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Abstract

Vision-language models (VLMs) are trained on massive web scrapes, requiring careful data
curation. For instance, the LAION public dataset retained only about 10% of the total
crawled data. In recent times, data curation has gained prominence with several works
developing strategies to retain ‘high-quality’ subsets of ‘raw’ scraped data. However, these
strategies are typically developed agnostic to the available compute for training. In this
paper, we demonstrate that making filtering decisions independent of training compute
is often suboptimal—well-curated data rapidly loses its utility when repeated, eventually
decreasing below the utility of ‘unseen’ but ‘lower-quality’ data. In fact, we show that even
a model trained on unfiltered common crawl obtains higher accuracy than that trained
on the LAION dataset post 40 or more repetitions. While past research in neural scaling
laws has considered web data to be homogenous, real data is not. Our work bridges this
important gap in the literature by developing scaling trends that characterize the ‘utility’
of various data subsets, accounting for the diminishing utility of a data point at its ‘nth’
repetition. Our key message is that data curation can not be agnostic of the total compute
a model will be trained for. Based on our analysis, we propose FADU (Filter by Assessing
Diminishing Utility) that curates the best possible pool for achieving top performance on
Datacomp at various compute budgets, carving out a pareto-frontier for data curation.

1 Introduction

Large scale visual-language models like CLIP are trained on massive scrapes of the web
(Common Crawl), which are noisy and hence require careful curation. Datasets such as
LAION datasets (Schuhmann et al., 2021) used a strategy of filtering out image-caption
pairs that had ‘low’ similarity score as assessed by an already pre-trained CLIP model. Later
approaches developed more sophisticated filtering methods (Abbas et al., 2023; Radenovic
et al., 2023; Maini et al., 2023), often leading to improved performance of the resulting visual
language models. To the best of our knowledge, however, all these data filtering methods
make a common assumption—data filtering can be carried out independent of considering
compute budget (i.e., the number of training steps) used to train the resulting VLM.

In this paper, we show that instead, there is a fundamental relationship between the
performance of a data filtering mechanism and the ultimate compute budget. Specifically,
we show that there exist scenarios where training on ‘aggressively filtered’ good data (such
as the LAION dataset) is actually worse than naively training on the unfiltered common
crawl. This is because, after repeating for more than 40 epochs, the filtered data has
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Figure 1: (a) Retaining top-30% data based on CLIP scoring is common in vision-language
model training. Our results indicate that the filtering aggressiveness must adapt to the
compute-to-data pool size ratio, addressing the diminishing utility of good data with repeti-
tions. We present outcomes across 18 visual understanding tasks, employing a 128M sample
global data pool at different compute scales. (b)The Dynamic Problem of Data Filtering:
Web data is non-homogenous, and past work has succeeded at ranking various data subsets
according to their diminishing quality (y-axis). However, training on ‘high-quality’ data for
multiple epochs leads to diminishing utility (x-axis), an angle ignored in past work. Our
work aims to answer—what is the best allocation of and return for computational resources?

negligible remaining utility. On the other hand, common crawl samples, though lower in
initial utility, are seen fewer times and hence have a higher utility than LAION towards
the end. In other words, the utility of data diminishes with repetition, and hence filtering
metrics must be designed by assessing the tradeoff between the diminishing utility of a small
pool of ‘high-quality’ data, and the lower initial but slower diminishing utility of a larger
pool that includes ‘lower-quality’ data.

In order to characterize this phenomenon, we develop new scaling laws for VLMs that
account for the effect of repeatedly training (as afforded by the compute budget) on the same
data points. We estimate the scaling curves of test error for models trained from 128M to
34B total samples (i.e. training steps) seen. Across multiple architectures and data scales,
our scaling curves reliably fit the final test error of the models. Most importantly, this
scaling allows allow us to predict the “pareto optimal” filtering approach: given a compute
budget, we can determine a threshold of data filtering that leads to the best-performing
model. Our estimated ‘optimal’ filtering threshold achieves state-of-the-art performance at
each of the compute scales from 32M to 640M samples.

