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Abstract

In private federated learning (FL), a server aggre-
gates differentially private updates from a large
number of clients in order to train a machine learn-
ing model. The main challenge in this setting is
balancing privacy with both classification accu-
racy of the learnt model as well as the number of
bits communicated between the clients and server.
Prior work has achieved a good trade-off by de-
signing a privacy-aware compression mechanism,
called the minimum variance unbiased (MVU)
mechanism, that numerically solves an optimiza-
tion problem to determine the parameters of the
mechanism. This paper builds upon it by intro-
ducing a new interpolation procedure in the nu-
merical design process that allows for a far more
efficient privacy analysis. The result is the new In-
terpolated MVU mechanism that is more scalable,
has a better privacy-utility trade-off, and provides
SOTA results on communication-efficient private
FL on a variety of datasets.

1. Introduction

Federated learning (FL; McMahan et al. (2017)) is a dis-
tributed solution for machine learning on sensitive data and
has been the topic of much recent interest. In federated
learning, raw client data resides entirely on the client de-
vice, and a server coordinates the collaborative training of
a global model through transmissions of model updates.
Direct transmission of raw updates (pseudo-gradients) can
lead to privacy leaks (Zhu et al., 2019; Geiping et al., 2020;
Zhao et al., 2020; Yin et al., 2021; Jeon et al., 2021), and an
effective method is to use a rigorous privacy solution such
as differential privacy (DP; Dwork et al. (2006)) to trans-
mit privacy-preserving updates. Since federated learning
typically involves low-bandwidth clients, a requirement for

'"Meta AI. Correspondence to: Chuan Guo <chuan-
guo@meta.com>, Kamalika Chaudhuri <kamalika@meta.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

success is that the amount of communication between the
clients and server should be relatively low. Thus a major
challenge in this space is ensuring a good privacy-accuracy-
communication trade-off—in other words, balancing the
predictive accuracy of the model learnt with the privacy
parameter as well as the number of bits transmitted between
the client and server.

Previous work in this area (Kairouz et al., 2021a; Agar-
wal et al., 2021; Triastcyn et al., 2021; Chen et al., 2022b)
abstracted this problem as privacy-aware compression for
distributed mean estimation (DME). Here, the goal is to
design a DP mechanism whose output recovers the input in
expectation (i.e., is unbiased) and can be represented using
a small number of bits. In particular, recent work (Chaud-
huri et al., 2022) introduces the minimum variance unbiased
(MVU) mechanism, which solves a numerical optimization
problem to find the parameters of a mechanism that ensures
unbiasedness, privacy and communication efficiency while
minimizing the variance of the output. They also experimen-
tally demonstrate that, for a given bit budget, this can lead
to better privacy-utility trade-offs than many other methods
that independently privatize and then compress.

Unfortunately, a problem with the MVU mechanism (and
many other privacy-aware compression mechanisms such
as Kairouz et al. (2021a); Agarwal et al. (2021)) is that it
does not scale well to high-dimensional vectors. This is
a crucial drawback for its application to private FL since
model updates are often high-dimensional. A major under-
lying reason for this drawback is the MVU mechanism’s
insistence on unbiasedness. This is achieved using random-
ized dithering to ensure that the mechanism is unbiased for
all continuous-valued inputs, but leads to inefficiencies in
the mechanism’s computation and privacy accounting for
high-dimensional vectors. Importantly, this drawback is in
fact superficial since unbiasedness is not required for FL,
and prior work has shown that even crude compressors such
as SignSGD (Jin et al., 2020) can perform remarkably well.

In this work, we propose the interpolated MVU (I-MVU)
mechanism, which extends MVU using an interpolation
procedure that relaxes the unbiasedness assumption. By
its discrete nature, the MVU mechanism can be viewed
as sampling from a particular categorical distribution, and
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hence can be expressed in exponential family form. The
proposed I-MVU mechanism handles continuous-valued
inputs by interpolating the natural exponential family pa-
rameters, rather than directly interpolating the probabilities
as in dithering. We introduce a new analysis technique, and
by further exploiting special properties of the exponential
family, we obtain a tight numerical privacy analysis for the
vector extension under both L; and Ly geometry.

Experimentally, we find that under both client-level and
sample-level DP settings and across various benchmark
datasets, the I-MVU mechanism provides a better privacy-
utility trade-off than SignSGD (Jin et al.,, 2020) and
MVU (Chaudhuri et al., 2022) at an extremely low commu-
nication budget of one bit per gradient dimension. More-
over, I-MVU achieves close to the same performance
as the standard non-compressed Laplace and Gaussian
mechanisms (Abadi et al., 2016) for similar levels of
(¢, 0)-DP, leading to new state-of-the-art results for private
communication-efficient FL.

2. Background
2.1. Differential Privacy

Differential privacy (Dwork et al, 2006) is a
cryptographically-motivated definition of privacy that
has emerged as the gold standard in privacy-preserving
data analysis, and provides rigorous guarantees of privacy
leakage induced by a mechanism M.

Definition 1 (Differential privacy). We say that a mecha-
nism M that applies to datasets D is (e, 6)-differentially pri-
vate, denoted (¢, §)-DP, if for any two neighboring datasets
D and D' that differ' in a single individual’s private value,
and any output set O, we have:

P(M(D) € 0) < e“P(M(D') € O) + 6.

More generally, the framework of DP seeks to bound the
difference in distribution between M (D) and M (D’) when
D and D’ differ by a single record that corresponds to one
person’s private value. Enforcing this property ensures that
a single person’s data does not substantially change the
probability of any event that comes out of using the output
of the mechanism M.

Rényi DP and composition. A useful variant of DP is
Rényi differential privacy (RDP) (Mironov, 2017), which
instead bounds the Rényi divergence (Rényi et al., 1961)
between M(D) and M(D’) by some ¢ for neighboring
datasets D and D’ that differ by a single person’s private
value. Formally, we say that M is («, €)-RDP if:

max(Do(M(D) || M(D')), Da(M(D') || M(D))) < e,

"We adopt the leave-one-out neighboring notion.

where D, denotes the order-a Rényi divergence.

