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Abstract
This paper addresses distinct forms of treatment effect variation that commonly arise in social and behav-
ioral science research. Differences in the nature of relationships among variables or in the contexts where
treatments are implemented can lead to both quantitatively and qualitatively different patterns of treatment
effect heterogeneity. Such variation may involve interactions between treatments and covariates, condi-
tional average treatment effects defined by observed characteristics, random treatment coefficients across
clusters, or differences in treatment effects across unobserved subpopulations. By highlighting distinctive
features of treatment effect variation, this paper emphasizes the importance of addressing heterogeneity
as an integral part of study design and research objectives, rather than treating it as a secondary or post
hoc concern. This paper concludes by emphasizing the need for a structured and conceptually grounded
framework to better identify, interpret, and apply heterogeneous treatment effects.
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1. Introduction
1.1 Potential Outcomes Framework for Multilevel Data
Treatment effects are commonly defined using the potential outcomes framework (Neyman, 1923;
Rubin, 1974), which provides a formal basis for causal inference. In this paper, we adopt an extension
of the potential outcomes framework appropriate for multilevel data structures, where individuals
are nested within clusters (Hong & Raudenbush, 2006; Lyu et al., 2022).

Let i = 1, . . . , nj index individuals within cluster j = 1, . . . , M, where nj is the number of
individuals in cluster j, and the total number of individuals across all clusters is N =

∑M
j=1 nj. For each

individual i in cluster j, let Tij ∈ {0, 1} denote the binary treatment indicator, where Tij = 1 if the
individual receives the treatment and Tij = 0 otherwise. Each individual has two potential outcomes:
Yij(1), representing the outcome if the individual receives the treatment, and Yij(0), representing the
outcome under the control condition. The observed outcome Yij is determined by the treatment
assignment and the corresponding potential outcomes:

Yij = TijYij(1) + (1 – Tij)Yij(0).

This framework relies on the stable unit treatment value assumption (SUTVA) (Rubin, 1986), which
includes two components: (1) no interference between units (i.e., one individual’s potential outcomes
do not depend on the treatment assignments of others), and (2) no hidden versions of treatment (i.e.,
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treatment is consistently defined and delivered across units). Hong and Raudenbush (2006), Imbens
and Rubin (2015), and Kim et al. (2015) are among those who extend SUTVA to multilevel contexts,
noting that interactions among units within clusters may be more likely in such settings.

Since only one of the two potential outcomes is observed for each individual, the individual
treatment effect Yij(1) – Yij(0) is fundamentally unobservable. This is known as the fundamental
problem of causal inference (Holland, 1986). However, when certain conditions or assumptions hold,
researchers can estimate average treatment effects at various levels, for example, population average
treatment effects, subgroup-specific effects, or cluster-level effects. These forms of treatment effect
estimation will be discussed in the following sections.

1.2 Key Assumptions for Causal Inference
Causal inference from observational multilevel data requires several identifying assumptions to
support valid estimation of treatment effects. These assumptions address the fundamental challenge
that only one potential outcome is observed for each unit.

Let XXXij denote a vector of observed individual-level (Level-1) covariates for individual i in cluster
j (e.g., demographic characteristics, prior achievement, baseline health status), and let ZZZj denote a
vector of observed cluster-level (Level-2) covariates for cluster j (e.g., school size, neighborhood
poverty rate, average clinic staffing). Identification of causal effects under the potential outcomes
framework relies on the following assumptions:

Unconfoundedness (Conditional Ignorability): Treatment assignment is assumed to be indepen-
dent of the potential outcomes, conditional on observed covariates at both levels:

{Yij(1), Yij(0)} ⊥ Tij | XXXij,ZZZj.

This assumption implies that, after adjusting for XXXij and ZZZj, there are no unmeasured confounders
that influence both treatment assignment and the potential outcomes.

Positivity (Overlap): Each individual must have a non-zero probability of receiving either treatment
condition, given their observed covariates:

0 < Pr(Tij = 1 | XXXij,ZZZj) < 1.

This ensures the existence of comparable treated and control individuals across the observed range of
covariates.

When these assumptions are plausible, causal effects can be estimated using a range of meth-
ods tailored to multilevel data. These include multilevel propensity score modeling (Leite, 2016;
Thoemmes & West, 2011), matching within or across clusters (Steiner et al., 2012; Stuart, 2010),
and inverse probability weighting (Lunceford & Davidian, 2004). Such approaches aim to reduce
confounding by balancing covariates across treatment groups, thereby supporting credible causal
inference in clustered or hierarchical data structures.

