
Improved Guarantees for Fully Dynamic k-Center
Clustering with Outliers in General Metric Spaces

Leyla Biabani
Eindhoven University of Technology

Eindhoven, The Netherlands
l.biabani@tue.nl

Annika Hennes
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
annika.hennes@hhu.de

Denise La Gordt Dillie
Eindhoven University of Technology

Eindhoven, The Netherlands
lagordtdilliedenise@gmail.com

Morteza Monemizadeh
Eindhoven University of Technology

Eindhoven, The Netherlands
m.monemizadeh@tue.nl

Melanie Schmidt
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
mschmidt@hhu.de

Abstract

The metric k-center clustering problem with z outliers, also known as (k, z)-center
clustering, involves clustering a given point set P in a metric space (M,d) using
at most k balls, minimizing the maximum ball radius while excluding up to z
points from the clustering. This problem holds fundamental significance in various
domains, such as machine learning, data mining, and database systems.
This paper addresses the fully dynamic version of the problem, where the point set
undergoes continuous updates (insertions and deletions) over time. The objective
is to maintain an approximate (k, z)-center clustering with efficient update times.
We propose a novel fully dynamic algorithm that maintains a (4 + ϵ)-approximate
solution to the (k, z)-center clustering problem that covers all but at most (1 + ϵ)z
points at any time in the sequence with probability 1− k/eΩ(log k). The algorithm
achieves an expected amortized update time of O(ϵ−3k6 log(k) log(∆)), and is
applicable to general metric spaces. Our dynamic algorithm presents a significant
improvement over the recent dynamic (14 + ϵ)-approximation algorithm by Chan,
Lattanzi, Sozio, and Wang [5] for this problem.

1 Introduction

Clustering problems and algorithms play an important role across a multitude of fields, helping
researchers and practitioners in the analysis of data and identification of patterns. These techniques
find extensive application in diverse domains, including machine learning, where they help in
categorizing and understanding complex datasets. In data mining, clustering methods are utilized to
uncover hidden structures and relationships within large datasets, facilitating better decision-making
and insight generation. Moreover, in image and signal processing, clustering algorithms assist in
segmenting and classifying data, enabling tasks such as image recognition and signal denoising.

In bioinformatics, clustering techniques are essential for organizing biological data and identifying
patterns in genetic sequences, protein structures, and gene expression profiles. Similarly, in anomaly

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

detection, clustering methods are employed to identify unusual or unexpected patterns in data, which
may indicate potential anomalies or security breaches. Furthermore, in social network analysis, clus-
tering algorithms help in understanding the structure and dynamics of social networks by identifying
communities and influential nodes.

The k-center problem is known as one of the fundamental clustering problems. Given a set of points
P in a metric space and a number k, the aim of the k-center problem is to find k centers such that
the maximum distance between any point and its closest center is minimized. This can also be
equivalently formulated as finding a minimum radius r and centers c1, . . . , ck such that the balls
∪ki=1BP (ci, r) cover the point set. The k-center problem can be 2-approximated, and this is the best
possible approximation guarantee [13]. In the last decade, the focus has shifted to analyzing the
problem under various complications that arise in applications.

One line of research is to study the k-center problem (and other clustering problems) in different
computational models like streaming or for dynamic point sets. In the first case, points arrive
sequentially, and only a summary can be stored in memory. In the second case, the point set is
maintained by insertion queries and deletion queries for single points, and algorithms have to update
their solution after any such query.

Another line of research is to study clustering under constraints. For example, capacitated clustering
is very popular, i.e., limiting the number of points per cluster. However, lower bounds on cluster
sizes have also been studied in the context of anonymity, and newer works have also considered
constraints that model societal concerns like fair or diverse composition of clusters. In this paper, we
study clustering with outliers. Formulated as a constraint, the k-center problem with outliers allows
k + z centers, but z of these have to be singletons, meaning no point may be assigned to them. We
can intuitively formulate it with balls as follows: The k-center problem with outliers asks to find a
minimum r and k centers c1, . . . , ck such that the balls ∪ki=1BP (ci, r) cover all but z points.

Solving clustering problems in the presence of outliers is a crucial task due to the common occurrence
of measurement errors or other sources of significant deviation from the rest of the data in real-
world datasets. Ignoring outliers can severely distort the results of clustering algorithms, leading to
inaccurate groupings. To address this challenge, a common approach is to solve a clustering problem
while excluding up to z data points considered as outliers.

The first approximation algorithm for the k-center problem with outliers is due to Charikar et al. [8].
The challenge when designing approximation algorithms in the presence of outliers is that one needs
to show that enough points are covered by balls of bounded sizes around the approximate centers. It is
not necessary to identify the outliers of an optimal solution exactly as long as the number of uncovered
points remains small enough. Due to this, [8] and follow-up papers use charging arguments. Points
covered by the solution of the algorithm are mapped to points in optimum clusters, and it is then
shown that the number of uncharged points is small enough.

We explore the k-center clustering problem with z outliers within the fully dynamic model, where
the point set experiences continuous updates through insertions and deletions over time. Quite
some work on this problem has been done for inputs from metric spaces with bounded doubling
dimension [2, 3, 19]. This setting allows for geometric data structures that allow easier navigation
through the data set and also bounding of the number of changes that can occur due to a query by
dimension-dependent volume arguments.

We study the general metric setting. General metric spaces represent a key objective for clustering
algorithms due to their broad range of distance functions, ensuring applicability to any data type. Chan
et al. recently showed that in general metric spaces, any dynamic O(1)-approximation algorithm
for k-center clustering excluding at most z outliers has an amortized update time of Ω(z) [5]. For
real-world applications, the fraction of outliers of the data could be arbitrarily large. Therefore, we
allow for (1 + ϵ)z outliers to be excluded to avoid the dependence on z of the update time.

The only previous work in this setting is the algorithm by Chan et al. [5], which returns a solution
with at most (1 + ϵ)z outliers with probability at least 1 − δ, for 0 < δ ≤ 1

k and ϵ > 0. It
works by maintaining a clustering with t := k · ⌈log1+ϵ

k
δ ⌉ clusters of radius 2r and using this to

derive a final clustering with k clusters and radius 14r. They maintain such a clustering for all
r ∈ Γ := {(1 + τ)i : dmin ≤ (1 + τ)i ≤ (1 + τ) · dmax, i ∈ N}, with dmin and dmax the minimum
and maximum distances, respectively, between any two points ever inserted. It is then shown that
there exists an instance r ∈ Γ that will approximate the optimal radius to within a factor (14 + τ),

2

while allowing for (1 + ϵ)z outliers, with probability at least 1− δ. The amortized time per update is
O(|Γ| · k

2

ϵ2 log2 1
δ), with |Γ| = (log dmax

dmin
)/τ . The total memory requirement is O(|Γ| · |n|) where n is

the number of points in the current set.

1.1 Our contribution

We introduce a novel fully dynamic (4 + ϵ)-approximation algorithm designed to maintain a k-center
clustering while allowing for at most (1 + ϵ)z outliers at any time in the sequence.

The expected amortized update time is O(ϵ−3k6 log(k) log(∆)) per operation (insertion or deletion).
This is independent of z and of the number of points currently present in the sequence. This
characteristic makes the algorithm applicable to real-world scenarios.

Notice that our data structure is continually storing an actual solution, so we can produce this solution
at any time and do not need to specify additional query times (like, for example [9, 2, 18]).

Our main technical contribution is a novel combination of the sampling-based level data structure
by Chan et al. [5] and the original greedy strategy by Charikar et al. [8] that enables us to achieve a
much improved approximation guarantee compared to [5].

Theorem 1.1. Let (M,d) be a metric space and ϵ > 0 be an accuracy parameter. The spread ratio
∆ = dmax

dmin
of all points ever inserted is assumed to be bounded. There exists a randomized fully

dynamic algorithm that maintains a k-center solution that allows up to (1 + ϵ)z many outliers on the
current set of points. At every point in time, the current clustering is a (4 + ϵ)-approximation to an
optimal solution for the (k, z)-center problem with high probability. Upon insertion or deletion of a
point, the data structure is updated in amortized update time O(ϵ−3k6 log(k) log(∆)).

To achieve this, we make use of a data structure that is described in Section 2.1 and maintained by the
respective algorithms handling updates to the point set. The algorithm handling insertions is specified
in Section 2.2, and the deletion algorithm is described in Section 2.3. Similar to the approach by
Chan et al. [5], we maintain a hierarchical structure consisting of levels, each containing one cluster.
Unlike their work, however, we only maintain ≤ k levels. For the correct radius guess, the union of
these levels directly gives the desired (4 + ϵ)-approximation. If a level violates certain properties,
this and all higher levels are reclustered. As opposed to [5], we do not need to recluster every time a
center gets deleted but only when a cluster does not contain enough points anymore. The algorithm
handling the reclustering is described in Section 2.4.

Our analysis of the approximation ratio follows a similar argument as the proof of the 3-approximation
for static k-center with z outliers as given by Charikar et al. [8] and works by charging points from
chosen clusters to points in optimal clusters. We follow the same iterative charging method but
extend their approach by maintaining a set of artificial outliers in order to adjust the argument to our
algorithm specifically.

Note that we assume that a center can be any point from the underlying metric space, if the point was
present in the data set once. Requiring that centers can only be placed at currently active points, we
can achieve a 6-approximation. We formalize this in Lemma G.1.

1.2 Further Related work

The k-center problem is very well understood; two 2-approximation algorithms for it are known [13,
15] and a matching lower bound is also known [16]. The k-center problem with outliers was first
studied and 3-approximated in [8]. In 2016, [4] gave a 2-approximation for this problem, but
the algorithm is rather complex and less amenable to practical implementation. Charikar et al. [7]
developed an elegant algorithm to maintain an 8-approximation for the vanilla k-center problem
in the streaming model. Streaming can be seen as a dynamic insertion-only model. McCutchen
and Khuller [17] improved this algorithm to a (2 + ϵ)-approximation and also extended it to a
(4 + ϵ)-approximation for k-center with outliers. The k-center problem with outliers has also been
studied in the sliding window model [10, 18] that also bears some similarity with our setting. For
bounded doubling dimension, [18] gave a (3 + ϵ)-approximation, but the algorithm for the general
metric case is only stated as a O(1)-approximation.