An important property of Rényi DP is that it supports easy
“sequential composition” of mechanisms—in other words, it
makes it relatively simple to measure how the privacy guar-
antee decays as we release the outputs of multiple differen-
tially private mechanisms on the same dataset D. Specifi-
cally, we have that if M1, ..., My are mechanisms with
M, being (o, €;)-RDP for ¢t = 1,...,T, then the compo-
sition of the 7" mechanisms is (, Zthl ¢;)-RDP. Another
useful property of RDP is its conversion to (e, §)-DP (Balle
et al., 2020): If M is (o, €, )-RDP for a > 1 then it is also
(€,0)-DP forany 0 < § < 1 with

-1 log§ +1
e:ea+10g<a )— o8 —&—Ogoz. (D
«
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2.2. Federated Learning with Differential Privacy

Federated learning (FL) (McMabhan et al., 2017; Kairouz
et al., 2021b) allows distributed training of ML models
across multiple clients without centralized data storage. A
server coordinates training by acquiring model updates from
clients, aggregating them, and then transmitting an updated
model back to the clients, and the process repeats until
convergence. One promise of FL is data privacy since the
updates are computed locally on each client using their own
data, and hence no client data is ever explicitly transmitted
to the server (or anyone else) throughout training.

In spite of this, a recent line of work showed that it is possi-
ble to reconstruct training samples from the model updates
in a process called gradient inversion (Zhu et al., 2019; Geip-
ing et al., 2020; Zhao et al., 2020). To truly preserve the pri-
vacy of training data in FL, differential privacy (DP; Dwork
et al. (2006) can be applied to the model updates (Geyer
et al., 2017) to provide provable guarantees against data
reconstruction from the its output (Balle et al., 2022; Guo
et al., 2022; Stock et al., 2022). To apply DP to FL training,
given a DP mechanism M and a client update x, the client
instead sends M (x) to the server. For a given round, the
client’s privacy leakage can be computed in terms of local
DP if the privatized update M (x) is revealed to the server,
or global DP if secure aggregation (Bonawitz et al., 2017)
is applied to aggregate the privatized updates before reveal-
ing it to the server. The total privacy leakage throughout
training can then be computed via RDP composition and
conversion to (€, §)-DP via Equation 1.

2.3. MVU Mechanism

Privacy-aware compression. Since model updates in FL
are high-dimensional vectors of size equal to the number of
model parameters, it is also important in practice to com-
press these updates for communication efficiency. Prior
work studied this privacy-aware compression problem un-
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der the abstraction of distributed mean estimation (DME),
where clients aim to compute the mean of a set of vectors in
a distributed fashion under communication constraint. For-
mally stated, consider the problem of transmitting a vector
x € R? differentially privately using at most bd bits, with
b > 1 small enough so that the entire vector x can be trans-
mitted efficiently. One can reduce this problem to a scalar
one by considering how to privately compress = € [0, 1] us-
ing at most b bits, and then scaling the vector x appropriately
and applying the scalar mechanism coordinate-wise.

Scalar MVU. The minimum variance unbiased (MVU)
mechanism (Chaudhuri et al., 2022) solves the privacy-
aware compression problem by first discretizing the interval
[0,1] into Bj, points X = {x1 = 0,z3,...,2p5, = 1}
with z; := (i — 1)/(Bin — 1). If © = z;, the mech-
anism samples j ~ Categorical(p;) using a probability
vector p; € APw~1l and outputs M(z) = a; € R
where {a1,...,ap,, } is a pre-determined output alphabet.
The probability vectors p1,...,ppg, and output alphabet
{a1,...,ap,,} are numerically designed so that the mecha-
nism satisfies the following three properties:

1. e-differential privacy: e”“py j < pi; < e‘py j forall
1 # i and all j.

2. Unbiasedness: Zf;“i a;p;; = x; for all 7.

3. Minimum variance: 32" Var(M(z;)) is minimal
among all mechanisms satisfying 1 and 2.

The MVU mechanism can then be applied to all z € [0, 1]
by randomly dithering x to the nearest x; and x;41 such
that the dithering is unbiased in expectation, i.e.,

w.p. (zip1 —x)/A,

Categorical(p;)
M(@) ~ { w.p. (z —x;)/A,

Categorical(p;+1)

where A = 1/(Bj, — 1). One can also view this dithering
procedure as linearly interpolating between p; and p;41:
M(x) ~ Categorical(p(z)) with

p(z) = (“ZI) pi + (T) Pt (@

It is straightforward to generalize the mechanism to any
bounded x by scaling it to [0, 1] and then applying the MVU
mechanism.

Vector MVU. For a d-dimensional vector x, the MVU
mechanism can be applied independently to each coordinate
and the privacy cost is de by composition if x € [0,1]¢
(or in general, if ||X|| s is bounded). The conversion from
scalar to vector MVU for privatizing FL. updates is more
complex since DP training in FL commonly require bounds
on ||x]||; or ||x]|2 instead of ||x||o (Geyer et al., 2017). To
handle these settings, Chaudhuri et al. (2022) proposed an

alternative design that replaced property 1 with a metric-
DP (Chatzikokolakis et al., 2013) variant: Given a metric
d(x,x'), the mechanism satisfies

e-metric-DP: e‘sd(wi’wi’)pi/d <pi; < eEd(“"Di’)pi/J

for all ¢ # ¢’ and all j. Designing MVU with metric-DP
property with L; (resp. Ls) metric allows it to compose
more gracefully across dimensions for L;-bounded (resp.
L5-bounded) vectors.

3. Interpolated MVU Mechanism

Motivation. At a high level, distributed mean estimation
in general and its application to FL have different considera-
tions and requirements.

1. The unbiasedness requirement in DME is often unneces-
sary for FL, as the global model does not require a truly
unbiased gradient in order to achieve high accuracy.

2. Model updates in FL are typically high-dimensional,
which creates issues for the randomized dithering opera-
tion used in MVU and other privacy-aware compression
mechanisms (Kairouz et al., 2021a; Agarwal et al., 2021).
For vectors x € R?, dithering increases ||x||; and ||x]|2
significantly when d is large, hence rejection sampling
is needed to control the norm of x after dithering. This
makes it computationally expensive to apply MVU and
causing its privacy accounting to be pessimistic.

Interpolated MVU. To address these issues, we propose
a new interpolation scheme for extending the MVU mecha-
nism to continuous-valued vector inputs. Our new scheme
relaxes the unbiasedness requirement in MVU and makes it
more suitable for FL use cases. Our first insight is that the
categorical distribution used in MVU can be expressed in
exponential family form as follows:

B(jln) = exp(e] n—A(m)), A(n) =log (3 exp(ny)).