2. Individual and Average Treatment Effects
Treatment effects in causal inference are often defined within the potential outcomes framework,
which provides a formal structure for comparing outcomes under different treatment conditions for
the same unit. As outlined above, this framework assumes that each unit (e.g., individual i in cluster
j) has a pair of potential outcomes: one under treatment and one under control. The difference
between these potential outcomes represents the causal effect of the treatment for that unit. However,
because only one of these outcomes is observed for each unit, causal effects must be inferred under
additional assumptions.
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Two fundamental quantities emerge from this framework: the Individual Treatment Effect (ITE)
and the Average Treatment Effect (ATE). These quantities differ in their conceptual focus, assumptions
required for estimation, and practical interpretability in applied research. While the ITE targets
unit-level causal impacts, the ATE provides a population-level summary of treatment effects.

2.1 Individual Treatment Effect (ITE)
The individual treatment effect for unit i in cluster j is defined as:

ITEij = Yij(1) – Yij(0).

This quantity reflects the unit-specific causal effect of treatment but is fundamentally unobservable
due to the impossibility of observing both potential outcomes for the same unit. Estimation of the
ITE requires strong modeling assumptions, such as functional form restrictions, ignorability, or
repeated observations.

2.2 Average Treatment Effect (ATE)
The average treatment effect summarizes the expected causal impact of treatment across the popula-
tion:

ATE = E[Yij(1) – Yij(0)].

In randomized experiments or well-designed observational studies satisfying unconfoundedness and
positivity, the ATE is identifiable and can be estimated using regression, weighting, or matching
methods. However, the ATE represents an average across potentially diverse units and may mask
substantial variation in effects across individuals, subgroups, or clusters.

The distinction between the ITE and ATE is especially important in multilevel settings, where both
within- and between-cluster sources of heterogeneity may influence treatment effects. Recognizing
and accounting for this variation is essential for designing targeted interventions, supporting equitable
policy decisions, and developing theories that reflect heterogeneity in treatment response.

3. Variation in Treatment Effects
In multilevel data structures, treatment effects may vary both within and between clusters, necessitat-
ing flexible modeling strategies to capture individual- and context-level sources of heterogeneity.
Below, we describe several common approaches to modeling variation in treatment effects, including
interactions with covariates, machine learning–based estimation of conditional average treatment
effects (CATE), random slopes, and latent class models.

These approaches offer structured forms of heterogeneity that are less granular than ITEs but
more detailed than the ATE. Each rests on distinct assumptions and serves different analytic goals.
While many machine learning–based methods treat the ITE as the default estimand from which ATE
and CATE are derived, not all approaches require estimation of treatment effects at the individual
level. As a result, the variety of methods yields a spectrum of estimands situated between the ITE
and the ATE, each offering a distinct summary of treatment effect variation.

3.1 Interaction with Covariates
In multilevel data, treatment effect heterogeneity can be modeled by allowing treatment effects
to interact with covariates measured at both the individual (Level-1) and cluster (Level-2) levels.
To account for unobserved differences in baseline outcomes across clusters, a random intercept is
generally included.
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For illustration, the following model includes two Level-1 covariates (X1ij, X2ij), two Level-2
covariates (Z1j, Z2j), and a single interaction between treatment and one individual-level covariate:

Yij = (γ0 + U0j) + γ1Tij + γ2X1ij + γ3X2ij + γ4(Tij X1ij) + γ5Z1j + γ6Z2j + ϵij,

where:

• Yij is the outcome for individual i in cluster j,
• Tij is a binary treatment indicator,
• X1ij and X2ij are Level-1 covariates (e.g., individual characteristics),
• Z1j and Z2j are Level-2 covariates (e.g., contextual or institutional features),
• U0j ∼ N (0, τ00) is the random intercept capturing unobserved cluster-level differences,
• ϵij ∼ N (0,σ2) is the individual-level residual error term, assumed to be independent across

individuals and clusters,
• γ0 through γ6 are fixed-effect coefficients.

Figure 1. Treatment effect differences between two groups. Box plots show outcome distributions for treated and control
conditions, separately by two subgroups defined by a binary covariate.

In this specification, the interaction term Tij X1ij tests whether the treatment effect systematically
varies with the Level-1 covariate X1ij. A significant coefficient γ4 indicates that this covariate
moderates the treatment effect, accounting for at least some of the observed heterogeneity.