3

The fully dynamic k-center problem without outliers in general metrics was studied by [1, 6, 11], and
the best-known result is a (2+ϵ)-approximation with an amortized update time ofO(k polylog(n,∆))
by Bateni et al. [1]. The same paper also shows that any algorithm that provably satisfies a non-trivial
approximation guarantee needs Ω(nk) queries to the distance function, i.e., the amortized update
time is in Ω(k), making their algorithm close to tight. The fully dynamic k-center problem without
outliers was also studied for metrics with bounded doubling dimension [14, 19, 12] and in Euclidean
space [20].

1.3 Preliminaries

In the preliminaries section, we provide an introduction to the (k, z)-center problem and discuss the
dynamic model used in our paper.

We study the k-center clustering problem with z outliers, formally defined as follows.

Definition 1.2 ((k, z)-center clustering). Let P be a point set in a metric space (M,d) and let
k, z ∈ N be two parameters. The goal is to compute a set C ⊆ M of size at most k, such that the
maximum distance of all but at most z points to their nearest c ∈ C is minimized. That is, find C
such that minZ⊆P ,|Z|≤z maxx∈P\Z minc∈C d(x, c), with |C| ≤ k.

We define dmin and dmax as the minimum and maximum distances, respectively, between any two
points ever inserted. The ratio ∆ = dmax

dmin
is referred to as the spread ratio, and is assumed to be

bounded. Let rOPT be the optimal radius for the (k, z)-center clustering problem of a point set P . We
also define the ball BP (c, r) = {p ∈ P : d(c, p) ≤ r} to be the set of points in P that are within
distance r from c. If P is clear from the context, we may drop P from the definition BP (c, r). For a
non-negative integer m, we denote {1, · · · ,m} by [m].

In the version of the (k, z)-center clustering problem that we consider, we allow (1 + ϵ)z outliers
instead of strictly z. Furthermore, we require centers of clusters to be in the metric space (M,d), but
they need not be currently present in P . This is referred to as the non-discrete version of the problem.
Lemma G.1 in the Appendix shows how our data structure can also support the discrete version of
the problem and provides a 6-approximation solution for it.

Fully dynamic model. We consider the (k, z)-center clustering problem in the fully dynamic model
against an adaptive adversary. In this model, we start with an empty point set, P = ∅, and process
a sequence of operations determined by the adversary. We assume the adversary does not know
the random bits chosen by our algorithm; however, it can observe the algorithm’s output and adapt
its responses in real time (unlike an oblivious adversary, which fixes a sequence of operations in
advance). Each operation can be either an insertion, where a point from the metric space (M,d) is
added to P , or a deletion, where a point currently in P is removed. We assume only points currently
in P may be deleted. Let P t represent the point set P after t operations. In other words, P t consists
of all points in (M,d) that have been inserted but not deleted after t operations.

2 Algorithm

To explain the main ideas of our algorithm, we start by describing an iterative offline algorithm,
which gives a (4 + ϵ) approximation for the (k, z)-center clustering problem.

Offline algorithm. We start with a point set P1 = P , ϵ > 0 and parameters k, z, r ∈ N. Here,
r is a fixed guess for the optimal radius. For each iteration i, we sample a set of Si ⊂ Pi of
|Si| = ψϵ−1k2 log k points with replacement, uniformly at random. Here, ψ ≥ 6β is a constant,
where β > α ≥ 1 are constants. We find a point ci ∈ S, such that B(ci, 2r) covers at least ϕ points
from Pi, where ϕ is some threshold to be defined later. We then create a new cluster Ci = BPi

(ci, 4r),
let Pi+1 = Pi\Ci, and continue to the next iteration. We stop once k clusters have been created or
Pi = ∅. Let λ be a random variable representing the number of iterations we complete, where λ
can be at most k. After we have done λ iterations we have computed clusters C1, C2, ..., Cλ with
corresponding centers c1, c2, ..., cλ. The points that are not covered by the union of these clusters will
be the set of outliers that our algorithm reports. If the set of outliers is at most (1 + ϵ)z points, we
can report a solution for the (k, z)-center clustering problem. This offline algorithm will be used as a

4

sub-routine for the fully dynamic algorithm, which will be explained in Section 2.4. The definition of
ϕ and the pseudocode of the algorithm will also be given in that section.

Guesses for unknown rOPT. Since the optimal r is usually not known, we can run the algorithm
for all r ∈ R = {(1 + ϵ)i : dmin ≤ (1 + ϵ)i ≤ (1 + ϵ) · dmax, i ∈ N}. We then choose the
smallest r ∈ R such that all but at most (1 + ϵ)z points are covered. We will show that this gives a
(4 + ϵ)-approximation.

Level 1

Level 2

Levels 3,...,λ− 1

Level λ

Outliers

c1 c2 cλ

C1

C2

Cλ

Figure 1: The λ levels constructed by our offline algorithm.

Leveling. We can visualize the output of this algorithm as (at most) λ+ 1 levels, where the first
λ ≤ k levels each represent a cluster, and the last level represents the outliers (See Figure 1). More
precisely, level i represents cluster Ci with center ci, which was created in the ith iteration. Note that
the construction of level i only considers the points in Pi, which does not include points in the lower
levels {1, 2, ..., i− 1}.
The main idea for the fully dynamic algorithm is to maintain each level i for i ∈ [λ+ 1] under an
arbitrary number of insertions and deletions by updating the cluster Ci when necessary. In the rest of
the paper, we use subscript i to refer to the level and superscript t to refer to the time. For example,
P t
i refers to the points present in level i at time t, and rtOPT refers to the optimal radius at time t. If

the level or time is clear from the context, these may be omitted. For instance, if we define a situation
at time t′, we will not repeat the superscript t′ on every term.

2.1 Data structure and invariants

We will construct a clustering C1, . . . , Cλ of the current set of points P t that we store in the data
structure Dr introduced by [6]. If t is clear from the context, we will just write P for P t. As we
do not know the current optimal radius, we will maintain one data structure Dr for every choice
of r ∈ R = {(1 + ϵ)i : dmin ≤ (1 + ϵ)i ≤ dmax, i ∈ N}. Every data structure consists of up to
λ ≤ k cluster-levels, with each level i containing a cluster Ci. In level i, we keep track of the set of
the points Pi currently not covered, i. e., Pi = P \

⋃
j<i Cj . Level λ+ 1 contains the outliers, i.e.,

Zr = P \ ∪i≤λCi. We denote ni = |Pi|. By B(p, r) we denote the ball with radius r centered at p,
and BA(p, r) = B(p, r) ∩A for A ⊆ P .

Let α ≥ 1. The data structure Dr consists of the following components:

① A list Fr = {c1, c2, ..., cλ} of λ ≤ k centers.

② A list Lr = {C1, C2, ..., Cλ} of clusters with Ci = BPi
(ci, 4r).

③ A set Zr = P\
(
∪i∈[λ]Ci

)
of outliers such that for all i ∈ [λ] and x ∈ Zr, d(x, ci) > 4r.

Let α ≥ 1 be a constant. We have the following invariants for Dr.

① Level invariant: for all i, Pi+1 = Pi\Ci, with Ci = BPi
(ci, 4r).

② Dense invariant: for all ci ∈ Fr, |BPi
(ci, 2r)| ≥ min

(
z + 1, ni−z

k−i+1 −
ϵz
αk

)
.

5

2.2 Insertion

When a new point p is inserted at time t, Procedure 3 in the appendix is executed. As input, we have
Dr at time t, p ∈ (M,d), ϵ > 0 and z, k ∈ N. First, we check whether p is inside one of the existing
clusters, in which case we can add p to such a cluster. Otherwise, we add p to Zr. Next, we check if
the dense invariant is maintained after the insertion of the new point. Generally, the dense invariant
can be broken in two ways:

➊ If the insertion of a new point results in more than (1 + ϵ)z outliers, then Lemma 3.7 shows
that the dense invariant is no longer valid at some level i.

➋ If the addition of a point p to a cluster Ci causes the dense invariant to be violated at some
lower level j < i, that occurs because nt+1

j = ntj + 1.

If the dense invariant is broken for some level i, we recluster levels i, ..., λ with λ ≤ k by invoking
Procedure 5 as a sub-routine. Observe that if there are multiple levels i where the dense invariant is
broken, we choose the lowest one.

2.3 Deletion

For the deletion of a point p at time t, Procedure 4 in the appendix is executed. The input is Dr at
time t, p ∈ (M,d), ϵ > 0 and z, k ∈ N. First we check if p is an outlier, in which case we remove p
from Zr. If p is either a center or a point in a cluster, we find cluster Ci which contains p. If cluster
Ci = B(ci, 4r) contains at least min

(
z + 1, |Pi|−z

k−i+1 −
ϵz
αk

)
points, we do not re-cluster and simply

remove p from Ci. Note that the underlying point set exists in the metric space (M,d). If the center
ci of a cluster Ci is deleted, provided that the dense invariant remains valid, we can continue to utilize
ci as the center of cluster Ci, given our knowledge that the point ci is located within the metric space
(M,d). In Lemma G.1, we explain how we can still obtain a 6-approximation if centers have to come
from the current point set. If |Ci| < min

(
z + 1, |Pi|−z

k−i+1 −
ϵz
αk

)
after the deletion of p, then it also

follows that |B(ci, 2r) ∩ Pi| < min
(
z + 1, |Pi|−z

k−i+1 −
ϵz
αk

)
, i.e., the dense invariant is violated on

this level. In this case, we want to redistribute the points in Pi such that the levels i, . . . , λ fulfill the
dense invariant. Deletion of a point in level i does not violate the invariants at levels 1, . . . , i− 1. We
re-cluster the points in (∪i≤j≤kCj) ∪ Zr using Procedure 5. We finish by updating Dr.