3)
where e; is the j-th standard basis vector. Note that if
p € ABw—1 then its natural parameter is 7 = log p.

Expressing the MVU mechanism in exponential family form
gives us an alternative way to interpolate the MVU mech-
anism across the grid points X = {z1,...,xp, }: by inter-
polating linearly in the natural parameter space. In detail,
consider first the scalar setting with input x € [0, 1]. Let
Pi,---,PB, € ABw1be sampling probability vectors ob-
tained from the MVU mechanism and let 17; = log p; be the
natural parameters. Given z € [0, 1], say « € [x;, T;41] for
some %, the interpolated MVU (I-MVU) mechanism samples
j ~ P(:|n(x)) according to Equation 3 and outputs a; from
the MVU output alphabet, where

n(z) = (W) n; + (T) i1 4
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Figure 1: Comparison of MVU and I-MVU with b = 3 and L;-metric-DP ¢ = 5. (Top) Plot of the expected value of
MVU and [-MVU mechanisms for a scalar input = € [0, 1]. For B;, = 2, the expected value of MVU is close to a diagonal
line with zero bias, but the -MVU mechanism incurs a significant bias due to interpolating in the natural parameter space.
Increasing the input grid size to Bj, = 4, 8 reduces the bias of -MVU drastically to near zero. (Bottom) Plot of the variance
of MVU and I-MVU in comparison to that of the Laplace mechanism with equal €. Both mechanisms achieve comparable
variance to the Laplace mechanism when B, is large enough.

and A = 1/(Biy — 1). In other words, instead of linearly
interpolating between p; and p;+; as in Equation 2 for
the MVU mechanism, we linearly interpolate between the
natural parameters 1; and 77, ;.

Controlling bias. For MVU, because the mechanism is
designed so that it is unbiased at all grid points in X, it is
easy to show via Equation 2 and linearity of expectation that
it is unbiased for all z € [0, 1]. This is not true for -MVU,
and interpolating in the natural parameter space incurs some
bias when x ¢ X'. However, by increasing the number of
grid points Bj,, we can reduce this bias to arbitrarily small
with very few drawbacks.

Figure 1 shows the expectation (top) and variance (bottom)
of MVU and I-MVU for different values of B;, = 2,4, 8.
The mechanisms are constructed to output b = 3 bits with
target Li-metric-DP € 5. For B;, = 2, we see that
E[M(z)] = « for all z € [0, 1] for MVU, while the same
does not hold for -MVU. As we increase the number of grid
points to By, = 4, 8, the expectation of -MVU more closely
matches that of MVU and the bias tends towards zero. In the
bottom plots we show the variance of MVU and [-MVU for
different z € [0, 1] and compare it with that of the Laplace
mechanism for the same value of ¢ = 5. Notably, for
Bi, = 4,8, MVU and I-MVU attain comparable variance
to that of Laplace while communicating only b = 3 bits.

3.1. Extensions

Vector I-MVU. We can extend scalar I-MVU to vector
I-MVU by applying the scalar mechanism independently
across the vector coordinates. As we will show in subsec-
tion 3.2, by utilizing special properties of exponential family
distributions, we can more tightly analyze the privacy cost
of I-MVU for L;- and Ls-bounded vectors. In addition,
because I-MVU does not need to use rejection sampling
to control the gradient norm after randomized dithering,
privatizing the input simply amounts to sampling a single
categorical random variable per coordinate and is much
more computationally efficient.

Input scaling. One way to extend I-MVU to arbitrary
bounded ranges is to first scale the input to [0, 1] and then
apply the mechanism as usual. However, note that the in-
terpolation scheme in Equation 4 is in fact well-defined for
any = € R, and hence the scaled input does not need to be
strictly in the range [0, 1]. We leverage this property by intro-
ducing a scaling factor 8 > 0 as follows. For u € [-C, C],
the B-scaled I-MVU mechanism is defined as:

(i)

SR
where M is the plain -MVU mechanism. Note that this
scaling effectively ensures that the input to M is in the
range [(1 — 8)/2, (1 + 3)/2], with 8 = 1 corresponding to

Mg (u)
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scaling the input to [0, 1]. For vectors u with ||ulls < C,
the B-scaled input x = 5 + % satisfies ||x||2 < 3/2.

One advantage for using S-scaling is that if the distribution
of w is highly concentrated near zero, then scaling with
B > 1 ensures that the input to M is more spread out in
the range [0, 1]. Because the MVU mechanism is designed
to minimize the average variance across the range [0, 1]
(property 3), doing so allows us to better utilize its minimum
variance property. For L;- and Lo-bounded vectors u this
is especially true, where the distribution of coordinates of
u is likely concentrated near zero, hence [3-scaling with a
large [ is essential for achieving good performance.

3.2. Privacy Analysis

We analyze privacy leakage of the -MVU mechanism in
terms of both pure DP and Rényi DP (Mironov, 2017). We
first present a general analysis for the -MVU mechanism
with any By, > 1 applied to L;-bounded vectors in Theo-
rem 1. Then we give a more specialized analysis for -MVU
with Bj, = 2 applied to Ls-bounded vectors in Theorem 2.
Proofs of theorems and lemmas are given in Appendix A.

L;-bounded vector analysis. Our strategy is to first ana-
lyze the scalar mechanism and express its max divergence
for two differing inputs x and 2’ as a function of |z’ — z|
(Lemma 1). Then, by independently applying the mecha-
nism across coordinates, we can sum the max divergence
across coordinates and upper bound the total DP ¢ as a
function of ||x’ — x||; (Theorem 1).

Lemma 1. Suppose x,x' € [0,1] and the MVU mech-
anism satisfies € Li-metric-DP. Let € = (Bj — 1) X
(maXi maXfE[zi,$i+1] |‘7("7(€))T(nz+1 - "71)|) Then

Doo(P(:|n(2)) [| P(-|n(2"))) < (e + €)[a" — a|.

Theorem 1. Let €’ be the constant from Lemma 1. Suppose
the MVU mechanism is € L1-metric-DP and that x,x’ € R4
satisfy ||x' — x||1 < C, then the IlMVU mechanism is
(e+ €)C-DP.

The constant €’ can be computed numerically by maximizing
the function h(¢) = |o(n(€)) " (n; 41 — m;)| over the range
€ € [z, m441] for every 1.

