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ABSTRACT

Reinforcement learning has been shown to be highly successful at many challeng-
ing tasks. However, success heavily relies on well-shaped rewards. Intrinsically
motivated RL attempts to remove this constraint by defining an intrinsic reward
function. Motivated by the self-consciousness concept in psychology, we make
a natural assumption that the agent knows what constitutes itself, and propose a
new intrinsic objective that encourages the agent to have maximum control on the
environment. We mathematically formalize this reward as the mutual information
between the agent state and the surrounding state under the current agent policy.
With this new intrinsic motivation, we are able to outperform previous methods,
including being able to complete the pick-and-place task for the first time with-
out using any task reward. A video showing experimental results is available at
https://youtu.be/AUCwc9RThpk.

1 INTRODUCTION

Reinforcement learning (RL) allows an agent to learn meaningful skills by interacting with an en-
vironment and optimizing some reward function, provided by the environment. Although RL has
achieved impressive achievements on various tasks (Silver et al., 2017; Mnih et al., 2015; Berner
et al., 2019), it is very expensive to provide dense rewards for every task we want the robot to
learn. Intrinsically motivated reinforcement learning encourages the agent to explore by providing
an “internal motivation” instead, such as curiosity (Schmidhuber, 1991; Pathak et al., 2017; Burda
et al., 2018), diversity (Gregor et al., 2016; Haarnoja et al., 2018; Eysenbach et al., 2019) and em-
powerment (Klyubin et al., 2005; Salge et al., 2014; Mohamed & Rezende, 2015). Those internal
motivations can be computed on the fly when the agent is interacting with the environment, without
any human engineered reward. We hope to extract useful “skills” from those internally motivated
agents, which could later be used to solve downstream tasks, or simply augment the sparse reward
with those intrinsic rewards to solve a given task faster.

Most of the previous works in RL model the environment as a Markov Decision Process (MDP). In
an MDP, we use a single state vector to describe the current state of the whole environment, without
explicitly distinguishing the agent itself from its surrounding. However, in the physical world, there
is a clear boundary between an intelligent agent and its surrounding. The skin of any mammal is an
example of such boundary. The separation of the agent and its surrounding also holds true for most
of the man-made agents, such as any mechanical robot. This agent-surrounding separation has been
studied for a long time in psychology under the concept of self-consciousness. Self-consciousness
refers that a subject knows itself is the object of awareness (Smith, 2020), effectively treating the
agent itself differently from everything else. Gallup (1970) has shown that self-consciousness
widely exists in chimpanzees, dolphins, some elephants and human infants. To equally emphasize
the agent and its surrounding, we name this separation as agent-surrounding separation in this paper.
The widely adopted MDP formulation ignores the natural agent-surrounding separation, but simply
stacks the agent state and its surrounding state together as a single state vector. Although this
formulation is mathematically concise, we argue that it is over-simplistic, and as a result, it makes
the learning harder.

With this agent-surrounding separation in mind, we are able to design a much more efficient intrin-
sically motivated RL algorithm. We propose a new intrinsic motivation by encouraging the agent to
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perform actions such that the resulting agent state should have high Mutual Information (MI) with
the surrounding state. Intuitively, the higher the MI, the more control the agent could have on its
surrounding. We name the proposed method “MUtual information-based State Intrinsic Control”,
or MUSIC in short. With the proposed MUSIC method, we are able to learn many complex skills in
an unsupervised manner, such as learning to pick up an object without any task reward. We can also
augment a sparse reward with the dense MUSIC intrinsic reward, to accelerate the learning process.

Our contributions are three-fold. First, we propose a novel intrinsic motivation (MUSIC) that
encourages the agent to have maximum control on its surrounding, based on the natural agent-
surrounding separation assumption. Secondly, we propose scalable objectives that make the MUSIC
intrinsic reward easy to optimize. Last but not least, we show MUSIC’s superior performance, by
comparing it with other competitive intrinsic rewards on multiple environments. Noticeably, with
our method, for the first time the pick-and-place task can be solved without any task reward.

2 PRELIMINARIES

For environments, we consider four robotic tasks, including push, slide, pick-and-place, and naviga-
tion, as shown in Figure 2. The goal in the manipulation task is to move the target object to a desired
position. For the navigation task, the goal is to navigate to a target ball. In the following, we define
some terminologies.

2.1 AGENT STATE, SURROUNDING STATE, AND REINFORCEMENT LEARNING SETTINGS

In this paper, the agent state sa means literally the state variable of the agent. The surrounding
state ss refers to the state variable that describes the surrounding of the agent, for example, the
state variable of an object. For multi-goal environments, we use the same assumption as previous
works (Andrychowicz et al., 2017; Plappert et al., 2018), which consider that the goals can be
represented as states and we denote the goal variable as g. For example, in the manipulation task, a
goal is a particular desired position of the object in the episode. These desired positions, i.e., goals,
are sampled from the environment.

The division between the agent state and the surrounding state is naturally defined by the agent-
surrounding separation concept introduced in Section 1. From a biology point of view, a human can
naturally distinguish its own parts, like hands or legs from the environments. Analog to this, when
we design a robotic system, we can easily know what is the agent state and what is its surrounding
state. In this paper, we use upper letters, such as S, to denote random variables and the corresponding
lower case letter, such as s, to represent the values of random variables.