2.4 Clustering sub-routine

The clustering sub-routine is the offline algorithm that was described at the beginning of Section 2.
The pseudocode of this sub-routine is shown in Procedure 5. We use it to iteratively build the levels of
data structure Dr. Two cases are distinguished based on whether z is small or large compared to the
number of points in level i. In line 4, ψ is a constant with ψ ≥ 6β, where β > α, and α is the constant
used in the dense invariant. The threshold ϕ that was introduced in Section 2 is different depending
on the size of z compared to ni. If z + 1 ≤ ni−z

4(k−i+1) , then ϕ = ni−z
2(k−i+1) and if z + 1 > ni−z

4(k−i+1) ,
then ϕ = ni−z

k−i+1 −
ϵz
βk . If we find multiple points p∗ in line 6 or 12 we choose one arbitrarily.

2.5 All aspects combined

The first step will be to initialize all Dr such that Fr,Lr,Zr = ∅. Then, the algorithm waits for an
insertion or deletion operation. If a point is inserted, Procedure 3 is executed, and if a point is deleted,
Procedure 4 is executed. The algorithm is ran simultaneously for all r ∈ R = {(1 + ϵ)i : dmin ≤
(1 + ϵ)i ≤ (1 + ϵ) · dmax, i ∈ N}.
In the next sections, it will be shown that a (4 + ϵ)-approximation is given by the clustering Lr with
r ∈ R the smallest r for which |Zr| ≤ (1 + ϵ)z.

3 Analysis

We begin our analysis of the dynamic algorithm by introducing the concept of a dense cluster and
specifying the criteria for a valid solution.

6

Definition 3.1 (Dense cluster). A cluster BPi(ci, 4r) is dense with respect to point set Pi if it satisfies
the dense invariant. That is, |BPi(ci, 2r)| ≥ min

(
z + 1, ni−z

k−i+1 −
ϵz
αk

)
.

Observe that for the dense invariant, we consider the ball BPi
(ci, 2r) with a radius of 2r. However, a

cluster (as seen in line 18 of Procedure5) corresponds to the points within the ball BPi
(ci, 4r), which

has a radius of 4r.
Definition 3.2 (Valid solution). A solution BP1

(ci, 4r) ∪ · · · ∪ BPλ
(cλ, 4r) with λ ≤ k for point set

P1 is valid if it covers all but at most (1 + ϵ)z points from P1. We refer to each cluster BPj
(cj , 4r)

for j ∈ {i, . . . , λ} of a valid solution as a valid cluster.
Lemma 3.3 (Running time offline algorithm). The running time of the offline algorithm, shown in
Procedure 5, is O(nϵ−1k3 log(k)), where n = |P |.

Proof. In each iteration of the while-loop, we need to compute |B(p, 2r)| for all p ∈ Si. Since
|Si| = O(ϵ−1k2 log k), this takes O(nϵ−1k2 log k) time. There can be at most k iterations of the
while-loop and hence the total running time is O(nϵ−1k3 log k).

3.1 Maintaining invariants

In Supplementary Section B, we prove the following three lemmas. Lemmas 3.4 and 3.5 show that
the dense and level invariants are maintained during the insertion or deletion of a point, respectively.
Additionally, Lemma 3.6 shows that both invariants are maintained when invoking Procedure 5 as a
subroutine upon the insertion or deletion of an arbitrary point with high probability if r ≥ rOPT. The
case where r < rOPT is considered in Lemmas E.1 and E.2.
Lemma 3.4 (Procedure 3 maintains invariants). Assume that at time t, we have point set P t, data
structure Dr = (Fr,Lr,Zr). We assume that the level and dense invariants hold at time t and
r ≥ rt+1

OPT. At the start of time t + 1, we insert point p using Procedure 3. After the insertion, the
level and dense invariants still hold with probability 1 if Procedure 5 was not called and with the
probability of at least 1− 2(k−i+1)

eΨ log k , where Ψ ≥ 1 if Procedure 5 was not called.

Lemma 3.5 (Procedure 4 maintains invariants). Assume that at time t, we have point set P t, instance
Dr = (Fr,Lr,Zr), parameters k, z ∈ N and ϵ > 0. We assume that the level and dense invariants
hold at time t and r ≥ rt+1

OPT. At the start of time t + 1, we delete an arbitrary point p using
Procedure 4. After the deletion, the level and dense invariants hold with probability 1 if Procedure 5
was not called, and with probability 1− 2(k−i+1)

eΨ log k with Ψ ≥ 1 if Procedure 5 was called.

Lemma 3.6 (Procedure 5 maintains invariants with high probability). Suppose the level and dense
invariants hold for all levels j < i and we call Procedure 5 on Pi as the result of an insertion or
deletion. Let λ ≤ k be a random variable representing the number of levels we have after completing
Procedure 5. If r ≥ rOPT, Procedure 5 maintains the level and dense invariants for all levels j with
i ≤ j ≤ λ with probability at least 1− 2(k−i+1)

eΨ log k , with Ψ ≥ 1.

3.2 Approximation guarantee

Next, we prove that if the invariants hold, our data structure Dr = (Fr,Lr,Zr) contains a valid
solution to the k-center with z outliers problem. Furthermore, if r < (1 + ϵ)rOPT, Dr provides a
(4 + ϵ)-approximation. Without loss of generality, for simplicity we assume that Dr contains k levels.
The proof of Lemma 3.7 follows the structure of the proof given in [8]. This proof uses the greediness
of the algorithm to argue that the balls in the solution cover enough points to charge to. Here, we
have to modify the proof to work with the dense invariant.
Lemma 3.7 (Approximation guarantee). Let P be the current point set. Assume that the level
invariant and the dense invariant hold for all levels i ≤ k. Then we have the following guarantees:

① Valid solution: If rOPT ≤ r, then B(c1, 4r)∪ . . .∪B(ck, 4r) covers all but at most (1+ ϵ
α)z

outliers in P .

② Approximate solution: If rOPT ≤ r < (1 + ϵ)rOPT, then B(c1, 4r) ∪ . . . ∪ B(ck, 4r) gives a
(4 + ϵ)-approximation for the k-center with z outliers problem on P .

7

Proof. Recall that the level invariant states that for all i, we have Pi+1 = Pi\B(ci, 4r) and the dense
invariant states that for all i, we have that |B(ci, 2r) ∩ Pi| ≥ min(z + 1, ni−z

k−i+1 −
ϵz
αk).

Assume that in the optimal solution, we have balls O1, . . . , Ok with radius ≤ rOPT. The union of
these balls covers all but z points in P . In order to prove Part ①, we aim to charge all but at most ϵ

αz
points of the optimal solution to points in our solution B(c1, 4r) ∪ . . . ∪ B(ck, 4r). We prove this by
induction, and Part ② will then follow easily. In order to construct the charging argument, we need to
argue that there are enough points in our solution to charge the points in the optimal balls. To this
end, we construct modified optimal balls O′

1, . . . , O
′
k, where O′

i ⊆ Oi for every i ≤ k.

For the base case, we have O′
1 = O1, · · · , O′

k = Ok. We will show that we can order the modified
balls in such a way, that at the end of time step i, all but at most ϵz

αk · i points from the first i modified
balls are charged to distinct points in B(c1, 4r) ∪ . . . ∪ B(ci, 4r). This will allow us to prove that our
solution covers at least as many points as the optimal solution.

Assume that all but at most ϵz
αk · (i− 1) points in the first i− 1 modified balls O′

1 ∪O′
2 ∪ . . . ∪O′

i−1
have been charged to distinct points in B(c1, 4r) ∪ . . . ∪ B(ci−1, 4r) and consider iteration i. We
distinguish two cases, namely if B(c1, 2r) ∪ . . . ∪ B(ci, 2r) intersects one of the remaining modified
balls, or if it does not. The charging argument for each case proceeds as follows:

Case 1. Case 1 is when B(c1, 2r) ∪ . . . ∪ B(ci, 2r) intersects a remaining modified ball, call this
ball O′

i. Note that O′
i will be covered entirely by B(c1, 4r) ∪ . . . ∪ B(ci, 4r), since r ≥ rOPT. Hence,

we charge the points of O′
i to themselves and mark these points as covered. (See case 1 in Figure 2.)

We call this charging rule I. Since the modified balls are disjoint 1, any point can be charged only
once (to itself) by this rule. Next, we update O′

1, O
′
2, . . . , O

′
k.

B(ci, 2r)

ci

O′i

|O′i| ≤ n2−z
k−2+1

|B(ci, 2r)| ≥ n2−z
k−2+1

− εz
αk

2r

4r

a b

c

B(ci, 2r)

B(ci, 4r)

O′i

2r rOPT

4r

p

q

B(ci, 4r)

(Case 1) (Case 2)

Figure 2: Visualization of charging rules I and II. For case 1, we see that B(ci, 2r) and Oi intersect.
As a result, B(ci, 4r) covers all points in Oi. Points p, q are in set Zc

i . For case 2, the balls B(c1, 2r)
and B(c2, 2r) do not intersect the optimal cluster O′

i. The crossed points in O′
2 are charged to black

squared in B(c2, 2r). The circle points in O′
2 are not charged to any point. Points a, b, c are in Zd

i .

We maintain two sets of credit points that we save and may use for future charging purposes. First,
the set Zc

i = B(ci, 4r)\(O′
1 ∪ . . . ∪O′

k) which is the set of points covered by B(ci, 4r) that are not
covered by O′

1 ∪O′
2 ∪ . . . ∪O′

k. We let zci = |Zc
i | be the number of such points. In Figure 2, points

p, q are such points. Observe that no point is charged to points in Zc
i , allowing us to use them later.

We refer to these points as credit points.

There may also be previous modified balls O′
j , with j < i that were considered in case 2 and are still

present in Pi. More specifically, let Zd
i be the set of (there may exist) points in O′

j ∩ B(cj , 4r) that
have been charged to distinct points in B(cj , 4r) (See the discussion of case 2, below). For example,
points a, b, c in case 2 of Figure 2. Let zdi = |Zd

i | be the number of such points. Since no points

1In fact, original balls O1, · · · , Ok can overlap, but we can make them disjoint by assigning any point that is
inside multiple balls to just one of them arbitrarily.