Ls-bounded vector analysis. Our privacy analysis for
Ly-bounded vectors follows a similar strategy, but instead
depends on a measure of information known as Fisher in-
formation, which we define below for completeness. In-
tuitively, Fisher information measures the curvature of the
Rényi divergence, i.e., the rate of change of divergence with
respect to input x.

Definition 2. Let f be the density function of a distribution
parameterized by x € R. The Fisher information of x

contained in a sample Z ~ f(-|x) is:
d 2
Zz(x):=Ey [(d:cbg f(Z|l’)> ] . (5)

In our setting, the distribution P(-|n(z)) is defined by
the private data x, and Fisher information measures how
much information is revealed about x through a sample
j ~ P(|n(x)). It is noteworthy that such a reasoning has
also been used to define Fisher information as a privacy
metric (Hannun et al., 2021).

For Fisher information to be well-defined, it is necessary that
the distribution has a differentiable log density function. For
the I-MVU interpolation scheme this is only true if Bj, = 2;
otherwise, the log density may be non-differentiable when
transitioning from an interval [x;_1, x;] to [x;, ;4+1]. Thus,
Lemma 2 and Theorem 2 below are specialized to B;, = 2,
which we find is sufficient for most FL applications with
Ls-bounded vectors.

Lemma 2. Let B;, = 2 and let M = sup,cp Zz(x) be an
upper bound on the Fisher information of the mechanism
M. Then for any x1,x9 € R:

Da(P(n(21)) [ P(|n(z2))) < aM (w2 —21)*/2. (6)

Applying Lemma 2 in a similar manner as in the L;-
bounded case by summing the Rényi divergence across
coordinates as a function of ||x’ — x||3 yields Theorem 2.

Theorem 2. Let B;,, = 2 and let M be the Fisher infor-
mation constant from Lemma 2. Suppose that x;,xy € RY
satisfy ||x2 — x1||2 < C. Then the I-MVU mechanism is
(o, aMC?/2)-RDP for all o > 1.

Proof sketch. We first derive the Taylor series expres-
sion for the Rényi divergence between P(-|n(z1)) and
P(:|n(z2)). Since Rényi divergence is minimized and
is equal to 0 when 7y = x5, the zeroth-order and first-
order terms in the Taylor series are 0. The coefficient for
the second-order term is given by the Fisher information
Zz(x1) (Haussler & Opper, 1997), and thus we give a nu-
merical method to compute M = sup,cp Zz(x) in Ap-
pendix B and use it in Equation 6 to bound the RDP e.

4. Experiments

We evaluate the -MVU mechanism for federated learning
under the local DP setting, i.e., clients transmit the privately
compressed model update M (x) to the server before aggre-
gation. We consider two different notions of adjacency for
DP: client-level, where adjacency is defined as removal of
any client, and sample-level, where adjacency is defined as
removal of a single sample at one client.
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Figure 2: Privacy vs. accuracy plot for the client-level DP setting on MNIST (left) and CIFAR-10 (right) for L-bounded
client updates. Each line shows the best privacy-utility curve across a grid of hyperparameters, and vertical bar shows
standard deviation. I-MVU consistently outperforms all other baselines and achieves the same privacy-utility trade-off as the
non-compressed Gaussian mechanism while requiring only one bit communication per parameter.
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Figure 3: Privacy vs. accuracy plot for the client-level DP
setting on CIFAR finetuning with an ImageNet-pretrained
WideResNet-28-10 model. Each line shows the best privacy-
utility curve across a grid of hyperparameters, and vertical
bar shows standard deviation.

Baselines. We compare I-MVU with several privacy-
aware compression mechanisms that have been proposed
for private FL training:

1. MVU mechanism (Chaudhuri et al.,
bounded client updates.

2022) for Lo-

2. Skellam mechanism (Agarwal et al., 2021), which dis-
cretizes the input using randomized dithering and adds
noise from the Skellam distribution to achieve privacy-
aware compression of Lo-bounded client updates.

3. SignSGD (Jin et al., 2020) is a strong simple baseline
that first applies a non-compressed DP mechanism to

the gradient and then transmits its sign coordinate-wise.
Since it operates as a post-processing step on top of a
non-compressed DP mechanism, it inherits the privacy
guarantee of the non-compressed mechanism while
only outputting one bit per parameter. We evaluate
SignSGD with both Laplace and Gaussian mechanisms
for L1-bounded and Lo-bounded client updates.

4. Laplace and Gaussian mechanisms serve as the non-
compressed baselines for L -bounded and L,-bounded
client updates. We transmit the private updates using
floating point with 32 bits per parameter.

A good privacy-aware compression mechanism should
achieve a desirable privacy-utility trade-off (i.e., high test ac-
curacy with low DP €) while transmitting the client updates
in a communication-efficient manner. Since our applica-
tion domain is FL, we did not consider many generic DP
distributed mean estimation mechanisms such as PrivU-
nit (Bhowmick et al., 2018) and Poisson binomial mecha-
nism (Chen et al., 2022b). These mechanisms are designed
primarily for privately compressing low-dimensional vec-
tors in an unbiased manner; in contrast, model updates in
FL are high-dimensional Ls-bounded vectors and do not
need to be unbiased.

4.1. Client-level DP

We first evaluate under the client-level DP setting on MNIST
and CIFAR-10 (Krizhevsky et al., 2009). Here, the privacy
analysis guarantees that the learning algorithm is differen-
tially private with respect to the removal of any client. We
divide the training set among the clients with client sample
size 1. Each client performs a single local gradient update in
every FL round. This setting is equivalent to DP-SGD train-
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Figure 4: Privacy vs. accuracy plot for the client-level DP setting on MNIST (left) and CIFAR-10 (right) for L;-bounded
client updates. Each line shows the best privacy-utility curve across a grid of hyperparameters, and vertical bar shows
standard deviation. [-MVU with b = 4 achieves the same privacy-utility trade-off as the non-compressed Laplace mechanism,
while decreasing the communication budget b worsens the trade-off. Surprisingly, SignSGD consistently outperforms the
non-compressed Laplace baseline, possibly due to the variance reduction (and bias-introducing) effect of sign compression.

ing (Abadi et al., 2016) but with the Gaussian mechanism
replaced by a communication-efficient private mechanism.