2 Data Filtering for a Compute Budget

2.1 Experimental setup

We are given a large initial pool of data to train a VLM (which we use synonymously with
CLIP) and want to study the effects of data filtering at different compute budgets. As
our base unfiltered pool, we use the “medium” scale (128M samples) of the recently data
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Figure 2: (a) Given an initial data pool of 128M samples, we train ViT-B/32 CLIP models
for a total of 640M samples. As we increase the training compute, the accuracy gains on
the 128M LAION data subset that aggressively filtered the common crawl to 10% of its
initial size plateau. Surprisingly, even no-filtering of the common crawl is better than the
popular LAION dataset after seeing more than 450M samples. (b) We modify the state of
the art data curation approach by changing the filtering threshold after ranking the data
by their metric. While the original paper proposed retaining 30% of the data, our results
show that depending on the ratio of compute to data pool size, we must adaptively make
the filtering less (or more) aggressive to account for the diminishing utility of good data
with repetitions. Results are presented on an average of 18 visual understanding tasks with
a global data pool size of 128M samples, and varying compute scales.

curation benchmark, Datacomp (Gadre et al., 2023a). In Datacomp, the compute budget is
fixed to 128M, with the implicit assumption that data filtering methods will continue to obey
their respective ordering in performance as we change the compute budget. In this work, we
explicitly consider different compute budgets for training steps:{32M, 64M, 128M, 640M}
and study the performance of data filtering methods. Note that filtering to different amounts
(for a fixed compute) changes the number of times each training sample is seen. At a
compute budget of 128M, each sample is seen 10 times from a filtered pool of 12.8M samples.

We assess the performance of our models based on their zero-shot accuracies across
a diverse set of 18 downstream tasks. This includes both—(a) classification tasks like
ImageNet, ImageNetOOD, CIFAR10, etc., and (b) retrieval tasks like Flickr and MSCOCO.
More details about the downstream evaluation tasks can be found in Appendix E.

2.2 When “good” data performs worse

We start with the popular LAION filtering strategy used in obtaining the LAION dataset (Schuh-
mann et al., 2021, 2022). This filters for image-caption pairs with a high similarity score
(> 0.28) as measured by OpenAI’s CLIP model. When filtering from common crawl, this
threshold amounts to retaining just 10% of the original pool.

We first compare training without filtering (i.e. raw common crawl) with training on
LAION-filtered subset, at varying compute budgets. Figure 2a shows the average down-
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stream accuracy on 18 tasks (Section 2.1), as the total training iterations (compute) is
scaled from 32M to 640M. We make the following observations:

1. Good data is better at low compute budget: In the regime of low training com-
pute, utilizing high-quality data (for example, via LAION filtering) is beneficial, corrob-
orating the conventional data filtering intuition. For instance, at 128M training itera-
tions, LAION’s approach of filtering surpasses the no-filter strategy significantly, achiev-
ing an increase of 7.5% zero-shot accuracy averaged over 18 tasks.

2. Data filtering hurts at high compute: The advantage offered by data filtering
consistently diminishes with increasing compute budget. Remarkably, beyond 450M
iterations, training on the unfiltered common crawl dataset outperforms that on LAION.

Why does the same data filtering, which supposedly picks the ‘best’ data, thereby im-
proving performance at low compute, end up hurting performance at high compute? At
a 450M compute budget, LAION-filtered data, retaining 10% of the pool, is seen approxi-
mately 32 times. This frequent repetition leads to diminishing utility for each sample. Ini-
tially, LAION-filtered data shows high utility at lower compute budgets due to minimal rep-
etition. However, at higher computes, its utility drops significantly due to over-repetition.
Conversely, unfiltered samples start with lower utility but experience a lesser decline, sur-
passing LAION-filtered data in utility over time due to fewer repetitions.

2.3 Data filtering must be compute-aware

In the previous section, we saw that the popular LAION-filtering method offered lower gains
and eventually under performing the uncurated pool as we increase our training compute.
We study the performance of some recently proposed state-of-the-art data filtering methods
as we change our compute budget.

We specifically analyze two methods: (a) CLIP score filtering (b) T-MARS , which ranks
data based on CLIP scores after masking text (OCR) features in images ( Section B). We
compare three levels of varying aggressive filtering for each data filtering approach, and
vary total compute (training iterations) from 32M to 640M, just like before.

Figure 1a illustrates the comparison of top-10%, top-30%, and top-40% CLIP filtering
at compute scales of 32M, 128M, and 640M. At a 32M compute scale, highly aggressive
filtering, retaining only the top-10% data as per CLIP scores, yields the best results, while
the least aggressive top-40% filtering performs the worst. However, this trend reverses
entirely as the compute is scaled to 640M . While top-10% filtering excels at low training
compute due to fewer repetitions, its utility diminishes rapidly with increased compute due
to data repetition. Similar trends are observed with the T-MARS scoring metric (Figure 2b).

These observations underscore the need for a compute aware filtering strategy balancing
two aspects: the high initial utility of high-quality data, which diminishes quickly due to
repeated epochs, versus lower-quality but larger data that offers lower initial utility but a
slower rate of decline due to fewer repetitions given a larger filtered subset pool size.