8

are charged to points in Zd
i , we save them as credit points for future charging purposes. We now

update O′
1, O

′
2, . . . , O

′
k as follows: O′

1, . . . , O
′
i stay the same and we define zci + zdi artificial outliers

in (O′
i+1 ∪ . . . ∪O′

k) ∩ Pi+1.

Case 2. Case 2 occurs if B(c1, 2r)∪ . . .∪B(ci, 2r) does not intersect any of the remaining modified
balls. See Figure 2. Let O′

i be one of the remaining modified balls covering ≤ ni−z
k−i+1 points. Note

that for finding O′
i we do not count points that have been defined as artificial outliers, since these

artificial outliers are already covered by balls of radius 4r in previous levels and we do not cover
them by the remaining modified balls. We prove in Lemma 3.8 that such a ball O′

i exists.

Using the assumption of this lemma that the dense invariant holds, we show in Lemma 3.9 that
|B(ci, 2r)| ≥ ni−z

k−i+1 −
ϵz
αk . In this way, we find an upper bound for the number of points in O′

i and
a lower bound for the number of points in B(ci, 2r). Now, we charge all but at most ϵz

αk points of
O′

i to the points of B(ci, 2r) and mark these points as charged. We call this charging rule II. Note
the difference between charging argument in Case 1 and 2. In Case 1, we charge the points in O′

i to
themselves, but in Case 2, we charge them to points covered by B(ci, 2r). Recall that B(ci, 2r) and
O′

i are disjoint.

Observe that points in balls O′
i+1, · · · , O′

k will not be charged to points in B(ci, 2r). Indeed,
points in balls O′

i+1, · · · , O′
k are charged to the balls that our algorithms find either using rule I

or rule II. However, this will not happen based on rule I since B(ci, 2r) is disjoint from all balls
O′

i+1, · · · , O′
k. Moreover, rule II cannot also be applied since among balls O′

i, O
′
i+1, · · · , O′

k, we
already charged the points in O′

i to B(ci, 2r) and points in O′
i+1, · · · , O′

k will be charged to points in
balls B(ci+1, 2r), · · · ,B(cλ, 2r).
Next, we consider how we update O′

1, O
′
2, . . . , O

′
k. Similar to case 1, we define the size of two sets of

credits points. First, the variable zci = |B(ci, 4r)\(O′
1 ∪ . . .∪O′

k)| that corresponds to the number of
points covered by B(ci, 4r) that are not covered by O′

1 ∪O′
2 ∪ . . . ∪O′

k. There are zci − |O′
i| points

from B(ci, 4r) that are free (i.e., no point is charged to) and can still be charged. We consider these
points as credits that we save and may use for future charging purposes.

There may also be previous modified balls O′
j , with j < i that were considered in case 2 and are

still present in Pi. More specifically, let Zd
i be the set of (there may exist) points in O′

j ∩ B(cj , 4r)
that have been charged to distinct points in B(cj , 4r). For example, points a, b, c in case 2 of
Figure 2. Let zdi = |Zd

i | be the number of such points. Since no points are charged to points in
Zd
i , we save them as credit points for future charging purposes. We now update O′

1, O
′
2, . . . , O

′
k

as follows: O′
1, O

′
2, . . . , O

′
i stays the same and we define (zci − |O′

i|) + zdi artificial outliers in
(O′

i+1 ∪ . . . ∪O′
k) ∩ Pi+1.

Now, for both cases, we apply charging rule I to any points in the remaining modified ballsO′
i+1∪. . .∪

O′
k that are inside B(ci, 4r). These points are then marked as covered. See Figure 3 for an example.

Note that these points will not be in Pi+1 = Pi\B(ci, 4r). We assumed that O1 ∪ O2 ∪ . . . ∪ Ok

covers all but at most z points. After the charging has taken place and the modified clustering
O′

1∪O′
2∪ . . .∪O′

k has been constructed, we have that |O′
1∪O′

2∪ . . .∪O′
k| = n−z−

∑
j in case 1(z

c
j +

zdj)−
∑

j in case 2(z
c
j − |O′

j |+ zdj).

Note that |O′
j | refers to the number of points covered by the modified ball O′

j at the time of iteration
j. Then, by the way we have charged O′

1 ∪ . . . ∪O′
k to our solution B(c1, 4r) ∪ . . . ∪ B(ck, 4r), we

obtain |B(c1, 4r) ∪ . . . ∪ B(ck, 4r)| ≥ |O′
1 ∪O′

2 ∪ . . . ∪O′
k| − ϵz

α +
∑

j in case 1(z
c
j + zdj)

+
∑

j in case 2(z
c
j − |O′

j |+ zdj) = n− (1 + ϵ
α)z. This concludes the proof of Part ① of the lemma. It

follows easily that when rOPT ≤ r < (1 + ϵ)rOPT, Part ② also holds, which completes the proof of
this lemma.

Lemma 3.8. Let i be an iteration of the charging argument above such that we are in case 2. This
means that B(c1, 2r) ∪ . . . ∪ B(ci, 2r) does not intersect any of the remaining modified balls. Then,
there must be a remaining modified ball covering ≤ ni−z

k−i+1 points.

For the proof of Lemma 3.8, see Supplementary Section C.

9

Lemma 3.9 (Coverage of B(ci, 2r)). When we are in case 2 of the charging argument for some
iteration i, we must have that |B(ci, 2r)| ≥ ni−z

k−i+1 −
ϵz
αk .

For the proof of Lemma 3.9, see Supplementary Section C.

3.3 Duration of dense clusters

After running Procedure 5 as a subroutine, we know that each cluster Ci covers at least ϕ points. More
specifically, for each level i, if z+1 ≤ ni−z

4(k−i+1) , then |B(ci, 2r)| ≥ ni−z
2(k−i+1) and if z+1 > ni−z

4(k−i+1) ,
then |B(ci, 2r)| ≥ ni−z

k−i+1 −
ϵz
βk . The following two lemmas show that when Ci satisfies one of these

two constraints, it will be dense for a significant number of arbitrary operations. This will lead to
the amortized update time being independent of n. The remaining lemmas are split into two cases,
corresponding to the two cases in Procedure 5.

Lemma 3.10 (Duration of dense cluster for z is small). Assume that we are currently at time t.
Let us consider a level i in which z + 1 ≤ nt

i−z
4(k−i+1) . Let p = argmaxp′∈Si

|BPi
(p′, 2r)|, and

Bmax = BPi(p, 2r). Assume that nt
i−z

2(k−i+1) ≤ |Bmax|. Then, we can add BPi(p, 4r) as a cluster in

our solution, and this cluster will be dense until time t′ = t+ t∗, with t∗ ≥ nt
i−z

4(k−i+1) .

For the proof of Lemma 3.10, see Supplementary Section D.

Lemma 3.11 (Duration of dense cluster for z is large). Assume that we are currently at time t. Let
z + 1 >

nt
i−z

4(k−i+1) for some level i. Let p = argmaxp′∈Si
|BPi

(p′, 2r)|, and Bmax = BPi
(p, 2r).

Assume that nt
i−z

k−i+1 −
ϵz
βk ≤ |Bmax|. Then, we can add BPi(p, 4r) as a cluster in our solution, and

this cluster will be dense until time t′ = t+ t∗, with t∗ = Ω(ϵzk).

For the proof of Lemma 3.11, see Supplementary Section D.

3.4 Small radius guesses

It has not yet been considered what will happen if Procedure 5 fails on some level i. That is, when
there exists no p ∈ Si such that BPi

(p, 2r) covers sufficiently many points. Lemmas E.1 and E.2
show that if Procedure 5 fails at some level, then with high probability the guess of the optimal radius
for that specific instance is too small (r < rOPT). In this case, we postpone the construction of that
level to a time t+ t∗, referred to as t′r in the algorithm.

3.5 Computing update time

Finally, we prove the update time of our algorithm. Lemma 3.4, Lemma 3.5 and Lemma 3.6 prove
that the algorithms maintain the invariants with high probability. Together with Lemma 3.7 and
Lemma F.1 this implies Theorem 1.1.

3.6 Robustness to adversarial inputs

Our dynamic algorithm is robust against an adaptive adversary. Specifically, we do not assume
that the adversary has predetermined the sequence of updates in advance, as with an oblivious
adversary. Instead, the adversary can query the insertion and deletion updates in an online manner,
with knowledge of our solution.

We only use randomization to generate the sample set Si in Procedure 5, which is then used to
construct the levels. This randomness affects only the probability of failure in this procedure. After
the insertion or deletion updates, we do not need to reconstruct a level until it no longer satisfies the
invariants. The guarantees we provide for how long a level can remain valid are all in the worst case;
therefore, they hold even when an adaptive adversary chooses the insertion and deletion operations
online.

10

3.7 Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments. Annika
Hennes’ and Melanie Schmidt’s research was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – project number 456558332.

References
[1] MohammadHossein Bateni, Hossein Esfandiari, Hendrik Fichtenberger, Monika Henzinger, Ra-

jesh Jayaram, Vahab Mirrokni, and Andreas Wiese. Optimal fully dynamic k-center clustering
for adaptive and oblivious adversaries. In Proceedings of the 2023 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2677–2727. Society for Industrial and Applied
Mathematics, 2023.

[2] Leyla Biabani, Annika Hennes, Morteza Monemizadeh, and Melanie Schmidt. Faster query
times for fully dynamic k-center clustering with outliers. Advances in Neural Information
Processing Systems, 36, 2024.

[3] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering (with
outliers) in mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB Endow.,
12(7):766–778, 2019.

[4] Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform k-
center problem. In Proceedings of the 43rd International Colloquium on Automata, Languages,
and Programming (ICALP), volume 55 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 67,
15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

[5] T-H Hubert Chan, Silvio Lattanzi, Mauro Sozio, and Bo Wang. Fully dynamic k-center
clustering with outliers. Algorithmica, 86(1):171–193, 2024.

[6] TH Hubert Chan, Arnaud Guerqin, and Mauro Sozio. Fully dynamic k-center clustering. In
Proceedings of the 2018 World Wide Web Conference, pages 579–587, Lyon, France, 2018.
International World Wide Web Conferences Steering Committee.

[7] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 626–635, 1997.