While this example includes only two covariates per level and a single interaction term, both the
number of covariates and the choice of interactions are flexible and should be guided by theoretical
considerations, empirical context, and data availability. Interactions may be included with any
individual- or cluster-level covariates and can involve more than one moderator when appropriate.
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To illustrate how treatment effect heterogeneity can arise through an interaction with a binary
covariate, Figure 1 presents a simulated example. The figure shows box plots of outcomes for treated
and control groups, separated by a binary covariate (X1ij) that defines two subgroups: Group 1
and Group 2. The difference in treatment effects across these subgroups is visually apparent—
Group 1 exhibits a clear positive shift in outcomes under treatment, whereas Group 2 shows little
to no treatment effect. This simulated example demonstrates how an interaction term can reveal
subgroup-specific treatment responses that would otherwise be masked by the overall average effect.

Models with an interaction between a treatment and a covariate are widely used in applied
research settings where investigators seek to understand for whom and under what conditions
treatments are most effective (Gelman & Hill, 2007; Raudenbush & Bryk, 2002; Snijders & Bosker,
2011). They offer interpretable estimates and can be readily extended to include additional predictors
or cross-level interactions. However, linear interaction models may not adequately capture more
complex or nonlinear forms of heterogeneity. In such cases, more flexible modeling strategies, such
as decision trees, splines, or machine learning methods, may provide valuable alternatives while
preserving the underlying goal of identifying meaningful variation in treatment effects.

3.2 Causal Machine Learning for Conditional Average Treatment Effects
Conditional average treatment effects (CATEs) describe how treatment effects vary with observed
individual- and cluster-level covariates, XXXij and ZZZj, respectively. Causal machine learning methods
allow for the estimation of heterogeneous treatment effects without requiring manual specification
of interaction terms or functional forms. Formally, CATE can be defined as:

τij = [Yij(1) – Yij(0) | XXXij = xxxij,ZZZj = zzzj].

Figure 2. Illustration of CATE variation across a continuous covariate. The estimated CATE is plotted against student
confidence in math. While treatment effects increase with confidence at low to moderate levels, the effect plateaus for
higher-confidence students.

Unlike traditional regression models that depend on explicit interaction terms to detect effect
heterogeneity, machine learning approaches—such as generalized random forests (Athey et al., 2019),
Bayesian additive regression trees (BART) (Hill, 2011), and targeted maximum likelihood estimation
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(TMLE) (van der Laan & Rose, 2011)—are well-suited for flexibly estimating CATE in complex,
high-dimensional settings. These approaches rely on assumptions such as strong ignorability and
SUTVA, and typically require careful regularization and sufficient sample size to perform well. While
they may yield less interpretable models compared to traditional approaches, they can uncover subtle
and nonlinear patterns of treatment effect variation that may otherwise go unnoticed.

Figure 2 provides an illustration of how CATE can vary nonlinearly with a continuous covariate.
Using simulated data, treatment effects were estimated at the individual level using BART, and then
smoothed to visualize the relationship between the treatment effect and the covariate. In this example,
the treatment is binary and corresponds to whether a student participated in a math Olympiad. The
outcome is student math performance. The horizontal axis represents students’ confidence in math,
while the vertical axis shows estimated conditional average treatment effects.

The figure shows that the conditional average treatment effect increases with student confidence
at lower and moderate levels, but levels off at higher levels, suggesting that the treatment is more
beneficial as students’ confidence increases, but only up to a certain point at which additional
confidence is no longer associated with additional benefit. Although the overall pattern is captured,
the local variation in the individual treatment effect is not fully recovered, which highlights both the
strengths and the limitations of machine learning estimators in detecting fine-grained heterogeneity.

3.3 Random Slopes of Treatment Effects
Multilevel or hierarchical linear models provide a flexible framework for modeling treatment effect
heterogeneity across clusters by introducing random effects. In particular, random slope models allow
the effect of treatment to vary across higher-level units (e.g., schools, clinics, or regions), capturing
the possibility that normal contexts may amplify or diminish treatment impacts.

A general specification that includes both a random intercept and a random slope for treatment,
along with covariates at both levels, is:

Yij = (γ0 + U0j) + (γ1 + U1j)Tij + γ⊤
2 XXXij + γ⊤

3 ZZZj + ϵij,

where:

• U0j is the random intercept for cluster j,
• U1j is the random slope for the treatment effect in cluster j,
• γ0,γ1,γ2,γ3 are fixed-effect coefficients.