Can we turn this insight into a more performant compute-aware data filtering method?
The straightforward strategy is to simply try varying levels of filtering at the compute budget
and pick the best. But this is impractical. Now, we attempt at effectively extrapolating from
smaller compute budgets to larger while accounting for diminishing utility with repetition.
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3 Scaling Laws: Hypothesis on Utility

In the context of image-language modeling, let xi denote an image-caption pair (I, T ).
Further, let Sn = {xi}ni=1 be the training set and f(Sk) denote the error of the model f
after seeing Sn for k epochs. Following Cherti et al. (2023) we consider downstream zeroshot
error on ImageNet as the empirical estimate for the model’s error.

3.1 Defining Utility

First, let us consider the simple cases of assessing the utility of a single sample. Utility
refers to the decrease in model error after seeing a sample once during the training. Math-
ematically, utility of (n+ 1)th sample is given by:

U(xn+1) = f({xi}ni=1)− f({xi}n+1
i=1 ). (1)

Past works on scaling laws (Kaplan et al., 2020; Jia et al., 2021) estimate the error of a
model (at a fixed parameter count) after training for n samples as:

f({xi}ni=1) = anb + d; a, d > 0; b < 0, (2)

where a > 0, b < 0 and d > 0 are constants to be determined empirically. Intuitively, b
factors in in the diminishing gains as more data is seen and also models the utility of the
data pool itself, with a lower value indicating higher utility. Whereas, a is a normalizer
and d estimates an irreducible error at the end of training to infinity. For instance, Cherti
et al. (2023) noted that the b value for OpenAI’s filtered dataset was lower than that of the
LAION dataset, indicating it had higher utility. Plugging in equation 1, one can estimate
the utility of (n + 1)th sample as: U(xn+1) = a[nb − (n + 1)b]. Note that the value of the
exponent b is negative, and n is very large, hence the utility of any data point stays positive
and keeps diminishing as we see more training samples.

3.2 Utility of repeated data

The loss definition above follows prior discourse in the literature that finds that model
loss decays as a power law (Kaplan et al., 2020; Hoffmann et al., 2022). However, a key
assumption in these works is that each data point is only seen once during training. This
assumption while prevalent in the language modeling literature, is far from true in the vision-
language literature. For example, the CLIP (Radford et al., 2021a) models were trained
for 32 epochs on a dataset of 400M image-text pairs. Intuitively (and as seen empirically
in § 2), the gains from repeatedly seeing the same sample should diminish with the epoch,
something that the utility estimates in Equation 3.1 do not account for. This raises an
important question—how does one model the diminishing utility with epochs?

We propose the following estimate for the utility of seeing a datapoint for the kth time:

U(xn+1, k) = ak[n
b − (n+ 1)b], ak = a0

(
1

2

)k/τ

(3)

where a0 and τ (half-life) are constants to be estimated empirically. This equation corre-
sponds to a half-life type decay of the marginal utility of an additional sample, if the sample
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seen is repeated. Half-life τ is a factor that depends on the size of the data pool. Recently
Muennighoff et al. (2023) (in the paradigm of language models) estimate the effective num-
ber of samples seen, when the data is repeated. However, in Appendix H we show that our
proposed approach of decaying the marginal utility leads to a much better parametric fit.

3.3 Utility of a Data Pool

In practice, the utility of samples doesn’t vary much within examples in a close neighborhood
when ranked by any given data quality metric. Hence, rather than estimating per sample
utility, we are more interested in estimating the accuracy when we train a model from
scratch on a data pool for k epochs. Given a data pool Sn = {xi}ni=1 with n samples, the
utility of Sn at kth epoch follows from equation 3:

U(Sn, k) = ak[(k − 1)b − kb]nb, where ak = a0

(
1

2

)k/τ

(4)

Finally, given the training set Sn, the final error of model f(Sn, k) after training on Sn

for C total training samples can be written as:

f(Sn, a, b, τ, d, C) = d+ U(1)δ + U(2)δ2 + . . .+ U(j)δj + . . .+ a[Cb − (kn)b]δk,

U(j) = a[(j − 1)b − jb]nb, δ =
1

2

1/τ

and k = ⌊C/n⌋ (5)

Again, observe that the utility of the repeated data (the training set Sn) keeps on falling
with the half-life decay factor.

3.4 Estimating the Utility of Mixture of Data Pools

A unique challenge posed by our problem formulation is the presence of multiple data subsets
with different respective data utilities. In a scenario where we jointly train on multiple
data subsets, how can we estimate the effective utility (recall b in equation 5 denotes the
utility of a pool) of the combined pool? One naive way to estimate the error on training
on multiple data mixtures would be to use the average error on them. However, this does
not factor in the interplay of the two different b values in the exponent of the scaling curve.
To address this, let us first consider a simpler problem of training on two data subsets SP

n

and SQ
n with utility values bP and bQ respectively. To simplify the analysis we remove the

terms a, c, d but it directly follows in their presence as well.