[8] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 642–651.
ACM/SIAM, 2001.

[9] Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in
the MPC and streaming model. CoRR, abs/2302.12811, 2023.

[10] Mark de Berg, Morteza Monemizadeh, and Yu Zhong. k-center clustering with outliers in
the sliding-window model. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors,
29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 13:1–13:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[11] Hendrik Fichtenberger, Monika Henzinger, and Andreas Wiese. On fully dynamic constant-
factor approximation algorithms for clustering problems. CoRR, abs/2112.07217, 2021.

[12] Jinxiang Gan and Mordecai J Golin. Fully dynamic k-center in low dimensions via approximate
furthest neighbors. In 2024 Symposium on Simplicity in Algorithms (SOSA), pages 269–278.
SIAM, 2024.

[13] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
computer science, 38:293–306, 1985.

11

[14] Gramoz Goranci, Monika Henzinger, Dariusz Leniowski, Christian Schulz, and Alexander
Svozil. Fully dynamic k-center clustering in low dimensional metrics. In 2021 Proceedings of
the Workshop on Algorithm Engineering and Experiments (ALENEX), pages 143–153. SIAM,
2021.

[15] Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM (JACM), 33(3):533–550, 1986.

[16] Wen-Lian Hsu and George L Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics, 1(3):209–215, 1979.

[17] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 165–178. Springer, 2008.

[18] Paolo Pellizzoni, Andrea Pietracaprina, and Geppino Pucci. k-center clustering with outliers in
sliding windows. Algorithms, 15(2):52, 2022.

[19] Paolo Pellizzoni, Andrea Pietracaprina, and Geppino Pucci. Fully dynamic clustering and
diversity maximization in doubling metrics. In Algorithms and Data Structures Symposium,
pages 620–636. Springer, 2023.

[20] Melanie Schmidt and Christian Sohler. Fully dynamic hierarchical diameter k-clustering and
k-center. arXiv preprint arXiv:1908.02645, 2019.

12

A Missing Pseudocode

In this section, we provide the missing pseudocodes. We start by Procedure INITIALIZATION, which
is called to start the algorithm. This procedure defines the setR and then creates a counter for time
t, and the elements of our data structure Fr, Lr, and Zr that we discussed before. It also creates
the variable t′r, which is used when the radius r is smaller than rOPT. If r < rOPT, we may fail
to find the p∗ that we desired for a level i in Procedure OFFLINECLUSTER, and then have to stop
the level construction. In this case, we set t′r to t + t∗ to postpone the construction of that level
to time t + t∗. See Lemmas E.1 and E.2 for the choice of t∗. If t′r is set to −1, it means there is
currently no construction to be postponed. We assume all the parameters and variables defined in
Procedure INITIALIZATION are global, and the other procedures have access to them.

Then, we state Procedure UPDATE to handle the insertion or deletion of a point p. Depending on
whether the query is an insertion or a deletion, it calls INSERT(p, r) or DELETE(p, r) for different
values of r. Then it updates the counter for time. Next, if there is any level construction that was
postponed to the current time t, it handles it.

Procedure 1 INITIALIZATION(k, z, ϵ, dmin, dmax)

1: t← 0
2: R := {(1 + ϵ)i : dmin ≤ (1 + ϵ)i ≤ (1 + ϵ)dmax, i ∈ N}
3: for all r ∈ R do
4: Fr ← ∅, Lr ← ∅, Zr ← ∅
5: t′r ← −1
6: end for

Procedure 2 UPDATE(p)

1: for all r ∈ R do
2: if UPDATE(p) is an insertion then
3: INSERT(p, r)
4: else if UPDATE(p) is a deletion then
5: DELETE(p, r)
6: end if
7: end for
8: t← t+ 1
9: for all r ∈ R do

10: if t′r = t then
11: λr ← |Fr|
12: OFFLINECLUSTER(Zr, λr + 1, r)
13: end if
14: end for

Procedure 3 INSERT(p, r)

1: λ← |Fr|, {c1, c2, ..., cλ} ← Fr, and {C1, C2, ..., Cλ} ← Lr

2: if d(p, ci) ≤ 4r for some i ∈ [λ] then
3: Ci ← Ci ∪ p
4: else
5: Zr ← Zr ∪ p
6: end if
7: For each level ℓ, Pℓ ← (∪ℓ≤j≤λCj) ∪ Zr

8: for i = 1 to λ do
9: if |Ci| ≤ min

(
z + 1, |Pi|−z

k−i+1 −
ϵz
αk

)
then

10: OFFLINECLUSTER(Pi, i, r)
11: break
12: end if
13: end for

13

Procedure 4 DELETE(p, r)

1: λ← |Fr|
2: if p ∈ Zr then
3: remove p from Zr

4: else
5: Let Ci be the cluster containing p, where i ∈ [λ]
6: Pi ← (∪i≤j≤λCj) ∪ Zr

7: if B(ci, 2r) covers > min
(
z + 1, |Pi|−z

k−i+1 −
ϵz
αk

)
from Pi then

8: remove p from Ci

9: else
10: OFFLINECLUSTER(Pi, i, r)
11: end if
12: end if

Procedure 5 OFFLINECLUSTER(Pi, i, r)

1: t′r ← −1
2: while i ≤ k and Pi ̸= ∅ do
3: ni ← |Pi|
4: Pick a uniform sample Si of ψϵ−1k2 log k points from Pi

5: if z + 1 ≤ ni−z
4(k−i+1) then

6: Find a point p∗ ∈ Si such that |BPi(p
∗, 2r)| ≥ ni−z

2(k−i+1)

7: if there does not exist such a p∗ then
8: t′r ← t+ ni−z

2(k−i+2) // See Lemma E.1
9: break

10: end if
11: else if z + 1 > ni−z

4(k−i+1) then
12: Find a point p∗ ∈ Si such that |BPi

(p∗, 2r)| ≥ ni−z
k−i+1 −

ϵz
βk

13: if there does not exist such a p∗ then
14: t′r ← t+ ϵz

2βk // See Lemma E.2
15: break
16: end if
17: end if
18: ci ← p∗, Ci ← B(p∗, 4r), and Pi+1 ← Pi\Ci

19: i← i+ 1
20: end while
21: Fr ← {c1, c2, ..., ci−1}, Lr ← {C1, C2, ..., Ci−1} ,Zr ← Pi

B Missing proofs Section 3.1

Lemma 3.4 (Procedure 3 maintains invariants). Assume that at time t, we have point set P t, data
structure Dr = (Fr,Lr,Zr). We assume that the level and dense invariants hold at time t and
r ≥ rt+1

OPT. At the start of time t + 1, we insert point p using Procedure 3. After the insertion, the
level and dense invariants still hold with probability 1 if Procedure 5 was not called and with the
probability of at least 1− 2(k−i+1)

eΨ log k , where Ψ ≥ 1 if Procedure 5 was not called.

Proof. If we enter the case in line 2, the new point p will be added to an existing cluster Ci. Then,
we have that p ∈ Pj for all j ≤ i and p /∈ Pj for all j > i. If we enter the case in line 4, the new
point p is added as an outlier. This is the highest level, so we have that p ∈ Pi for all i. The level
invariant is maintained by definition in these cases. If we enter the case in line 9 and recluster levels
i, . . . , k, we recluster the points in Pi as defined in line 7, and hence, none of the levels j < i are
affected. Then by Lemma 3.6, the level invariant is maintained for all levels. The dense invariant is
maintained because of the check we do in line 9 for all levels. Furthermore, we choose the lowest
level i where the dense invariant does not hold and recluster from this level upwards. Hence, the

14

dense invariant will hold for all levels j < i. We call Procedure 5 on Pi, so by Lemma 3.6, the dense
invariant is maintained for levels j ≥ i with probability 1− 2(k−i+1)

eΨ log k , with Ψ ≥ 1.

Lemma 3.5 (Procedure 4 maintains invariants). Assume that at time t, we have point set P t, instance
Dr = (Fr,Lr,Zr), parameters k, z ∈ N and ϵ > 0. We assume that the level and dense invariants
hold at time t and r ≥ rt+1

OPT. At the start of time t + 1, we delete an arbitrary point p using
Procedure 4. After the deletion, the level and dense invariants hold with probability 1 if Procedure 5
was not called, and with probability 1− 2(k−i+1)

eΨ log k with Ψ ≥ 1 if Procedure 5 was called.

Proof. If we enter the case in line 2, where p is an outlier, it follows easily that the level and dense
invariants are maintained. In the second case, starting in line 4, p is in some cluster Ci, either as
a center or as another point. If Ci still covers sufficiently many points after the deletion of p as
described in line 7, it follows easily that the level invariant is maintained. For the dense invariant,
note that for all levels j < i, nj and with this nj−z

k−j+1 −
ϵz
αk can only decrease. Furthermore, for all

levels j > i, nj remains unchanged. This observation, combined with the fact that for any i ̸= j,
|Cj | is unchanged, means that the dense invariant still holds for all levels.

If Ci is no longer dense after deleting p, and we enter the case in line 9, the clusters in levels j < i
remain unchanged. The level invariant will be maintained since Pj is updated to Pj\{p} for all j < i.
The dense invariant is maintained in levels j < i by the same reasoning as the previous case. On the
remaining points, Procedure 5 is called in line 10. Using Lemma 3.6, the level and dense invariants
are maintained for the remaining levels with probability at least 1− 2(k−i+1)

eΨ log k , where Ψ ≥ 1. Crucial
for maintaining the level invariant is line 6. This line ensures that we do not consider the points in
levels j < i when constructing level i and any higher levels.

Lemma 3.6 (Procedure 5 maintains invariants with high probability). Suppose the level and dense
invariants hold for all levels j < i and we call Procedure 5 on Pi as the result of an insertion or
deletion. Let λ ≤ k be a random variable representing the number of levels we have after completing
Procedure 5. If r ≥ rOPT, Procedure 5 maintains the level and dense invariants for all levels j with
i ≤ j ≤ λ with probability at least 1− 2(k−i+1)

eΨ log k , with Ψ ≥ 1.

Proof. By the while-loop structure in combination with line 18, the level invariant is maintained for
all levels j ≥ i. For each newly constructed level j ≥ i, there are two cases within the while-loop.