We assume the world is fully observable, including a set of states S, a set of actionsA, a distribution
of initial states p(s0), transition probabilities p(st+1 | st, at), a reward function r: S ×A → R, and
a discount factor γ ∈ [0, 1]. These components formulate a Markov Decision Process represented as
a tuple, (S,A, p, r, γ). We use τ to denote a trajectory, which contains a series of agent states and
surrounding states. Its random variable is denoted as T .

3 METHOD

We focus on agent learning to control its surrounding purely by using its observations and actions
without supervision. Motivated by the idea that when an agent takes control of its surrounding, then
there is a high MI between the agent state and the surrounding state, we formulate the problem of
learning without external supervision as one of learning a policy πθ(at | st) with parameters θ to
maximize intrinsic MI rewards, r = I(Sa;Ss). In this section, we formally describe our method,
mutual information-based state intrinsic control (MUSIC).

3.1 MUTUAL INFORMATION REWARD FUNCTION

Our framework simultaneously learns a policy and an intrinsic reward function by maximizing the
MI between the surrounding state and the agent state. Mathematically, the MI between the surround-
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Algorithm 1: MUSIC
while not converged do

Sample an initial state s0 ∼ p(s0).
for t← 1 to steps per episode do

Sample action at ∼ πθ(at | st).
Step environment st+1 ∼ p(st+1 | st, at).
Sample transitions T ′ from the buffer.
Set intrinsic reward r = Iφ(Ss;Sa | T ′).
Update policy (θ) via DDPG or SAC.
Update the MI estimator (φ) with SGD.

Figure 1: MUSIC Algorithm: We update the estimator to better predict the MI, and update the
agent to control the surrounding state to have higher MI with the agent state.

ing state random variable Ss and the agent state random variable Sa is represented as follows:

I(Ss;Sa) = KL(PSsSa || PSs ⊗ PSa) (1)

= sup
T :Ω→R

EPSsSa [T ]− log(EPSs⊗PSa [eT ]) (2)

≥ sup
φ∈Φ

EPSsSa [Tφ]− log(EPSs⊗PSa [eTφ ]) := IΦ(Ss;Sa), (3)

where PSsSa is the joint probability distribution; PSs ⊗ PSa is the product of the marginal distri-
butions PSs and PSa ; KL denotes the Kullback-Leibler (KL) divergence. MI is notoriously difficult
to compute in real-world settings (Hjelm et al., 2019). Compared to the variational information
maximizing-based approaches (Barber & Agakov, 2003; Alemi et al., 2016; Chalk et al., 2016;
Kolchinsky et al., 2017), the recent MINE-based approaches have shown superior performance (Bel-
ghazi et al., 2018; Hjelm et al., 2019; Velickovic et al., 2019). Motivated by MINE (Belghazi et al.,
2018), we use a lower bound to approximate the MI quantity I(Ss;Sa). First, we rewrite Equa-
tion (1), the KL formulation of the MI objective, using the Donsker-Varadhan representation, to
Equation (2) (Donsker & Varadhan, 1975). The input space Ω is a compact domain of Rd, i.e.,
Ω ⊂ Rd, and the supremum is taken over all functions T such that the two expectations are fi-
nite. Secondly, we lower bound the MI in the Donsker-Varadhan representation with the compres-
sion lemma in the PAC-Bayes literature and derive Equation (3) (Banerjee, 2006; Belghazi et al.,
2018). The expectations in Equation (3) are estimated by using empirical samples from PSsSa and
PSs ⊗ PSa . The statistics model Tφ is parameterized by a deep neural network with parameters
φ ∈ Φ, whose inputs are the empirical samples.

3.2 EFFECTIVELY COMPUTING THE MUTUAL INFORMATION REWARD IN PRACTICE

Lemma 1. There is a monotonically increasing relationship between Iφ(Ss;Sa | T ) and
EPT ′ [Iφ(Ss;Sa | T ′)], mathematically,

Iφ(Ss;Sa | T ) n EPT ′ [Iφ(Ss;Sa | T ′)], (4)

where Ss, Sa, and T denote the surrounding state, the agent state, and the trajectory, respectively.
The trajectory fractions are defined as the adjacent state pairs, namely T ′ = {St, St+1}. The
symbol n denotes a monotonically increasing relationship between two variables and φ represents
the parameter of the statistics model in MINE. Proof. See Appendix A. �

We define the reward for each transition at a given time-step as the mutual information of the pair of
adjacent states at that time-step, see Equation (4) Right-Hand Side (RHS). However, in practice, we
find that it is not very efficient to train the MI estimator using state pairs. To counter this issue, we
use all the states in the same trajectory in a batch to train the MI estimator, see Equation (4) Left-
Hand Side (LHS), since more empirical samples help to reduce variance and therefore accelerate
learning. In Lemma 1, we prove the monotonically increasing relationship between Equation (4)
RHS and Equation (4) LHS.

In more detail, we divide the process of computing rewards into two phases, i.e., the training phase
and the evaluation phase. In the training phase, we efficiently train the MI estimator with a large
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batch of samples from the whole trajectory. For training the MI estimator network, we first randomly
sample the trajectory τ from the replay buffer. Then, the states sat used for calculating the product
of marginal distributions are sampled by shuffling the states sat from the joint distribution along the
temporal axis t within the trajectory. We use back-propagation to optimize the parameter (φ) to
maximize the MI lower bound, see Equation (4) LHS.

