for the query ¢
with the highest probability. The optimal subset
S* can be determined by the following MinMax

optimization:

S* = argmin|S’|,

/

S = argmax fp(y|S,q),
SQUZT-Lzl Si

where S’ is the subset that is most capable of pro-
ducing the correct answer, and |S’| is the number
of sentences in S’. The selection of S* should
dynamically adapt to the real feedback of a RAG
system to balance informativeness and conciseness.
The problem can be formalized as an NP-hard com-
binatorial optimization problem (Wu et al., 2023),
selecting the smallest, most relevant answer clues
from a large set of documents to improve answer
accuracy.

4 Methodology

In this section, we introduce FineFilter, a three-
stage noise filtering mechanism for RAG, as il-
lustrated in Figure 2. FineFilter comprises three
modules: a clue extractor, a clue reranker, and an
adaptive truncator. The clue extractor selects poten-
tial answer clues from multiple documents by maxi-
mizing information gain, reducing the search space
and enhancing candidate relevance. The reranker
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Figure 3: The Exact Match performance of LLaMA3-
8B-Instruct on three QA datasets, comparing Top-5
retrieved documents with all sentences containing the
ground-truth answer from those documents, regardless
of query relevance.

then applies pairwise loss to prioritize the most rel-
evant clues. Finally, the adaptive truncator selects
the minimal necessary context to increase inference
density, thus improving answer accuracy.

4.1 Clue Extractor

The clue extractor aims to identify potential an-
swer clues from multiple documents to construct
a smaller, query-relevant candidate set, thereby re-
ducing the search space. As shown in Figure 3, we
compare downstream performance using answer-
containing sentences versus full retrieved docu-
ments. Filtering out low-value content enhances
RAG reasoning. While not all answer-containing
sentences are query-relevant, they approximate the
maximal subset capable of answering queries and
thus serve as a suitable optimization target.

To guide the extraction of informative sen-
tences, we first introduce the concept of informa-
tion gain. Given a query ¢ and a set of candidate
sentences S = {s1, S2,. .., Sy}, the information
gain IG(gq, s;) of sentence s; is defined as:

1G(q, si) = H(q) — H(q | 5:),

where H(q) denotes the entropy of the query g,
quantifying its inherent uncertainty; and H(q | s;)
represents the uncertainty of the query given the
sentence s;. In question answering tasks, infor-
mation gain reflects how much a sentence reduces
uncertainty about the query. Typically, sentences
containing the answer directly reduce the unre-
solved part of the query, helping the model better
focus on the core intent and improving the accuracy
of the downstream generation module.

Based on the concept of information gain, we
first extract sentences from the retrieved docu-

ment collection that contain the ground-truth an-
swer as targets for extraction. Given a query ¢,
the ground-truth answer y and retrieved sentences
S = {s1, 82,...,Sn}, the answer-containing sen-
tences are defined as:

S* = {sjly C sj,5; € S},

where y C s; indicates that y is a substring of s;.

Then, we fine-tune an LLM as the clue
Extractor to generate answer-containing sen-
tences S based on the query ¢ and the retrieved
sentences S with a specific prompt (see Ap-
pendix B.2). The loss function of Extractor
model is defined as:

Lextra = — 10g P@(SQ|Q> 8)

Finally, the clue extractor is capable of generat-
ing the potential candidate clues based on the user
query and retrieved documents during inference:

S§¢ = Extractor(q,S).

KNN-based Extraction We observe that answer-
containing sentences significantly improve perfor-
mance on simple QA datasets, i.e., NQ, but yield
smaller gains on complex ones, i.e., TriviaQA and
HotpotQA, as shown in Figure 3. Therefore, we
propose a KNN-based strategy for extracting se-
mantically similar sentences in complex reasoning
scenarios. For simple questions, we directly se-
lect answer-containing sentences as the extractor’s
optimization targets, as they provide essential infor-
mation and help reduce uncertainty. For more com-
plex questions, we first select sentences containing
the answer and then further select sentences seman-
tically similar to these answer-containing sentences
using the KNN method. Although these sentences
may not contain the answer directly, they offer con-
textual clues that help the model better interpret
the question and produce a more accurate response.
We use both answer-containing and KNN-based
similar sentences as the extractor’s optimization
targets, allowing the extractor to adapt to queries
of varying complexity while improving accuracy
and reducing necessary contexts.

4.2 Clue Reranker

The clue extractor often selects sentences with mul-
tiple relevant clues of varying importance, neces-
sitating reranking. We address this by training a
reranker with pairwise loss to prioritize the most
relevant sentences.



Training We use the real RAG-generated feed-
back to annotate the training data for the reranker,
as the QA performance on complex questions heav-
ily depends on the characteristics of the genera-
tion module. First, we pair each of the extracted
clue sentences s; € S¢ with the query ¢ as (sj, q),
where sentence sj that enables the downstream gen-
eration module to produce the correct answer for
q is considered as positive sample Spositive, While
other sentences are treated as negative samples
snegativez. The Reranker aims to minimize the
following pairwise loss function (Karpukhin et al.,
2020) to improve relevance ranking:

eSim(Q:spositive)

Lrerank = — lOg

eSim(Q7Sposilive) + eSim(%Snegative) ’

where sim(q, ) represents the semantic simi-
larity between the query ¢ and the sentence * by
Reranker model. Minimizing this loss function
enables the Reranker model to effectively identify
and prioritize the most relevant clues.