For the first case where z + 1 ≤ nj−z
4(k−j+1) , we find a ball BPj

(p∗, 2r) that covers ≥ nj−z
2(k−j+1) points

with probability at least 1− 2
eΨ log k if r ≥ rOPT. For the proof of this, we refer to Lemma E.1.

Then, the dense invariant holds for any such level since

nj − z
2(k − j + 1)

≥ nj − z
4(k − j + 1)

≥ z + 1 ≥ min

(
z + 1,

nj − z
k − j + 1

− ϵz

αk

)
. (1)

In the second case where z + 1 >
nj−z

4(k−j+1) , we find a ball BPj
(p∗, 2r) that covers ≥ nj−z

k−j+1 −
ϵz
βk

points with probability 1 − 2
eΨ log k if r ≥ rOPT. For the proof of this, we refer to Lemma E.2.

Since β > α (see Section 2.4), the dense invariant also holds for every level in this case. Then, the
probability that the dense invariant holds for all levels j with i ≤ j ≤ λ is at least 1− 2(k−i+1)

eΨ log k . This
is because λ− i+1 ≤ k− i+1 is the number of new levels we constructed during Procedure 5.

C Missing proofs Section 3.2

Lemma 3.8. Let i be an iteration of the charging argument above such that we are in case 2. This
means that B(c1, 2r) ∪ . . . ∪ B(ci, 2r) does not intersect any of the remaining modified balls. Then,
there must be a remaining modified ball covering ≤ ni−z

k−i+1 points.

Proof. We prove this using strong induction on iterations in case 2. First, let us consider the base
case. In the base case, we are in iteration i which is the first iteration to be in case 2 of the charging
argument. There have been i− 1 iterations before i which were charged according to case 1. For any

15

B(ci, 4r)

O′
i

O′
j

B(ci, 2r)

Figure 3: An example to illustrate the extra charging we do at the end of both cases 1 and 2. We
are in iteration i, and the ball B(ci, 4r) covers two points from ball O′

j , with j > i. The two points,
shown in red, will be charged to themselves as in charging rule I and marked as covered.

j < i, define xj to be the number of artificial outliers covered by B(cj , 4r). Then, for the remaining
modified balls we have that:

|O′
i ∪ . . . ∪O′

k| = ni −

z − i−1∑
j=1

(zcj − xj)

− i−1∑
j=1

(zcj − xj) = ni − z (2)

This is because we assume that there are exactly z points outside our optimal solution O1 ∪ . . . ∪Ok.
These z points are also outside O′

1 ∪ . . . ∪ O′
k since for 1 ≤ i ≤ k, O′

i ⊆ Oi. Of those z points,
(z −

∑i−1
j=1(z

c
j − xj)) have not yet been seen in an iteration. Hence, these points are definitely not

covered by O′
i ∪ . . . ∪O′

k. Furthermore, we know that
∑i−1

j=1(z
c
j − xj) artificial outliers have been

defined in O′
i ∪ . . . ∪O′

k in total. This is because all iterations j < i were in case 1, and any artificial
outliers present in O′

j will be propagated to (O′
j+1 ∪ . . . ∪O′

k) ∩ Pj+1, as these are included in zcj .
We subtract xj because these artificial outliers have already been counted by another zcj , and should
not be counted again when computing the total amount of artificial outliers. Note that zdj = 0 for all
iterations j < i as there were no previous iterations before j in case 2. Since at most ni − z points
are covered by O′

i ∪ . . . ∪O′
k, there must be at least one of the modified optimal ball which covers

≤ ni−z
k−i+1 . This concludes the proof of the base case.

Now, consider the inductive step. We are in an iteration i that is in case 2. There have been i − 1
previous iterations, of which an arbitrary number has been charged by case 2. Assume that for any
such iteration j < i that was in case 2, we found an optimal ball O′

j that was covering at most nj−z
k−j+1

points. At the time of iteration j, the points of ball O′
j were charged to distinct points in B(cj , 2r),

but not necessarily covered. In the iterations between j and i, however, more points of the ball O′
j

may have been covered. Define O′
j,unc as the points of O′

j that are still uncovered at the time of
iteration i. Now, for the remaining modified balls, we should have that:

|O′
i ∪ . . . ∪O′

k| = ni −

z − i−1∑
j=1

(zcj − xj)

− ∑
j<i in case 1

(zcj + zdj − xj)

−
∑

j<i in case 2

(zcj + zdj − |O′
j | − xj)−

∑
j<i in case 2

|O′
j,unc| (3)

Similar to the base case, (z −
∑i−1

j=1(z
c
j − xj)) points will definitely be outside O′

i ∪ . . .∪O′
k. In the

iterations before j < i in case 1, (zcj + zdj) points are stored as a credit. We subtract xj from this
since we don’t want to recount outliers from previous iterations. In each iteration j < i that was in
case 2, (zcj + zdj − |O′

j |) are stored as a credit. Even though B(cj , 2r) is disjoint from the remaining
modified balls in this case, B(cj , 2r) can still cover some artificial outliers present in the remaining
modified balls. We do not want to recount these for the total amount of outliers in O′

i ∪ . . .∪O′
k, and

hence we subtract xj . Lastly, since the modified balls are disjoint, any points of O′
j with j < i and

iteration j in case 2 that are still in the point set ni are not covered by O′
i ∪ . . . ∪O′

k. We can rewrite

16

this as follows:

|O′
i ∪ . . . ∪O′

k| = ni − z −

∑
j<i

zdj +
∑

j<i in case 2

|O′
j,unc|

+
∑

j<i in case 2

|O′
j | = ni − z (4)

This is because by the definition of zdj , (
∑

j<i z
d
j +

∑
j<i in case 2|O′

j,unc|) =
∑

j<i in case 2|O′
j |.

Since at most ni − z points are covered by O′
i ∪ . . .∪O′

k, there must be at least one of the remaining
modified balls which covers ≤ ni−z

k−i+1 . This concludes the proof.

Lemma 3.9 (Coverage of B(ci, 2r)). When we are in case 2 of the charging argument for some
iteration i, we must have that |B(ci, 2r)| ≥ ni−z

k−i+1 −
ϵz
αk .

Proof. We prove the statement by induction on iterations i ≤ k in case 2 of the charging argument.
For the base case, iteration i is the first iteration in case 2. This means that for all previous iterations
j < i, O′

j has been charged and covered by charging rule I. Hence, B(ci, 2r) cannot intersect any
such O′

j since the points in O′
j are not in Pi. We know that B(ci, 2r) also does not intersect any of

the remaining modified balls by our assumption that iteration i is in case 2. Hence, B(ci, 2r) does not
intersect O′

1 ∪ . . .∪O′
k. The ball B(ci, 2r) can cover x ≤

∑i−1
j=1(z

c
j − xj) artificial outliers, where x

is the total number of artificial outliers present in O′
i ∪ . . .∪O′

k. The ball B(ci, 2r) can cover at most
z −

∑i−1
j=1(z

c
j − xj) other points, since there are exactly z points outside O1 ∪ . . . ∪Ok, of which∑i−1

j=1(z
c
j − xj) have been seen in a previous ball B(cj , 4r), for j < i. Hence, |B(ci, 2r)| ≤ z. So,

in order to satisfy the dense invariant, |B(ci, 2r)| ≥ ni−z
k−i+1 −

ϵz
αk .

Now consider the induction case. We are in an arbitrary iteration i in case 2, and there have been
an arbitrary number of iterations j < i in case 2. For iterations j < i in case 2, we assume that
|B(cj , 2r)| ≥ nj−z

k−j+1 −
ϵz
αk . Even though B(ci, 2r) is disjoint from the remaining modified balls, it

can cover x artificial outliers and z −
∑i−1

j=1(z
c
j − xj) other points. For x we have that:

x ≤
∑

j<i in case 1

(zcj + zdj − xj) +
∑

j<i in case 2

(zcj + zdj − |O′
j | − xj) (5)

∑
j<i in case 1(z

c
j + zdj − xj) are the total number of artificial outliers from iterations in case 1, and∑

j<i in case 2(z
c
j + zdj − |O′

j | − xj) are the total number of artificial outliers from case 2. Then, for
the total amount of points in B(ci, 2r), we have:

|B(ci, 2r)| ≤ z +
∑
j<i

zdj −
∑

j<i in case 2

|O′
j | ≤ z (6)

This is because by the definition of zdj , we have that
∑

j<i z
d
j ≤

∑
j<i in case 2|O′

j |. So, in order to
satisfy the dense invariant, |B(ci, 2r)| ≥ ni−z

k−i+1 −
ϵz
αk . This concludes the proof.

D Missing proofs Section 3.3

Lemma 3.10 (Duration of dense cluster for z is small). Assume that we are currently at time t.
Let us consider a level i in which z + 1 ≤ nt

i−z
4(k−i+1) . Let p = argmaxp′∈Si

|BPi
(p′, 2r)|, and

Bmax = BPi(p, 2r). Assume that nt
i−z

2(k−i+1) ≤ |Bmax|. Then, we can add BPi(p, 4r) as a cluster in

our solution, and this cluster will be dense until time t′ = t+ t∗, with t∗ ≥ nt
i−z

4(k−i+1) .

Proof. The subscript of ni will be omitted for simplicity. At time t, we know that nt−z
2(k−i+1) ≤

|Bmax|. The resulting cluster BPi(p, 4r) will be dense as long as Bmax covers more than

min
(
z + 1, nt′−z

k−i+1 −
ϵz
αk

)
points at time t′. Hence, the dense invariant will not be broken as long as

17

Bmax is greater than z + 1. Let t′ be the time at which |Bmax| < z + 1. We can lower bound the time
t∗ between t and t′ using the change in size of Bmax. Then, we get the following lower bound:

t∗ ≥ nt − z
2(k − i+ 1)

− z (7)

Then, since z + 1 ≤ nt−z
4(k−i+1) by our assumption, we have:

t∗ >
nt − z

2(k − i+ 1)
− nt − z

4(k − i+ 1)
≥ nt − z

4(k − i+ 1)
(8)

This concludes the proof.