For evaluating the MI reward, we use a pair of transitions to calculate the transition reward, see
Equation (4) RHS and Equation (5), instead of using the complete trajectory. Each time, to calculate
the MI reward for the transition, the reward is calculated over a small fraction of the complete
trajectory τ ′, namely r = Iφ(Ss;Sa | T ′). The trajectory fraction, τ ′, is defined as adjacent state
pairs, τ ′ = {st, st+1}, and T ′ represents its corresponding random variable.

The derived Lemma 1 brings us two important benefits. First, it enables us to efficiently train the MI
estimator using all the states in the same trajectory. And a large batch of empirical samples reduce
the variance of the gradients. Secondly, it allows us to estimate the MI reward for each transition
with only the relevant state pair. This way of estimating MI enables us to assign rewards more
accurately at the transition level.

Based on Lemma 1, we calculate the transition reward as the MI of each trajectory fraction, namely

rφ(at, st) := Iφ(Ss;Sa|T ′) = 0.5
∑t+1
i=tTφ(ssi , s

a
i )− log(0.5

∑t+1
i=t e

Tφ(ssi ,s̄
a
i )), (5)

where (ssi , s
a
i ) ∼ PSsSa|T ′ , s̄ai ∼ PSa|T ′ , and τ ′ = {st, st+1}. In case that the estimated MI value is

particularly small, we scale the reward with a hyper-parameter α and clip the reward between 0 and
1. MUSIC can be combined with any off-the-shelf reinforcement learning methods, such as deep
deterministic policy gradient (DDPG) (Lillicrap et al., 2016) and soft actor-critic (SAC) (Haarnoja
et al., 2018). We summarize the complete training algorithm in Algorithm 1 and in Figure 1.

MUSIC Variants with Task Rewards: The introduced MUSIC method is an unsupervised rein-
forcement learning approach, which is denoted as “MUSIC-u”, where “-u” stands for unsupervised
learning. We propose three ways of using MUSIC to accelerate learning. The first method is using
the MUSIC-u pretrained policy as the parameter initialization and then fine-tuning the agent with the
task rewards. We denote this variant as “MUSIC-f”, where “-f” stands for fine-tuning. The second
variant is to use the MI intrinsic reward to help the agent to explore more efficiently. Here, the MI re-
ward and the task reward are added together. We name this method as “MUSIC-r”, where “-r” stands
for reward. The third approach is to use the MI quantity from MUSIC to prioritize trajectories for
replay. The approach is similar to the TD-error-based prioritized experience replay (PER) (Schaul
et al., 2016). The only difference is that we use the estimated MI instead of the TD-error as the
priority for sampling. We name this method as “MUSIC-p”, where “-p” stands for prioritization.

Skill Discovery with MUSIC and DIAYN: One of the relevant works on unsupervised RL, DI-
AYN (Eysenbach et al., 2019), introduces an information-theoretical objective FDIAYN, which
learns diverse discriminable skills indexed by the latent variable Z, mathematically, FDIAYN =
I(S;Z) + H(A | S,Z). The first term, I(S;Z), in the objective, FDIAYN, is implemented via a
skill discriminator, which serves as a variational lower bound of the original objective (Barber &
Agakov, 2003; Eysenbach et al., 2019). The skill discriminator assigns high rewards to the agent,
if it can predict the skill-options, Z, given the states, S. Here, we substitute the full state S with
the surrounding state Ss to encourage the agent to learn control skills. DIAYN and MUSIC can be
combined as follows: FMUSIC+DIAYN = I(Sa;Ss)+I(Ss;Z)+H(A | S,Z). The combined version
enables the agent to learn diverse control primitives via skill-conditioned policy (Eysenbach et al.,
2019) in an unsupervised fashion.

Comparison and Combination with DISCERN: Another relevant work is Discriminative Embed-
ding Reward Networks (DISCERN) (Warde-Farley et al., 2019), whose objective is to maximize the
MI between the state S and the goal G, namely I(S;G). While MUSIC’s objective is to maximize
the MI between the agent state Sa and the surrounding state Ss, namely I(Sa;Ss). Intuitively,
DISCERN attempts to reach a particular goal in each episode, while our method tries to manip-
ulate the surrounding state to any different value. MUSIC and DISCERN can be combined as
FMUSIC+DISCERN = I(Sa;Ss) + I(S;G). Optionally, we can replace the full states S with Ss, since
it performs better than with S empirically. Through this combination, MUSIC helps DISCERN to
learn its discriminative objective.
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Figure 2: Fetch robot arm manipulation tasks in OpenAI Gym and a navigation task
based on the Gazebo simulator: FetchPush, FetchPickAndPlace, FetchSlide,
SocialBot-PlayGround.

4 EXPERIMENTS

Environments: To evaluate the proposed methods, we used the robotic manipulation tasks and a
navigation task, see Figure 2 (Brockman et al., 2016; Plappert et al., 2018). The navigation task
is based on the Gazebo simulator. In the navigation task, the task reward is 1 if the agent reaches
the ball, otherwise, the task reward is 0. Here, the agent state is the robot car position and the
surrounding state is the red ball. The manipulation environments, including push, pick-and-place,
and slide, have a set of predefined goals, which are represented as the red dots. The task for the RL
agent is to manipulate the object to the goal positions. In the manipulation task, the agent state is
the gripper position and the surrounding state is the object position.