The random effects (U0j, U1j) are assumed to follow a bivariate normal distribution:(
U0j
U1j

)
∼ N

((
0
0

)
,τ
)

, where τ =
(
τ00 τ01
τ01 τ11

)
.

This formulation allows both the baseline outcome level and the treatment effect to vary across
clusters. The covariance term τ01 captures the association between cluster-specific intercepts and
treatment effects, such as whether clusters with higher baseline outcomes tend to exhibit stronger or
weaker treatment effects.

Fixed effects for Level-1 and Level-2 covariates (XXXij and ZZZj) control for observed characteristics,
but the key contribution of this model lies in its ability to capture unobserved between-cluster
heterogeneity through U1j. These models are especially useful when clusters represent meaningful
social or institutional environments—such as schools, clinics, or neighborhoods—and when there is
theoretical or empirical motivation to expect treatment effects to vary across these settings.

Random slope models are widely applied in education and health research, where understanding
context-specific effectiveness is central to evaluating and implementing interventions (Gelman &
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Figure 3. Caterpillar plot of school-level treatment effects (random slopes) of tutoring on math performance using 2019 U.S.
TIMSS data. Schools are ordered by the magnitude of the predicted treatment effect, from smallest to largest. Horizontal
lines represent 95% uncertainty intervals for predicted cluster-level effects.

Hill, 2007; Raudenbush & Bryk, 2002; Snijders & Bosker, 2011). Extensions of this framework
include modeling random slopes as a function of cluster-level variables or incorporating cross-level
interactions to explore sources of treatment effect variation (Kim et al., 2023).

Figure 3 presents a caterpillar plot of predicted random slopes from a multilevel model applied to
the 2019 U.S. Trends in International Mathematics and Science Study (TIMSS) data (National Center
for Education Statistics & International Association for the Evaluation of Educational Achievement,
2020). The treatment of interest is math tutoring, and the outcome is student math performance.
Each point represents the predicted treatment effect (random slope) for a specific school, with schools
ordered by the magnitude of their estimated effects. The horizontal lines represent 95% uncertainty
intervals, constructed under the assumption of normality for the random coefficients.

These intervals tend to be wider for schools with smaller student sample sizes, reflecting greater
estimation uncertainty. Additional contributors to interval width include the intraclass correlation,
the informativeness of covariates, and the effects of partial pooling in multilevel models. Partial
pooling refers to the way multilevel models balance school-specific estimates with information from
the overall distribution of effects: estimates for schools with limited data are “shrunk” toward the
overall average, reducing variance but potentially smoothing out extreme values. This approach
improves stability in estimation, especially when cluster sizes vary or data are sparse.
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3.4 Latent Class Analysis and Finite Mixture Models for Unobserved Heterogeneity
The CATE framework relies on observed covariates. When relevant covariates are unmeasured or
subgroup membership is not directly observable, methods such as multilevel models, causal forests,
or BART cannot directly estimate effect heterogeneity. In such cases, latent class analysis (LCA)
or finite mixture models (FMM) can be used to capture unobserved heterogeneity (Kim & Steiner,
2015; Kim et al., 2016; Loh & Kim, 2022; Lyu et al., 2022; Suk et al., 2021).

Figure 4. Illustrative example of a mixture of two latent classes with distinct treatment effects. The distributions differ in their
means, variances, and class proportions. Class 1 has a larger average treatment effect with lower variance, while Class 2 shows
a smaller effect with greater spread.

These models assume the existence of C latent subgroups within the population, each associated
with a distinct treatment effect. Let XXXij and ZZZj denote observed individual- and cluster-level covariates.
The outcome model can be expressed as a mixture:

f (Yij | Tij,XXXij,ZZZj) =
C∑

c=1
πc ϕ

(
Yij;µcij,σ2

c

)
,

where πc is the proportion of units in latent class c, and ϕ(Yij;µcij,σ2
c ) denotes the normal density

with mean µcij and variance σ2
c . Although other distributions could be used depending on the context

and nature of the outcome variable, we use the normal density here for simplicity. In each class c,
the conditional mean is specified using a multilevel model:

µcij = γ0c + U0cj + γ1cTij +γγγ⊤2cXXXij +γγγ⊤3cZZZj,

where:

• µcij is the conditional mean of the outcome Yij for individual i in cluster j and latent class c,
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• γ0c is the class-specific fixed intercept,
• U0cj is the class-specific random intercept for class c, assumed to follow U0cj ∼ N (0, τ2

c ),
• γ1c is the class-specific fixed effect for the treatment variable Tij,
• γγγ2c is a vector of class-specific fixed-effect coefficients for the individual-level covariates XXXij,
• γγγ3c is a vector of class-specific fixed-effect coefficients for the cluster-level covariates ZZZj.