Inference Given the query ¢ and the extracted
sentences S¢, the Reranker model calculates the
relevance score between every sentence s; € S¢
and query q. The reranked clues are defined as:

S" = Reranker(q,S°).
4.3 Adaptive Truncator

The adaptive truncator aims to capture the minimal
necessary clues based on the complexity of the
question and the documents, ensuring sufficient
clues for accurate answer generation.

Training To determine the optimal clues sub-
set St for each query ¢, we perform data anno-
tation based on the reranked answer clues S” ob-
tained from the previous reranking step. Given a
query ¢ and its reranked clues S” = {s/,..., s} },
the objective is to identify the smallest subset
St such that the RAG system’s generation model
M can generate the correct answer y based on
g and S*. We define D, = {s},...,s}}, where
1 < k < n. The performance on each subset Dy,
is evaluated by checking if the generation model’s
output M (q, Dy, ) matches the ground truth y. The
correctness condition is defined as:

1, if M(q,Dy) =y

Correct(q, D) = k
0, otherwise
2If no candidate clues can generate the correct answer, or
if all samples can generate the correct answer, the sample will
be removed from the annotated data.

Since the reranker cannot guarantee that the most
relevant sentences are always ranked first, espe-
cially for complex questions, we iterate over the
subsets from largest to smallest, starting with D,,
and continuing to D;. The optimal subset S is the
smallest subset that generates the correct answer:

St ={s],...,s%},
K = arg mkin{k | Correct(q, Dy) = 1}.

If the RAG system cannot generate a correct
answer from any subset, then S* = (), indicating
no subset suffices. This method ensures the use of
minimal necessary context St.

During the model training stage, we fine-tune
an LLM based on the data annotations. The
Truncator is trained to predict the smallest index
K of 8" that needed to answer the query:

Lie = —log Py(K|q,S").

Inference During inference, given a new query
q and its reranked sentences S”, the Truncator
predicts the minimal index K, and truncates S”
to St = {97,... , Sk, }. Finally, the generation
module of RAG concatenates the query ¢ with
the filtered answer clues S? as a prompt (see Ap-
pendix B.1) to reason the answer.

S Experiments

5.1 Experimental Setup

Datasets We evaluate our method on three
QA benchmark datasets: Natural Questions
(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017) and HotpotQA (Yang et al., 2018).
We utilize the adversarial Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) to retrieve the Top-
5 passages from the full Wikipedia passages for
each question in these datasets.

Evaluation Metrics We evaluate answer qual-
ity on three open-domain QA datasets using Exact
Match (EM) for strict correctness and F1 score for
partial overlap. To assess computational cost, we re-
port compression ratio (CR) and inference through-
put (TP) (Cao et al., 2024; Hwang et al., 2024) on a
single A6000-48G GPU. CR is defined as the ratio
of original to compressed context length, and TP
refers to the number of examples the generator can
process or generate per second during inference.



NQ TriviaQA HotpotQA
Method EM F1 CR TP EM F1 CR TP EM F1 CR TP
Closed-book 2698 6251 - 30.54 68.86 - 19.96  55.84 -
Retrieval without Filtering
Top-1 document 36.81  69.21 517x 217 4274 7713  532x 3.1 2554 60.09 4.83x  3.11
Top-5 documents 40.21  70.95 1.0x 1.69 4832 80.16 1.0x 290 2507 59.57 1.0x 1.82
LLAMA3-8B-INSTRUCT
Retrieval with Filtering
RECOMP(Xu et al., 2024) 37.12 6943 11.97x 3.54 4341 77.61 1091x 325 2459 5926 1295x 497
LongLLMLingua(Jiang et al., 2024)  36.96  69.25  4.56x 1.97 4756 79.15 4.18x  3.04 2431 5893 445x  3.39
FILCO (Wang et al., 2023) 3243 6478 17.43x 3.82 3896 74.14 1393x 347 2012 56.03 11.77x 539
BottleNeck (Zhu et al., 2024) 3972 70.14 1432x 336 48.16 79.83 21.26x 432 2564 6023 13.21x 551
“Oours 4217 7131 1956x 372 4881 8033 2077x 491 2647 6115 1437x 573
MISTRAL-7B-INSTRUCT
Retrieval with Filtering
RECOMP(Xu et al., 2024) 3695 69.25 13.83x 325 4339 7751 1091x 3.17 2434 59.16 7.24x 435
LongLLMLingua(Jiang et al., 2024) 3745 69.67  4.09x 1.58 47.84 7923 431x 3.01 2405 5875 422x  3.36
FILCO (Wang et al., 2023) 3259 6483 1635x 3.09 3847 73.87 1283x 331 21.34 5691 13.00x 4.73
BottleNeck (Zhu et al., 2024) 39.48 70.05 12.53x  3.01 48.03 7997 1524x 428 2547 5997 11.06x 4.75
“Oours 4193 7112 1743x 347 4864 8021 1649x 449 2603 6078 14.89x 477

Table 1: Experimental results on NQ, TriviaQA, and HotpotQA using two base models: LLaMA3-8B-Instruct and

Mistral-7B-Instruct.