Experiments: First, we analyze the control behaviors learned purely with the intrinsic reward, i.e.,
MUSIC-u. Secondly, we show that the pretrained models can be used for improving performance
in conjunction with the task rewards. Interestingly, we show that the pretrained MI estimator can be
transferred among different tasks and still improve performance. We compared MUSIC with other
methods, including DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., 2018), DIAYN (Eysenbach
et al., 2019), DISCERN (Warde-Farley et al., 2019), PER (Schaul et al., 2016), VIME (Houthooft
et al., 2016), ICM (Pathak et al., 2017), and Empowerment (Mohamed & Rezende, 2015). Thirdly,
we show some insights about how the MUSIC rewards are distributed across a trajectory. The
experimental details are shown in Appendix G. Our code is available at https://github.com/
ruizhaogit/music and https://github.com/ruizhaogit/alf.

Question 1. What behavior does MUSIC-u learn?

We tested MUSIC-u in the robotic manipulation tasks. During training, the agent only receives the
intrinsic MUSIC reward. In all three environments, the behavior of reaching objects emerges. In the
push environments, the agent learns to push the object around on the table. In the slide environment,
the agent learns to slide the object to different directions. Perhaps surprisingly, in the pick-and-place
environment, the agent learns to pick up the object from the table without any task reward. All the
observations are shown in the supplementary video.

Question 2. How does MUSIC-u compare to Empowerment or ICM?
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Figure 3: Experimental results

We tested our method in the navigation
task. We combined our method with
PPO (Schulman et al., 2017) and com-
pared the performance with ICM (Pathak
et al., 2017) and Empowerment (Mo-
hamed & Rezende, 2015). During train-
ing, we only used one of the intrinsic re-
wards such as MUSIC, ICM, or Empow-
erment to train the agent. Then, we used
the averaged task reward as the evaluation
metric. The experimental results are shown in Figure 3 (left). The y-axis represents the mean task
reward and the x-axis denotes the training epochs. Figure 3 (right) shows that the MUSIC reward
signal I(Sa, Ss) is relatively strong compared to the Empowerment reward signal I(A,Ss). Subse-
quently, high MI reward encourages the agent to explore more states with higher MI. A theoretical
connection between Empowerment and MUSIC is shown in Appendix B. The video starting from
1:28 shows the learned navigation behaviors.

Question 3. How does MUSIC compare to DIAYN?
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SAC+MUSIC-f: 36.85%
SAC+MUSIC-p: 92.29%
SAC+MUSIC-r: 94.83%

SAC: 11.65%
SAC+MUSIC-f: 37.53%
SAC+MUSIC-p: 25.87%
SAC+MUSIC-r: 50.38%

SAC: 4.21%

SAC+MUSIC-f: 20.22%
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SAC+MUSIC-r: 29.0%

SAC: 19.56%

Figure 4: Mean success rate with standard deviation: The percentage values after colon (:) rep-
resent the best mean success rate during training. The shaded area describes the standard deviation.
A full comparison is shown in Appendix D Figure 9.

We compared MUSIC, DIAYN and MUSIC+DIAYN in the pick-and-place environment. For im-
plementing MUSIC+DIAYN, we first pre-train the agent with only MUSIC, and then fine-tune the
policy with DIAYN. After pre-training, the MUSIC-trained agent learns manipulation behaviors
such as, reaching, pushing, sliding, and picking up an object. Compared to MUSIC, the DIAYN-
trained agent rarely learns to pick up the object. It mostly pushes or flicks the object with the gripper.
However, the combined model, MUSIC+DIAYN, learns to pick up the object and moves it to differ-
ent locations, depending on the skill-option. These observations are shown in the video starting from
0:46. From this experiment, we can see that MUSIC helps the agent to learn the DIAYN objective.
DIAYN alone doesn’t succeed because DIAYN doesn’t start to learn any skills until it touches the
object, which is rare in the first place. This happens because the skill discriminator only encourages
the skills to be different.
Question 4. How does MUSIC+DISCERN compare to DISCERN?

Table 1: Comparison of DISCERN with and without MUSIC
Method Push (%) Pick & Place (%)

DISCERN 7.94% ± 0.71% 4.23% ± 0.47%
R (Task Reward) 11.65% ± 1.36% 4.21% ± 0.46%
R+DISCERN 21.15% ± 5.49% 4.28% ± 0.52%
R+DISCERN+MUSIC 95.15% ± 8.13% 48.91%± 12.67%

The combination of MUSIC
and DISCERN, encourages the
agent to learn to control the ob-
ject via MUSIC and then move
the object to the target position
via DISCERN. Table 1 shows
that DISCERN+MUSIC signif-
icantly outperforms DISCERN.
This is because that MUSIC emphases more on state-control and teaches the agent to interact with
an object. Afterwards, DISCERN teaches the agent to move the object to the goal position in each
episode.
Question 5. How can we use MUSIC to accelerate learning?