Theorem 1 Given k data pools S1
n . . . Sk

n, sampled uniformly at random with respective
utility values b1 . . . bk, the effective utility value beff for the combined pool is the arithmetic

mean of the individual utility values. Formally, beff =
∑k

i bi

k .

This theorem implies that when merging different data buckets of equal size, we can ap-
proximate the utility parameter of the aggregate bucket, beff, simply as the arithmetic mean
of the utility parameter of each of the individual buckets.
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Figure 3: Scaling curves with repeated data for visual-language models: We par-
tition the DataComp medium scale pool samples into various buckets, based on the CLIP
scores, and train a model on each bucket for 10 epochs. (a) The estimated error curves us-
ing the proposed scaling laws (Equation 5). (b) Diminishing utility with epochs of various
data subsets. Observe that the utility of the best bucket (red) at it’s 4th repetition becomes
less than that of worse buckets like top-30%-40% subset.

4 FADU: Filtering by Assessing Diminishing Utility

Recall that we empirically observed in Figures 1a, 2b that the diminishing utility of repeated
good data necessitates the need to adapt the aggressiveness of data filtering in accordance
with the compute available. In this section, we use our proposed scaling laws to estimate
the best thresholding strategy given any data filtering metric and training compute. We
will use CLIP-score-based data ranking as a running example to demonstrate the same.

Applying our scaling laws requires us to transition from this metric-based example
ranking to example utility. In order to do the same, we divide the dataset into multiple
subsets ordered by the example ranking. This is based on the assumption that the utility
of all examples in a small neighborhood (based on the metric’s ranking) is similar. Now,
we need to estimate the scaling curve parameters for various subsets of the data. Consider
M equal disjoint data buckets S1,S2 . . . ,SM of the training pool S, ranked by quality.

We propose Filtering by Assessing Diminishing Utility (FADU) where we predict the best-
filtered subset given a fixed training compute C, which is the one with the highest average
utility over the training duration. Specifically, our approach consists of two steps:

1. Subset utility estimation: We first train a model on each individual bucket (sepa-
rately), and fit the test error with Equation 5 to estimate the initial pool parameters
b1, b2, . . . , bM and half-lives τ for the buckets.

2. Error estimation for training on k buckets: We sort all the buckets based on
their utility, and then estimate the error if we jointly trained on top-k% data subsets.
We first estimate the effective scaling parameters atop-k%, btop-k% of the joint data,
which is given by the arithmetic mean of the corresponding parameters of the subset
pools (Theorem 7). Plugging in the estimated parameters in Equation 5, we estimate
the final error of the pool as ℓtop-k% = f(Stop-k%, atop-k%, btop-k%, τ, d, C). The goal is
to find the value of k at which we should threshold. Therefore, the top-k% pool with
the lowest ℓtop-k% is predicted as the best-filtered subset.
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4.1 Empirical results: Estimating the utility of repeated data

To assess the utillity of data with repetitions, we again use the DataComp medium scale
pool. Specifically, we form six distinct data subsets, categorized by their respective CLIP
scores: top 10%, top 10%-20%, and so forth, up to the top 50%-60% subset. Each subset,
approximately 12.8M in size, is used to train a model over 10 epochs and estimate the scal-
ing law parameters. Figure 3 presents the estimated scaling curves for each data subset,
including the scaling parameter b. The calculated half-life for these data subsets is approx-
imately 3 epochs. We observed two significant trends:

• The estimated utility values b for subsets with higher CLIP scores are markedly lower
(more negative), thereby supporting traditional data filtering methods. Interestingly,
both empirical results and our scaling laws suggest that the 10%-20% CLIP score subset
is more effective than the top 10%, a somewhat unexpected finding.

• While the utility of new data (depicted by the blue curve) and repeated data (other subset
curves) both diminish over time, the decrease is more pronounced for repeated data. For
instance, after four repetitions, the utility of the best subset pool (shown in red) becomes
lower than that of the top 30%-40% CLIP score subset during its first repetition.

It’s important to note that this observed diminishing utility is not an artifact of creating
subset pools based on CLIP scores. This trend is consistently seen even with recent state-
of-the-art data filtering methods like T-MARS (Maini et al., 2023), as detailed in Appendix I.

4.2 Predicting the Pareto Curve

Recall that the pareto-filtering threshold must be adapted based on the training compute
as shown in Figures 1a, 2b. We now use FADU to estimate the optimal top-k% bucket based
on the algorithm outlined in Section 4. First, we estimate the a, b parameters for different
data buckets (each with 10% of data). The corresponding b values for each data pool are
depicted in Figure 3. We then find the effective scaling parameters for each top-k% bucket
and calculate the optimal value of k at compute scales of {32M, 128M, 640M}. FADU predicts
that the optimal value of k = {1, 3, 4} respectively in the case of CLIP-score based filtering.
This precisely matches with the pareto-frontier of data filtering carved out in Figure 1a for
the CLIP filtering algorithms. Note that, since the magnitude of b for the 10 − 20% data
bucket (when ordered according to CLIP score) is higher than that of the top 10% data
bucket, FADU also correctly indicates that it is more beneficial to train on the second bucket.