Implementation Details We use LLaMA3-8B-
Instruct (Dubey et al., 2024) and Mistral-7B-
Instruct (Jiang et al., 2023) as backbone LLMs.
We fine-tune the two models with LORA (Hu
et al., 2021) as the clue extractor and adaptive
truncator for 16 epochs on a single A6000-48G
GPU. The initial learning rate is set to Se-4,
and the batch size is set to 4. We select the
best model based on the performance of the val-
idation set. For clue reranker, we implement
Sentence-BERT (Reimers and Gurevych, 2020) us-
ing distilbert-base-uncased’. In the final genera-
tion phase, we utilize the LLaMA2-7B (Touvron
et al., 2023) model. More details can be seen in
Appendix A.

5.2 Baselines

We consider three baseline strategies:

Without Filtering (i) Closed-book, which relies
solely on the generator’s parametric knowledge;
(ii) Top-1, which uses only the highest-ranked doc-
ument for generation; (iii) Top-5, which concate-
nates the top five retrieved documents as input.

Extractive Methods (i) RECOMP (Xu et al.,
2024), which employs a fine-tuned cross-encoder
to select salient sentences through dense retrieval;
(i1) LongLLMLingua(Jiang et al., 2024), which
prunes irrelevant tokens in long contexts via a dy-

3https://huggingface.co/distilbert/
distilbert-base-uncased

namic programming algorithm guided by question-
aware perplexity scores.

Abstractive Methods (i) FILCO (Wang et al.,
2023), which trains a context filtering model to dy-
namically select key sentences and jointly learns
with the generator for end-to-end distillation; (ii)
BottleNeck (Zhu et al., 2024), which employs re-
inforcement learning and information bottleneck
theory to improve both filtering and generation.

5.3 Main Results

The comparison results on three QA datasets are
shown in Table 1. The results indicate the follow-
ing: (i) RAG improves downstream task per-
formance across all datasets. Using Top-5 doc-
uments generally outperforms Top-1, indicating
that incorporating more contextual information im-
proves model performance; (ii) Noise filtering
is crucial for further improving performance.
Across multiple datasets, filtering methods signifi-
cantly reduce context length while preserving per-
formance close to that of Top-5 documents, effec-
tively removing irrelevant information and enhanc-
ing accuracy; (iii) FineFilter outperforms base-
lines across multiple models and datasets. Fine-
Filter consistently outperforms all filtering base-
lines across LLaMA3 and Mistral, i.e., it improves
EM by 6% and CR by 37% over BottleNeck on NQ
with LLaMA3; (iv) FineFilter performs remark-
ably better than Top-5 documents on complex
multi-hop tasks. FineFilter shows the largest im-
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LLaMA2-7B (NQ) Flan-T5-Large (HotpotQA)

Method EM F1 EM F1
_ FineFilter 4217 7131 2379 = 5844
w/o clue extractor 39.70 70.13 20.35 56.31
w/o clue reranker 41.64 71.05 22.94 57.79
w/o adaptive truncator ~ 42.03 71.17 22.62 57.41

Table 2: Ablation study on NQ and HotpotQA test set.
We use LLaMA2-7B and Flan-T5-Large as the genera-
tors, respectively.

Method EM 1 F11 Latency (s.) |
LongLLMLingua 36.96  69.25 343
BottleNeck 39.72  70.14 3.63
RECOMP 37.12  69.43 0.97
FILCO 3243 64.78 2.64

" FineFilter (Ours)  42.17 7131 318

Table 3: Latency Analysis. We report end-to-end in-
ference latency and QA performance (EM, F1) on NQ
test set using LLaMA3-8B-Instruct. Experiments are
conducted on a single A6000 GPU.

provement on HotpotQA, with a 5.4% EM gain
over Top-5 using LLaMA3, followed by a 4.8%
on NQ and 1.0% on TriviaQA, underscoring its
superior performance in handling multi-hop QA.

6 Analysis

In this section, we will conduct the ablation study,
system latency evaluation, robustness analysis and
generalization of FineFilter. Additional analysis
can be seen in Appendix C and D.

6.1 Ablation Study

To explore the impact of different components, we
use LLaMA3-8B-Instruct as the base LLM and
introduce the following variants of FineFilter for
ablation study: 1) w/o clue extractor. directly uses
LLaMA3-8B-Instruct without fine-tuning for clue
extraction; 2) w/o clue reranker. kips reranking
and retains the original sentence order; 3) w/o
adaptive truncator. disables adaptive truncation of
the reranked clues. As shown in Table 2, removing
any single component leads to a performance drop
in both EM and F1, confirming that all modules are
essential to the overall effectiveness. Additional
ablation results are presented in Appedix C.