We investigated three ways, including MUSIC-f, MUSIC-p, and MUSIC-r, of using MUSIC to
accelerate learning in addition to the task reward. We combined these three variants with DDPG and
SAC and tested them in the multi-goal robotic tasks. From Figure 4, we can see that all these three
methods, including MUSIC-f, MUSIC-p, and MUSIC-r, accelerate learning in the presence of task
rewards. Among these variants, the MUSIC-r has the best overall improvements. In the push and
pick-and-place tasks, MUSIC enables the agent to learn in a short period of time. In the slide tasks,
MUSIC-r also improves the performances by a decent margin.

We also compare our methods with their closest related methods. To be more specific, we compare
MUSIC-f against the parameter initialization using DIAYN (Eysenbach et al., 2019); MUSIC-p
against Prioritized Experience Replay (PER), which uses TD-errors for prioritization (Schaul et al.,
2016); and MUSIC-r versus Variational Information Maximizing Exploration (VIME) (Houthooft
et al., 2016). The experimental results are shown in Figure 5. From Figure 5 (1st column), we
can see that MUSIC-f enables the agent to learn, while DIAYN does not. In the 2nd column of
Figure 5, MUSIC-r performs better than VIME. This result indicates that the MI between states is a
crucial quantity for accelerating learning. The MI intrinsic rewards boost performance significantly
compared to VIME. This observation is consistent with the experimental results of MUSIC-p and
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Figure 5: Performance comparison: We compare the MUSIC variants, including MUSIC-f,
MUSIC-r, and MUSIC-p, with DIAYN, VIME, and PER, respectively. A full comparison is shown
in Appendix D Figure 10.

PER, as shown in Figure 5 (3rd column), where the MI-based prioritization framework performs
better than the TD-error-based approach, PER. On all tasks, MUSIC enables the agent to learn the
benchmark task more quickly.
Question 6. Can the learned MI estimator be transferred to new tasks?
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DDPG+MUSIC-t: 87.1%

DDPG: 27.5%
DDPG+MUSIC-r: 35.8%

DDPG+MUSIC-t: 35.52%

Figure 6: Transferred MUSIC

It would be beneficial if the pretrained
MI estimator could be transferred to a
new task and still improve the perfor-
mance (Pan et al., 2010; Bengio, 2012).
To verify this idea, we directly applied
the pretrained MI estimator from the pick-
and-place environment to the push and
slide environments, respectively, and train
the agent from scratch.

We denote this transferred method as
“MUSIC-t”, where “-t” stands for transfer. The MUSIC reward function trained in its corresponding
environments is denoted as “MUSIC-r”. We compared the performances of DDPG, MUSIC-r, and
MUSIC-t. The results are in Figure 6, which shows that the transferred MUSIC still improved the
performance significantly. Furthermore, as expected, MUSIC-r performed better than MUSIC-t. We
can see that the MI estimator can be trained in a task-agnostic (Finn et al., 2017) fashion and later
utilized in unseen tasks.
Question 7. How does MUSIC distribute rewards over a trajectory?

MUSIC-u

Figure 7: MUSIC rewards over a trajectory

To understand why MUSIC works, we vi-
sualize the learned MUSIC-u reward in
Figure 7. We can observe that the MI re-
ward peaks between the 4th and 5th frame,
where the robot quickly picks up the cube
from the table. Around the peak reward
value, the middle range reward values are
corresponding to the relatively slow move-
ment of the object and the gripper (see the 3rd, 9th, and 10th frame). When there is no contact
between the gripper and the cube (see the 1st & 2nd frames), or the gripper holds the object still
(see the 6th to 8th frames) the intrinsic reward remains nearly zero. From this example, we see that
MUSIC distributes positive intrinsic rewards when the surrounding state has correlated changes with
the agent state.
Question 8. How does MUSIC reward compare to reward shaping?

Here, we want to compare MUSIC and reward shaping and show that MUSIC cannot be easily
replaced by reward shaping. We consider a simple L2-norm reward shaping, which is the distance
between the robot’s gripper and the object. With this hand-engineered reward, the agent learns to
move its gripper close to the object but barely touch the object. However, with MUSIC reward, the
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agent reaches the object and moves it into different locations. MUSIC automatically induces a lot
of hand-engineered rewards, including the L2-norm distance reward between the gripper and the
object, the contact reward between the agent and the object, the L2-norm distance reward between
the object and the goal position and any other rewards that maximize the mutual information between
the agent and the surrounding state. From this perspective, MUSIC can be considered as a meta-
reward for the state-control tasks, which helps the agent to learn any specific downstream tasks that
falls into this category.

Question 9. Can MUSIC help the agent to learn when there are multiple surrounding objects?

When there are multiple objects, the agent is trained to maximize the MI between the surrounding
objects and the agent via MUSIC. In the case that there is a red and a blue ball on the ground, with
MUSIC, the agent learns to reach both balls and sometimes also learns to use one ball to hit the
other ball. The results are shown in the supplementary video starting from 1:56.

Summary and Future Work: We can see that, with different combinations of the surrounding
state and the agent state, the agent is able to learn different control behaviors. We can train a skill-
conditioned policy corresponding to different combinations of the agent state and the surrounding
state and later use the pretrained policy for the tasks at hand, see Appendix F “Skill Discovery for
Hierarchical Reinforcement Learning”. In some cases, when there is no clear agent-surrounding
separation or the existing separation is suboptimal, new methods are needed to divide and select the
states automatically. Another future work direction is to extend the current method to the partially
observed cases. For example, we can combine MUSIC with state estimation methods and extend
MUSIC to the partially observed settings.