Lemma 3.11 (Duration of dense cluster for z is large). Assume that we are currently at time t. Let
z + 1 >

nt
i−z

4(k−i+1) for some level i. Let p = argmaxp′∈Si |BPi(p
′, 2r)|, and Bmax = BPi(p, 2r).

Assume that nt
i−z

k−i+1 −
ϵz
βk ≤ |Bmax|. Then, we can add BPi

(p, 4r) as a cluster in our solution, and
this cluster will be dense until time t′ = t+ t∗, with t∗ = Ω(ϵzk).

Proof. The subscript of ni will be omitted for simplicity. At time t, we know that nt−z
k−i+1 −

ϵz
βk ≤ |Bmax|. The resulting cluster BPi

(p, 4r) will be dense as long as Bmax covers more than

min
(
z + 1, nt′−z

k−i+1 −
ϵz
αk

)
points at time t′, with α a fixed constant smaller than β. Hence, the dense

invariant will not be broken as long as Bmax covers at least nt′−z
k−i+1 −

ϵz
αk points. Let t′ be the time

at which |Bmax| < nt′−z
k−i+1 −

ϵz
αk . We can lower bound t∗ by examining the change in size of Bmax.

Using that nt
′ ≤ nt + t∗, we have:

t∗ ≥ (
nt − z
k − i+ 1

− ϵz

βk
)− (

nt
′ − z

k − i+ 1
− ϵz

αk
)

≥ nt − z
k − i+ 1

− nt + t∗ − z
k − i+ 1

− ϵz

βk
+
ϵz

αk
=

−t∗

k − i+ 1
− ϵz

βk
+
ϵz

αk
(9)

Now, solving for t∗ gives:

t∗ ≥ ϵz(k − i+ 1)

k(k − i+ 2)
(
1

α
− 1

β
) ≥ ϵz

2k
(
1

α
− 1

β
) (10)

Since α and β are two fixed constants such that β > α, this gives t∗ = Ω(ϵzk). This concludes the
proof.

E Missing proofs Section 3.4

Lemma E.1 (Radius guess is small for z is small). Assume that we are currently at time t. Let us
consider a level i for which z + 1 ≤ nt

i−z
4(k−i+1) . Let p = argmaxp′∈Si |BPi(p

′, 2r)|, where Si is the

sample chosen in Algorithm 5, and Bmax = BPi
(p, 2r). Assume that |Bmax| < nt

i−z
2(k−i+1) . Then, with

probability at least 1− 2
eΨ log k , for Ψ ≥ 1, we have that r < rOPT and until time t′ = t+ t∗ we do

not need to consider the instance for r, with t∗ ≥ nt
i−z

2(k−i+2) .

Proof. Let O1, . . . , Ok be the optimal balls at time t. Consider the same charging argument used
in Lemma 3.7, where we charged one of the optimal balls to BPi

(ci, 4r) in each level i. Using
Equation 4 and the fact that O′

i ⊆ Oi for each of the remaining optimal balls, we know that
|Oi ∪ . . . ∪Ok| ≥ nti − z. Then, there must be at least one of the remaining optimal balls covering
≥ nt

i−z
k−i+1 points. Let Oi be the largest such ball. Using the Chernoff bound, we show that with

high probability, one of the sampled points p ∈ Si is in Oi. Define independent random variables
X1, . . . , X|Oi|, one for each point in Oi. Each Xj , corresponding to point j ∈ Oi, will be 1 if j ∈ Si

18

and 0 otherwise. Define X =
∑|Oi|

j=1Xj . We know that E[Xj] =
|Si|
nt
i

. Then, using linearity of
expectation, we find:

E[X] =
|Si| · |Oi|

nti
≥ |Si|

nti
· nti − z
k − i+ 1

≥ |Si| · (nti − z)
nti · k

≥ |Si|
k

(1− z

nti
) (11)

The condition z + 1 ≤ nt
i−z

4(k−i+1) implies z ≤ nt
i

4(k−i+1) ≤
nt
i

4 . Then, since |Si| = ψϵ−1k2 log k,

it follows that |Si|
k (1 − z

nt
i
) ≥ 3

4ψϵ
−1k log k. Given that ψ ≥ 6β and β > α ≥ 1, this is at least

3ϵ−1k log k ≥ 3Ψ log k for Ψ ≥ 1.

Now, using the Chernoff bound, we find:

Pr [|X −E[X]| ≥ E[X]] ≤ 2e−
E[X]

3 ≤ 1

eΨ log k
, (12)

where Ψ ≥ 1.

Hence, with probability of at least 1 − 2
eΨ log k , there will be at least 1 point from Oi in Si. Let us

call this point p. If r ≥ rOPT, BPi
(p, 2r) would cover all points of Oi since p ∈ Oi and Oi has radius

≤ rOPT. However, since |Bmax| < nt
i−z

2(k−i+1) , we must have that r < rOPT.

Left to prove is that until time t′ = t+ t∗ we do not need this instance of r, where t∗ ≥ nt
i−z

2(k−i+2) . To

this end, let Btmax be Bmax at time t. Consider the situation at time t. We know that |Btmax| <
nt
i−z

2(k−i+1) .

Let t′ be some time after t such that |Bt′max| ≥
nt′
i −z

k−i+1 . Hence, the instance for r becomes valid at time
t′. We want to derive a lower bound for t∗ = t′ − t to complete the proof. By examining the change
in the size of Bmax, we derive the following lower bound:

t∗ ≥ nt
′

i − z
k − i+ 1

− nti − z
2(k − i+ 1)

(13)

Using nt
′

i ≥ nti − t∗ and subsequently solving for t∗ we find that:

t∗ ≥ nti − z
2(k − i+ 2)

(14)

This completes the proof.

Lemma E.2 (Radius guess is small for z is large). Assume that we are currently at time t. Let us
consider a level i in which z + 1 >

nt
i−z

4(k−i+1) . Let p = argmaxp′∈Si
|BPi

(p′, 2r)|, where Si is the

sample chosen in Algorithm 5, and Bmax = BPi(p, 2r). Assume that |Bmax| < nt
i−z

k−i+1 −
ϵz
βk . Then,

with probability at least 1− 2
eΨ log k , for Ψ ≥ 1, we have that r < rOPT and until time t′ = t+ t∗ we

do not need to consider the instance for r, with t∗ ≥ ϵz
2βk .

Proof. Let O1, . . . , Ok be the optimal balls at time t. As in Lemma E.1, let Oi be the largest
remaining optimal ball covering ≥ nt

i−z
k−i+1 points. Using the Chernoff bound, we show that with

high probability, one of the sampled points p ∈ Si is in Oi. Define independent random variables
X1, . . . , X|Oi|, one for each point in Oi. Each Xj , corresponding to point j ∈ Oi, will be 1 if j ∈ Si

and 0 otherwise. Define X =
∑|Oi|

j=1Xj . We know that E[Xj] =
|Si|
nt
i

. Then, using linearity of
expectation, we find

E[X] =
|Si| · |Oi|

nti
≥ |Si|

nti
· nti − z
k − i+ 1

. (15)

Without loss of generality, we can assume nt
i−z

k−i+1 −
ϵz
βk ≥ 1, otherwise there would not need to be

any points in the ball BPi(p, 2r) to satisfy the dense invariant, and level i would be trivial. Using this,
Equation (15) can be simplified as follows:

E[X] ≥ |Si|
nti
· nti − z
k − i+ 1

≥ |Si|
nti
· ϵz
βk

(16)

19

We make a case distinction. Either z ≥ nt
i

2 . In this case, Equation (15) further simplifies to

E[X] ≥ ϵ|Si|
2βk

. (17)

Recall that |Si| = ψϵ−1k2 log k. Given that ψ ≥ 6β and β > α ≥ 1, we have

E[X] ≥ 1

2β
ψk log k ≥ 3k log k ≥ 3Ψ log k (18)

for some Ψ ≥ 1.

In the other case z < nt
i

2 , Equation (15) simplifies to

E[X] ≥ |Si|
nti
· nti/2

k − i+ 1
≥ |Si|

2k
≥ 1

2
ψϵ−1k log k ≥ 3Ψ log k (19)

for some Ψ ≥ 1.

In both cases, using the Chernoff bound, we find that with probability at least 1− 2
eΨ log k , there will

be at least one point p from Oi in Xi. If r ≥ rOPT, BPi(p, 2r) would cover all points of Oi since
p ∈ Oi and Oi has radius ≤ rOPT. However, since |Bmax| < nt

i−z
k−i+1 −

ϵz
βk <

nt
i−z

k−i+1 ≤ |Oi|, we
must have that r < rOPT.

Left to prove is that until time t′ = t+ t∗, with t∗ = Ω(ϵzk), we do not need this instance of r. To this

end, let Btmax be Bmax at time t. Consider the situation at time t. We know that |Btmax| <
nt
i−z

k−i+1−
ϵz
βk .

Let t′ be some time after t such that |Bt′max| ≥
nt′
i −z

k−i+1 . The cluster BPi
(p, 2r) in level i is now covering

sufficiently many points. We want to derive a lower bound for t∗ = t′ − t to complete the proof. By
examining the change in the size of Bmax and using that nt

′

i ≥ nti − t∗, we derive

t∗ ≥ nt
′

i − z
k − i+ 1

− (
nti − z
k − i+ 1

− ϵz

βk
) (20)

=
nti − t∗ − z
k − i+ 1

− nti − z
k − i+ 1

+
ϵz

βk
(21)

=
−t∗

k − i+ 1
+
ϵz

βk
(22)

as a lower bound for t∗. Solving for t∗ gives

t∗ ≥ ϵz(k − i+ 1)

βk(k − i+ 2)
≥ ϵz

2βk
. (23)

Since β is a constant, this is in Ω(ϵzk). This concludes the proof.

F Missing proofs from Section 3.5

Lemma F.1. The amortized update time of our dynamic algorithm is O(ϵ−3k6 log(k) log(∆)).