5 Discussion

Despite recent efforts, the curation and utilization of data remains surprisingly ad-hoc and
hacky, with very little predictability about the outcomes of a filtering strategy. In particular,
all prior filtering approaches (i) propose a metric that ranks examples and filters out data
points below a threshold; and (ii) are the thresholds are chosen ‘agnostic’ of the compute
the model is supposed to be trained for. While well-resourced organizations can embark
on exhaustive sweeps of ‘filtering’ parameters, this approach (i) is extremely expensive,
especially in the paradigm of web-scale pre-training; and (ii) does not transfer to new
training paradigms.
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Appendix A. Detailed Discussion
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Figure 4: Similar to Figure 5, our scaling law
accurately predicts the final error for models
trained on 2 different architectures, 3 different
pool sizes and 3 different compute budgets.

Scaling the scaling curves Past work
on scaling laws for CLIP models (Cherti
et al., 2023) trained tens of models at vary-
ing compute scales ranging from 3B to 34B
training samples and models spanning dif-
ferent ViT families. While training models
at this compute is extremely expensive, we
utilize their pre-trained models. Past works
tried to fit scaling laws for this family of
models, but the scaling curves showed ex-
tremely high errors for models trained on
small datasets. We believe this is primar-
ily because they do not account for the im-
pact of diminishing utility of repeated data.
We use our proposed scaling laws to esti-
mate errors for the models in question. The
revised scaling trends are presented in Fig-
ure 4, which are able to predict the error
with a much higher accuracy than the past scaling curves without repetitions, as shown in
Appendix H. This confirms that our scaling laws hold at massive models trained for 34B
data compute, indicating that the diminishing utility of repeated data must indeed be ac-
counted for while predicting model training outcomes.

State of Data Curation Despite recent efforts, the curation and utilization of data
remains surprisingly ad-hoc and hacky, with very little predictability about the outcomes
of a filtering strategy. In particular, all prior filtering approaches (i) propose a metric that
ranks examples and filters out data points below a threshold; and (ii) are the thresholds
are chosen ‘agnostic’ of the compute the model is supposed to be trained for. While well-
resourced organizations can embark on exhaustive sweeps of ‘filtering’ parameters, this
approach (i) is extremely expensive, especially in the paradigm of web-scale pre-training;
and (ii) does not transfer to new training paradigms.

State of Scaling Laws In the paradigm of language modeling, recently Muennighoff et al.
(2023) made first attempts at investigating the diminishing utility of data as we repeat over
it. Our work builds on these insights, but with one crucial distinction—prior work assumes
that web data is homogenous and has uniform utility. However, data curation builds on
the fundamental observation that different subsets of web data have different utility. In
our work, we highlight a crucial insight regarding the implication of training steps on data
utility of non-homogenous datasets. We hope our work lays the foundations for developing
data curation as a methodological science where curation decisions can accurately predict
model training outcomes.
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Appendix B. Related Work

Data Filtering Vision-language models are trained on noisy webscale datasets, making
data filtering a crucial precursor. OpenCLIP (Ilharco et al., 2021) tried to reproduce the
performance of OpenAI’s CLIP (Radford et al., 2021b) by curating LAION-400M (Schuh-
mann et al., 2021) dataset. However, their performance still lagged that of CLIP, suggest-
ing the importance of DataCuration. Recently, Datacomp (Gadre et al., 2023a) streamlined
the efforts in this direction by releasing a well-crafted benchmark challenge for subset se-
lection from common crawl.

Most of the state-of-the-art data curation approaches involve ranking the data using
some metric. For example, LAION (Schuhmann et al., 2021, 2022) uses a CLIP score based
filtering (amongst many other rules), where samples with a image-caption similarity score
lower than 0.28 (as assesed by a pretrained CLIP) are filtered out. Mahmoud et al. (2023);
Nguyen et al. (2023) propose to use synthetic-captions generated by an image captioning
model (Li et al., 2023) to rank the data. Recently, T-MARS (Maini et al., 2023) and
CAT (Radenovic et al., 2023) highlighted that a large fraction of images in these webscale
datasets lack any learnable “visual” features, and have high similarity with the caption only
due to text in the images (OCR) matching the caption. They propose to filter out 50% of
the data based on the CLIP similarity scores after masking the text using an OCR detection
algorithm. Similarly, C-SSFT (Maini et al., 2023) and DFN (Fang et al., 2023) propose
filtering out mislabeled samples by assessing the drop in CLIP scores when finetuning a
pretrained CLIP on a held-out validation set. Some other works include Yu et al. (2023)
which uses a mixture of rules and Xu et al. (2023) which uses similarity with downstream
metadata.