5 RELATED WORK

Intrinsically motivated RL is a challenging topic. We divide the previous works in three categories.
In the first category, intrinsic rewards are often used to help the agent learn more efficiently to
solve tasks. For example, Jung et al. (2011) and Mohamed & Rezende (2015) use empowerment,
which is the channel capacity between states and actions. A theoretical connection between MU-
SIC and empowerment is shown in Appendix B. VIME (Houthooft et al., 2016) and ICM (Pathak
et al., 2017) use curiosity as intrinsic rewards to encourage the agents to explore the environment
more thoroughly. Another category of work on intrinsic motivation for RL is to discover mean-
ingful skills, such as Variational Intrinsic Control (VIC) (Gregor et al., 2016), DIAYN (Eysenbach
et al., 2019), and Explore Discover Learn (EDL) (Campos et al., 2020). In the third category, in-
trinsic motivation also helps the agent to learn goal-conditioned policies. Warde-Farley et al. (2019)
proposed DISCERN, a method to learn a MI objective between the states and goals. Based on DIS-
CERN, Pong et al. (2019) introduced Skew-fit, which adapts a maximum entropy strategy to sample
goals from the replay buffer (Zhao et al., 2019) in order to make the agent learn more efficiently
in the absence of rewards. However, these methods fail to enable the agent to learn meaningful
interaction skills in the environment, such as in the robot manipulation tasks. Our work is based
on the agent-surrounding separation concept and drives an efficient state intrinsic control objective,
which empowers RL agents to learn meaningful interaction and control skills without any task re-
ward. A recent work (Song et al., 2020) with similar motivation, introduces mega-reward, which
aims to maximize the control capabilities of agents on given entities in a given environment and
show promising results in Atari games. Another related work (Dilokthanakul et al., 2019) proposes
feature control as intrinsic motivation and shows state-of-the-art results in Montezuma’s revenge.

In this paper, we introduce MUSIC, a method that uses the MI between the surrounding state and
the agent state as the intrinsic reward. In contrast to previous works on intrinsic rewards (Mohamed
& Rezende, 2015; Houthooft et al., 2016; Pathak et al., 2017; Eysenbach et al., 2019; Warde-Farley
et al., 2019), MUSIC encourages the agent to interact with the interested part of the environment,
which is represented by the surrounding state, and learn to control it. The MUSIC intrinsic reward
is critical when controlling a specific subset of the environmental state is the key to complete the
task, such as the case in robotic manipulation tasks. Our method is complementary to these previ-
ous works, such as DIAYN and DISCERN, and can be combined with them. Inspired by previous
works (Schaul et al., 2016; Houthooft et al., 2016; Eysenbach et al., 2019), we additionally demon-
strate three variants, including MUSIC-based fine-tuning, rewarding, and prioritizing mechanisms,
to significantly accelerate learning in the downstream tasks.
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6 CONCLUSION

This paper introduces Mutual Information-based State Intrinsic Control (MUSIC), an unsupervised
RL framework for learning useful control behaviors. The derived efficient MI-based theoretical
objective encourages the agent to control states without any task reward. MUSIC enables the agent
to self-learn different control behaviors, which are non-trivial, intuitively meaningful, and useful
for learning and planning. Additionally, the pretrained policy and the MI estimator significantly
accelerate learning in the presence of task rewards. We evaluated three MUSIC-based variants in
different environments and demonstrate a substantial improvement in learning efficiency compared
to state-of-the-art methods.
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APPENDIX

A MONOTONICALLY INCREASING RELATIONSHIP

Lemma 2. There is a monotonically increasing relationship between Iφ(Ss;Sa | T ) and
EPT ′ [Iφ(Ss;Sa | T ′)], mathematically,

Iφ(Ss;Sa | T ) n EPT ′ [Iφ(Ss;Sa | T ′)], (6)

where Ss, Sa, and T denote the surrounding state, the agent state, and the trajectory, respectively.
The trajectory fractions are defined as the adjacent state pairs, namely T ′ = {St, St+1}. The
symbol n denotes a monotonically increasing relationship between two variables and φ represents
the parameter of the statistics model in MINE.

Proof. The derivation of the monotonically increasing relationship is shown as follows:

Iφ(Ss;Sa | T ) =EPSsSa|T [Tφ]− log(EPSs|T ⊗PSa|T [eTφ ]) (7)

nEPSsSa|T [Tφ]− EPSs|T⊗PSa|T [eTφ ] (8)

=EPT ′ [EPSsSa|T ′ [Tφ]− EPSs|T ′⊗PSa|T ′ [e
Tφ ]] (9)

nEPT ′ [EPSsSa|T ′ [Tφ]− log(EPSs|T ′⊗PSa|T ′ [e
Tφ ])] = EPT ′ [Iφ(Ss;Sa | T ′)],

(10)

where Tφ represents a neural network, whose inputs are state samples and the output is a scalar.
For simplicity, we use the symbol n to denote a monotonically increasing relationship between two
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variables, for example, log(x) n x means that as the value of x increases, the value of log(x) also
increases and vice versa. To decompose the lower bound Equation (7) into small parts, we make
the following derivations, see Equation (8,9,10). Deriving from Equation (7) to Equation (8), we
use the property that log(x) n x. Here, the new form, Equation (8), allows us to decompose the MI
estimation into the expectation over MI estimations of each trajectory fractions, Equation (9). To be
more specific, we move the implicit expectation over trajectory fractions in Equation (8) to the front,
and then have Equation (9). The quantity inside the expectation over trajectory fractions is the MI
estimation using only each trajectory fraction, see Equation (9). We use the property, log(x) n x,
again to derive from Equation (9) to Equation (10).