Training details. Following (Chaudhuri et al., 2022), we
train a linear model on top of ScatterNet features (Tramer &
Boneh, 2020). This training recipe remains highly competi-
tive under the central DP setting for MNIST and CIFAR-10
without leveraging any public data, hence we adopt it for FL
training under local DP. Following Abadi et al. (2016), we
apply L; and Ly gradient norm clipping to control the gradi-
ent sensitivity and then apply a privacy-aware compression
mechanism to transmit the clipped gradient privately. We
perform a grid search over hyperparameters such as number
of update rounds, step size, gradient norm clip, and mecha-
nism parameters o (for Gaussian and SignSGD) and € (for
MVU and I-MVU); see Appendix C for details.

Result for L,-bounded client updates. We first consider
the more common approach of Ly-norm clipping. Figure 2
shows the privacy vs. test accuracy curve on MNIST (left)
and CIFAR-10 (right). Privacy is measured in terms of
(€,0)-DP at 6 = 10~°. For each hyperparameter setting, we
compute the average test accuracy over five training runs to
produce a single e-accuracy pair, and plot the Pareto frontier
as a dotted line. The yellow line corresponds to the standard
Gaussian mechanism without compression, which attains
the best test accuracy at any given privacy budget €. Both
SignSGD and MVU are competitive, achieving close to the
same level of accuracy as the Gaussian mechanism, but a
non-negligible gap remains, especially on CIFAR-10. In
contrast, -lMVU attains nearly the same performance as
the Gaussian mechanism at all values of € on both MNIST
and CIFAR-10. Since MVU and I-MVU are near-identical
mechanisms, we argue that the performance gain comes

primarily from the tight privacy analysis for L, geometry
using Fisher information (Section 3.2).

In Figure 3 we repeat the experiment with an ImageNet
pre-trained WideResNet-28-10 (Zagoruyko & Komodakis,
2016) model. The model is pre-trained on down-scaled
32 x 32 resolution ImageNet (Deng et al., 2009) samples
and then finetuned on CIFAR-10 using either the Gaussian
mechanism, signSGD or -MVU. We did not apply the MVU
or Skellam mechanisms because the dithering operation is
prohibitively expensive on such a large model. We observe
a similar result where I-MVU matches the performance of
the Gaussian mechanism across the board.

Result for L;-bounded client updates. For completeness,
we also show the result for compressing updates with L -
norm clipping. This approach is uncommon in private FL
training as the noise variance is much larger, but can provide
an e-DP guarantee as opposed to (¢, d)-DP with Lo-norm
clipping. Figure 4 shows the privacy (in terms of e-DP)
vs. test accuracy Pareto frontier curve on MNIST (left) and
CIFAR-10 (right). It can be seen that -MVU with b = 4
attains almost the same privacy-utility trade-off as the non-
compressed Laplace mechanism, while -MVU with lower b
attain a worse trade-off. Surprisingly, SignSGD outperforms
both Laplace and I-MVU with a communication budget of
b = 1. We suspect this is due to the inherent variance
reduction effect of sign compression and that FL training
does not require the gradient to be unbiased.

4.2. Sample-level DP

Next, we evaluate under the sample-level DP setting on
the FEMNIST dataset (Caldas et al., 2018) for classifying
written characters into 62 distinct classes. Privacy analy-
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Figure 5: Privacy vs. accuracy plot for the sample-level DP
scenario on FEMNIST. I-MVU with one-bit communica-
tion budget per coordinate consistently performs better than
SignSGD and is competitive with the non-compressed Gaus-
sian baseline across the entire range of e. Finally, -[MVU
outperforms the Skellam mechanism while using 16 times
less communication bandwidth.

sis guarantees that the learning algorithm is differentially
private with respect to the removal of any training sample
from a client. The dataset has a pre-defined train split with
3, 500 clients, from which we randomly select 3, 150 clients
for training and the remaining 350 clients for testing. A
set of 5 clients is selected in each training round. Each
client performs full batch gradient descent for a single local
gradient update to compute the update vector. The update
vector is privatized using a communication-efficient private
mechanism and transmitted to the server.

Training details. We train a simple 4-layer convolutional
network with 46k parameters for classification. The model
achieves 84% accuracy when trained non-privately with FL.
The client optimizer is SGD with a learning rate of 0.1 and
no momentum. The server implements FedAvg (McMa-
han et al., 2017) with a momentum of 0.9. We perform a
grid search on the server learning rate, the clipping factor,
the noise multiplier o for Gaussian and SignSGD, noise
scale y for Skellam, and the L;-metric DP ¢ and scale hy-
perparameters for -lMVU. The hyperparameter ranges are
given in Tables 5, 4 and 6 in the appendix. In particular,
SignSGD uses a much lower server-side learning rates since
the updates (in {£1}) have higher magnitude.

Result. We show the privacy-accuracy trade-off for FEM-
NIST in Figure 5. The Pareto frontier represents the optimal
privacy-accuracy trade-off. The DP privacy budget € is given
at § = 1072, We observe that I-MVU (blue dashed line)
performs better than SignSGD (silver dashed line) for the
same communication budget of one bit per update coordi-
nate across the entire range of considered privacy budgets e.
Moreover, I-MVU performs on par with the non-compressed
Gaussian baseline (yellow dashed line), where clients per-

form local DP-SGD without compressing model updates.
I-MVU also outperforms the Skellam mechanism (green
dashed line) using 16 times less bandwidth. Additionally, to
demonstrate the performance of -MVU across a wider bit
range, we display the performance of the proposed method
for various communication budgets in Figure 6.

5. Related Work

Privacy-aware compression. The problem of privacy-
aware compression for distributed mean estimation (DME)
has received much attention in recent years. Prior work
proposed notable mechanisms such as PrivUnit (Bhowmick
et al., 2018; Asi et al., 2022), discrete Gaussian (Canonne
et al., 2020; Kairouz et al., 2021a), Skellam (Agarwal et al.,
2021), MVU (Chaudhuri et al., 2022) and others (Chen
et al., 2020; Girgis et al., 2021; Shah et al., 2022; Chen
et al., 2022b; Lang & Shlezinger, 2022) for computing the
mean of a set of vectors under communication constraint.
Feldman & Talwar (2021) provides a general procedure for
converting a non-compressed mechanism to a compressed
one that is computationally differentially private under the
assumption that the pseudo-random generator in the privacy
mechanism is hard to break.