In this work, we highlight why data filtering cannot be agnostic to training compute and
how the ordering varies as one changes the training paradigm. Infact, we showcase LAION
filtering (used to train state-of-the-art OpenCLIP models ) can even be sub-optimal to no-
filtering or training on the raw common crawl under certain settings.

Scaling Laws in Language Modeling One of the most salient trends in recent deep
learning research is the observation that neural network performance often improves pre-
dictably with an increase in model size, data size, and computation. In the domain of lan-
guage modeling, such observations have been systematized into a set of principles known
as scaling laws. Kaplan et al. (2020) conducted a comprehensive study on scaling laws for
neural language models. They observed that, given fixed computational budgets, there ex-
ists an optimal model size, training data size, and training time. Interestingly, the triple
(model size, data size, batch size) tends to scale in a roughly lock-step manner, reinforcing
the notion that larger models require more data and more computation to be trained effec-
tively. This observation is corroborated by Hoffmann et al. (2022); Hernandez et al. (2021)
who delve deeper into training compute-optimal language models and highlight the impor-
tance of balancing computation with model and data sizes.

Most closely related to our work, recently Muennighoff et al. (2023) show that training
on tokens beyond 4 epochs yields negligible gains compared to training on new language
data. They model this by proposing an “effective data size” which decreasing with repeti-
tions. Our work (in the vision-language domain) highlights why such a characterization is
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Table 1: Scaling curves give us the ability to estimate the utility of data subsets at various
stages of training. We compare various curriculum based training strategies with the base-
line of approach of uniform training from the best bucket. Our observations indicate that
the baseline of approach of uniform sampling from the best top-k% bucket works the best,
opening up interesting directions for future work.

Curriculum
Methods

128M Compute 640M Compute

Imagenet Avg. Imagenet Avg.

Baseline (Best CLIP) 27.3% 24.3% 39.0% 46.1%

Greedy 26.3% 23.4% 36.9% 44.9%
Smooth L→R 26.8% 23.9% 38.6% 45.7%
Smooth R→L 27.2% 24.1% 38.9% 45.9%

not optimal, as the webscale data is not homogeneous and does not have a uniform utility
distribution.

Scaling Laws in CLIP Application of scaling laws to models like CLIP is still an area
of active research. As with the scaling laws observed in pure language models, there’s an
indication that as the model and data sizes for CLIP grow, its performance on downstream
vision tasks improves, albeit with diminishing returns (Schuhmann et al., 2022; Gadre et al.,
2023b). Cherti et al. (2023) try to fit standard scaling curves similar to Kaplan et al.
(2020) on CLIP models of varying size and architecture. However, note that contrary to
language models which are rarely trained with more than 3-4 epochs, CLIP training invovles
upto 30-40 epochs even at the largest data scale. As we highlight in this work, one needs to
model the diminishing gains of data with repeated epochs, in order to accurately estimate
scaling curves for visual-language model training.

Appendix C. Curriculum learning

One main implication of our findings is that we need the data filtering strategy to be
compute aware. Our proposed algorithm FADU is one simple way to do this.

Going one step beyond, the ability to model precise utility of data points depending
on number of repetitions should confer the ability to perform curriculum learning. FADU
treats all filtered samples equally. In principle, we should recognize the heterogeneity in the
quality of samples and try to train more steps on higher quality samples and fewer steps on
lower quality samples.

We perform an initial experiment to test this where we discretize our initial unfiltered
pool into several buckets where each bucket has data of roughly the same “quality” (for e.g.
as measured by the CLIP score). We compute the (diminished) utilities for each bucket
using our scaling law (Equation 5) accounting for the number of times each bucket was seen
so far. We now consider two curriculum learning approaches:

• Greedy Curriculum: We pick the bucket with the maximum (diminished) utility
and make a pass over the entire bucket. We then recompute the new diminished
utilities and repeat this process, until the compute budget is exhausted. This is a
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simple greedy version where at any given point, training is performed on the bucket
with the highest utility at each point.

• Smooth Curriculum: We also consider two other variants of curriculum training,
which we call smooth curriculum learning. We first identify all the top k buckets in
a greedy way in the data pool and calculate the number of repetitions for each of
them (i.e. the number of times they occur in top-k). We then simply train over all
the buckets, removing the buckets as their number of repetitions gets exhausted. We
call this approach Smooth L→R curriculum. We also explore a reverse version of the
same, where we train on the best bucket with the highest number of iterations first,
and then keep on adding lower-quality data buckets (which are still in top-k) to the
training pool.