6.2 System Latency Evaluation

To assess the overall system efficiency, we measure
the average total inference time (Latency, in sec-
onds) required for all components in each method
to process a single sample on the NQ test set. As
shown in Table 3, RECOMP has the lowest latency

Dataset Method EM F1
NOQ Direct Extraction 39.41 69.98
_ - _ _ _ Finctuned Extraction _ 4143__7L01 _
TriviaQA Direct Extraction 45.54 78.01
(0% Fine-tuncd Extraction _ 48368016 _
Direct Extraction 24.71 59.29
HOpoQA i e tuned Extraction 2601  60.73

Table 4: Performance comparison between Direct Ex-
traction and Fine-tuned Extraction across three QA
datasets using LLaMA3-8B-Instruct.

but worse EM. FineFilter achieves the highest EM
with only 0.52s more latency than the baselines,
owing to its lightweight reranker and truncator that
add minimal overhead, and the clue extractor with
comparable complexity to existing methods. Thus,
FineFilter offers a better trade-off between accu-
racy and efficiency.

6.3 Direct vs. Fine-tuned Extraction

We analyze the effect of fine-tuning on Clue Ex-
traction by comparing two approaches: 1) Direct
Extraction. Using LLM without fine-tuning to
extract clue sentences from retrieved documents
based on the given prompt (see Appendix B.2); 2)
Fine-tuned Extraction. Using fine-tuned LLM to
select answer-containing sentences. As shown in
Table 4, Fine-tuned Extraction consistently outper-
forms Direct Extraction by leveraging task-specific
knowledge to identify more relevant sentences.

6.4 Threshold of KNN-Based Extraction

We assess the KNN-based extraction by varying
the threshold, which controls the cosine similarity
to answer-containing sentences. A threshold of
0 selects only the answer sentences, while higher
thresholds allow semantically similar sentences to
expand the context with additional relevant infor-
mation. As shown in Figure 4, we compare the
model’s performance at different threshold values.
For simple questions such as NQ, the KNN ex-
traction strategy does not improve performance, as
answers can typically be obtained directly from
sentences containing the answers. For more com-
plex questions such as HotpotQA and TriviaQA,
the KNN strategy improves performance at lower
thresholds but declines at higher thresholds due to
increased noise. It is worth noting that KNN-based
extraction plays a supplementary role. While the
threshold setting impacts FineFilter’s performance,
it does not change the experimental result that Fine-
Filter outperforms the best noise filtering baseline.
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Figure 4: An illustration of clue extraction performance using LLaMA3-8B-Instruct on NQ, TriviaQA, and
HotpotQA. The x-axis shows the KNN threshold and higher values introduce more contextual sentences.

Dataset Recall-1 (%) Hit-2@1 (%) Recall-3 (%)
NQ 81.96 77.16 80.17
TriviaQA 91.94 83.25 85.28
HotpotQA 84.54 77.90 80.54

Table 5: Cascading errors analysis of extractor (Recall-
1), reranker (Hit-2@1) and truncator (Recall-3) on three
datasets using LLaMA3-8B-Instruct.

6.5 Robustness Analysis

Cascading Errors Resilience Analysis For high-
quality retrieval scenarios, we conduct experiments
on NQ test set with gold-standard answers to eval-
uate cascading errors. Recall-1 measures whether
the extractor can retrieve the gold-standard answer.
Hit-2@1 measures the probability that the reranker
places the gold-standard answer as Top-1. Recall-3
measures whether the truncator can continue to re-
tain the gold-standard answer. As shown in Table 5,
FineFilter maintains a low error rate in the filtering
components, indicating that cascading errors are
kept within a controllable range.

Performance under Unreliable Retrieval The
truncator not only shortens context but also helps
filter out unreliable contents. We conduct experi-
ments on samples from HotpotQA test set without
gold-standard answers to simulate unreliable re-
trieval. As shown in Table 6, FineFilter’s truncator
effectively suppresses noise and prevents answer
degradation. This is because FineFilter is trained to
allow empty outputs, whereas baseline models per-
form poorly under unreliable retrieval conditions,
as they must choose an output answer clue.

6.6 Cross-Task Generalization

To evaluate FineFilter’s generalization, we test it
on 1,200 random samples from the Conversational

Method EM F1

RECOMP 15.51 51.33
FILCO 14.47 50.46
Ours (w/o Truncator) 15.63 51.42
Ours (w/ Truncator) 16.20 51.94

Table 6: Results under unreliable retrieval on HotpotQA
test set using LLaMA3-8B-Instruct.

Method ROUGE-1 ROUGE-2 ROUGE-L
RECOMP 0.3051 0.1022 0.1668
FILCO 0.2743 0.0976 0.1428
BottleNeck 0.3708 0.1529 0.2158
LongLLMLingua 0.4082 0.1775 0.2369
Top-1 0.3532 0.1275 0.2103
Top-5 0.3769 0.1546 0.2234

" FineFilter (Ours) 04211 01842 02556

Table 7: Comparison of cross-task generalization ability
across different baselines, evaluated using ROUGE-1,
ROUGE-2, and ROUGE-L.