There are also other approaches for privacy-aware compres-
sion in FL that do not rely on solving the DME problem.
For example, Jin et al. (2020) first showed that a simple
post-processing of non-compressed mechanisms by taking
the sign is a strong baseline that does not attain unbiased-
ness but works well in practice. Other mechanisms such as
DP-REC (Triastcyn et al., 2021) have also leveraged spe-
cial properties of FL to design more efficient privacy-aware
compression schemes for transmitting model updates.

Non-private compression in FL. Previous work has also
studied non-private compression in FL, with a focus on char-
acterizing how noise due to (lossy) compression impacts op-
timization dynamics. Methods have been proposed to only
compress up-link (from client to server) messages (Basu
et al., 2019; Reisizadeh et al., 2020; Albasyoni et al., 2020;
Haddadpour et al., 2021; Mitra et al., 2021; Sadiev et al.,
2022), as well as both up- and down-link messages (Philip-
penko & Dieuleveut, 2020; Condat et al., 2022). Although
none of these provides privacy, they do illustrate that feder-
ated training is possible with biased compression methods.
Note that, in private FL, the downlink messages can be con-
sidered non-private, so only the uplink would need to make
use of privacy-aware compression.

Mechanism design through optimization. Classical DP
mechanisms are mostly derived from simple parameterized
distributions and whose privacy is analyzed mathematically.
For more specialized applications such as FL. where the
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requirements are complex, it is often helpful to design cus-
tom mechanisms by optimizing a certain objective under
DP constraints. Geng et al. (2015) proposed the staircase
mechanism and showed that it is variance-optimal in the
low-to-medium privacy regime for privatizing L;-bounded
vectors. Bhowmick et al. (2018); Asi et al. (2022) proposed
the PrivUnit mechanism and its variant PrivUnitG that are
variance-optimal for privatizing unit Ly vectors under a
communication constraint. More similar to our work, Bor-
denabe et al. (2014) designed an optimal mechanism for
location privacy by numerically solving a linear program.

6. Conclusion

We proposed the Interpolated MVU (I-MVU) mechanism
that drastically reduces the amount of uplink communica-
tion in cross-device FL while providing differential privacy
guarantees. I-MVU can be readily applied to DP training of
FL models with L;- and Lo-bounded vectors, with perform-
ing matching that of the Laplace and Gaussian mechanisms
while communicating as few as one bit per parameter.

Limitations. We discuss several limitations of -MVU
and suggest potential directions for future work.

1. The mechanism currently operates under the local DP
setting, which does not leverage the power of secure ag-
gregation to further reduce the privacy cost. Since -MVU
outputs samples from the categorical distribution, their sum
forms a so-called Poisson multinomial distribution, whose
properties need to be analyzed to understand the privacy
cost of -lMVU under the central DP setting.

2. Our work focused on extending MVU through better
interpolation and privacy analysis and did not modify the
underlying mechanism design problem. Choices such as the
set of grid points X, variance objective, and DP constraint
can be adapted to better leverage the structure of the new
interpolation scheme.

3. Our scalar-to-vector extension of I-'MVU can achieve at
best a one bit per parameter compression rate. Compress-
ing further to below one bit per parameter may be neces-
sary for applications of FL to large-scale models. Combin-
ing I-MVU with recent work on sketching-based compres-
sion (Chen et al., 2022a) can be a promising solution.
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A. Proofs

Lemma 1. Suppose z,2’ € [0,1] and the MVU mechanism satisfies € Li-metric-DP. Let ¢ = (By — 1) -
(maXi MmaXeele;, 1] |U(77(§)) (anrl )|) Then:

Do (P(:[n(2)) [| P(-In(2"))) < (e + €)]2" — x|.

Proof. Suppose first that =, ' € [z;, 2;41] for some 7. Recall that

€Z; — X Tr — X;
n(fv)<+1A)m+< A )’7i+1-

Using Equation 3, we get that for any j:

ogPGln(a) ~ log Pl = |(Z52 ) e+ (255 ) e s — Aln(a)) + Aln(a")|

=[(5) e = i) = tnte) + A ™

Since A’(n(x)) = o(n(x)), we can apply Taylor expansion to A to get:

-

AlnGe) = At + (S5 ) o) (s = m),

where £ € [z;, x;41]. Substituting into Equation 7 gives:

o P(iln(e) o PGln )] = | (T3 ) o] (= me) + (Z57 ) o) (i~ )

-|(“5 )U(n(ﬁ))—ej)T(mH—m)

< (B = 1) (lom(€)" (M1 —m)| + le] (miy —m)|) 2" — 2.

Since the MVU mechanism is € L -metric-DP, we have |ejT(77i_|r1 =) = i1 — il S €lzips — x| = €/(Bin — 1),
Thus:

[log P(j|n(x)) —log P(jln(a")| < (B —1) - [o(n() " (s — mi)| +€) 2" — 2| < (e + )2’ — 2,

as desired. Suppose now that x € [z;, x;41] and &’ € [k, Tr41] with i < k. We can write:

log P(j|n(x)) — log P(jIn(z")) < [log P(jln(x)) —log P(j|n(zis1))]

k—1
+ 37 [log P(j|n(x1)) — log P(j|n(zis1))| + [log P(j|n(zr)) — log P(j|n(z))|
I=i+1
k—1
< (e+¢) (|z—xi+1| + 3 - wal + m—z’)
l=i+1
= (e+ )|z —2|.
A similar argument applies when ¢ > k. O

Theorem 1. Let ¢’ be the constant from Lemma 1. Suppose the MVU mechanism is € L-metric-DP and that x,x’ € R¢
satisfy ||x" — x||1 < C, then the I-MVU mechanism is (e + € )C-DP.
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Proof. Leta = M(x) € {ai,...,ap,, }¢ be the output of the vector -lMVU mechanism that independently applies the
scalar mechanism to each coordinate. Then:

d d

DooM(x) [[ M(x) = max |3 logP(ax|n(x})) — D log Plax|n(xx))

ac{ai,...,aBy, =1 =1

d
<Y max }Ilogﬂ”(akln(x;))*logP(akln(Xk))l
k=1

— ap€{ai,...,apy,

d
=) Doo(B(-In(xx)) || P(-|n(x})))
k;I ~
< A(n)|x}, — xx| by Lemma 1
k=1
= A(m)|Ix" = x||x

O

Lemma 2. Let B, = 2 and let M = sup,cp Z(x) be an upper bound on the Fisher information of the mechanism M.
Then for any x,z’ € R:
Do (P(-n(2)) [| P(|n(z"))) < aM (2’ —2)?/2.