B CONNECTION TO EMPOWERMENT

The state S contains the surrounding state Ss and the agent state Sa. For example, in robotic
tasks, the surrounding state and the agent state represents the object state and the end-effector state,
respectively. The action space is the change of the gripper position and the status of the gripper,
such as open or closed. Note that, the agent’s action directly alters the agent state.

Here, given the assumption that the transform, Sa = F (A), from the action, A, to the agent state,
Sa, is a smooth and uniquely invertible mapping (Kraskov et al., 2004), then we can prove that the
MUSIC objective, I(Sa, Ss), is equivalent to the empowerment objective, I(A,Ss).

The empowerment objective (Klyubin et al., 2005; Salge et al., 2014; Mohamed & Rezende, 2015)
is defined as the channel capacity in information theory, which means the amount of information
contained in the action A about the state S, mathematically:

E = I(S,A). (11)

Here, we replace the state variable S with the surrounding state Ss, we have the empowerment
objective as follows,

E = I(Ss, A). (12)

Theorem 3. The MUSIC objective, I(Sa, Ss), is equivalent to the empowerment objective,
I(A,Ss), given the assumption that the transform, Sa = F (A), is a smooth and uniquely invertible
mapping:

I(Sa, Ss) = I(A,Ss) (13)

where Ss, Sa, and A denote the surrounding state, the agent state, and the action, respectively.

Proof.

I(Sa, Ss) =

∫ ∫
dsadssp(sa, ss) log

p(sa, ss)

p(sa)p(ss)
(14)

=

∫ ∫
dsadss

∥∥∥∥ ∂A∂Sa
∥∥∥∥ p(a, ss) log

∥∥ ∂A
∂Sa

∥∥ p(a, ss)∥∥ ∂A
∂Sa

∥∥ p(a)p(ss)
(15)

=

∫ ∫
dsadssJA(sa)p(a, ss) log

JA(sa)p(a, ss)

JA(sa)p(a)p(ss)
(16)

=

∫ ∫
dadssp(a, ss) log

p(a, ss)

p(a)p(ss)
(17)

= I(A,Ss) (18)
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C MUTUAL INFORMATION NEURAL ESTIMATOR TRAINING

Algorithm 2: MINE (Belghazi et al., 2018)
θ ← initialize network parameters
repeat

Draw b minibatch samples from the joint distribution:
(x(1), z(1)), . . . , (x(b), z(b)) ∼ PXZ
Draw n samples from the Z marginal distribution:
z̄(1), . . . , z̄(b) ∼ PZ
Evaluate the lower-bound:
V(θ)← 1

b

∑b
i=1 Tφ(x

(i),z(i))− log( 1
b

∑b
i=1 e

Tφ(x(i),z̄(i)))
Evaluate bias corrected gradients (e.g., moving average):
Ĝ(θ)← ∇̃θV(θ)
Update the statistics network parameters:
θ ← θ + Ĝ(θ)

until convergence

One potential pitfall of training the RL agent using the MINE reward is that the MINE reward signal
can be relatively small compared to the task reward signal. The practical guidance to solve this
problem is to tune the scale of the MINE reward to be similar to the scale of the task reward.

D EXPERIMENTAL RESULTS

The learned control behaviors without supervision are shown in Figure 8 as well as in the supple-
mentary video. The detailed experimental results are shown in Figure 9 and Figure 10.

R
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Figure 8: Learned Control behaviors with MUSIC: Without any reward, MUSIC enables the
agent to learn control behaviors, such as reaching, pushing, sliding, and picking up an object. The
learned behaviors are shown in the supplementary video.
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DDPG+MUSIC-r: 35.8%

DDPG: 27.5%

SAC+MUSIC-f: 36.85%
SAC+MUSIC-p: 92.29%
SAC+MUSIC-r: 94.83%

SAC: 11.65%
SAC+MUSIC-f: 37.53%
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SAC+MUSIC-r: 50.38%

SAC: 4.21%

SAC+MUSIC-f: 20.22%
SAC+MUSIC-p: 25.9%
SAC+MUSIC-r: 29.0%

SAC: 19.56%

Figure 9: Mean success rate with standard deviation: The percentage values after colon (:) rep-
resent the best mean success rate during training. The shaded area describes the standard deviation.