Multi-Doc QA dataset *, after training on Hot-
potQA. As shown in Table 7, FineFilter maintains
strong performance in this new dataset, demonstrat-
ing its generalization across diverse QA tasks.

7 Conclusion

We propose FineFilter, a fine-grained noise filtering
mechanism to enhance performance and efficiency
in RAG. By framing noise filtering as a sentence-
level MinMax optimization problem, it effectively
identifies relevant clues in complex reasoning sce-
narios. Its three optimized modules use KNN clus-
tering to gather sufficient context and retain key
clues based on generator feedback. Experiments
show FineFilter outperforms baselines in perfor-
mance and efficiency on three QA datasets. Future
work can explore adaptive noise filtering that dy-
namically adjusts based on query complexity or
retrieval quality for complex reasoning tasks.

*https://sites.google.com/view/wsdm24-docqa


https://sites.google.com/view/wsdm24-docqa

Limitations

Although FineFilter has made significant progress
in clue extraction and computational efficiency,
there is still the issue of system transferability. Fine-
Filter fine-tunes the LLM based on downstream
generator feedback, and if a new generative LLM is
adopted, the filtering modules need to be retrained.
This tight coupling results in increased transfer
costs for the system.

Ethics Statement

This paper presents FineFilter, a fine-grained noise
filtering mechanism that formulates RAG noise re-
duction as a sentence-level MinMax optimization
problem. It extracts sufficient supporting clues,
reranks them based on answerability, and adap-
tively truncates redundancy to enhance both answer
accuracy and inference efficiency. Throughout this
research, we have adhered to ethical guidelines to
ensure the integrity and fairness of our work. All
experiments are conducted using publicly avail-
able datasets, and the retrieval corpus is based on
open-domain sources such as Wikipedia, ensuring
transparency and reproducibility.

FineFilter does not involve any personally iden-
tifiable information or private user data. The pro-
posed methods are designed to enhance model effi-
ciency and robustness without reinforcing harmful
biases. Nevertheless, as with all RAG systems,
the quality and neutrality of retrieved content can
influence outputs. Future work may incorporate
bias detection and content verification modules to
further improve fairness and reliability.
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A More Details of Experimental Settings

We utilize LLaMA3-8B-Instruct (Dubey et al.,
2024) and Mistral-7B-Instruct (Jiang et al., 2023)
as the backbone language models, both of which
demonstrate excellent performance across various
tasks and exhibit high flexibility during fine-tuning.
We apply the LORA method (Hu et al., 2021) for
fine-tuning, which is an efficient low-rank adapta-
tion technique that significantly reduces the com-
putational cost of parameter updates while main-
taining model performance. The LORA method is
applied to the clue extractor and adaptive truncator.
All training is conducted on a single A6000-48G
GPU, with 16 training epochs. The initial learning
rate is set to Se-4, and the batch size is 4. Dur-
ing training, we employ gradient accumulation to
handle smaller batch sizes and improve training
stability. The best model is selected based on the
performance of the validation set.

During the fine-tuning phase, we train the mod-
els on the three QA datasets, i.e., NQ, TriviaQA,
and HotpotQA. We employ the KNN-based sen-
tence selection method across all datasets. The
maximum number of samples is limited to 10000,
and the KNN-based sentence selection varies with
the € value for each dataset: for NQ, ¢ is set to O;
for TriviaQA, e is set to 0.05; and for HotpotQA,
€ is set to 0.1. These adjustments ensure flexibil-
ity and accuracy in clue extraction for different
datasets. Additionally, data preprocessing is accel-
erated during each training epoch using 16 parallel
workers. The maximum input length is set to 7168
to accommodate large-scale context information.

For the clue reranker, we use Sentence-
BERT (Reimers and Gurevych, 2020) with the
distilbert-base-uncased model, which is effective
for generating high-quality sentence embeddings to
compute sentence similarity. During training, we
apply the Adam optimizer with a batch size of 64,
a learning rate of 2e-5, and 1000 warm-up steps.
The training lasts for 4 epochs.

B Prompt

B.1 Prompt for the Generator

We use the LLaMA2-7B (Touvron et al., 2023)
model as the final generator. During the generation
phase, we design a specialized generator prompt
to ensure that the generated answers are highly
relevant to the questions. We show our prompt in
Table 8. The prompt guides the model in generating
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accurate and concise responses based on the given
question and context.

B.2 Prompt for the Clue Extractor

We show our prompt for clue extraction in Table 9,
which plays a crucial role in identifying and select-
ing relevant information from the input documents.
This prompt is designed to guide the model in ex-
tracting the most informative sentences, those most
likely to contain the answer to the given question.

B.3 Prompt for the Adaptive Truncator

We show our prompt for adaptive truncation in
Table 10. The prompt is designed to guide the
model in optimizing context truncation based on
the complexity of the question and the quality of
the document, thereby improving the efficiency of
the language model. Specifically, given a ques-
tion and a ranked list of sentences, the model’s
task is to identify and retain the most relevant sen-
tences while truncating those that are irrelevant to
the question. Through this process, the model is
able to maintain answer accuracy while reducing
unnecessary information, thus enhancing process-
ing efficiency.