Class membership is unobserved but inferred from the joint distribution of the outcomes and
covariates. These models are particularly useful when treatment effect heterogeneity is driven by
latent traits, diagnostic subtypes, or behavioral profiles that are not captured by observed covariates
(Jo, 2002; Linzer & Lewis, 2011). They are commonly applied in education, psychology, and health
research, where unmeasured heterogeneity may be of substantive importance.

Figure 4 illustrates a simulated example of treatment effect heterogeneity arising from unobserved
latent classes. The plot displays a mixture of two treatment effect distributions corresponding to
two subgroups. These subgroups differ in several respects: Class 1 has a lower treatment effect with
smaller variance, while Class 2 shows a higher treatment effect with greater variance. The two classes
are of comparable size in this example. In practice, the number of latent classes may exceed two, and
their relative proportions can vary substantially. Some or all classes may exhibit markedly distinct
treatment effects, implying qualitative differences in causal impacts across subpopulations.

To determine the number of latent classes in applied settings, researchers often use information
criteria such as BIC or AIC, along with considerations related to theoretical grounding and clarity of
interpretation. In causal modeling contexts, it is also important to assess the stability of the identified
classes and whether they meaningfully distinguish subgroups with different treatment responses.
Substantive theory or practical considerations may also guide the final choice.

4. Discussion and Concluding Remarks
Understanding how treatment effects vary across individuals and contexts is central to advancing
causal inference, particularly in multilevel settings where individuals are nested within clusters such as
schools, clinics, or communities. While the average treatment effect (ATE) provides a useful summary
of the overall impact of an intervention, it may conceal meaningful heterogeneity in treatment
responses. The individual treatment effect (ITE), which captures person-specific causal impacts, is
theoretically appealing but generally unidentifiable without strong and often untestable assumptions.

This paper has reviewed several frameworks for modeling treatment effect heterogeneity,
including interactions with covariates, conditional average treatment effects (CATEs), random
slope/coefficient models, and latent class models. These approaches differ in their assumptions, es-
timation strategies, and interpretive goals, yet all aim to uncover structured variation in treatment
effects that holds both theoretical and practical significance.

Researchers can implement the methods discussed in this paper using a variety of software tools
and R packages. For multilevel or mixed-effects models with moderation effects and random slopes,
the lme4 and nlme packages are commonly used, with brms offering a Bayesian implementation.
CATE can be estimated using several R packages, including grf and causalTree, as well as BART
implementations such as bartCause, dbarts, and BART. Ensemble methods such as xgboost are also
applied in practice. Buhrman et al. (2023) compares several CATE estimators, and Kim et al. (2023)
illustrates the estimation of cross-level interactions using CATE methods. For mixture models and
latent class analysis with multilevel observational data, we refer readers to Lyu et al. (2022), Suk et al.
(2021), Kim et al. (2016), and Kim and Steiner (2015). While our focus is on R implementations, we
note that EconML, a Python-based library, also offers a suite of tools for CATE estimation, including
doubly robust learners and meta-learners.

The examples in this paper illustrate the practical value of these methods. Incorporating treatment
effect variation into analysis can support more effective targeting of interventions, guide theory
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development, and improve equity and efficiency in policy implementation. Methods that accom-
modate observed and unobserved sources of heterogeneity, such as causal machine learning and
latent variable models, offer useful complements to conventional regression-based approaches and
contribute to more robust causal analyses.

There is a growing need for a systematic approach to treatment effect heterogeneity, particularly
in complex data settings involving multiple levels, time points, and sources of variability. We
advocate for a more unified and conceptually grounded framework for understanding, estimating,
and applying treatment effect heterogeneity. Such a framework can help clarify how different forms
of heterogeneity arise, how they relate to substantive theory and design choices, and how they can
guide decision-making in applied research. Advancing this area also requires greater attention to
identification conditions, theoretical motivations, and the practical implications of heterogeneous
effects. Progress in this direction will depend on continued integration across methodological
traditions, including multilevel modeling, causal machine learning methods, and latent variable
approaches, and will support the development of a more comprehensive understanding of causal
inference in the social and behavioral sciences.
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