Proof. We first derive an explicit form for the Fisher information. Let f(z;x) denote the pmf in Equation 3 for any
z € {ej,...,ep, }. The log pmfis:

log f(z;2) = 2" n(x) — A(n(z)) ®)
Taking derivative with respect to = gives:

% log f(z;2) = (z — o (n(2))T (my —my),

2
(108 i2)) = (2 = )2~ o))z~ o(n(e)) (s~ o),
where o denotes the sigmoid function. Taking expectation over z gives the Fisher information:
Iz(x) = (ny —m1) U(ny —my), )
with U = diag((n(2))) — o (n(z))o(n(z)) "

To derive the upper bound, we first define a function F,, for the Rényi divergence of the mechanism for a fixed « and varying
x'
Fo(a';2) = Da(P([n(x)) || P(n(z"))). (10)

By Taylor’s theorem, we can express F,, as:
Fo(2';2) = Fo(z;2) + (2 — 2)F (z;2) + (2 — 2)2F/ (& 2)/2

for some ¢ € [z,2']. Note that F,,(x;x) = 0 and F),(z;z) = 0 (since z is the global minimizer of Fy,(-; x)), so Fy, is
locally a quadratic function:
Fo(2';x) = (2 — x)*F/(&2)/2. (11)

Since f is the pmf of an exponential family distribution, we can use the closed form expression (Nielsen & Nock, 2011) for
Rényi divergence of exponential family distributions to express F}, and its derivatives:

Fa(§2) =~ i TlAlen(@) + (1 = a)n(€)) — ad(n(z)) - (1 - a)An(())]

F(&2) = (0(n(€) — olam(z) + (1 — a)n(€)) " (ny — m)
Fl(&z)=(my—m) (V4 (e = DHW)(ny —ny)
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where V' = diag(a(n(¢))) — U(U(é))ﬂ(n(f))T W = diag(a(n(z"))) — o(n(z"))o(n(z’ ))T and " = ax + (1 — )¢
Hence F//(&§;2) = Z7(€) + (o« — 1)Zz(2") by Equation 9. Upper bounding Zz (&) and Zz(z") by M := sup,cp Zz(x)
and combining with Equation 11 gives the desired result. O

Theorem 2. Let B;, = 2 and let M be the Fisher information constant from Lemma 2. Suppose that x,x' € R? satisfy
|x" — x||2 < C, then the I-MVU mechanism is (o, « M C? /2)-RDP for all o > 1.

Proof. Leta = M(x) € {ai,...,ap,, }¢ be the output of the vector -lMVU mechanism that independently applies the
scalar mechanism to each coordinate. Then:

Q

DQ(M(X) || M(X/)) - ozi 1 log Z H P ajfnnx):;“ -1

a€{ar,...,apy, }4 k=1

d

1
:Za—l

Y g

by independence
Plam(xe)s 1 P
ap€{al,...,apy }

=
—

M= T

Do (P(|n(xk)) || P(:|n(x2)))

IN

aM (x), — x;)?/2 by Lemma 2
1
M|jx" — x[3/2.

I
QTT

B. Computing Fisher Information

In this section we describe a method for computing M = sup,cr Zz(x). We first define a condition for 7, 1, that allows
us to reduce this problem to maximizing Zz(x) over a bounded range [Zmin, Tmax|-

Definition 3. Two vectors n,,n, € RP are said to be anadromic if forall j = 1,..., B, we have (1,); = (N3) 5—j+1-

The following technical lemma proves several useful properties that hold when 77, and 7, are anadromic.

Lemma 3. Suppose that ,,m, € RE are anadromic. Let @ = n, — 1, and suppose that j* = arg max; 0;,j =
argmin,; 0; are unique. Then the following hold:

(i) 0; = —0p_j11 forall j, and hence j~ = B — j* + 1.
(i) n(z); =n(1 — ) p—j41 for all j.
(iii) o(n(z)) — e;+ as x — oo and o(n(x)) = e;- as x — —oQ.
(iv) Iz(x) =Zz(1 —x) forallx € R.
(v) & = 1/2is a stationary point for Tz ().
(i) Ifo(n(x))+ > 1/2 then Tz(x) < 49?+O’(7](1’))j+(1 —o(n(x)),+)

Proof. (i) Since 1, and 7, are anadromic,

6 = (n3); — (m); = M2)j — (M2)B—j1 = —((M2)B—j+1 — (M);) = —Op—j11.
In particular, argmax; 8; = B — (argmin; 0;) + 1.
(

(i) n(z); =1 —z)(n); +z02); = (1 —2)(M)B—j+1 +2(M2)B—j+1 =101 — T)p—jt1.

(iii) Let n = (1 +ny)/2 sothat n(x) = N + (x — 1/2)6 for all z € R. Itis clear that o(n(x)) — e;+ as & — oo since
j T is unique. A similar argument shows that o(n( )) = ej- asx — —oo.

14
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(iv) Using the expression of Zz(z) in the proof of Lemma 2, we get

2

- Ze?o’(’f](l‘))j - Z 0j0(n(x));

_ZHB oMl —2)p_ji1 — ZGB oM —x)p_j by (i) and (ii)
:Iz(l—w).

(v) Differentiating Z («) and using the above argument gives:

Ty(z) = (68°) To(n(x)) — 30" o(n(x))(6°) "o (n(x)) +2(8 " o(n(2)))*
= —(6")To(n(l —x)) + 30" a(n(1 —2))(6%) To(n(l —x)) —2(8 o(n(l - )))’
=-7,(1 —x).
Then Z,,(1/2) = —17,(1/2),s0 Z/,(1/2) = 0 and = = 1/2 is a stationary point.
(vi) Using the fact that 0 < 0? < 0]2-+ for all 5 and

2‘9 o(n(x)); = 0;+0(n(x));+ +0;-(1 —o(n());+) = 0;+0(n(x));+ — 0;+(1 —o(n(x));+) >0,

we have:

- ZB?a(n(aj))j — Zb’ja(n(l‘))y

<07 — (0,+0(n(x));+ — 0,;+(1 — o(n(x));+))*
=67 (1 — (20(n(x));+ — 1))
=463, o(n(x));+ (1 — a(n(x));+).
O

Algorithm. To use Lemma 3 to compute M, we first compute I* = Z,(1/2) since x = 1/2 is a stationary point by
Lemma 3(v). By setting