Prompt for the Generator

[INST]

<<SYS>>

You are a helpful, respectful, and honest
assistant. Please use the documents
provided to answer the query.

Documents:

{Documents}

<</SYS>>

{Question}
[/INST]

Table 8: Prompt for the Generator.

C Additional Experimental Analysis

C.1 Impact of Different Rerankers

To select a more effective reranking base model,
we compare BM25 (Robertson et al., 2009),
BGE-rerank (Xiao et al., 2024), and Sentence-
BERT(Reimers and Gurevych, 2020). As shown
in Table 11, the results demonstrate that Sentence-
BERT outperforms all baseline models in both EM



Prompt for the Clue Extractor

You are a highly skilled assistant special-
izing in extracting relevant information
from provided documents. Your task is
to identify and extract sentences from the
documents as much as possible that are
most directly useful for answering the given
question. Rank the sentences in order of
relevance, with the most relevant sentence
listed first. Preface each sentence with its
sequence number as follows:

Sentence 1:

Sentence n:

Question:
{Question}

Documents:
{Documents}

Table 9: Prompt for the Clue Extractor.

Prompt for the Adaptive Truncator

You are a highly skilled assistant specializ-
ing in optimizing language model efficiency
by truncating context based on question
complexity and document quality. Given
a question and a ranked list of sentences,
identify and retain the most relevant ones
while truncating the irrelevant sentences.

Question:
{Question}

Ranked List:
{Ranked List}

Table 10: Prompt for the Adaptive Truncator.
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Method EM F1

BM25 41.51 71.03
BGE-rerank 41.73 71.06
Sentence-BERT(Ours) 42.03 71.21

Table 11: Comparison of different reranking methods
on NQ test set based on LLaMA3-8B-Instruct.

NQ TriviaQA HotpotQA
Method EM F1 EM F1 EM F1
LongLLMLingua 34.77 6528 4632 7843 2219 57.33
FILCO 3196 64.05 37.71 7324 19.76 55.74
RECOMP 35.12  68.71 4296 7739 2391 58.19
BottleNeck 3849 69.88 46.15 7837 2427 58.83
Top-1 36.81 6921 4274 77.13 2554  60.09

Tops 021 7095 4832 8016 2507 5957

FineFiler (Ours) 39.23 69.98 46.88 7885 24.65 59.26

Table 12: Performance comparison on NQ, TriviaQA,
and HotpotQA under a weakened setup where Fine-
Filter’s clue extractor and adaptive truncator are re-
placed with Flan-T5-Large, to simulate limited clue
processing capabilities.

and F1 scores, so we chose it as the reranking base
model.

C.2 Weaker Extractor and Truncator

To better assess the impact of clue extractor and
adaptive truncator quality on the end-to-end perfor-
mance of RAG systems, we conduct an experiment
in which FineFilter’s clue extractor and truncator
are replaced with a weaker model, Flan-T5-Large.
This setup simulates scenarios where the clue pro-
cessing pipeline exhibits limited reasoning or com-
pression capabilities, enabling us to examine the
extent of performance degradation under such con-
straints.

As shown in Table 12, FineFilter consistently
outperforms the baselines across all three datasets,
although it still slightly underperforms compared
to the Top-5 setting. This suggests that when the
downstream generator is sufficiently powerful (e.g.,
LLaMA2-7B), relying solely on a simple or less
capable clue processing module is insufficient to
fully exploit the potential of the overall system.
Instead, only upstream components with strong
extraction and compression capabilities can interact
effectively with a powerful generator to achieve
high-quality question answering.

C.3 Weaker Downstream Generator

To assess the impact of generator capacity on the
overall performance of our RAG system, we re-



NQ TriviaQA HotpotQA
Method EM F1 EM F1 EM F1
LongLLMLingua 3571 68.89 46.28 78.31 22.06 57.13
FILCO 3179  63.88 3459 71.77 20.79 56.71
RECOMP 3628 69.11 41.32 7644 2258 57.34
BottleNeck 3794 69.83 4591 7794 2326 58.02
Top-5 3485 68.04 46.03 78.16 22.86 57.59
FineFiler (Ours) 38.95 69.91 47.03 7898 23.79 58.51

Table 13: Performance comparison on NQ, TriviaQA,
and HotpotQA using Flan-T5-Large as the weaker gen-
erator, while keeping the clue processing pipeline un-
changed.

Method NQ TriviaQA HotpotQA
_ _FineFilter 3895 = 4703 2379
w/o clue extractor 36.18 44.72 20.35
w/o clue reranker 36.91 45.33 22.94
w/o adaptive truncator 38.09 46.21 22.62

Table 14: Ablation study on NQ, TriviaQA, and Hot-
potQA test set using EM scores. The generator is Flan-
T5-Large, and the clue processing pipeline is kept un-
changed.