E COMPARISON OF VARIATIONAL MI-BASED AND MINE-BASED
IMPLEMENTATIONS

Here, we compare the variational approach-based (Barber & Agakov, 2003) implementation of MU-
SIC and MINE-based implementation (Belghazi et al., 2018) of MUSIC in Table 2. All the exper-
iments are conducted with 5 different random seeds. The performance metric is mean success rate
(%) ± standard deviation. The “Task-r” stands for the task reward. From Table 2, we can see that

Table 2: Comparison of variational MI (v)-based and MINE (m)-based MUSIC
Method Push (%) Pick & Place (%)

Task-r+MUSIC(v) 94.9% ± 5.83% 49.17% ± 4.9%
Task-r+MUSIC(m) 94.83% ± 4.95% 50.38% ± 8.8%

the performance of these two MI estimation methods are similar. However, the variational method
introduces additional complicated sampling mechanisms, and two additional hyper-parameters, i.e.,
the number of the candidates and the type of the similarity measurement (Barber & Agakov, 2003;
Eysenbach et al., 2019; Warde-Farley et al., 2019). In contrast, MINE-style MUSIC is easier to
implement and has less hyper-parameters to tune. Furthermore, the derived objective improves the
scalability of the MINE-style MUSIC.

F SKILL DISCOVERY FOR HIERARCHICAL REINFORCEMENT LEARNING

In this section, we explore the direction of Hierarchical Reinforcement Learning based on MUSIC.

For example, in the Fetch robot arm pick-and-place environment, we have the follow states as the
observation: grip pos, object pos, object velp, object rot, object velr, where
the abbreviation “pos” stands for position; “rot” stands for rotation; “velp” stands for linear
velocity, and “velr” stands for rotational velocity.

The grip pos is the agent state. The surrounding states are object pos, object velp,
object rot, object velr. In Table 3, we show the MI value with different state-pair com-
binations prior to training and post to training. When the MI value difference is high, it means that
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MUSIC-f: 36.85%

DIAYN: 7.48%

MUSIC-f: 37.53%

DIAYN: 3.65%

MUSIC-f: 20.22%

DIAYN: 0.54%
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VIME: 10.98%

MUSIC-r: 51.29%

VIME: 4.75%

MUSIC-r: 35.8%
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MUSIC-p: 93.08%

PER: 58.44%

MUSIC-p: 21.12%

PER: 6.34%
MUSIC-p: 27.81%

PER: 20.91%

Figure 10: Performance comparison: We compare the MUSIC variants, including MUSIC-f,
MUSIC-r, and MUSIC-p, with DIAYN, VIME, and PER, respectively.

the agent has a good learning progress with the corresponding MI objective. From Table 3 first row,

Table 3: Mutual Information estimation prior and post to the training
Mutual Information Objective Prior-train Value Post-train Value

MI(grip pos; object pos) 0.003 ± 0.017 0.164 ± 0.055
MI(grip pos; object rot) 0.017 ± 0.084 0.461 ± 0.088
MI(grip pos; object velp) 0.005 ± 0.010 0.157 ± 0.050
MI(grip pos; object velr) 0.016 ± 0.083 0.438 ± 0.084

we can see that with the intrinsic reward MI(grip pos; object pos), the agent achieves a high
MI after training, which means that the agent learns to better control the object positions using its
gripper. Similarly, in the second row of the table, with MI(grip pos; object rot), the agent
learns to control object rotation with its gripper.

From the experimental results, we can see that with different combination of state-pairs of the agent
and surrounding state, the agent can learn different skills, such as manipulate object positions or
rotations. We can connect these learned skills with different skill-options (Eysenbach et al., 2019)
and train a meta-controller to control these motion primitives to complete long-horizon tasks in a
hierarchical reinforcement learning framework (Eysenbach et al., 2019). We consider this as a future
research direction, which could be a solution in solving more challenging and complex long-horizon
tasks.
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G EXPERIMENTAL DETAILS

We ran all the methods in each environment with 5 different random seeds and report the mean
success rate and the standard deviation. The experiments of the robotic manipulation tasks in this
paper use the following hyper-parameters:

• Actor and critic networks: 3 layers with 256 units each and ReLU non-linearities
• Adam optimizer (Kingma & Ba, 2014) with 1 · 10−3 for training both actor and critic
• Buffer size: 106 transitions
• Polyak-averaging coefficient: 0.95

• Action L2 norm coefficient: 1.0

• Observation clipping: [−200, 200]

• Batch size: 256

• Rollouts per MPI worker: 2

• Number of MPI workers: 16

• Cycles per epoch: 50

• Batches per cycle: 40

• Test rollouts per epoch: 10

• Probability of random actions: 0.3

• Scale of additive Gaussian noise: 0.2

• Scale of the mutual information reward: 5000

The specific hyper-parameters for DIAYN are follows:

• Number of skill options: 5

• Discriminate skills based on the surrounding state

The specific hyper-parameters for VIME are follows:

• Weight for intrinsic reward η: 0.2

• Bayesian Neural Network (BNN) learning rate: 0.0001

• BNN number of hidden units: 32

• BNN number of layers: 2

• Prior standard deviation: 0.5

• Use second order update: True
• Use information gain: True
• Use KL ratio: True
• Number updates per sample: 1

The specific hyper-parameters for DISCERN are follows:

• Number of candidates to calculate the contrastive loss: 10

• Calculate the MI using the surrounding state

The specific hyper-parameters for PER are follows:

• Prioritization strength α: 0.6

• Importance sampling factor β: 0.4

The specific hyper-parameter for SAC is following:

• Weight of the entropy reward: 0.02
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