4670 (n(x));+ (1 — o(n(x));+) < I*
and solving this quadratic equation for o(7(x));+, we can use the bound in Lemma 3(vi) to obtain that Z(x) < I* when
o(n(x))+ > (1 +4/1— I*/0§+) /2 > 1/2. Since o(n(x)),;+ — 1 as x — oo by (iii), we can determine the value ,ax
for which Z (z) < I* when & > Zpax. By (iv), Zmin = 1 — Tmax satisfies Zz(z) < I* when © < z,;,. We can then do

line search in [Zin, Tmax] (Or equivalently, in [1/2, x.x] by Lemma 3(iv)) to obtain M.
C. Choice of Hyperparameters

The privacy vs. accuracy curves in the paper plot the Pareto frontier across a grid of hyperparameters. Table 1 gives the
range of hyperparameter values used in Figure 2. Table 2 gives the range of hyperparameters used in Figure 3. Table 3 gives
the range of hyperparameter values used in Figure 4. Tables 4, 5 and 6 give the range of hyperparameter values used in
Figure 5.

D. Additional Results

The budget parameter b controls how many bits the -MVU mechanism outputs. We performed ablation study on b to show
that for the sample-level DP experiment in Section 4.2, -MVU with b = 1 achieves nearly the same privacy-utility trade-off
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Hyperparameter Values Hyperparameter Values
Batch size / cohort size 600 Batch size / cohort size 500
Momentum 0.5 Momentum 0.5
# Iterations T’ 100, 200, 300, 500, 1000, 2000, 3000, 5000  # Iterations T" 500, 1000, 2000, 3000, 5000, 10000, 15000
Step size p 0.001,0.003,0.01,0.03,0.1,0.3 Step size p 0.001, 0.003,0.01,0.03,0.1,0.3
Gradient norm clip C' 0.25,0.5,1,2,4,8 Gradient norm clip C' 0.25,0.5,1,2,4,8
Noise multiplier o for Gaussian and SignSGD  0.5,1,2,3,5 Noise multiplier o for Gaussian and SignSGD  0.5,1,2,3,5
Noise scale y for Skellam (cC)? Noise scale 4 for Skellam (cC)?
Ly-metric DP parameter € for MVU/I-MVU 0.25,0.5,0.75,1,2,3,5 Ly -metric DP parameter ¢ for MVU/I-MVU 0.25,0.5,0.75,1,2,3,5
[ scaling for -lMVU 1 3 scaling for -lMVU 1
(a) MNIST (b) CIFAR-10

Table 1: Hyperparameters for Ls-bounded client-level DP training

Hyperparameter Values

Batch size / cohort size 500

Momentum 0.5

# Iterations 1" 100, 200, 300, 500, 1000, 2000, 3000, 5000
Step size p 0.001,0.003,0.01,0.03,0.1,0.3

Gradient norm clip C' 0.25,0.5,1,2,4,8

Noise multiplier o for Gaussian and SignSGD 0.5, 1,2, 3,5

Noise scale p1 for Skellam (00)?

Ly-metric DP parameter € for MVU/I-MVU 0.25,0.5,0.75,1,2,3,5

3 scaling for LIMVU 1

Table 2: Hyperparameters for Ls-bounded client-level DP CIFAR-10 fine-tuning

Hyperparameter Values Hyperparameter Values
Batch size / cohort size 600 Batch size / cohort size 500
Momentum 0.5 Momentum 0.5
# Iterations T' 100, 200, 300, 500, 1000, 2000, 3000, 5000  # Iterations T" 500, 1000, 2000, 3000, 5000, 10000, 15000
Step size p 0.01,0.03,0.1,0.3,1.0, 3.0 Step size p 0.01,0.03,0.1,0.3,1.0,3.0
Gradient norm clip C' 0.25,0.5,1,2,4,8 Gradient norm clip C' 0.25,0.5,1,2,4,8
Noise multiplier 1 for Laplace and SignSGD  0.01,0.02,0.03,0.05,0.1,0.2,0.3,0.5 Noise multiplier . for Laplace and SignSGD  0.01,0.02,0.03,0.05,0.1,0.2,0.3,0.5
Ly-metric DP parameter e for -MVU 1,2,3,5,10,20 Ly-metric DP parameter e for -lMVU 1,2,3,5,10,20
3 scaling for -lMVU 8 (3 scaling for -lMVU 8
(a) MNIST (b) CIFAR-10

Table 3: Hyperparameters for L;-bounded client-level DP training

as with b = 2, 3, 4. Figure 6 shows the global model’s test accuracy vs. DP e for the Gaussian mechanism and I-MVU with
b =1,2,3, 4. Evidently, increasing b from 1 to 4 does not result in a significant increase in test accuracy for a fixed value of
€. This can be contrasted with the result in Figure 4, where increasing b from 1 to 4 does result in a significant boost in test
accuracy.
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Hyperparameter Values

o for Gaussian 0.6,0.8,1,2,4,6,8, 10, 16, 20, 24, 32, 40, 50, 60, 64, 70, 80, 90, 100, 110, 120, 128
p for Skellam (cC)?

Server-side learning rate 0.5, 1, 2

Clipping factor 0.1,05,1,2,10

Table 4: Hyperparameter range for Skellam and Gaussian on FEMNIST.

Hyperparameter Values

€ 0.25,0.5,0.75,1,2,3,5,6,7,8,9, 10
Server-side learning rate 0.5, 1, 2

Scaling factor 3 32, 64, 128

Table 5: Hyperparameter range for -MVU on FEMNIST.

Hyperparameter Values

o 0.6,0.8,1,2,4,6, 8, 10, 16, 32, 64, 128
Server-side learning rate  0.0001, 0.001, 0.01

Clipping factor 0.5,1,2

Table 6: Hyperparameter range for SignSGD on FEMNIST.

80‘ \‘L""L‘ ’
> v"‘
O ' sad
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§ 70, o3 Gaussian (b = «)
< =es |-MVU (b=1)
D60l o I-MVU (b = 2)
@ I-MVU (b = 3)
I-MVU (b = 4)
Qg0 101 102

DPeat6=107">

Figure 6: Privacy/accuracy plot for the sample-level DP scenario on FEMNIST. Each point represents a single hyperparameter
setting and the Pareto frontier is shown in dashed line. We display the performance of I-MVU with b bits communication
budget per coordinate: it is competitive with the non-compressed Gaussian baseline across the entire range of e.
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