Proof. Let us fix an arbitrary time t and assume that at time t, there are λ ≤ k clusters. Let time
t′ = t+ t∗ be the time at which we need to invoke Procedure 5 on an arbitrary level i ≤ k, due to the
dense invariant being violated. We have two cases:

➊ z+1 ≤ nt
i−z

4(k−i+1) : For this case, Lemma 3.10 shows the following: If we find a cluster such

that |BPi(ci, 2r)| ≥
nt
i−z

2(k−i+1) at time t, then this cluster will remain dense for t∗ ≥ nt
i−z

4(k−i+1)

update operations (either insert or delete).

➋ z + 1 >
nt
i−z

4(k−i+1) : For this case, Lemma 3.11 proves that if we find a cluster such that

|BPi
(ci, 2r)| ≥ nt

i−z
k−i+1 −

ϵz
βk at time t, then this cluster will remain dense for the next

t∗ ≥ ϵz
2k (

1
α −

1
β) time steps. Asymptotically, t∗ = Ω(ϵzk). By substituting the lower bound

of z in this formula, we obtain t∗ = Ω(
ϵnt

i

k2).

20

Observe that in both cases, we have a worst-case guarantee for the number of time steps during which
the cluster BPi(ci, 2r) remains dense. This, in turn, allows us to achieve a worst-case amortized
update time, rather than the weaker notion of expected amortized update time. We analyze the update
time of each case separately.

Let us start with the first case which is z + 1 ≤ nt
i−z

4(k−i+1) and suppose that we find a cluster such

that |BPi
(ci, 2r)| ≥ nt

i−z
2(k−i+1) at time t. We know that t∗ ≥ nt

i−z
4(k−i+1) . The cost of reclustering levels

i, . . . , k according to Lemma 3.3 is O(nt′i ϵ−1 · k3 log k), with nt
′

i ≤ nti + t∗. Then, the amortized
update time of an arbitrary update operation is O(1

t∗ (n
t
i + t∗)ϵ−1k3 log k) = O(n

t
i

t∗ ϵ
−1k3 log k).

Since z ≤ nt
i

4(k−i+1) , we obtain nt
i

t∗ ≤ nti ·
4(k−i+1)

nt
i−z

≤ 4k · nt
i

nt
i−z
≤ 4k · nt

i

nt
i(1−

1
4(k−i+1)

)
= 4k ·

4(k−i+1)
4(k−i+1)−1 = O(k) . Thus, O(n

t
i

t∗ ϵ
−1k3 log k) = O(ϵ−1k4 log k).

Now, we consider the second case. Using a similar analysis as in the first case, we have t∗ =

Ω(
ϵnt

i

k2). Then, the amortized update time of an arbitrary update operation is O(n
t
i

t∗ ϵ
−1k3 log k) =

O(ϵ−2k5 log k).

After reclustering levels i, . . . , k, there is no longer a lower bound for t∗ for levels j < i. Thus, it
could happen that such a level j needs to be reclustered soon after time t′. Since j < k, this leads to
an extra factor k such that the final amortized cost is O(ϵ−2k6 log k).

Finally, we need to consider the case that offline clustering fails for a level i. That is, we fail to find a
ball covering sufficiently many points in Procedure 5. If offline clustering fails on some level i in
case 1, meaning we fail to find a ball such that |BPi

(ci, 2r)| ≥ nt
i−z

2(k−i+1) , then Lemma E.1 proves
that with probability 1− 1

eΩ(log k) , the guess r is small (i.e., r < rOPT) and indeed, remains small and

we do not need to consider this guess until a time t′ = t+ t∗ where t∗ ≥ nt
i−z

2(k−i+2) .

At time t′, we recluster levels i, . . . , k. Then, since we are in the first case, we have z ≤
nt
i

4(k−i+1) . Thus, the amortized update time of an arbitrary update operation in this case is

O(1
t∗ (n

t
i + t∗)ϵ−1k3 log k) = O(n

t
i

t∗ ϵ
−1k3 log k) = O(ϵ−1k4 log k) using Lemma 3.3.

Next, we consider the situation when the offline clustering fails in case 2. Specifically, this occurs
when we fail to find a ball such that |BPi

(ci, 2r)| ≥ ni−z
k−i+1 −

ϵz
βk . According to Lemma E.2, the

guess r is small (i.e., r < rOPT) with probability 1− 1
eΩ(log k) and indeed, remains small and we do

not need to consider this guess until time t′ = t+ t∗ where t′ = Ω(ϵzk). This leads to an amortized
update time of O(ϵ−2k5 log k). As mentioned above, the running time needs to be multiplied by an
additional factor k to account for the possible need to recluster lower levels.

Finally, we need to considerO(log∆
log(1+ϵ)) guesses for the optimal radii. For small ϵ, this is inO(log∆

ϵ).
Thus, we derive the final amortized update time of O(ϵ−3k6 log k log∆).

G How to support discrete k-center clustering with outliers

Lemma G.1. Let (M,d) be a metric space and ϵ > 0 be an accuracy parameter. The spread ratio
∆ = dmax

dmin
of all points ever inserted is assumed to be bounded. There exists a randomized fully

dynamic algorithm that maintains a discrete k-center solution that allows up to (1+ϵ)z many outliers
on the current set of points. At every point in time t, the current clustering with centers c1, . . . , cλ is
a (4 + ϵ)-approximation to an optimal solution for the (k, z)-center problem with high probability
and ci ∈ P t for all i ≤ λ. Upon insertion or deletion of a point, the data structure is updated in
amortized update time O(ϵ−3k6 log(k) log(∆)).

Proof. Let r and i be fixed, and ci be the center of cluster Ci = BPi(ci, 4r). As long as ci is not
deleted, we report ci as the i-th center. Note that any feasible solution for the discrete version is also
a feasible solution for the non-discrete version. Therefore, the optimal radius for the discrete version
is not smaller than the optimal radius for the non-discrete version.

21

After the deletion of the point ci, we consider two cases: min
(
z + 1, ni−z

k−i+1 −
εz
αk

)
≤ 0 or

min
(
z + 1, ni−z

k−i+1 −
εz
αk

)
> 0. If min

(
z + 1, ni−z

k−i+1 −
εz
αk

)
≤ 0, then ni < (1+ ε)z as i ≥ 1 and

α > 1. Hence, we can report all the ni points as outliers and stop. We next consider the second case.
The dense invariant states that |BPi

(ci, 2r)| ≥ min(z+1, ni−z
k−i+1 −

εz
αk). Therefore, |BPi

(ci, 2r)| > 0

holds in the second case, and there exists a point p̂ ∈ BPi
(ci, 2r). Then we report an arbitrary point

p̂ ∈ BPi
(ci, 2r) after the deletion of ci. Note that we do not replace ci by p̂ in our data structure, and

ci does not change in our data structure as long as the i-th level is not reconstructed. The point p̂ is
just the center that we report for the discrete version.

We next prove the 6-approximation guarantee. To do this, we show that Ci ⊆ B(p̂, 6r). This implies
that any feasible solution with radius 4r for the non-discrete version can be used to report a feasible
solution for the discrete version. Also, see Figure 4 for a visual representation. Let q ∈ Ci. We show
that q ∈ B(p̂, 6r). Since q ∈ Ci = B(ci, 4r), we have d(q, ci) ≤ 4r. Moreover, d(ci, p̂) ≤ 2r since
p̂ ∈ B(ci, 2r). Then by the triangle inequality, we have

d(q, p̂) ≤ d(q, ci) + d(ci, p̂) ≤ 4r + 2r = 6r.

To report a solution for the discrete version, it is enough to keep B(ci, 2r) ∩ Pi. Note that our data
structure already stores Ci ∩ Pi, and since B(ci, 2r) ∩ Pi ⊆ Ci ∩ Pi, the space complexity and time
complexity remain the same.

Ci = B(ci, 4r)

B(ci, 2r)

4r

2r

Ci = B(ci, 4r)

B(ci, 2r)

4r

2r

p̂
6r

B(p̂, 6r)

ci ci

(i) (ii)

Figure 4: Illustration of the claim’s proof. Part (i): before deletion of ci, we report ci as the center.
Part (ii): after deletion of ci, we report an arbitrary point p̂ ∈ B(ci, 2r) as the center. Then, B(p̂, 6r)
can cover all the points in the cluster Ci.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The problem setting stated at the beginning of the abstract summarizes this
paper’s scope as formalized in Section 1.3. The main statements made in the abstract can be
found in Theorem 1.1 in Section 1.1, which is a summarization of Lemma 3.7 in Section 3.2
and Lemma F.1 in Section 3.5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As stated in the abstract, Section 1.1, Section 1.3 and the result Lemma 3.7, our
algorithm yields a bicriteria approximation. This means that we approximate the objective
function and also allow a slight violation of the outlier side constraint while comparing
with an optimal solution that fulfills the side constraint exactly. Our results hold with high
probability, which is stated formally in statement Lemma 3.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

23

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The problem setting alongside assumptions are stated in Section 1.3. This
paper’s main statements are Lemma 3.7 and Lemma F.1. Lemma 3.8 and Lemma 3.9
are used to prove Lemma 3.7. It uses the assumption that the level and dense invariants
hold. Lemma 3.6, Lemma 3.4 and Lemma 3.5 show that running our procedures maintains
these invariants. Lemma F.1 uses Lemma 3.3, Lemma 3.11, Lemma 3.10, Lemma E.1,
Lemma E.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

24

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not contain experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As our paper is of theoretical nature, most of the points addressed in the Code
of Ethics do not apply. Further, we could not identify any foreseeable dangers or harms
directly caused by the utilization of our results.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no foreseeable direct societal impact of the work performed.

26

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

27

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Our contribution
	Further Related work
	Preliminaries

	Algorithm
	Data structure and invariants
	Insertion
	Deletion
	Clustering sub-routine
	All aspects combined

	Analysis
	Maintaining invariants
	Approximation guarantee
	Duration of dense clusters
	Small radius guesses
	Computing update time
	Robustness to adversarial inputs
	Acknowledgements

	Missing Pseudocode
	Missing proofs Section 3.1
	Missing proofs Section 3.2
	Missing proofs Section 3.3
	Missing proofs Section 3.4
	Missing proofs from Section 3.5
	How to support discrete k-center clustering with outliers