Method EM CR Latency (s.)
Ours (Truncator: LLaMA3-8B-Instruct) 42.17 19.56 % 3.18
Ours (Truncator: Flan-T5-Large) 42.09 18.79x% 3.05

Table 15: Performance of adaptive truncators with dif-
ferent parameter sizes on the NQ dataset.

place the stronger generator (LLaMA2-7B) with a
weaker model (Flan-T5-Large), while keeping all
other components and configurations unchanged.
We further conduct an ablation study on three
datasets, as presented in Table 13 and Table 14.

Experimental results demonstrate that replac-
ing a strong generator with a weaker model re-
sults in performance degradation across all datasets.
Nevertheless, our method consistently outperforms
the Top-5 baseline. Notably, the relative contribu-
tion of the adaptive truncator becomes more pro-
nounced under weaker generation conditions (Ding
et al., 2025), particularly on reasoning-intensive
datasets such as TriviaQA and HotpotQA. These
findings indicate that, when the downstream gen-
erator is less capable, upstream components like
the adaptive truncator play a more critical role.
Therefore, in scenarios constrained by limited com-
putational resources or smaller model sizes, well-
designed filtering and compression strategies can
effectively mitigate the limitations of weaker gen-
erators.
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C.4 Truncators with Different Parameters

To investigate the impact of truncator size on over-
all system performance, we replace the default trun-
cator with a smaller Flan-T5-Large model and eval-
uate the system on the NQ dataset.

As shown in Table 15, using a smaller truncator
leads to a slight drop in EM and CR, but provides
a marginal improvement in inference speed (0.13s
faster). These results suggest that smaller trunca-
tors can offer a reasonable trade-off between perfor-
mance and efficiency. Therefore, we recommend
choosing the truncator model based on application-
specific requirements and resource constraints.

D Case Study

We select examples from the NQ and HotpotQA
datasets, covering two typical question-answering
scenarios: one involving simple single-answer
questions and the other involving complex multi-
answer questions requiring reasoning. As shown in
Table 16 and Table 17 for the NQ dataset, and Ta-
ble 18 and Table 19 for the HotpotQA dataset, these
examples will demonstrate the advantages and ef-
fectiveness of the FineFilter method in handling
question answering tasks of varying complexity.



Question: what kind of beast is the beast from beauty and the beast
Correct Answer: a chimera

Retrieved Documents

Document 1:

Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt Disney Animation
Studios’ 30th animated feature film "Beauty and the Beast" (1991). He also appears in the film’s two
direct-to-video followups "" and "Belle’s Magical World". Based on the hero of the French fairy tale by
Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed into a hideous beast as punishment for his
cold-hearted and selfish ways, the Beast must, in order to return to his former self, earn the love of a
Document 2:

the arms and body of a bear, the eyebrows of a gorilla, the jaws, teeth, and mane of a lion, the tusks of
a wild boar and the legs and tail of a wolf. He also bears resemblance to mythical monsters like the
Minotaur or a werewolf. He also has blue eyes, the one physical feature that does not change whether
he is a beast or a human. As opposed to his original counterpart, Disney gave him a more primal
nature to his personality and mannerisms, which truly exploited his character as an untamed animal (i.e.
alternating between walking and

Document 3:

the Beast to resemble a creature that could possibly be found on Earth as opposed to an alien. The
initial designs had the Beast as humanoid but with an animal head attached as per the original fairy tale,
but soon shifted towards more unconventional forms. The earlier sketches of the Beast2019s character
design are seen as gargoyles and sculptures in the Beast’s castle. Inspired by a buffalo head that he
purchased from a taxidermy, Keane decided to base the Beast’s appearance on a variety of wild animals,
drawing inspiration from the mane of a lion, head of a buffalo, brow

Document 4:

the villagers. Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt
Disney Animation Studios’ 30th animated feature film “Beauty and the Beast” (1991). He also appears
in the film’s two direct-to-video follow-ups and “Belle’s Magical World.” Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda
Woolverton and animated by Glen Keane. A pampered prince transformed into a hideous beast as
punishment for his cold-hearted and selfish ways, the Beast must, in order to return to his former self,
earn the love of a person

Document 5:

of a gorilla, tusks of a wild boar, legs and tail of a wolf, and body of a bear. However, he felt it important
that the Beast’s eyes remain human. In fear that Glen Keane would design the Beast to resemble voice
actor Robby Benson, Walt Disney Studios chairman Jeffrey Katzenberg did not allow Keane to see
Benson during production of the film. The Beast is not of any one species of animal, but a chimera (a
mixture of several animals), who would probably be classified as a carnivore overall. He has the head
structure and horns of a buffalo

Table 16: An example from NQ, including Question, Correct Answer, and Top-5 Retrieved Documents.
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Method

Summary

Answer

Closed-book:
Top-5 Documents
Top-1 Document

RECOMP

FILCO

Ours

Beast (Beauty and the Beast) The Beast is a fictional char-
acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991). He
also appears in the film’s two direct-to-video followups ""
and "Belle’s Magical World". Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont,
the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed
into a hideous beast as punishment for his cold-hearted and
selfish ways, the Beast must, in order to return to his former
self, earn the love of a

Beast (Beauty and the Beast) The Beast is a fictional char-
acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991).

the arms and body of a bear, the eyebrows of a gorilla, the
jaws, teeth, and mane of a lion, the tusks of a wild boar and
the legs and tail of a wolf.