Table 1 compares curriculum learning based on the utility values with the baseline. We
see that greedy curriculum learning approach actually does worse than the less sophisticated
approach where we treated all samples equally. This does not directly contradict our model
of utility, but exposes a nuance that future work on curriculum learning should handle. Our
model of utility assumes there is no distribution shift as we train the model for different
epochs. However, curriculum learning changes this! For example, switching from a higher
quality data pool to a lower quality pool after a few epochs on the higher quality pool
exposes the model to a distribution shift which makes the training unstable. Furthermore,
if there is a continuous distribution shift while training, the models might “forget” what
it learnt from the initial distribution of high quality data and retain mode from the low
quality data it sees at the end of training.

Appendix D. Proof of Theorem 1

We restate the Theorem 1 again here.

Theorem 1 Given k data pools S1
n . . . Sk

n, sampled uniformly at random with respective
utility values b1 . . . bk, the effective utility value beff for the combined pool is the arithmetic
mean of the individual utility values. Formally,

beff =

∑k
i b

i

k
(6)

Proof
Consider the case when k = 2. Let y denote the error of model after seeing n samples

from the two pools. For simplicity, we assume y = nb, ignoring the constant a, τ, d, but the
proofs follows otherwise as well. From equation 1, we have:

y = nb;
dy

dn
= bnb−1 = b

nb

n
= y

b

n
(7)

Now, consider that we sample two times from SP
n and SQ

n respectively. Let n1 = n+ 1
and n2 = n+2 denote the total samples seen after the model is trained on the two random
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draws. From equation 7, we have:

dy1
dn1

= y1
bP
n1

, y1 = y + y1
bP

n+ 1
(8)

dy2
dn2

= y2
bQ
n2

, y2 = y1 + y2
bQ

n+ 2
(9)

Given that n1, n2 ≫ 1, and y1 ∼ y2 ∼ y, we have:

y2 ≈ y + y
bP

n+ 1
+ y

bQ
n+ 2

(10)

Simplifying further, we obtain:

(y2 − y)

2
≈ y

bP + bQ
2n

,
dy

dn
≈ y

bP + bQ
2n

= y
beff
n

(11)

Thus, this analysis demonstrates the linearity of the combined utility values bP and bQ
when two different data pools are sampled uniformly at random. Therefore, we can conclude
that for a set of k data pools with b as the exponent and weight values, each governed by

bi∀i ∈ [1 . . . k] , beff =
∑k

i bi
k . In addition to observing the linearity of b values, we empirically

also find that a values also follow a similar linearity, as further discussed in Appendix F.

Appendix E. Downstream Evaluation Datasets

Following prior work (Radford et al., 2021a; Wortsman et al., 2021), we evaluate our mod-
els on a variety of image classification and retrieval datasets to assess their zero-shot capa-
bilities. While the Datacomp (Gadre et al., 2023a) benchmark averages performance across
38 different datasets, we use a subset of 18 such datasets where medium-scale models give
better than random performance in order to be able to develop reliable scaling laws. More
specifically, we select the following datasets:

1. ImageNet: a 1000-class image classification challenge (Russakovsky et al., 2015).

2. ImageNet-OOD: Six associated Imagenet distribution shifts—ImageNet-V2 (Recht
et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-A (Hendrycks et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-O (Hendrycks et al., 2019),
and ObjectNet (Barbu et al., 2019).

3. VTAB: 6 out of 12 datasets from the Visual Task Adaptation Benchmark (Zhai et al.,
2020), including Caltech-101 (Fei-Fei et al., 2004), CIFAR10 (Krizhevsky, 2009), CI-
FAR100 (Krizhevsky, 2009), Oxford Flowers-102 (Nilsback and Zisserman, 2008),
Oxford-IIIT Pets (Parkhi et al., 2012), and RESISC45 (Cheng et al., 2017).

4. Additional classification datasets: Food-101 Bossard et al. (2014), Pascal VOC 2007 (Ev-
eringham et al.), and Stanford Cars (Krause et al., 2013).

5. Retrieval: 2 retrieval tasks of MSCOCO (Chen et al., 2015) and Flickr (Young et al.,
2014).
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Buckets (by CLIP score) ‘a’ ‘b’

Top 10% 1.27 -0.09
Top 10%-20% 1.29 -0.10
Top 20%-30% 1.22 -0.08
Top 30%-40% 1.12 -0.06
Top 40%-50% 1.04 -0.04
top 50%-60% 0.96 -0.02
Last 40% 0.94 -0.01

Mean (Estimated) 1.07 -0.04
No filter (Actual) 1.03 -0.04

Table 2: Linearity of scaling curve parameters: The scaling curve parameters show a
linear interpolation while mixing buckets, empirically as well. For example, the (weighted)
mean of parameter ‘a’ over the various buckets is 1.07, which closely approximates the
parameter ‘a’ for the whole data i.e. no filtering.

Appendix F. Linearity of Scaling Curve Parameters

In Section 3, we proved that the scaling curve parameter ‘b’ can be linearly interpolated
when working with a mixture of distributions. In this section, we empirically show that (i)
the linearity of ‘b’ indeed holds, and (ii) the normalization parameter ‘a’ also respects a
similar linearity property.

Recall that in § 4.1 and Figure 3, we estimated the utilities of various data buckets
based on the CLIP score (Table 2). Now, if the scaling curve parameters ‘a’ and ‘b’ follow a
linear interpolation when mixing the various buckets, the mean of these scaling parameters
(weighted mean to be precise since one of the bucket is last-40%, which has 4x more data)
over the individual top-k% score based buckets should be same as the scaling parameters
estimated for no filter training. Empirically, we indeed observe the same (Table 2). For
example, the (weighted) mean ‘a’ over the various clip score buckets is 1.07, whereas the
actual ‘a’ for no-filter data pool was 1.03, which is an error of less than 4%.

Appendix G. Downstream Evaluation Metrics

As detailed in Appendix E, most of the evaluation datasets constitute image-classification
tasks. We use the ‘Accuracy metric’ to evaluate the zero-shot performance of the model on
these datasets. The only exceptions include:

1. VTAB: We report ‘Mean per Class Recall’ for Caltech-101 (Fei-Fei et al., 2004), Oxford
Flowers-102 (Nilsback and Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012)
datasets. This follows the standard evaluation protocol in past benchmarks (Gadre
et al., 2023a) and is done because of the large number of classes in these datasets.

2. Retrieval: For all the retrieval datasets we report the ‘Mean Recall @ 1’ which tells
how probable is it for the top-recall entry to be relevant.
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Figure 5: Similar to Figure 6, we use the scaling laws in Muennighoff et al. (2023) to predict
the final error for models trained on 2 different architectures, 3 different pool sizes and 3
different compute budgets.

Appendix H. Comparing with Effective Dataset Size based Scaling Laws
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Figure 6: Scaling curves with repeated data for visual-language models: We par-
tition the DataComp medium scale pool(128M) samples into various buckets, based on the
T-MARS scores, and train a model on each bucket for 10 epochs. (a) The estimated error
curves using the proposed scaling laws (Equation 5). (b) Diminishing utilities with epochs
of various data subsets. Observe that due to repetitions, even the utility of the best bucket
(blue curve) at it’s 2nd repetition becomes lesser than that of worse buckets like top 10-15M
subset at it’s 0th epoch. This once again highlights why one needs to adapt the filtering ag-
gressiveness with compute.

Recall the scaling law based on diminishing utility formulated in our work given by Equa-
tion 5. While we consider that the utility of each subsequent diminishes with a given half-
life, recent work by Muennighoff et al. (2023) considered that the effective data size decays
with an empirically estimated half-life. While similar in spirit, the former formulation pro-
vides a natural way of understanding how mixtures of data pools should interact with each
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other. For completeness, we describe their scaling law below, and then compare their law
written in the context of language modeling on the task of image-language CLIP training.

f(Sn, a, b, δ, d, C) = d+ a Cb
eff (12)

Ceff = d+ nδ + nδ2 + . . .+ nδj (13)

+ . . .+ (C − k · n)δ(k−1) (14)

k = ⌊C/n⌋,

where C is the total number of training samples seen, n is the number of samples in the
dataset, k is the number of repetitions of data. δ denotes the fractional decay of the effective
data size at each subsequent epoch.

Now, we compare the error in the estimates by the formulation derived in our work as
opposed to that in Muennighoff et al. (2023). We depict the estimated values based on
Equation 12 in Figure 5. In the case of ViT-B-16 model, the ℓ2 error between the true and
the estimated Imagenet zero-shot accuracies is 8.15e−4 v/s 9.31e−4 resulting in a 14% error
reduction.

Appendix I. Additional Scaling Curve Results

We presented the scaling curves along with their parametric estimates in Figure 3 for various
data buckets based on CLIP score. Here, in Figure 6 we show similar curves for various
data buckets based on the T-MARS scores. Again, we observe that while the initial scalaing
parameters like ‘b’ for the best data buckets are high, they diminish quite rapidly, even
becoming lower than that of worse buckets’ parameters at the first repetition.

U(j) =
a[(j − 1)−b − j−b]

nb
u

(15)

L(N) = d+
a

nb
(16)

L(N) =d+ U(1)δ + U(2)δ2+ (17)

...U(j)δj + ...+ U(k)δk (18)

(19)
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