Sentencel:The Beast is not of any one species of animal,
but a chimera (a mixture of several animals), who would
probably be classified as a carnivore overal

Sentence2:of a gorilla, tusks of a wild boar, legs and tail of
a wolf, and body of a bear

a bear
a bear
a bear

a bear

a bear

a chimera

Table 17: Case study based on an example from NQ.
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Question: What writer worked on both The Ice Cream Man and and a 2007 fantasy comedy loosely
based on a Donald Henkel poem?
Correct Answer: David Dobkin

Retrieved Documents

Document 1:

Ice Cream Man (film) Ice Cream Man is a 1995 American horror comedy film produced and directed
by Norman Apstein, a director of pornographic films. In his first and only attempt at mainstream
filmmaking, and written by Sven Davison and David Dobkin (who later wrote and directed the films
"Wedding Crashers" and "Fred Claus"), and starring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from a psychiatric institution who opens an ice
cream factory where he begins using human flesh in his recipes. The film had an estimated 2 million
budget and was

Document 2:

“Water Tower and the Turtle” won the 39th Kawabata Yasunari Prize. The Japanese Ministry of
Education, Culture, Sports, Science and Technology recognized Tsumura’s work with a New Artist
award in 2016. Tsumura’s writing often employs Osaka-ben, a distinctive Japanese dialect spoken in
Osaka and surrounding cities. Kikuko Tsumura was born in Osaka, Japan in 1978. While commuting to
school, she read science fiction novels, especially the work of William Gibson, Philip K. Dick, and Kurt
Vonnegut, and began writing her own novel, “Manita” (“Maneater”), while still a third-year university
student. “Manita” won the 21st Dazai Osamu Prize and was

Document 3:

Sentai-style shows called “Go Sukashi!” based on a character by Shoko Nakagawa (who appears in
the films), and starring John Soares and Brooke Brodack. He has also published an online superhero-
genre-spoofing webcomic titled “Ratfist.” In September 2012, Fox Animation optioned TenNapel’s
published Graphix novel “Cardboard”, with plans for actor Tobey Maguire’s Material Pictures, graphic
novelist Doug TenNapel, and the Gotham Group to be executive producers. Fox plans to have the
picture developed under its WedgeWorks subsidiary. WedgeWorks director Chris Wedge (“Ice Age”) is
producing, and is considering directing the film as well. TenNapel has used Kickstarter to produce a
bound

Document 4:

The film industry, and his interest particularly in contemporary animated film from Eastern Europe —
particularly the work of Jan Lenica, Daniel Szczechura and Walerian Borowczyck — as well as the
Brothers Quay has been a marked influence on his work. He has published three novels. Weiner’s
1993 debut novel “The Museum of Love” was published by Bloomsbury UK and subsequently by
Kodansha in Japan, The Overlook Press in the United States and Canada, and Belfond in France. It
earned comparisons to William S. Burroughs, Céline, Jean Genet, David Lynch and Todd Haynes for
its blend of surrealism and dark

Document 5:

See her idol, Eudora Welty, Flagg won first prize in the writing contest for a short story told from the
perspective of an 11-year-old girl, spelling mistakes and all—a literary device that she figured was
ingenious because it disguised her own pitiful spelling, later determined to be an outgrowth of dyslexia.
An editor at Harper & Row approached her about expanding the story into a full-length novel. “I just
burst into tears and said, ‘I can’t write a novel,”” she told “The New York Times” in 1994. “‘I can’t
spell. I can’t diagram a sentence.” He took my hand and

Table 18: An example from HotpotQA, including Question, Correct Answer, and Top-5 Retrieved Documents.
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Method Summary Answer
Closed-book: - Quentin Tarantino
Top-5 Documents | - Grady Hendrix
Top-1 Document Ice Cream Man (film) Ice Cream Man is a 1995 American | David Dobkin

RECOMP

FILCO

Ours

horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films, in his first and only
attempt at mainstream filmmaking, and written by Sven
Davison and David Dobkin (who later wrote and directed
the films "Wedding Crashers" and "Fred Claus"), and star-
ring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from
a psychiatric institution who opens an ice cream factory
where he begins using human flesh in his recipes. The film
had an estimated 2 million budget and was

Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Sentence 1:Ice Cream Man (film) Ice Cream Man is a 1995
American horror comedy film produced and directed by
Norman Apstein, a director of pornographic films.
Sentence 2:in his first and only attempt at mainstream film-
making, and written by Sven Davison and David Dobkin
(who later wrote and directed the films "Wedding Crash-
ers" and "Fred Claus"), and starring Clint Howard, Olivia
Hussey, and David Naughton.

Norman Apstein

Norman Apstein

David Dobkin

Table 19: Case study based on an example from HotpotQA.
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